PAGE
2
www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

Index

1. Introduction to Petal – Distributed Virtual Disks…..…6

2. Features of Petal………………………………………8
 2.1. Simplicity………………………………………….… 8

 2.2. Flexibility..………………………………………….. 9

 2.3. Tractability………………………………………….. 9

3. Viewing Petal………………………………………. 10
3.1. Client View of Petal………………………………... 10

3.2. Physical View of Petal…………………………….. 11

3.3. View of Virtual Disks…………………………… … 12

 4. Design of Petal…………………………………… … 13

 4.1. Virtual to Physical Translation………………… .…. 15

4.2. Support for Backup……………………………… 17

4.3. Incremental Reconfiguration……………………….. 18

4.4. Data Access and Recovery………………………… 20

4.4.1. Chained Declustering……………………. 20

4.4.2. Advantages of Chained Declustering……...23

4.4.3. Disadvantages of Chained Declustering…...24

4.4.4. Read Write under Chained Declustering…..24

 5. Addition of New Server……………………………..25

5.1. Basic Algorithm……………………………………..25

5.2. Refined Algorithm…………………………………..26

 6. Implementation and Performance…………..…….26
 6.1. Petal Prototype…………………………………...26

 6.2. Petal Performance………………………………..28

6.2.1. Client Request Latency……………………..28

6.2.2. Aggregate Throughput…….. ………………29

6.2.3. Throughput Scaling…………………………30

 6.3. File System Performance…………………………31

7. Limitations of Petal……………………………… 33

8. Future Scope……………………………………...34

 9. References………………………………………..35

 1. Introduction

 The ideal storage system is globally accessible, always available, provides unlimited performance and capacity for a large number of clients, and requires no management. It is conventionally believed that nothing is ideal in the universe. But still, if one tries to incorporate majority of these features in a single system, then a cost-effective scalable system becomes available. As mentioned earlier the ideal storage system is always available and is incrementally expandable. Existing storage systems are far from this ideal. The recent introduction of low-cost, scalable, high-performance networks allows us to re-examine the way we build storage systems and to investigate storage architectures that bring us closer to the ideal storage system. Petal, attempts to approximate this ideal in practice through a novel combination of features.

Currently, managing large storage systems is an expensive and complicated process. Various estimates suggest that for $1 of storage $5-$10 is spent to manage it. Adding a new storage device frequently requires a dozen or more distinct steps, many of which require reasoning about the system as a whole and are, therefore, difficult to automate. Often a single component failure can halt the entire system, and requires considerable time and effort to resume operation. For instance, in a network using a ring topology or a star topology, the hub acts like a server through which all the transactions occur. Thus, hub is a single element whose failure may result in a system halt. Moreover, the capacity and performance of individual components in the system must be periodically monitored and equipoised to reduce fragmentation and elimination of hot spots. This usually requires a lot of manual work in moving, partitioning, or replicating files and directories. Replicating of data blatantly increases the space complexity of the system. The ultimate solution to overcome all these problems is, Petal, a cost-effective scalable network that is an easy-to-manage distributed storage system.

Petal consists of a collection of network connected servers that cooperatively manage a pool of physical disks. To a Petal client, this collection appears as a highly available block-level storage system that provides large abstract containers called virtual disks. A virtual disk is globally accessible to all Petal clients on the network. A client can create a virtual disk on demand to tap the entire capacity and performance of the underlying physical resources. Furthermore, additional resources, such as servers and disks, can be automatically incorporated into Petal.

Fundamentally, clients such as file systems and databases, view Petal as a collection of virtual disks as shown in Figure 1. (Refer next page) A Petal virtual disk is a container that provides a sparse 64-bit byte storage space. As with ordinary magnetic disks or tapes data can be read from or written to any of the disks from the pool of Petal virtual disks. Thus it provides extremely simple and flexible method of accessing data from the virtual disks. Petal clients access data from the virtual disks through a scalable network as shown in the figure.

 LFS

 Figure1.1. Virtual disks as viewed by Petal client.

Petal, additionally exhibits the following novel combination of characteristics, which we believe will succor in reducing the complexity of managing large storage systems:

1. It can tolerate and recover from any single component failure such as disk, server, or network.

2. It can be geographically distributed to tolerate site failures such as power outages and natural disasters.

3. It transparently reconfigures to expand in performance and capacity as new servers and disks to be added.

4. It uniformly balances load and capacity throughout the servers in the system.

5. It provides fast, efficient support for backup and recovery in environments with multiple types of clients, such as file servers and databases.

Petal’s virtual disks allow us to cleanly separate a client’s view of storage from the physical resources that are used to implement it. This allows us to share the physical resources more flexibly among many clients, and to offer important services such as “snapshots” and incremental expandability in an efficient manner. The disk-like interface offered by Petal provides a lower level service than a distributed file system; however, we believe that a distributed file system can be efficiently implemented on top of Petal, and that the resulting system as a whole will be as cost-effective as a comparable distributed file system implementation.
2. Features of Petal

As mentioned in the introductory part, Petal exhibits several prominent features that help us in reducing the complexity of managing large storage systems. Apart from these, the salient features like Flexibility, Simplicity and Tractability can appropriately describe Petal.

2.1 Flexibility

 The flexibility of Petal lies in the fact that the virtual disks separate the client view and the physical resource. (Client view explained in section 3.1). It is now sufficient that in client view, the complete pool of several virtual disks appears to client as a single virtual disk. On the contrary, the physical view distinguishes between each virtual disk in the pool. Each disk is considered as an individual entity, each allocated a storage server. Thus whenever a client requests for a read or write on the disk (remember that the disk is a single entity), Petal investigates and finds out the actual disk that is to be accessed. The read or write call is appositely diverted to the concerned disk. The data is then accessed through the corresponding storage server assigned to that disk. This gives an overall impression of a disk-like interface. Hence all the accesses are exactly similar to the methods employed while accessing data from the magnetic disks or tapes.

2.2 Simplicity

Petal is a simple block level file system that is easy to model, design implement

and tune. The design of Petal, as will be discussed in section 4 comprehensively, is extremely simple to understand. Such storage architecture would allow us to build storage systems at any desired level of capacity or performance by simply putting together enough scalable storage components. Moreover, a large storage system would be no more difficult to manage than a small storage system. We could start with a small system and incrementally increase its capacity and performance as the needs of our system grew. Not only the virtual disks can be created and destroyed on demand, but can be allocated as and when necessary. More importantly, Petal advocates heterogeneous clients and client applications. Thus, the client requesting for the same data through read or write calls need not possess identical characteristics. One of the clients could be file server while the other could be a database. Thus Petal is not particularly stringent on a particular type of client. Due to this simplicity, it is possible to build a distributed file system on top of Petal, efficiently.

 2.3 Tractability

 Normally, large-scale storage systems are expensive to manage. In 1994 $50

billion were spent on storage hardware, but $150 billion were spent to manage storage. Labor costs estimated to $2 - $7 per megabyte per year. Studies also indicate that the storage hardware costs are likely to decrease than the storage management costs. Under these circumstances, it is of paramount importance to build a system that is easy to manage. Petal is a block level storage system that is easy to model, design, implement and tune. In most of the networks, it is observed that there is a single point of failure. Thus the whole system will hang if the single component fails. Petal is efficient enough to tolerate and recover from any single component failure. The single component may be disk, server or a network. In doing so it geographically distributes itself to resist site failures such as power outage or natural catastrophe. Management is extraordinarily flexible while adding new servers or disks to the prototype. It transparently reconfigures itself to expand in capacity and performance. Petal uniformly balances load and capacity throughout the servers in the file system. Finally, it also provides fast and efficient support for backup and recovery. Thus, under situations where a lot of funds are squandered in management of large storage system, Petal could be one of the economical choices of building scalable systems.

3. Viewing Petal

Showing no resemblance to the actual storage method that Petal incorporates, the

client has an entirely different view of the virtual disks. Depending on this interesting fact, and perhaps one of the most significant concepts in Petal, various views of the prototype are possible.

3.1 Client View

Petal Clients

 Petal

Virtual Disks

 Figure 3.1. Client View of Petal

The Petal structure viewed from the client side is as shown in figure 3.1. The client views the Disk as a single entity and not a pool of various virtual disks. Infact, there are many distinct virtual disks in practice, but the client is not aware of this. Thus whatever requests the client generates are with respect to the virtual disk viewed as a single entity. This concept is implemented to provide some flexibility to the architecture.

3.2 Physical View

 Disk

Storage

 Figure 3.2. Physical view of Petal.

 The Physical view, of which the client is unaware, is as shown in figure 3.2. Client generates requests assuming that there is only a single disk. But, in practice there are many virtual disks each assigned a storage server. Whenever a read or write request is generated by the client then it is diverted to the appropriate server. Thus, the function of server is to accept requests from the client and respond to them appropriately. It implies that if data is available it is returned otherwise an error code is returned. As evident from the figure, each virtual disk is allocated a storage server. Client is absolutely unaware of this fact and hence the entire request from the client side is with respect to a single disk. But it becomes extremely untenable if many requests are generated simultaneously (Which is the case normally). Thus the virtual disk is portioned into small disks assigning each disk a storage server. This balances the load and increases the throughput of the system.

3.3 View of Virtual Disk

 Figure 3.3. View of Virtual Disks.

The View of virtual disks is as shown in figure 3.3.
After referring to figure 3.2 one might wonder whether a storage server is attached to a single virtual disk or multiple disks. Above figure completely eliminates this ambiguity. It is clear that one storage server can control more than one virtual disk. Thus it is likely that multiple requests from a single client are diverted to the same storage server. This occurs when the data to be accessed on two different disks is, is present on two disks which is control by the same server. In worst case a particular server may be overloaded with requests while other might be idle. To remove this limitation a storage queue is assigned to each storage server. If a particular server is overloaded with requests, then the jobs are diverted to the server with shortest length of the storage queue. This balances the load on the servers and results in more efficient accesses.

4. Design of Petal

Petal is a block level storage system that is easy to design and implement. As

shown in Figure 3.2, Petal consists of a pool of distributed storage servers that cooperatively implement a single, block-level storage system. Clients view the storage system as a collection of virtual disks and access Petal services via a remote procedure call (RPC) interface. A basic principle in the design of the Petal RPC interface was to maintain all state needed for ensuring the integrity of the storage system in the servers, and maintain only hints in the clients. Clients maintain only a small amount of high-level mapping information that is used to route read and write requests to the “most appropriate” server. If a request is sent to an inappropriate server, the server returns an error code, causing the client to update its hints and retry the request.

Figure 4.1 (Refer next page) illustrates the software structure of Petal. Each

of the ovals represents a software module. Arrows indicate the use of one module by another. Two modules, the liveness module and the global state module, manage much of the distributed system aspect of Petal. The liveness module ensures that all servers in the system will agree on the operational status, whether running or crashed, of each other. This service is used by the other modules, notably the global state manager, to guarantee continuous, consistent operation of the system as a whole in the face of server and communication failures. The operation of the liveness module is based on majority consensus and the periodic exchange of “I’m alive” and “You’re alive” messages between the servers. These message exchanges must be done in a timely manner to ensure progress but can be arbitrarily delayed or reordered without affecting correctness.

Petal maintains information that describes the current members of the storage

system and the currently supported virtual disks. This information is replicated across all Petal servers in the system. The global state manager is responsible for consistently maintaining this information, which is less than a megabyte in our current implementation. Our algorithm for maintaining global state is based on Leslie Lamport’s Paxos, or “part-time parliament” algorithm for implementing distributed, replicated state machines. The algorithm assumes that servers fail by ceasing to operate and that networks can reorder and lose messages. The algorithm ensures

 Figure 4.1. Petal Server Modules

correctness in the face of arbitrary combinations of server and communication failures and recoveries, and guarantees progress as long as a majority of servers can communicate with each other. This ensures that management operations in Petal, such as creating, deleting, or snapshotting virtual disks, or adding and deleting servers, are fault tolerant.

 The other three modules deal with servicing the read and write requests

issued by Petal clients. The data access and recovery modules control how client data is distributed and stored in the Petal storage system. A different set of data access and recovery modules exists for each type of redundancy scheme supported by the system. We currently support simple data striping without redundancy and a replication-based redundancy scheme called chaineddeclustering. The desired redundancy scheme for a virtual disk is specified when the virtual disk is created. Subsequently, the redundancy scheme, and other attributes, can be transparently changed via a process called virtual disk reconfiguration. The virtual-to-physical address translation module contains common routines used by the various data access and recovery modules. These routines translate the virtual disk offsets to physical disk addresses. The rest of this section will examine specific aspects of the system in greater detail.

4.1 Virtual to Physical Translation

 Petal Clients use Virtual addresses to access data from the disks. This section

describes how Petal translates these virtual disk addresses into physical disk addresses. The basic problem is to translate virtual addresses of the form <virtuadisk-identifier,offset> to physical addresses of the form <server identifier, disk-identifier, disk-offset>. This translation must be done consistently and efficiently in a distributed system where events that alter virtual disk address translation, such as server failure or recovery, can occur unexpectedly.

Figure 4.2 elucidates the basic data structures and the steps in the translation

procedure. There are three important data structures: a virtual disk directory (VDir), a global map (GMap), and a physical map (PMap). The dotted lines around the virtual disk directory and the global map indicate that these are global data structures that are replicated and consistently updated on all the servers by the global state manager. Each server also has a physical map that is local to that server.

 VdiskID

 Physical Address

 Offset Figure 4.2. Virtual to Physical Address Translation

Translating a client-supplied virtual disk identifier and offset into a particular disk offset occurs in three steps as shown in Figure 4.2.

1. The virtual disk directory translates the client-supplied virtual disk identifier into a

 global map identifier.

2. The specified global map determines the server responsible for translating the

 given offset.

3. The physical map at the specified server translates the global map identifier and the offset to a physical disk and an offset within that disk.

To minimize communication, in almost all cases, the server that performs the translation in Step 2 will be the same server that performs the translation in Step 3. Thus, if a client has initially sent the request to the appropriate server, that server can perform three steps in the translation locally without communicating with any other server. There is one global map per virtual disk that specifies the tuple servers spanned by the virtual disk and the redundancy scheme used to protect client data stored on the virtual disk. To tolerate server failures, a secondary server can be assigned responsibility for mapping the same offset when the primary is not available. Global maps are immutable; to change a virtual disk’s tuple of servers or redundancy scheme, the virtual disk must be assigned a new global map. Section 2.3 describing reconfiguration provides more details about this process. The physical map is the actual data structure used to translate offset within a virtual disk to a physical disk and an offset within that disk. It is similar to a page table in a virtual memory system and each physical map entry translates a 64 Kbyte region of physical disk. The server that performs the translation will usually also perform the disk operations needed to service the original client request. The separation of the translation data structures into global and local physical maps allows us to keep the bulk of the mapping information local. Doing so minimizes the amount of information that must be kept in global data structures that are replicated and, therefore, expensive to update.

4.2 Support for Backup

 Petal attempts to simplify a client’s backup procedure by providing common

mechanism that can be applied by clients to automate the backup and recovery of all data stored on the system. The mechanism Petal provides is fast efficient snapshots of virtual disks. By using copy-on-write techniques, Petal can quickly create exact copy of a virtual disk at a specified point in time. A client treats the snapshot like any other virtual disk, except that it cannot be modified. Supporting snapshots requires a slightly more complicated virtual-to-physical translation procedure than described in the previous section. In particular, the virtual disk directory does not translate a virtual disk identifier to a global map identifier, rather to the tuple <global-map-identifier, epoch-number>. The epoch-number is a monotonically increasing version number that distinguishes data stored at the same virtual disk offset at different points in time. The tuple <global-map-identifier, epoch-number> is then used by the physical map in the last step of the translation. When the systemcreates a snapshot of a virtual disk, a new tuple with a later epoch number is created in the virtual disk directory. All accesses to the original virtual disk are then made using new epoch number. The newly created snapshot uses the older epoch number. This ensures that any new data written to original virtual disk will create new entries in the new epoch rather than overwriting the data in the previous epoch. Also, read requests can find the data most recently written to a particular offset looking for the most recent epoch. Creating a snapshot that is consistent at the client application level requires pausing the application for the brief time, less than one second, it takes to create a Petal snapshot. An alternative approach would not require pausing the application and would create a “crash-consistent” snapshot, that is, the snapshot would be similar to the disk image that would be left after an application crashed. Such snapshots could later be made consistent at application level by running an application-dependent recovery program such as fsck in the case of Unix file systems. We considering implementing crash-consistent snapshots, but they currently not supported. Snapshots can be kept on-line and facilitate the recovery of accidentally deleted files. Also, since a snapshot behaves exactly like read-only local disk, a Petal client can use it to create consistent archives of data using utilities such as tar.

4.3 Incremental Reconfiguration

Occasionally, it is desirable to change a virtual disk’s redundancy scheme or the

set of servers over which it is mapped. Such a change is often precipitated by the addition or removal of disks and servers. This section describes how Petal incorporates new disks and servers, and how existing virtual disks can be reconfigured to take advantage of these new resources. The former processes are described only from the point of view of adding new resources but are easily generalized to the removal of resources. The latter process is referred to as virtual disk reconfiguration and is the primary focus of this section. The addition of a disk to a server is handled locally by the given server. Subsequent storage allocation requests automatically take the new disk into consideration. However, for load balance, it is desirable to redistribute previously allocated storage to the new disk as well. This redistribution ismost easily accomplished as part of a local background process that periodically moves data among disks. We have not yet implemented such a background process in Petal. Nonetheless, existing data is redistributed to newly added disks as a side-effect of the virtual disk reconfiguration. The addition of a Petal server is a global operation composed of several steps involving the global state management module and the liveness module. First, the new server is added to the membership of the Petal storage system. Thereafter, the new server will participate in any future global operations. Next, the sets of servers used by the liveness module for determining whether a particular server is up or down is adjusted to incorporate the new server. Finally, existing virtual disks are reconfigured to take advantage of the new server, using the process described below. Given the virtual-to-physical translation procedure already described in Section 2.1, and in the absence of any other activity in the system, virtual disk reconfiguration can be trivially implemented as follows:

1. Create a new global map with the desired redundancy scheme and server

 mapping.

2. Change all virtual disk directory entries that refer to the old global map to refer to

 the new one.

3. Redistribute the data to the servers according to the translations specified in the new global map. This data distribution could potentially require substantial amounts of network and disk traffic.

The challenge is to perform reconfiguration incrementally and concurrently with the processing of normal client requests. We find it acceptable if the procedure takes a few hours but it must not degrade the performance of the system significantly. For example, if a virtual disk is reconfigured because a new server has been added, the performance of the virtual disk should gradually increase during reconfiguration from its level before reconfiguration to its level after reconfiguration. We will describe our reconfiguration algorithm in two steps. First, we describe the basic algorithm and then a refinement to that algorithm. The refined algorithm is what is actually implemented in our system.

In the basic algorithm, steps one and two, described above, are first

executed. Next, startingwith the translations in the most recent epoch that have not yet been moved, data is transferred to the new collection of servers as specified by the new global map. Because of the amount of data that may need to be moved, reconfiguration can take a long time to complete. In the interim clients will wish to read and write data to a virtual disk that is being reconfigured. To accommodate such requests, our read and write procedures are designed to function as follows. When a client read request is serviced, the old global map is tried if an appropriate translation is not found in the new global map. This ensures that translations that have not yet been moved will still be found in the old global map. Any clients write requests will always access only the new global map. Also, since we move data starting with the most recent epoch, we ensure that read requests will not return data from an older epoch than that requested by the client.

The main limitation of the basic algorithm is that server mappings for an

entire virtual disk are changed before any data is moved. This means that almost every client read request submitted that is based on the new global map will miss in the new global map and will have to be forwarded to the old one. This will usually require additional communication between servers and has the potential to seriously degrade the performance of the system.

The refined algorithm solves the limitation of the basic algorithm

by relocating only small portions of a virtual disk at a time. The basic idea is to break up a virtual disk’s address range into three regions: old, new, and fenced. Requests to the old and new regions simply use the old and new global maps, respectively. Requests to the fenced region, however, use the basic algorithm we have described above. Once we have relocated everything in the fenced region, it becomes a new region and we fence another part of the old region. We repeat until we have moved all the data in the old region into the new region.

By keeping the relative size of the fenced region small, roughly one to

ten percent of the entire range, we minimize the forwarding overhead. To help guard against fencing off a heavily used subrange of the virtual disk, we construct the fenced region by collecting small non-contiguous ranges distributed throughout the virtual disk, instead of a single contiguous region.
4.4 Data Access and Recovery
This section describes Petal’s chained-declustered data access and recovery

modules. These modules give clients highly available access to data by automatically bypassing failed components. Dynamic load balancing eliminates system bottlenecks by ensuring uniform load distribution even in the face of component failures. We start by describing the basic idea behind chained-declustering and then move into detailed descriptions of exactly what happens on each read and write operation.

4.4.1 Chained Declustering

Figure 4.3 illustrates the chained-declustered data placement scheme. The

dotted rectangle emphasizes that the data on the storage servers appear as a single virtual disk to clients. Each sequence of letters represents a block of data stored in the storage system. Note that the two copies of each block of data are always stored on neighboring servers. Furthermore, every pair of neighboring servers has data blocks in common. Because of this arrangement, if Server 1 fails, servers 0 and 2

 Virtual Disks

Figure 4.3. Chained-Declustering.

will automatically share Server 1’s read load; however, Server 3 will not experience any load increase. By performing dynamic load balancing, we can do better. For example, since Server 3 has copies of some data from servers 0 and 2, servers 0 and 2 can offload some of their normal read load on Server 3 and achieve uniform load balancing.

Chaining the data placement allows each server to offload some of its

read load to the server either immediately following or pre- ceding the given server. By cascading the offloading across multiple servers, a uniform load can be maintained across all surviving servers. In contrast, with a simple mirrored redundancy scheme that replicates all the data stored on two servers, the failure of either would result in a 100% load increase at the other with no opportunities for dynamic load balancing. In a system that stripes over many mirrored servers, the 100% load increase at this single server would reduce the overall system throughput by 50%.

Our current prototype implements a simple dynamic load balancing scheme.

Each client keeps track of the number of requests it has pending at each server and always sends read requests to the server with the shorter queue length. This works well if most of the requests are generated by a few clients but, obviously, would not work well if most requests are generated by many clients that only occasionally issue I/O requests. The choice of load balancing algorithm is currently an active area of research within the Petal project.

An additional advantage with chained-declustering is that by placing all the

even-numbered servers at one site and all the oddnumbered servers at another site, we can tolerate site failures. A disadvantage of chained-declustering relative to simple mirroring is that it is less reliable. With simple mirroring, if a server failed, only the failure of its mirror server would result in data becoming unavailable. With chained-declustering, if a server fails, the failure of either one of its two neighboring servers will result in data become unavailable.

In our implementation of chained-declustering, one of the two copies of each

data block is denoted the primary and the other is denoted the secondary. Read requests can be serviced from either the primary or the secondary copy but the servicing of write requestsmust always start at the primary, unless the server containing the primary is down in which case it may start at the secondary. Because we lock copies of the data blocks before reading or writing them to guarantee consistency, this ordering guarantee is necessary to avoid deadlocks.

 On a read request, the server that receives the request attempts to read the

requested data. If successful, the server returns the requested data, otherwise it returns an error code and the client tries another server. If a request times out due to network congestion or because a server is down, the client will alternately retry the primary and secondary servers until either the request succeeds or both servers return error codes indicating that it is not possible to satisfy the request. Currently, this happens only if both disks containing copies of the requested data have been destroyed.

On a write request, the server that receives the request first checks to see if it

is the primary for the specified data element. If it is the primary, it first marks this data element as busy on stable storage. It then simultaneously sends write requests to its local copy and the secondary copy. When both requests complete, the busy bit is cleared and the client that issued the request is sent a status code indicating the success or failure of the operation. If the primary crashes while performing the update, the busy bits are used during crash recovery to ensure that the primary and secondary copies are consistent. Write-ahead-logging with group commits makes updating the busy bits efficient. As a further optimization, the clearing of busy bits is done lazily and we maintain a cache of the most recently set busy bits. Thus, if write requests display locality, a given busy bit will already be set on disk and will not require additional I/O.

If the server that received the write request is the secondary for the specified

data element, then it will service the request only if it can determine that the server containing the primary copy is down. In this case, the secondary marks the data element as stale on stable storage before writing it to its local disk. The server containing the primary copy will eventually have to bring all data elements marked stale up-to-date during its recovery process. A similar procedure is used by the primary if the secondary dies.

4.4.2 Advantages of Chained Declustering

 Load Balancing is a major advantage of Chained Declustering. Each client

 keeps track of number of requests it has pending at each server and send read request to the server with shortest request queue. Thus it is very unlikely that a particular server remains idle while the other server is loaded with untenable amount of jobs. This, not only maintains an appropriate job distribution over the servers, but also enhances the system performance and efficiency. Secondly, it is of paramount important to determine the conditions when the storage system works most efficiently. This condition arrives when a single client generates most of the requests. On the contrary, if many clients are present and each client generates a few requests, the system works most inefficiently. An additional advantage with chained-declustering is that by placing all the even-numbered servers at one site and all the odd numbered servers at another site, we can tolerate site failures.

Currently, many large-scale storage system have a single component of failure.

For instance, in a network using a star topology, the hub acts like a server through which all the transactions occur. Thus, hub is a single element whose failure may result in a system halt. This limitation is obviated in Petal, as backup is present on either of the two adjacent disks. As evident from figure 4.3 (Section 2.3.1), server 0 and server 3 have copies of data on server 1. Thus in case if some failure occurs on sever 1, server 0 and 3 shares the load. Server 2 does not experience any extra load in this case. Thus failure of a single server does not result in the system halt.

4.4.3 Disadvantages of Chained Declustering

Large storage systems build using Petal architecture may result into a less reliable system in a particular case. This is, due to the disadvantage that if server fails, the failure of any of its neighbors will result in some data being available. This is extremely obvious as neighbors indicate the disk on which backup is available. Initially the server has failed, on the top of this if any of the adjacent disks fail, the backup is also destroyed. Thus it is impossible to access data on that disk. Another disadvantage of chained-declustering relative to simple mirroring is that it is less reliable. With simple mirroring, if a server failed, only the failure of its mirror server would result in data becoming unavailable. With chained-declustering, if a server fails, the failure of either one of its two neighboring servers will result in data become unavailable.
4.4.4 Read and write under Chained Declustering
In our implementation of chained-declustering, one of the two copies of each data block is denoted the primary and the other denoted the secondary. Read requests can be serviced from either primary or the secondary copy but the servicing of write requests must always start at the primary, unless the server containing primary is down in which case it may start at the secondary. Because we lock copies of the data blocks before reading or writing them to guarantee consistency, this ordering guarantee is necessary avoid deadlocks. On a read request, the server that receives the request attempts read the requested data. If successful, the server returns the requested data, otherwise it returns an error code and the client tries another server. If a request times out due to network congestion because a server is down, the client will alternately retry the primary and secondary servers until either the request succeeds

both servers return error codes indicating that it is not possible satisfy the request. Currently, this happens only if both disks containing copies of the requested data have been destroyed.
Read Request

The initial read request is generated to the primary data block. In case of its failure, the request is diverted to the secondary block of data. Thus the primary and secondary servers are tried alternatively until success or both servers return error code.

Write Request

There are two possibilities whenever a client generates a write request.

1. The primary server is working.

The procedure includes setting of the “Busy” bit on the stable storage, sending write requests to the primary and secondary copies of data, and again resetting the “Busy” bit on the stable storage.

2. The primary server is down.

The procedure includes setting the “Stale” bit on the stable storage, writing data on to the secondary storage. It is not necessary to reset the “Stale” bit since the primary server later brings “Stale” data up-to-date.

5. Addition of
New servers
Petal transparently reconfigures itself to expand in performance and capacity as new servers and disks are added. There are two methods and corresponding algorithms to add new servers to the existing prototype.

5.1 Basic Algorithm

 Following steps are incorporated in the basic method of addition of new servers.

1. Create a new Global map.

2. Change all virtual disk directory entries from the old global map to the new global map.

3. Data Redistribution

Read request: try the new global map at first, then the old global map.

Write request: Always access only the new global map.

 The basic algorithm faces a limitation that server mappings for an entire virtual disk are changed before any data is moved.

5.2 Refined Algorithm

 The basic idea behind the refined algorithm is to relocate small portions of virtual disk at on time. Normally (In basic algorithm), whenever a client generates a read or a write request, the appropriate virtual disk as a whole is accessed. On the other hand in refined algorithm, the portion on the virtual disk on which the data is present is accessed instead of the whole disk. For this procedure to follow, the entire virtual disk’s address region is partitioned into three regions

1. Old: use the old global map.

2. New: use the new global map.

3. Fenced: Basic algorithm.

6. Implementation and Performance

6.1. Petal Implementation

The Petal prototype is illustrated in Figure 6.1. Four 225 MHz DEC 3000/700s running Digital Unix act as server machines. Each runs a single Petal server, which is a user-level process that accesses the physical disks using the Unix raw disk interface, and the network using UDP/IP Unix sockets. Each server machine is configured with 14 Digital RZ29 disks, each of which is a 3.5-inch SCSI device with a 4.3 Byte capacity. Each machine uses one of the disks for write-ahead logging and the remaining to store client data. The disks are connected to the server machine via two 10 Mbytes/s fast SCSI strings using the Digital PMZAA-C host bus adapter. Four additional machines running Digital Unix are configured as Petal clients to generate load on the servers. Each client’s kernel is loaded with the Petal device driver for accessing Petal virtual disks. This allows clients to access Petal virtual disks just like local disks. Both the servers and clients are connected to each other via 155Mbit/s ATM links over a Digital ATM network. The entire Petal RPC interface

 Figure 6.1. Petal Prototype

has 24 calls and many of these calls are devoted to management functions, such as creating and deleting virtual disks, making snapshots, reconfiguring a virtual disk, and adding and deleting servers. These calls are typically used by user-level utilities to perform tasks such as virtual disk creation and monitoring the physical resource pools in the system to determine when additional servers or disk should be added. Petal RPC calls that implement management functions are infrequently executed and generally take less than a second to complete. In particular, create and snapshot operations take about 650 milliseconds. Delete and reconfiguration take about 650 milliseconds to initiate, but their total execution time is dependent on the actual amount of physical storage associated with the specified virtual disk. In the remainder of the section, we will report on the performance of accessing a Petal virtual disk and the behavior of file systems built on Petal. Our primary performance goals are to provide latency roughly comparable to a locally attached disk, through- put that scales with the number of servers, and performance that gracefully degrades as servers fail.
6.2. Petal Performance

This sub-section examines the read and write performance of a Petal chain-declustered virtual disk. For a read request, the client makes an RPC to a Petal server that simply returns the data from its local disk. When a server receives a write request, it first writes a small log entry that is used to recover to a consistent state after a server crash. Next, the server simultaneously writes the data to its local disk and a second disk on a mirror server. When both disk writes complete, the first, or primary, server replies to the client. The read and write procedures used by Petal are described in greater detail in Section 4.4.4.

6.2.1. Client Request Latency

[image: image1.wmf]0

10

20

30

40

50

512

Read

8Kb

Read

64Kb

Read

512Kb

Write

8Kb

Write

64KB

Write

Local Disk

Petal(Disk Log)

Petal(NVRAM Log)

 Figure 6.2. Client Request Latency

Above Graph compares the read and write latency of a chained declustered Petal virtual disk with a local RZ29 disk. For this experiment, a single client generates requests of the specified size random disk offsets. We show Petal performance with two kinds write-ahead-logging devices, an RZ29 disk and an NVRAM device simulated using RAM. The log device is used only to service write requests and does not affect read performance. Logging to NVRAM improves write latency by approximately 7ms.

For read requests of 512 bytes and 8 Kbytes, the Petal latency only slightly worse than an RZ29. For 64 Kbyte reads, the latency gap widens to 7ms. Most of the increased latency is due to the additional delay in transmitting the data over the network and includes the Unix socket, UDP/IP, and ATM hardware overheads, which accounts for over 6 ms. The Petal server software and the client interface overheads are negligible. If we overlapped the reading of data from disks with the transfer of data over the network, we could eliminate much of this 7 ms overhead.

Even with an NVRAM log device, Petal write performance is worse than a local

RZ29 disk. In addition to the network delay in sending the data to the primary server, there is an additional delay because the primary has to send the data to the mirror server and wait for an acknowledgment before returning to the client. The latencies due to the network transmissions are approximately 1ms, 3ms, and 12ms for 512 byte, 8 Kbyte, and 64 Kbyte write requests respectively. Also, the arms and the spindles of the primary and secondary disks are unsynchronized. This lack of synchronization causes write requests to wait for the slower of the primary and secondary disk writes.
6.2.2 Aggregate Throughput

The second column of Figure 6.3 shows the peak throughput of chained-declustered Petal virtual disk using an RZ29 as a log device. (The peak write throughput is about 10% higher if we use an NVRAM log device.) For small request sizes, we express throughput as the number of requests per second, while for larger request sizes, it is shown in megabytes per second. To measure peak throughput, each of the four Petal clients shown in Figure 6.1 make random requests to a single Petal virtual disk. Throughput is mostly limited by CPU overheads. In all cases, each server’s CPU is approximately 90-100% utilized with a significant fraction of the time spent in copying and check summing data for network access. Our Petal servers run at user-level and we use the standard UNIX socket interface and UDP/IP protocol stacks. Techniques for streamlining these network accesses are well understood [9, 18]. As an experiment, we eliminated copying and checksums at the network

	Request
	Normal
	Failed
	% of Normal

	512b Read
	3150 req/sec
	2310 req/sec
	73 %

	8Kb Read
	20 Mbytes/sec
	14.6 Mbytes/sec
	73 %

	64Kb Read
	43.1 Mbytes/sec
	33.7 Mbytes/sec
	78 %

	512b Write
	1030 req/sec
	1055 req/sec
	102 %

	8Kb Write
	6.6 Mbytes/sec
	6.6 Mbytes/sec
	101 %

	64Kb Write
	12.3 Mbytes/sec
	12.5 Mbytes/sec
	100 %

Chain Declustered Virtual Disk, 8 Servers, Random Requests.

Figure 6.3. Normal and Failed Throughput of a Chained-Declustered Virtual Disk

layer for large read requests. For 64 Kbyte8 read requests, this optimization reduced CPU

utilization to 48% and increased throughput from 43.1 Mbytes/s to 48.5Mbytes/s. In this case, the throughput was limited by the disk controller. The third column of Figure 6.3 shows the performance of a chain declustered Petal disk when one of the four servers has crashed. For read requests, the performance is 73–78% of normal, that is, with three-quarters of the servers, we get about three-quarters of the normal performance. This indicates that the data placement and dynamic load balancing schemes are working effectively to redistribute load. The write performance under failure is about the same as the normal case. This is because, when servers fail, the virtual disk addresses managed by those servers are no longer mirrored. This reduces the number of disk writes in the system by the fraction of failed servers. Therefore, the load seen by each surviving server before and after a server failure is nearly the same.
6.2.3. Throughput Scaling

Figure 6.4 shows the effect of scaling Petal from two to four servers. The throughput for each request type is normalized with respect to the maximum throughput for that request type. The system configurations measured are not large enough to determine if the scaling is likely to remain linear, but the observed scaling is promising.
[image: image2.png]1.00.

0.80.
512 byte Read

5 Kbyte Read
64 Kbyte Read
S12 byte Write
5 Kbyte Write
64 Kbyle Write

0.60.

0.40.

[1 2 H H
Number of Servers

Figure 6.4. Scaling with increased servers.

6.3. File System Performance

Petal provides clients with a large virtual disk that is available to all clients on the network. “Cluster file systems” such as the xFS [1] and parallel databases such as the Oracle Parallel Server may be able to take advantage of this fact by concurrently accessing a single virtual disk from multiple machines. However, because such systems are not widely available, we will restrict our attention to Digital’s UNIX File System (UFS) and Advanced File System (AdvFS).

Table 3 compares the performance of the Modified Andrew Benchmark on four

configurations: the UFS on a locally attached disk, the UFS on a Petal virtual disk, the AdvFS on a collection of 14 locally attached disks, and the AdvFS on a Petal virtual disk. The Petal virtual disk is configured to use the chain-declustered data placement and an RZ29 disk for logging.

The Modified Andrew Benchmark has five phases. The first phase recursively creates

	Phase
	Ufs-RZ29
	Ufs-Petal
	AdvFs-RZ29
	AdvFs-Petal

	Create Dir.
	0.9
	1.4
	0.28
	0.28

	Copy Files.
	4.1
	4.4
	3.6
	3.7

	Dir. Status.
	4.3
	4.1
	4.2
	4.6

	Scan File
	5.1
	5.2
	5.2
	5.3

	Compile
	41.1
	41.8
	40.0
	40.6

 Elapsed Time

Figure 6.5. Modified Andrew Benchmark.

subdirectories. The second phase measures the file system’s data transfer capabilities. The third phase recursively examines the status of directories and the files contained therein. The fourth phase scans the contents of data stored in each file. The final phase is indicative of the program development phase and is somewhat computationally intensive.

In all cases but one, the file system level performance of the Petal virtual disk is comparable to locally attached disks. The only exception is in the first phase of the benchmark using the UFS, which generates many synchronous writes. As we mentioned earlier, writes to a chained-declustered Petal virtual disk can incur logging and other overheads that increase the synchronous write latency. The AdvFS, which journals meta-data updates to reduce the number of synchronous writes, does not suffer from these overheads when running on Petal, and achieves much higher performance than the UFS in the first phase of the benchmark.

In the local disk measurements, although the UFS uses only a single disk while

theAdvFS uses 14 disks, they achieve very similar performance. This is because the Modified Andrew Benchmark primarily stresses the latency rather than the throughput of the storage system. In the case of the compilation phase, performance is primarily limited by the speed of the CPU.

 7. Limitations of Petal

 Petal, a cost-effective scalable storage system, attempts to approximate the ideal in practice through a novel combination of features. It successfully provides a globally accessible storage system with sufficiently unlimited performance for a large number of clients. Albeit it is efficient enough to be used in implementing a distributed storage system, it does lag in some areas and need future enhancements.

1. Crash-consistent snapshot support

Petal implements the method of fast snapshots for backup support in the system. If one of the servers fails then it is possible to recover the data from the neighboring disks. But if any of the neighboring disk fails, then the condition arises in which data becomes unavailable. This is an area where future enhancements are necessary for more efficient backup.

2. Load Balancing Algorithm

The Basic and Refined algorithms are used for Load Balancing Algorithms. But the

Load balancing algorithms ought to be more efficient than the existing ones.

3. Linear Scaling of Throughput Varies as number of servers.

The linear scaling of the throughput for normal and failure cases varies according to the

number of servers. It is directly proportional to the number of servers. (This is not a standard result, but could be derived from the graph in Figure 6.4 section 6.2.3).

4. Security Mechanism is totally absent in Petal.

5. Chained Declustering is not the most efficient and reliable method of data access.

8. Future Scope

 A lot of efforts are taken to make a large storage system, the most efficient one. Petal provides one way to achieve an efficient system. But still if Petal incorporates the following concepts in the architecture, it will be more nearer to an ideal system, than what it is now.

1. A more efficient method for data access could be implemented, as Chained Declustering is not a reliable method.

2. Security methods could be implemented which are totally absent in the current architecture.

3. A more efficient load balancing algorithm could be implemented.

4. Distributed software solutions rather than hardware solutions could be implemented to increase the scalability.

5. An Oracle parallel server could be established using Petal.

6. Cluster File system can be implemented using Petal.

9. References

[1] Edward K. Lee and Chandramohan A. Thekkath, Petal - Distributed Virtual Disks.

[2] Edward K. Lee, Highly-Available, Scalable Network Storage.

[3] www.citeseer.nj.nec.com/Iee96petal.html

[4] www.citeseer.nj.nec.com/context/10506/38646.
[5] PPT on Petal by Lee and Thekkath

 www.research.Compaq.com/SRC/personal/eklee/Slides/aspols96.ppt
[6] www.thekkath.org/papers/petal.pdf.

[7] www.csl.cs.Colorado.edu/csci5573-f01/lectures/Petal.htm
[8] Compaq-SRC Scalable Network Storage

Scalable Network

LFS

(Petal Client)

LFS

(Petal Client)

LFS

(Petal Client)

LFS

(Petal Client)

 /dev/disk1 /dev/disk2 /dev/disk3

 		

LFS

NT FS

PC FS

BSD FS

Scalable Network

LFS

NT FS

PC FS

BSD FS 	

Scalable Network

Storage server

Storage server

Storage server

Virtual to Physical X

Global State Module

 	 Server 0			Server 1		 Server 2

Recovery Module

Liveness Module

Data Access Module

 Server1

Server Id

Vdir

Vdir

Vdir

Vdir

Gmap

Gmap

Gmap

Pmap

Pmap

Pmap

Pmap

 Server0

 Server2

 Server3

 D0

 D3

 D4

 D7

 D1

 D0

 D5

 D7

 D2

 D1

 D6

 D5

 D3

 D2

 D7

 D6

 Server 0 		 Server 1	 Server 2	 Server3

Petal Client

Petal Client

Petal Client

Petal Client

Digital ATM Network

Petal Virtual Disk

Petal Server

Petal Server

Petal Server

Petal Server

www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

_1090037102

