A.Bharath

MTECH CSE 1st Yr

1005-11-742102

DISTRIBUTED FILE SYSTEMS

1. Sun Network File System

1.1. Design Considerations

Since its introduction in 1985, the Sun Microsystems Network File System (NFS) has been widely used in industry and academia. In addition to its technical innovations it has played a significant educational role in exposing a large number of users to the benefits of a distributed file system. Other vendors now support NFS and a significant fraction of the user community perceives it to be a de facto standard. Portability and heterogeneity are two considerations that have played a dominant role in the design of NFS. Although the original file system model was based on Unix, NFS has been ported to to non-Unix operating systems such as PC-DOS. To facilitate portability, Sun makes a careful distinction between the NFS protocol, and a specific implementation of an NFS server or client. The NFS protocol defines an RPC interface that allows a server to export local files for remote access. The protocol does not specify how the server should implement this interface, nor does it mandate how the interface should be used by a client. Design details such as caching, replication, naming, and consistency guarantees may vary considerably in different NFS implementations. In order to focus our discussion, we restrict our attention to the implementation of NFS provided by Sun for its workstations that run the SunOS flavor of Unix. Unless otherwise specified, the term‘‘NFS’’ will refer to this implementation in the rest of this paper. The term ‘‘NFS protocol’’ will continue to refer to the generic interface specification. SunOS defines a level of indirection in the kernel that allows file system operations to be intercepted and transparently routed to a variety of local and remote file systems. This interface, often referred to as the vnode interface after the primary data structure it exports, has been incorporated into many other versions of Unix. With a view to simplifying crash recovery on servers, the NFS protocol is designed to be stateless. Consequently, servers are not required to maintain contextual information about their clients. Each RPC request from a client contains all the information needed to satisfy the request. To some degree functionality and Unix compatibility have been sacrificed to meet this goal. Locking, for instance, is not supported by the NFS protocol, since locks would constitute state information on a server. SunOS does, however, provide a separate lock server to perform this function. Sun workstations are often configured without a local disk. The ability to operate such workstations without significant performance degradation is another goal of NFS. Early versions of Sun workstations used a separate remote-disk network protocol to support diskless operation. This protocol is no longer necessary since the kernel now transforms all its device operations into file operations. A high-level overview of NFS is presented by Walsh. Details of its design and implementation are given by Sandberg. Kleiman describes the vnode interface, while Rosen comment on the portability of NFS.

2. Naming and Location

The NFS paradigm treats workstations as peers, with no fundamental distinction between clients and servers. A workstation may be a server, exporting some of its files. It may also be a client, accessing files on other workstations. But it is common practice for installations to be configured so that a small number of nodes run as dedicated servers, while the others run as clients. NFS clients are usually configured so that each sees a Unix file name space with a private root. Using an extension of the Unix mount mechanism, subtrees exported by NFS servers are individually bound to nodes of the root file system. This binding usually occurs when Unix is initialized, and remains in effect until explicitly modified. Since each workstation is free to configure its own name space there is no guarantee that all workstations at an installation have a common view of shared files. But collaborating groups of users usually configure their workstations to have the same name space. Location transparency is thus obtained by convention, rather than being a basic architectural feature of NFS. Since name-to-site bindings are static, NFS does not require a dynamic file location mechanism. Each client maintains a table mapping remote subtrees to servers. The addition of new servers or the movement of files between servers renders the table obsolete. There is no mechanism built into NFS to propagate information about such changes.

1.3. Caching and Replication

NFS clients cache individual pages of remote files and directories in their main memory. They also cache the results of pathname to vnode translations. Local disks, even if present, are not used for caching. When a client caches any block of a file, it also caches a timestamp indicating when the file was last modified on the server. To validate cached blocks of a file, the client compares its cached timestamp with the timestamp on the server. If the server timestamp is more recent, the client invalidates all cached blocks of the file and refetches them on demand. A validation check is always performed when a file is opened, and when the server is contacted to

satisfy a cache miss. After a check, cached blocks are assumed valid for a finite interval of time, specified by the client when a remote file system is mounted. The first reference to any block of the file after this interval forces a validation check. If a cached page is modified, it is marked as dirty and scheduled to be flushed to the server. The actual flushing is performed by an asynchronous kernel activity and will occur after some unspecified delay. However, the kernel does provide a guarantee that all dirty pages of a file will be flushed to the server before a close operation on the file completes.

Directories are cached for reading in a manner similar to files. Modifications to directories, however, are performed directly on the server. When a file is opened, a cache validation check is also performed on its parent directory. Files and directories can have different revalidation intervals, typical values being 3 seconds for files and 30 seconds for directories. NFS performs network data transfers in large block sizes, typically 8 Kbytes, to improve performance. Read-ahead is employed to improve sequential access performance. Files corresponding to executable binaries are fetched in their entirety if they are smaller than a certain threshold. As originally specified, NFS did not support data replication. More recent versions of NFS support replication via a mechanism called Automounter. Automounter allows remote mount points to be specified using a set of servers rather than a single server. The first time a client traverses such a mount point a request is issued to each server, and the earliest to respond is chosen as the remote mount site. All further requests at the client that cross the mount point are directed to this server. Propagation of modifications to replicas has to be done manually. This replication mechanism is intended primarily for frequently-read and rarely-written files such as system binaries.

1.4. Security

NFS uses the underlying Unix file protection mechanism on servers for access checks. Each RPC request from a client conveys the identity of the user on whose behalf the request is being made. The server temporarily assumes this identity, and file accesses that occur while servicing the request are checked exactly as if the user had logged in directly to the server. The standard Unix protection mechanism using user, group and world mode bits is used to specify protection policies on individual files and directories. In the early versions of NFS, mutual trust was assumed between all participating machines. The identity of a user was determined by a client machine and accepted without further validation by a server. The level of security of an NFS site was effectively that of the least secure system in the environment. To reduce vulnerability, requests made on behalf of root (the Unix superuser) on a workstation were treated by the server as if they had come from a non-existent user, nobody. Root thus received the lowest level of privileges for remote files. More recent versions of NFS can be configured to provide a higher level of security. DES-based mutual authentication is used to validate the client and the server on each RPC request. Since file data in RPC packets is not encrypted, NFS is still vulnerable to unauthorized release and modification of information if the network is not physically secure. The common DES key needed for mutual authentication is obtained from information stored in a publicly readable database. Stored in this database for each user and server is a pair of keys suitable for public key encryption. One key of the pair is stored in the clear, while the other is stored encrypted with the login password of the user. Any two entities registered in the database can deduce a unique DES key for mutual authentication. Taylor describes the details of this mechanism.

1.5. System Management

Sun provides two mechanisms to assist system managers. One of these, the Yellow Pages (YP), is a mechanism for maintaining key-value pairs. The keys and values are application-specific and are not interpreted by YP. A number of Unix databases such as those mapping usernames to passwords, hostnames to network addresses, and network services to Internet port numbers are stored in YP. YP provides read-only replication, with one master and many slaves. Lookups may be performed at any replica. Updates are performed at the master, which is responsible for propagating the changes to the slaves. YP provides a shared repository for system information that changes relatively infrequently and that does not require simultaneous updates at all replication sites. YP is usually in use at NFS installations, although this is not mandatory. The Automounter, mentioned above in the context of read-only replication, is another mechanism for simplifying system management. It allows a client to lazy-evaluate NFS mount points, thus avoiding the need to mount all remote files of interest when the client is initialized. Automounter can be used in conjunction with YP to substantially simplify the administrative overheads of server reconfiguration

2.Apollo Domain File System

2.1. Design Considerations

The DOMAIN system, built by Apollo Computers Inc., is a distributed workstation environment whose development began in the early 1980s. The goal of this system was to provide a usable and efficient computing base for a close-knit team of collaborating individuals. Although scale was not a dominant design consideration, large Apollo installations now exist. The largest of these is located at the Apollo corporate headquarters and encompasses over 3500 nodes. Apollo workstations range in hardware capability from small, diskless units to large configurations with disks and other peripherals. The underlying network technology is a proprietary 12 Mbit token ring. Installations may choose to treat some of their nodes as dedicated servers that run only system software, and other nodes as clients performing user computations. Such a dichotomy is only a matter of convention. The DOMAIN software treats all nodes as peers. DOMAIN provides support for the distribution of typed files via an Object Storage System (OSS). A system-wide Single Level Store (SLS) that provides a mapped virtual-memory interface to objects is built on top of the OSS. The DOMAIN distributed file system is layered on the SLS and presents a Unix-like file interface to application programs. A facility called the Open Systems Toolkit [59] uses the file typing mechanism of the OSS to create an extensible I/O system. Users can write non-kernel code to interpret I/O operations. When a file is opened its type is determined and the code implementing I/O operations on that type of object is dynamically loaded by the system. Levine presents the design and rationale of the DOMAIN file system. Its goals include location transparency, data consistency, a system-enforced uniform naming scheme, and a uniform mechanism for access control. Full functionality, good performance and ease of administration are other stated goals of DOMAIN. In addition to the survey by Levine are other papers on the file system, the overall architecture , an object-oriented development tool for distributed applications, and the user registry .
2.2. Naming and Location

Every object in the system is uniquely named by a 64-bit identifier called its UID. Each Apollo workstation is given a unique node identifier at the time of its manufacture. This identifier forms one component of the UID of every object created at that workstation. The time at which the object was created forms another component. Together these two components guarantee uniqueness of UIDs. Location-specific information in UIDs does not violate the goal of location transparency since its sole function is to guarantee uniqueness. At any instant of time an object has a home node associated with it. The OSS maps objects to their homes by using a hint server. As its name implies, the hint server performs the mapping using a number of heuristics. It is updated in normal system operation by many diverse components of the DOMAIN software as they discover the location of objects. A heuristic that is frequently successful is to assume that objects created at the same node are likely to be located together. A distributed naming server that maps string names to UIDs is built on top of the OSS. This server provides a

hierarchical, Unix-like, location transparent name space for all files and directories in the system. Directories in DOMAIN are merely objects that map name components to UIDs. The network-wide root directory of the name space is implemented as a replicated distributed database with a server instance at the site of each replica. The naming facility is a good source of hints for the hint manager, since objects are often co-located with their parent directory.

2.3. Caching and Replication

The DOMAIN system transparently caches data and attributes of objects at the usage node. Mapped virtual-memory accesses via the SLS interface and file accesses via the file system interface are both translated into object references at the OSS level. The latter manages a cache of individual pages of objects using a write-back scheme with periodic flushing of data to the home of the objects. A timestamp is associated with each object indicating the time at its home node when it was last modified. Every cached page of the object contains this timestamp. The consistency of locally cached data pages is verified by comparing their timestamps with the timestamp of the object at the home node. Invalid pages are merely discarded. In the course of references to the object, missing pages are obtained by demand paging across the network to the home node. Fetch-ahead (currently 8KB) is used to improve sequential access performance. Cache management in DOMAIN is integrated with its concurrency control mechanisms. Each node runs a lock

manager that synchronizes accesses to all objects which have their home at that node. Two modes of locking are supported. One mode allows multiple distributed readers or a single writer to access the object. The other mode allows access to multiple readers and writers co-located at a single node. Lock managers do not queue requests. If a lock for an object cannot be granted immediately, the requesting node must periodically retry its request. Cache validation is performed when an object is locked. When a write-lock on an object is released, an implicit purify operation is performed. This operation atomically flushes updated pages of an object to its home node. Application software is responsible for ensuring that objects are locked before being mapped into virtual memory or opened for file access. It is also responsible for releasing locks when appropriate. DOMAIN does not support read-only or read-write replication of data. An object can have only one home at any instant of time. But replicated services such as a replicated user registry and a replicated naming service are supported by DOMAIN.

2.4. Security

Security in DOMAIN is predicated on the physical integrity of Apollo workstations and on the trustworthiness of the kernels on them. Since the network is also assumed to be secure, communications on it are sent in the clear. The network component of the kernel at each node uses a special field in the header of every packet to indicate whether the originator of the packet was a user-level program, or the kernel itself. This prevents user-level programs from masquerading as trusted system software. A distributed user registry stores each user’s login password in encrypted form, as in Unix. When a user logs in on a node, the local kernel encrypts the password typed by the user, fetches his login entry from the registry, and validates the user by comparing the two encrypted passwords. Each instance of a logged-in user is associated with a unique identifier, called a PPON, that identifies the user, the project and organization he belongs to, and the node at which this login instance occurred. The PPON is used on all access checks on behalf of this logged-in instance of the user. Nodes cache recently-used registry information to enhance availability. The user registry, called RGY, is a replicated database with one master site and multiple read-only slaves for availability. Each replica contains the entries for all users in the system. Updates are made at the master site which then propagates them asynchronously to the slave sites. Direct authentication to the master, using a Needham- Schroeder authentication handshake, is required before an update can be performed. Protection policies are specified by access lists on objects. An access list entry maps a PPON to a set of rights. Components of PPONs can be wildcarded. If multiple entries are applicable in a given access check, the most specific matching entry overrides the others. Checking of access has been done at the home node of objects in some releases of DOMAIN, and at the usage node in other releases. These are logically equivalent, since the kernels trust each other.
2.5. System Management

Concern for ease of administration has been an important influence on the design of the DOMAIN user registry described in the previous section. Its design allows multiple mutually suspicious groups to use a single registry for system management information. Each group can have a distinct system administrator who is the only person who can manipulate entries pertaining to the group. Decentralized administration and specification of usage policies is effectively supported by this mechanism. The registry also supports heterogeneity, initially in the form of a client interface for Sun workstations. An interactive tool, edrgy, provides a structured interface to the registry. It possesses substantial semantic knowledge of the contents of the registry and guides administrators. Edrgy detects and notifies administrators of potentially serious side effects of their actions.

3.Sprite Network File System

Sprite is an operating system for networked uniprocessor and multiprocessor workstations, designed at the University of California at Berkeley. The goals of Sprite include efficient use of large main memories, support for multiprocessor workstations, efficient network communication, and diskless operation. Besides a distributed file system, Sprite provides other distributed system facilities such as process migration. Most workstations in a Sprite network are diskless. Although the design of Sprite does not make a rigid distinction between clients and servers, a few machines with disks are usually dedicated as file servers. These servers jointly present a location-transparent Unix file system interface to clients. Clients do not have to explicitly import files from individual servers. Each server can respond to location queries, using remote links embedded in the file system at each server. Remote links are effectively pointers to files at other servers. Each client maintains a local prefix table, which maps pathname prefixes to servers. Substantial performance improvement is achieved by using the cached information in the prefix table for locating files. Sprite is intended for use by a collection of collaborating users who are either incapable of subverting the kernels on workstations, or who trust each other. Consequently Sprite kernels trust each other, and communication between them is neither authenticated nor encrypted. Exact emulation of Unix file system semantics is an important goal of Sprite. Whenever a client opens or closes a file for reading or writing, it notifies the server that stores the file. A Sprite client usually caches pages of a file, validating these pages each time the file is opened. Caching is disabled when multiple clients have a file open, and one or more of these clients have it open for writing. Once caching is disabled, it is reenabled only after all clients concurrently using the file have closed it. This strategy enables Sprite to provide consistency at the granularity of individual read and write operations. Sprite provides location-transparent remote access to devices as well as files. To provide good performance under a wide variety of workloads, physical memory on a Sprite workstation is dynamically partitioned between the virtual memory subsystem and the file cache. Sprite uses ordinary file in the shared name space for paging . This simplifies process migration, since the backing files are visible at all other Sprite workstations in the environment. Ousterhout provide an overview of Sprite. Welch and Ousterhout describe the prefix mechanism used for file location. A detailed performance analysis of caching in Sprite is presented by Nelson .

