www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

1: Introduction
 Cache memory is a key mechanism for improving overall system performance. A cache exploits the locality inherent in the reference stream
of the typical application. Two primary type of locality are available and the degrees to which they can be exploited depend on the program input characteristic. Temporal locality relies on the greater probability that recently accessed data will be accessed in near future. Spatial locality refers to the tendency for adjacent or nearby locations to be reference together in time.

 Prefetching mechanism can be used to reduce cache misses. It also reduces cache stall time by bringing data into cache before it use, so that it can be accessed without delay. Hardware-based prefetching requires some modification to of the cache, but little modification to processor core. Its main advantage is that prefetches are handled dynamically at run time without compiler intervention. The drawbacks are that extra hardware is needed and the memory reference for complex access pattern is difficult to predict. In contrast software-based approaches rely on compiler technology to perform static program analysis and to selectively insert prefetch instructions. The draw backs are the nonnegligible execution overhead is introduced due to extra instructions and that static analysis may misses some prefetch opportunities that are obvious at runtime.

 Most hardware prefetching mechanisms generate a prefetch signal when either a cache miss or hit occurs. Therefore a large number of prefetch signal are generated, leading to higher power consumption and cache pollution. Prefetching can also cause an increase in the MCPI (Memory Cycle Per Instruction) in the worst case. This intelligent prefetching mechanism avoids these problems by reducing the prefetch generation rate. As a result, power consumption is also reduced and increase in MCPI is negligible.

 A SMI cache is constructed in three parts; a conventional direct mapped cache With a small block size, a fully associative buffer with a large block size at the same cache level, and a hardware prefetching unit. The improvement in performance is achieved by exploiting the basic characteristic of locality. Specifically, two different block size are used, i.e., a small block size to exploit temporal locality and a large block size that is multiple of the small block size to exploit spatial locality. Also, temporal locality is enhanced by selectively retaining block with a high probability of repeated reference in time domain, and spatial locality is enhanced by both a large fetch size and an intelligent prefetching mechanism. The technique we used for enhancing temporal locality is to monitor the behavior of a block over a time interval before choosing to store it into the direct mapped cache. That is, instead of placing every missed block directly into the direct mapped cache, we first load a large block including the missed block into the spatial buffer. The missed block is not moved into the direct mapped cache until the large block is replaced from the spatial buffer, and then only if it has shown evidence of temporal locality while it was resident in the spatial buffer. Thus the SMI cache exploits information about utilization of the block that is obtained during this time interval. The interval itself is the proportional of the entries in the spatial buffer. The behavior that we observe during this time enables us to determine which block show strong temporal locality.
 The average miss ratio and memory access time of the SMI cache for a given cache space (e.g., 8 KB) are equivalent to those of a conventional direct-mapped cache with four times as much space (e.g., 32 KB). Thus, a 60 to 80 percent reduction in chip area can be obtained over a direct mapped cache while achieving a high performance gain. Also, the SMI cache can reduce the miss ratio by around 20% and the average memory access time by 10%, compared with a victim cache.
 2: Selective-Mode Intelligence Cache System
 The motivation for the design, the architectural model for the SMI cache system, and its operation in the context of hardware prefetching is as follows.

 2.1: Motivation:

 Common design objective for the cache are to improve utilization of the temporal and spatial locality inherent in applications. However no single cache organization exploit both temporal and spatial locality optimally because of their contradictory characteristics.

 Increasing block size reduces the number of cache blocks. Thus, conventional cache design attempt to compromise by selecting an adequate block size. The cache’s lack of adaptability to pattern of references of different types of locality poses a further drawback. A fixed block size result in suboptimal overall access time and bandwidth

Utilization because it fails to match the varying spatial and temporal locality across and within programs. A cache system that provides two caches with different configurations is an effective structure for overcoming these structural drawbacks.

A significant reason for using a direct map catch with a small block size is to reduce power consumption and cycle time. To make up for the poor spatial locality of such a direct mapped cache, we provide a fully associative spatial buffer with a large block size. The small block size exploits temporal locality and the large block size exploits spatial locality. Small blocks are first loaded as part of larger blocks that are fetched into the spatial buffer. We selectively extend the lifetime of those small blocks that exhibits high temporal locality by storing them in the direct mapped cache. When a large block is replaced in the spatial buffer, small blocks belonging to it that have been accessed at least once during its residency are moved into the direct mapped cache. This approach effectively reduces conflict misses and thrashing at the same time.

 Making the block size of direct mapped cache as small as possible improves temporal locality by increasing the number of available entries for a given cache space. For example, the number of entries for four byte block is 16 times more than for 64 byte blocks. Therefore, the lifetime of a data item in a direct mapped cache with s – byte block size is at most l/s times that for a cache with l byte (l>s) block size, for a given cache size. In conventional direct mapped cache the increase in spatial locality due to a larger block size gives a greater performance improvement than the increase in temporal locality resulting from increasing the number of entries. However, the spatial buffer of the SMI cache provides the necessary spatial locality and thus we choose the smallest block size possible for the direct mapped cache.

 Fetching a large block when a cache miss occurs increase spatial locality. Our simulations show the probability that neighboring small blocks will be accessed during the life time of initial blocks is more than 50% for most benchmarks. An intelligent prefetching approach that emphasizes prefetching of data that has exhibited evidence of spatial locality can also improve cache performance.

 Instead of loading a missed block directly into the direct mapped cache, we load it into the fully associative spatial buffer. Then, time interval proportional to the number of entries in the buffer elapsed before it is evicted. The small blocks, which are individual words in the simple case within the large block, that have been referenced during that time are moved into the direct mapped cache when the large block is evicted.

2.2: SMI Cache System structure:

 The direct mapped cache is the main cache and its organization is similar to a traditional direct mapped cache. But with a smaller block size. The spatial buffer is designed so that each entry is a collection of several banks, each of which is the size of a block in the direct mapped cache. The tag space of the buffer is a content addressable memory (CAM). The small blocks in each bank include a hit bit (H), to distinguish referenced blocks from unreferenced blocks. Each large block entry in the spatial buffer further has a prefetch bit (P), which direct the operation of prefetch controller. The prefetch bits are used to dynamically generate prefetch operations.

 When CPU performs a memory reference, the direct mapped cache and the spatial buffer are searched in parallel. A hit in the direct mapped cache is processed is the same way as a hit in the conventional L1 cache. When a miss occurs in both the direct mapped cache and the spatial buffer, a large block is fetched into the spatial buffer. If a reference misses in the direct mapped cache, but hits in the spatial buffer, its corresponding small block is simply fetched from the spatial buffer and the hit bit for that small block is set at the same time.

 The prefetch controller generates a prefetch signal when a large block is accessed and found to have multiple hit bits set. Two operations are performed consecutively by the prefetch controller. Given a hit in the ith large block, the first operation search the tags of the spatial buffer to direct whether the (i+1)th large block is already present. A one cycle penalty occurs in this case, but the overhead is negligible because prefetching is initiated in response to only about 1.5 ~2.5 % of the total number of addresses generated by the CPU. Thus the average MCPI is increased by about 0.06 %.If the (i+1)th large block is not already in the spatial buffer, the second operation is performed: It is faced into a prefetched buffer and the P bit in the ith large block is set to prevent it from generating further prefetches. The number of prefetch buffer entries is assumed to be one.

 If misses occurs in both the direct mapped cache and the spatial buffer, the cache control initiates miss handling. When this occurs, a block that was already in prefetch buffer is transferred to spatial buffer. Therefore, the transfer time is hidden because 19 clock cycles are required for handling a miss. But, the missed block may already be present in the prefetch buffer. Therefore when the block in the prefetch buffer is transferred to the spatial buffer the tag value should be simultaneously compared with the generated address. This comparison can be implemented either by using the comparator in the direct mapped cache or an additional comparator. If the comparator shows a match, the requested data item is transmitted to the CPU and transferred to the spatial buffer at the same time. Also the ongoing miss signal should be cancelled by the cache controller

2.3: Operational Model of The SMI Cache:

 The algorithm for managing the SMI cache is as follows. Prefetching is performed dynamically depending upon both H and P bits for a particular large block in the spatial buffer. On every memory access, both the direct mapped cache and the spatial buffer are accessed at the same time. The different cases for the operational model are as follows.

 1. Case of Cache Hits:

 On every memory access, a hit may occurs at the direct mapped cache or the spatial buffer. First, consider the case of a hit in the direct mapped cache. If a read access to the direct mapped cache is a hit, the requested data item is transmitted to the CPU without delay. If a write access to the direct mapped cache is a hit, the write operation is performed and the dirty bit for the block is set.

 In second case when the hit is in the spatial buffer, the data in the small block are sent to the CPU and the hit bit is set to the mark it as referenced. As an aside, we also reduce power consumption by using the most significant bits of the large block offset to activate just one of the banks in the spatial buffer. For example, if the size of a small block is 8-byte and a large block is 32-byte, there are four banks in the spatial buffer. When a large block is accessed and its P bit is in the reset state, a prefetch operation is initiated if a hit occurs in any bank of the spatial buffer and one or more hit
bits are already set. At the same time, the tags of the spatial buffer are searched for the prefetch address to check whether it is already present, in which case the prefetch is squashed and the P bit is set. If the address is not in the spatial buffer, the prefetch controller generates the prefetch signal and the target address to fetch the large block into the prefetch buffer from the next level of memory. At the same time, the P bit of the original large block is set to prevent the repetition of the prefetch. If the P bit of the large block is set, the consecutive large block must be present in either the spatial buffer or the prefetch buffer, and there is no need to search the tags within the spatial buffer.

 If a large block is in the prefetch buffer when a subsequent prefetch signal is generated as a result of a cache miss, then the miss stalls while the content of the prefetch buffer are moved into the spatial buffer. According to simulation result, this case almost never occurs, even for a prefetch buffer with one entry. This is because the overall rate of prefetch operation is only about 0.3% and the miss-ratio is about 1.7 percent. Therefore, the probability for a prefetch to be initiated in this manner is about six times smaller than the miss ratio. Because the utilization of the prefetch block is over 90 percent, it is not worth adding hardware specifically to handle this rare case, relying instead on the existing cache stall mechanism.
 2. Case of Cache Misses:
 If a miss occurs in both the caches, a large block including the missed small block is brought in the spatial buffer from the next level of memory. Let an 8 K.B. direct mapped cache with a small block size of 8 bytes and a 1 K.B. spatial buffer with a large block size of 32 bytes, so four sequential blocks are contained within a 32 byte block. There are further two cases.

(a) The Spatial Buffer is not full:
 If at least one entry in the spatial buffer is in the invalid state, a large block is fetched and stored in the spatial buffer. When a particular small block is accessed by the CPU, the corresponding hit bit is set to one. Thus, the hit bit of the small block identifies it as a referenced block.
 (b) The Spatial Buffer is full:
 If the spatial buffer is full, the oldest entry is replaced according to a FIFO policy. At that point, the blocks in the entry whose hit bits are set are moved into the direct mapped cache. Because these actions are accomplished while the cache controller is handling a miss, this operation does not introduce any additional delay.
 Cache write back does not occur from the spatial buffer because any modified or referenced small block is always moved to the direct mapped cache or victim cache, which would typically have the small block size (e.g., 32 bytes) as the spatial buffer, write back must be performed for the full 32 byte block, even though one word require write back. In contrast, the SMI cache executes the write back operation only for the marked 8-byte small blocks. Therefore, write traffic into memory is potentially reduced to a significant degree.
 The potential exists in any split cache for incoherent copies of blocks appear in the different subcaches. To avoid this problem, we chose and simulated a simple mechanism, which is as follows: When a global miss occurs, the cache controller searches the tags of the temporal caches to detect whether any of the four small blocks belonging to the particular large block being fetched are present in the temporal caches. If a match is detected, then all the corresponding small blocks in the temporal cache are invalidated. Each of these small blocks that is also dirty is than used to update its corresponding entry in the spatial buffer once the large block has been loaded. This search operation can be accomplished while the cache controller is handling a miss. Further, the power consumption is negligible because the miss ratio is only about 1.7% of the total number of the addresses generated by the CPU.
 A small block may thus temporarily exist in the temporal cache in the invalid state, while its valid copy is being referenced in the spatial buffer. When its corresponding large block is replaced, the small block is copied into the temporal cache once again. Therefore, there is almost no performance decrease. Of course, if three or four small blocks are present in both the temporal cache and the spatial cache, then the effective utilization of total cache space decreases a bit more, but is still negligible. This mechanism also applies in the case of transferring a prefetched block into the spatial buffer.
3: Performance Evaluation
 The direct mapped cache is chosen, for comparison in terms of performance and cost.

 3.1: Time of Prefetch Signal Generation and Overhead:

 The more meaningful measure to evaluate the performance of any given memory hierarchy is the average memory access time:

 Average memory access time=

 Hit time + Miss rate * Miss penalty

Here, hit time is the time to process a hit in the cache and miss penalty is the additional time to service the miss. The basic parameters for the simulation are as follows: The hit time of the direct mapped cache and fully associative buffer are both assumed to be one cycle. We assumed 15 cycles are needed for a miss. Therefore, each 8-byte block is transferred from the off-chip memory after a 15 cycle penalty. These parameters are based on the values for common 32-bit embedded processor (e.g., Hitachi SH4 or ARM920T).
 Simulations shows that prefetching when the number of hit bits is two achieves a more significant miss gain than the other case, in spite of the potential for greater overhead due to increased prefetching frequency. With respect to power consumption, memory traffic, and the accuracy of the prefetching operation, the “Prefetch-4” mechanism provides the most significant effect.
 Finally in case of prefatching a block that does not exist in the special buffer, the target block is simply fetched into the prefetch buffer. The rate at which prefetch actually occurred and that prefetched blocks are actually referenced is shown in fig 4 and fig 5 respectively. With only a small number of prefetch operations, the SMI cache system achieves a significant performance gain with low overhead. For the “prefetching-4” mechanism, the utilization of the prefetched blocks is over 90%. This data clearly show that spatial locality is enhanced by prefatching a neighboring block intelligently when a spatial buffer hit occurs.
 3.2: Comparison of a Conventional Cache with the SMI
 Cache Configuration
 Two common performance metrics, the miss ratio and the average memory access time, are used to evaluate and compare an SMI cache system operating in a “prefetch-4” configuration with other approaches. Here, the direct mapped cache is compared with the SMI cache in terms of miss ratio and average memory access time.
 Miss Ratio and Average Memory Access Time

 The combination of an 8-byte small block and a 32-byte large block shows the best performance for most cases.

 The cache miss ratio for the conventional direct-mapped cache and the SMI cache is shown in the Table-A. For the direct mapped cache, denoted as DM, the notation “32KB-32byte” denotes a 32KB direct mapped cache with a block size of 32bytes. The SMI cache notation “8K8-1K32” denotes an 8KB direct-mapped cache with a block size of 8bytes and a 1KB spatial buffer with a block size of 32-bytes. The average miss ratio of the SMI cache for a given size (e.g., 8KB) is equal to a conventional direct mapped cache with a cache size of four or eight time as much space (e.g., 32 or 64KB) in nonprefetching mode and prefetching mode, respectively. Moreover, increasing the spatial buffer space achieves a more significant performance gain than increasing the direct mapped cache space. The miss ratios for a conventional two way set associative cache and the SMI cache are compared in Table-B. The two-way set associative cache greatly reduces the miss ratio, but because of its slower access time and higher power consumption, this is not much effective. The result shows that the SMI cache can achieve better performance than a two way set associative cache with double the space.
 The average memory access time for the conventional direct mapped cache and the SMI cache are compared in Table-C. We can see that 8K8-1K32(Prefetch mode) cache has greater Average Memory Access Time (cycle) than the Direct mapped cache, while 8K8-2K32(Prefetch mode) has less Average Memory Access Time (Cycle). This analysis shows that application with a high degree of locality, show an especially strong performance improvement with the SMI cache.
4.3: Relation between Cost and Performance
 In general the, logic to manage the tags for the fully associative cache is designed as a CAM structure for simultaneous comparison for each entry. Because each CAM cell is a combination of storage and comparison, the size of CAM cell is double of RAM cell. For fair performance/cost analysis, the performance for various direct mapped-cache and buffer size is evaluated. The metric is rbe (register bit equivalent) and the total area can be calculated as follows:

 Area = PLA + RAM + CAM. (1)
 Here, the control logic PLA (Programmable logic array) is assumed to be 130 rbe, a RAM cell as 0.6 rbe, and a CAM cell is 1.2 rbe. Equation (2) represents the RAM area:
 RAM = 0.6 * (#entries + Lsense_amp) *

 ((#data_bits + #status_bits) + Wdriver), (2)
 where Lsense_amp is the bit length of a bit line sense amplifier, Wdriver the data width of a driver, #entries the number of rows of the tag array or data array, #data_bits the tag bit or data bit of one set, and #status_bits the state bits of one set. Finally, (3) calculate the area of the CAM:
 CAM = 0.6 * (2^ (1/2) * #entries + Lsense_amp) *

 (2^ (1/2) * #tag_bits + Wdriver), (3)

 where #tag_bits is the number of bits for one set in the tag array. Table 1 shows the performance/cost ratio for direct mapped cache and SMI cache.

 The SMI cache shows about a 60% area reduction compared with the 64KB-32byte conventional direct mapped cache, even though it provides higher performance. And, it offers an 80 percent area reduction compared with the 64KB-32byte configuration, while providing much higher performance. Also the improvement ratio for the average memory access time shows that the 8KB-2KB SMI is the best configuration.
 Performance and Cost of the SMI cache and Direct-mapped Cache
	
	32KB-32byte

 (DM)
	8KB-1KB

 (SMI)
	64KB-2KB

 (DM)
	8KB-2KB

 (SMI)

	 Area
(Improvement ratio)
	177496 rbe
 (1.00)

	67431 rbe
 (0.38)
	352596 rbe
 (1.99)
	73680 rbe
 (0.42)

	Miss ratio
(Improvement ratio)
	 1.89%
 (1.00)

	1.61%
 (0.85)
	1.46%
 (0.77)
	1.37%
 (0.73)

	Avg. memory
 access time

(Improvement ratio)
	1.34 cycle
 (1.00)
	1.29 cycle
 (0.96)
	1.26 cycle
 (0.94)
	1.25 cycle
 (0.93)

 Miss Ratio (%)
 32KB-32byte (DM) 1.90

 64KB-32 byte (DM) 1.45
 8K8-1K32 (NPF) 2.05

 8K8-2K32 (NPF) 1.80

 8K8-1K32 (PF) 1.70

 8K8-2K32 (PF) 1.45

 Table-A: Miss Ratio of the Direct Cache and SMI Cache.

 Miss Ratio (%)

 16KB-32byte (2-way) 2.10

 32KB-32 byte (2-way) 1.10
 8K8-1K32 (NPF) 2.05

 8K8-2K32 (NPF) 1.80

 8K8-1K32 (PF) 1.70

 8K8-2K32 (PF) 1.45

Table-B: Miss Ratio if the Two-way set associative cache and SMI cache.

 Average Memory Access Time (Cycle)

 32KB-32byte (DM) 1.35

 64KB-32 byte (DM) 1.28

 8K8-1K32 (NPF) 1.36

 8K8-2K32 (NPF) 1.31

 8K8-1K32 (PF) 1.28

 8K8-2K32 (PF) 1.25

Table-C: Average memory access time of the direct mapped cache and the SMI cache.

 4. Conclusion

 To design a simple but high performance cache system with low cost , a new caching mechanism for exploiting two types of locality effectively and adaptively is designed: A direct mapped cache with a small block size for exploiting temporal locality and a fully associative spatial buffer with a large block size for exploiting spatial buffer. An intelligence hardware based prefetching mechanism is used to maximize the effect of spatial locality.

 The SMI cache overcomes the structural drawbacks of direct mapped caches, such as conflict misses and thrashing. We can evaluate the SMI cache system in two configurations, nonprefetching mode and prefetching mode, to analyze the contribution of intelligent prefetching. Both modes provide high performance, but non prefetching mode offers lower power consumption, while prefetching mode offers higher performance.

 The temporal mechanism of the SMI cache decreases conflict misses by about 26% and the spatial locality miss ratio decrease by about 48%.

 Table of Content:

1. Introduction

2. Selective Mode Intelligent Cache System

2.1. Motivation

2.2. SMI Cache System Structure

2.3. Operational Model of The SMI cache

2.3.1. Case of Cache Hits

2.3.2. Case of Cache misses

 (A). The spatial buffer is not full:

 (B). The spatial buffer is full:

 3. Performance Evaluation

 3.1. Time of Prefetch Signal Generation and Overhead
 3.2. Comparison of a Conventional Cache with the SMI
 Cache Configuration (Miss Ratio and Average

 Memory Access Time)

 3.3. Relation between Cost and Performance

 4. Conclusion

 References:

1. IEEE transaction On computers,

 Vol. 52, NO.5, MAY 2003

2. Computer Architecture and Organization:

 John P. Hayes

3. Computer Organization and Architecture:

 William Stallings

www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

