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Abstract 

Noise problems in the environment have 

gained attention due to the tremendous 

growth of technology that has led to noisy 

engines, heavy machinery, high speed wind 

buffeting and other noise sources. The 

problem of controlling the noise level has 

become the focus of a tremendous amount 

of research over the years. In last few years 

various adaptive algorithms are developed 

for noise cancellation. In this paper we 

present an implementation of LMS (Least 

Mean Square) and NLMS (Normalized 

Least Mean Square  algorithms on 

MATLAB  . We simulate the adaptive filter 

in MATLAB with a noisy tone signal and 

white noise signal and analyze the 

performance of algorithms.   
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Introduction 

In the process of transmission of information 

from the source to receiver side in all the 

channels, noise from the surroundings 

automatically gets added to the signal. This 

acoustic noise [1] picked up by microphone 

is undesirable, as it reduces the perceived 

quality or intelligibility of the audio signal. 

The problem of effective removal or 

reduction of noise is an active area of 

research [2]. The usage of adaptive filters is 

one of the most popular proposed solutions 

to reduce the signal corruption caused by 

predictable and unpredictable noise added to 

the source signal. An adaptive filter [3] has 

the property of self-modifying its frequency 

response to change the behavior in time 

domain, allowing the filter to adapt the 

response to the input signal characteristics 

change. Because of this capability, overall 

performance and the construction flexibility, 

the adaptive filters have been employed in 

many different applications, some of the 

most important are: telephonic echo 

cancellation [1], radar signal processing, 

navigation systems, communications 

channel equalization and biometrics signals 

processing. The purpose of an adaptive filter 

in noise cancellation is to remove the noise 

from a signal adaptively to improve the 

signal to noise ratio. Figure 1 shows  

Adaptive Noise Cancellation (ANC) system 

[4]. The discrete adaptive filter processed 

the reference signal x(n) to produce the 

output signal y(n) by a convolution with 

filter’s weights w(n).The filter output y(n) is 



subtracted from d(n) to obtain an estimation 

error e(n). The primary sensor receives noise 

x1(n) which has correlation with noise x(n) 

in an unknown way. The objective here is to 

minimize the error signal e(n). This error 

signal is used to incrementally adjust the 

filter’s weights for the next time instant. The 

basic adaptive algorithms which widely used 

for performing weight updation of an 

adaptive filter are: the LMS (Least Mean 

Square), NLMS (Normalized Least Mean 

Square) and the RLS (Recursive Least 

Square) algorithm [5]. Among all adaptive 

algorithms LMS has probably become the 

most popular for its robustness, good 

tracking capabilities and simplicity in 

stationary environment.  

 

 

Figure 1. adaptive noise canceller  

Design of adaptive filter  

Steepest Descent Algorithm 

An adaptive filter is required to find a 

solution for its tap-weight vector that 

satisfies the normal equation.   A procedure 

is to use the method of steepest descent, 

which is one of the oldest methods of 

optimization. 

1. Initial values of w(0) are chosen 

arbitrarily i.e. initial guess as to where the 

minimum point of the error-performance 

surface may be located. Typically w(0) = 

null vector. 

2. Using this, we compute the gradient 

vector, defined as the gradient of mean 

squared error J(n) wrt w(n) at time n (nth 

iteration). 

3. We compute the next guess at the tap-

weight vector by making a change in the 

initial or present guess in a direction 

opposite to that of the gradient vector. 

4. Go back to step 2 and repeat the process. 

w(n+1) = w(n) + 0.5 [-(n)] ,  = positive 

real-valued constant …..(1) 

(n) = -2p +2Rw(n)… .(2) 

For the application of the steepest-descent 

algorithm, we assume that the correlation 

matrix R and cross-correlation matrix p are 

known[3]. By taking their values from the 

given two filter signals named as reference 

and primary which is mention in the M file.  

w(n+1) = w(n) + [p – Rw(n)] n = 0, 1, . (3) 

We observe that the parameter  controls the 

size of the incremental correction applied to 

the tap-weight vector as we proceed from 



one iteration to the next. Therefore,  is 

referred to as the step-size parameter or 

weighting constant[4]. The equation (3) 

describes the mathematical formulation of 

the steepest-descent algorithm or also 

referred to as the deterministic gradient 

algorithm. 

 

Least-Mean-Squares (LMS) Algorithm 

The LMS algorithm remedies this problem 

by adapting the filter weighs according to 

the incoming audio data as it is being 

received. The LMS algorithm is robust 

enough for a variety of signal conditions due 

to its adaptive nature. The LMS algorithm 

involves the computation of the output of a 

linear filter in response to the noise 

reference and the generation of the 

estimation error between this output and the 

desired respons[6]e. The estimation error is 

used in the adjustment of the filter weighs.  

If it were possible to make exact 

measurements of the gradient vector at each 

iteration, and if the step-size parameter  is 

suitably chosen, then the tap-weight vector 

computed by using the method of steepest-

descent would indeed converge to the 

optimum solution . A significant feature of 

LMS is its simplicity; it does not require 

measurements of the pertinent correlation 

functions, nor does it require matrix 

inversion.   

gradient vector, (n) = -2p +2Rw(n) 

To estimate this, we estimate the correlation 

matrix R and cross-correlation matrix p by 

instantaneous estimates i.e. 

R′(n) = u(n)u(n)..(4) 

p′(n) = u(n) d*(n)…(5) 

Correspondingly, the instantaneous estimate 

of the gradient-vector is 

(n) = -2 u(n) d*(n) + 2 u(n)uH(n)w(n)..(6). 

Substituting this estimate in the steepest-

descent algorithm, equation (3), we get a 

new recursive relation for updating the tap-

weight vector: 

w′(n+1) = w′(n)+μu(n)[d*(n) – uH(n)w′(n)] 

…(7) 

Equivalently the LMS update equation can 

be written in the form of a pair of relations: 

e(n) = d(n) - uH(n)w′(n) …(8) 

w′(n+1) = w′(n)+u(n)e*(n) …(9) 

 Excess mean squared error is defined as the 

amount by which the actual value of J() is 

greater than Jmin, Misadjustment .The 

misadjustment M is defined as the 

dimensionless ratio of the steady-state value 

of the average excess mean-squared error to 

the minimum mean squared error. It can be 

shown that  

M=λi /2-λi ….(10)  



Figure (2) surface contour/ weight tracks 

 

Figure 3 .Error signal 

 

Figure 4. Frequency response 1 

 

 

Figure 5. learning curve 1 

 

Figure 6. Frequency response 2 

 

Figure 7. learning curve 2 
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Figure 8. learning curve 3 

 

Figure 9. learning curve 4 

 

Figure10. misadjustment curve 1 

 

Figure 11. misadjustment curve 2 

  
Figure 12. misadjustment curve 3 

Result and discussion 

The graphs above shows the result obtained 

when we design the adaptive filtering. 

Surface contour, frequency response, 

learning curves and misalignment curves all 

are obtained and shown with best result. The 

primary measure of performance in the LMS 

adaptive filter is the mean square error, 

represented by J(n) = E[|e(n)|2]. For a 

certain adaptive filter with step size μ, the 

MSE can be described as a function of the 
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number of iterations. The MSE tends to 

decrease towards the optimal MSE with 

increasing number of iterations, but it can 

never totally converge due to excess MSE 

caused by the tap weight error the figures 

give above show the learning curves of least 

mean square at different values of step size. 

 A simple simulation was developed to 

demonstrate the ability of the LMS 

algorithm to remove unwanted noise from  

signal. This evaluation shows the number of 

iterations for noisy tonal signal to mean 

square error for various step-size 

parameters. We know that for the large step-

size μ=0.1 the filter becomes unstable 

resulting in the large error output and error 

signals. For a relatively small μ = 0.0003, 

the signal has not yet converged after a 

number of iterations, evidenced by the 

tapered error signal. The step-size of 0.0003 

is stable and closely approximates the 

desired signal at 1000 samples. The results 

of the simple simulation give insight into 

what range of μ values give a reasonable 

convergence time and stability for further 

analysis of a more realistic simulation. The 

result also shows the improvement of signal 

to noise ratio where it can be seen from the 

table when mean square error is reduced the 

stability is increase and vise versa. 

 

Table 1. LMS comparison 

S.N algorithm MSE %noise 

reduction 

stability 

1 LMS 2.5e-

002 

91.6% Highly 

stable 

2 NLMS 2.1e-

002 

93.8% high 

 

 Conclusion 

The implementation of algorithms was 

successfully achieved, with results that have 

a really good response as shown in the 

previous figures. The simulation results 

show that LMS algorithm give good results 

in noise cancelling. To complete the task of 

noise reduction LMS filtering results is 

relatively good, the requirements length of 

filter is relatively short, it has a simple 

structure and small operation and is easy to 

realize. The signal to noise ratio was 

measured as given in table 1. However, 

when the adaptive filter operates in a non-

stationary environment, the bottom of the 

error performance surface continually 

moves, while the orientation and curvature 

of the surface may be changing too.  
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