
���������
	�� �
���������

� � � � � � ��� � ��� � � � � � � � ��� � � �
� ��� � � � ! � � � " � ! � � # �

$&%('*),+ �-�-�/. +10 � 23��� + 23465 % 475 + 4) � 0 � ��5 �-89� .(�;:(�
�/� ��5
<>=@?BADC(E
FHG FJI KLCM?BAONPFHE�FRQTS

UWV

=@XZY/[]_^`Y Qbadcde`f
gba/f Qhf7adijflk =h^mY/noX

Qba/prqsf7p tDadu foibQbadcve`f

wvx y&z|{~}]��z(������y���x ��z>���
ghi&�M� ���3�-��_�/f7^|ej�]f7p

�������
.��s�r�� ¢¡¤£>�¦¥§¡�¨�©�	-¨�£>�rª_¡«�¦ ¬�/¥�­�®¯¥��s�¦ °®¯¥l­

NOf±e²�]n7pdf7[´³Wp/^|ej�µe²a¶e`\Dno·3K*_¸�Y�pdn7[]no¹±ºo»¼?Bf7[½�½¸�a¶e

NOf±e²�]n7pdf7[´³Wp/^|ej�µe²a¶e`\Dno·3K*_¸�Y�pdn7[]no¹±ºo»¼?Bf7[½�½¸�a¶e
.��s�r�� ¢¡¤£>�¦¥§¡�¨�©�	-¨�£>�rª_¡«�¦ ¬�/¥�­�®¯¥��s�¦ °®¯¥l­

¾7¿1À1Á¯ÂÄÃÅ¿ÇÆ
ÁÉÈ²ÊËÁ7ÁÌÈsÂÎÍ�Ï ÀÑÐµÒ°¿ÑÓÔÁ�¿ÖÕ�Á¯Â¯ÁØ×Ù¿ÑÆ

� � � � � � ��� � ��� � � � � � � � ��� � � �
� ��� � � � ! � � � " � ! � � # �

ÂÎÍ-Ê3ÚÛÐÜÕ§Ê]Ã�Æ¦¿;Ý ÐÜÀÛÞ
ÓÇÊÜÀÖÀÖÂß¿ÑÆ�ÐÜà²Á�Ú1á

2¬â&ãräÉ�må¢ãæ:�ª��l¡«�
.(ª��H:���ª� ¤�mç�23å«ãl¨�â

:(ªr¥`è���¥hé9ªr£>�� (:(ªl�l¡«�

ÂÉÕ�ê�ÊÜÀ�ÁÌÂßÊË×�ëÛà²× Ã7×íì
¿1Õ�Á�Ð]ë¼ÁÉÈ�¿ÖÂÉÀ
î3���W�ïzsð¯��{ñ�1�bòoz°�Ë�_x ��ð¯�°� VJó zÑ��{°zÜz

àmÕ§Æ¦¿ÖÀ�ÐÜà`À/ô�à`ÂõÆ|ÊÜÕ§ÓÖ¿

.� ¦ö) ö��vö $ �¦÷r��å1¡¤®Ì��¥
ø�ùØùØúûùõüþý ÿÔü ��������� ù¯ù �	�

��
� ü
� ������������� ü ����� ÿ�� úíÿ ����� úíÿ��

.� ¦ö �Löþéñöo:3¨`ç_®¯¥"!l��¥
��������� ù¯ù �	� ý�ÿ�#%$ � ý&#

'�(� ü
� ������������� ü ����� ÿ�� úíÿ ����� úíÿ��

Acknowledgement

Words will not suffice to express fully, our deep sense of gratitude to Dr. M.P.
Sebastian, Professor, Dept. of Computer Science Engineering, for the guidance and
support extended by him, throughout the course of this work. He has not only been our
mentor, but also our main source of inspiration.

We express our wholehearted thanks to all our friends, for their suggestions of
immense value and encouragement through out the course of this work.

Akhlesh Gupta
Dua Gaurav Ashok

Gunjan Kumar Gupta

2

Abstract

In the existing TCP three way handshake process, SYN Flood attack is the most
common Denial of Service attack. In this attack, server is continuously being bombarded
with SYN packets from attacker, for each SYN packet the server will acknowledge the
request but instead of acknowledging back the server, attacker will simply drop the ACK
packets and continue sending SYN packets. Thus the server locks up space in the partial
connection queue for the unacknowledged SYN packets until the packet is timed out. If
the rate of arrival of SYN packets is much more than the rate of time out of SYN packets
in the partial connection queue plus the rate of ACK received from the client, then server
will not be able to serve all the new requests and some of the legitimate requests will not
get service.

Our project is based on restricting the SYN Flood attack by using cryptography. In
our solution we will use two modes Normal TCP mode and Cryptographic TCP mode. In
Normal TCP mode the server will behave like existing TCP. When the partial connection
queue becomes full, server will switch from Normal TCP mode to Cryptographic TCP
mode. It will return back to Normal TCP mode only when the partial connection queue
has any vacancy. Thus, by using Cryptography we give service to all authenticated clients
whatever be the size of the partial connection queue. It gives an edge in the performance
of TCP as all legitimate clients will get service and any attacker which uses spoofing will
not be allowed to lock up resources. But there is a disadvantage that there is no scope for
retransmission from the server side during handshaking.

3

4

Contents

1 Introduction 5
 1.1 What is Denial of service attack? . 5
 1.2 Effects of DoS attack . 6
 1.3 History Attacks. .6
 1.4 Generic DoS attacks. .7
 1.4.1 Smurf attack. .7
 1.4.2 SYN Flood attack .7
 1.4.3 UDP Flood attack .7
 1.4.4 Teardrop attack. 8
 1.5 What is SYN Flood attack?. 8
 1.6 Motivation .8

2 Security considerations in TCP 9
 2.1 TCP header format. .9
 2.2 Three way handshake in TCP. 11
 2.3 State Transition Diagram. .12
 2.4 Weakness of the TCP protocol .12
 2.5 SYN Flood attack in TCP .14
 2.6 Severity of SYN attack .15
 2.7 Existing Security Mechanisms. .16

3 Design Principles of Cryptographic TCP 17
 3.1 Handshake in Cryptographic TCP .17
 3.2 Algorithm for handshake .19
 3.3 SHA-1 Algorithm . 20
 3.4 State transition diagram . 21

 3.5 Advantages .23
 3.6 Disadvantages . 23

4 Implementation 25

5 Testing and Results 26

6 Conclusions 27

References 29

A 30

B 32

5

Chapter 1

Introduction

In the present situation the most effective attack on the TCP is the SYN flood
attack. A SYN flood is a Denial of Service attack that takes advantage of the TCP three
way handshake protocol. A SYN is a type of TCP packet sent to initiate a connection
with a listening TCP port. The port responds with a SYN/ACK to the initiating port, and
allocates resources to the new connection. When a corresponding ACK packet is received
on the listening port, then the connection is established with the client.

A SYN flood occurs when one or more listening TCP ports are sent large numbers
of SYN packets. Such attacks could take various forms, most of which do not adversely
affect the attacked system. However, the most potentially harmful attack sends SYN
packets in which the client address refers to a system which does not exist. In this case,
SYN packets remain in the TCP partial connection queue for each listening port that is
attacked, unable to complete because the SYN/ACK cannot be routed to a bogus address.
If the queues are too small and packets awaiting response remain on the queues, the TCP
stack refuses to accept any connections until the bogus packets have timed out.

1.1 What is Denial of Service attack?

A denial of service (DoS) attack is a malicious attempt by one or many users to
limit or completely disable the availability of a service. They cost businesses millions of
pounds each year and are a serious threat to any system or network. These costs are
related to system downtime, lost revenues, and the labor involved in identifying and
reacting to such attacks. DoS attacks were theorized years ago, before the mass adoption
of current Internet protocols. DoS is still a major problem today and the Internet remains
a fragile place.

A large number of known vulnerabilities in network software and protocols exist;
meaning DoS can be achieved in a number of ways,

Sending enough data to consume all available network bandwidth (Bandwidth
Consumption)

Sending data in such a way as to consume a resource needed by the service
(Resource Starvation)

Exercising a software bug causing the software running the service to fail
(Programming Flaws)

Malicious use of the Domain Name Service (DNS) and Internet routing protocols

6

Many DoS attacks exploit inherent weaknesses in core Internet protocols. This

makes them practically impossible to prevent, since the protocols are embedded in the
underlying network technology and adopted as standards worldwide. Today, even the
best countermeasure software can only provide a limiting effect on the severity of an
attack. An ideal solution to DoS will require changes in the security and authentication of
these protocols.

In order to launch some DoS attacks, the programmer must be able to form raw
packets. Using raw packets, the header information and data can be manipulated to form
any kind of packet sequence. Hence techniques such as IP Spoofing and malformed
ICMP Ping requests can be used.

1.2 Effects of DoS attack

It is often much easier to disrupt the operation of a network or system than to
actually gain access. There are a large number of DoS attacks in existence, all targeting
vulnerabilities in different services or systems. In general they attempt to shut down or
seriously slow down a service provided by a computer system. The effects can range
from going unnoticed to disastrous depending on the scale of the attack and the service
being targeted.

With the adoption of the Supervisory Control and Data Acquisition Service
(SCADA) network in the USA, the risk of a DoS attack could be catastrophic. The
SCADA network is an interconnected ribbon of computer systems used for maintaining
the nations infrastructure, including power, water and utilities.

1.3 Reported attacks

DoS first received large scale public attention in February 2000 [1]. Major
Internet sites including CNN, Yahoo, and Amazon suffered a distributed attack over a
period of several days. After several months of investigation, law enforcement officials
arrested a 15-year-old Canadian youth who used the alias Mafiaboy [2] and charged him
with perpetrating the attacks. In January 2001, the youth pleaded guilty to 56 criminal
counts relating to the incident. CNN and other victims claim the attack caused damages
totaling $1.7 billion.

Since then many other attacks have been reported in the media. However it is very
likely many large, well known companies do not report DoS attacks, in an effort to
protect their corporate image of a secure business. The recent attack on the Al-Jazeera
website [3] just a few months ago highlights the fact that DoS is still the tool of choice
for many individuals.

7

1.4 Generic DoS attacks

We described below some widely known basic denial of service attack methods
that are employed by the attack daemons.

1.4.1 Smurf attack

Smurf attack involves an attacker sending a large amount of Internet Control
Message Protocol (ICMP) echo traffic to a set of Internet Protocol (IP) broadcast
addresses. The ICMP echo packets are specified with a source address of the target
victim (spoofed address). Most hosts on an IP network will accept ICMP echo requests
and reply to them with an echo reply to the source address, in this case, the target victim.
This multiplies the traffic by the number of responding hosts. On a broadcast network,
there could potentially be hundreds of machines to reply to each ICMP packet. The
process of using a network to elicit many responses to a single packet has been labeled as
an amplifier [4]. There are two parties who are hurt by this type of attack: the
intermediate broadcast devices (amplifiers) and the spoofed source address target (the
victim). The victim is the target of a large amount of traffic that the amplifiers generate.
This attack has the potential to overload an entire network.

1.4.2 SYN Flood attack

SYN Flood attack is also known as the Transmission Control Protocol (TCP) SYN
attack, and is based on exploiting the standard TCP three way handshake. The TCP
three-way handshake requires a three-packet exchange to be performed before a client
can officially use the service. A server, upon receiving an initial SYN (synchronize/start)
request from a client, sends back a SYN/ACK (synchronize/acknowledge) packet and
waits for the client to send the final ACK (acknowledge). However, it is possible to send
a barrage of initial SYN s without sending the corresponding ACK s, essentially leaving
the server waiting for the non-existent ACK s [5]. Considering that the server only has a
limited buffer queue for new connections, SYN Flood results in the server being unable
to process other incoming connections as the queue gets overloaded [6].

1.4.3 UDP Flood attack

UDP Flood attack is based on UDP echo and character generator services
provided by most computers on a network. The attacker uses forged UDP packets to
connect the echo service on one machine to the character generator (chargen) service on
another machine. The result is that the two services consume all available network
bandwidth between the machines as they exchange characters between themselves. A
variation of this attack called ICMP Flood, floods a machine with ICMP packets instead
of UDP packets.

8

1.4.4 Teardrop attack

Teardrop attack, a type of denial of service attack, exploits the way that the
Internet Protocol (IP) requires a packet that is too large for the next router to handle be
divided into fragments. The fragment packet identifies an offset to the beginning of the
first packet that enables the entire packet to be reassembled by the receiving system. In
the teardrop attack, the attacker's IP puts a confusing offset value in the second or later
fragment. If the receiving operating system does not have a plan for this situation, it can
cause the system to crash.

1.5 What is SYN Flood attack?

TCP SYN flooding is an instance of the flooding attacks [7]. Under this attack,
the victim is a host and usually runs a Web server. A regular client opens a connection
with the server by sending a TCP SYN segment. The server allocates buffer for the
expected connection and replies with a TCP ACK segment. The connection remains half-
open (backlogged) till the client acknowledges the ACK of the server and moves the
connection to the established state. If the client does not send the ACK, the buffer will be
deallocated after an expiration of a timer. The server can only have a specific number of
half-open connections after which all requests will be refused. The attacker sends a TCP
SYN segment pretending a desire to establish a connection and making the server
reserves buffer for it. The attacker does not complete the connection. Instead, it issues
more TCP SYN s, which lead the server to waste its memory and reach its limit for the
backlogged connections. Sending such SYN requests with a high rate keeps the server
unable to satisfy connection requests from legitimate users.

1.6 Motivation

Presently, TCP protocol has many inherent flaws which make it possible for
attacker to deteriorate the performance of the server using many DoS attacks. SYN attack
is one of the burning problems of the computer world. During SYN attack server's
resources is exhausted and it is not in a position to serve all the requests. Our aim is to
recover the server from SYN attack without much degradation of the server's
performance. We aim to achieve this without using extra hardware or software with
minimal changes in the existing TCP. In our implementation we use cryptographic
technique to achieve our goal.

9

Chapter 2

Security considerations in TCP

This chapter deals with the basic concepts of the TCP protocol. We have
described the TCP header format, three way handshake process, and flaws in the
handshaking process.

2.1 TCP packet header format

The Transport Control Protocol (TCP) is connection oriented and reliable, in-
sequence delivery transport protocol. It provides full duplex stream of data octets (8-bit
bytes). It is the main protocol for the internet and is widely used in extra- and intranets.
Most today s services on internet relay on TCP. For example mail (SMTP, port 25), old
insecure virtual terminal service (telnet, port 23), file transport protocol (FTP, port 21)
and most important in this case also is the hyper text transfer protocol (HTTP, 80) better
known as the world wide web services (WWW). Almost everything uses TCP someway
to do their communications over the network - at least the interactive ones. This takes us
to the point. What if these services are denied for some reason? SYN flood is one
example to this. Let's look at the format of tcp packet.

The underlying IP packet contains the source IP (internet protocol) address and
target IP address. To grant simultaneous access to the TCP module, TCP provides an
interface called a port. Ports are used by the kernel to identify network processes from
each other. They are strictly transport layer entities. Together with an IP address, a TCP
port provides an endpoint for network communications. At any given moment all Internet
connections can be described by four numbers. The source IP address and source port and
the destination IP address and destination port completes this. Different services are
bound to well-known ports so that they may be located on a standard port on different
systems. [8]

TCP packet contains unique sequence and acknowledgement numbers compared
to other packets in the same connection. The Initial Sequence Number (ISN) is random
integer between 0 and 4,294,967,295. After each sent packet the sequence number
counter is incremented by one. Data offset tells the current. This enables the right
ordering of the packets if they get scrambled in the network. From the figure you can see
that there is these URG, SYN, ACK, RST, PSH and FIN bits.

10

Figure 2.1: TCP header

URG means out of band data. For example in the telnet session if you press ctrl-c
tcp stack will send a packet, which has this flag set.

SYN bit has meaning only when establishing connection e.g. in the handshaking
procedure. Both sides of the connection need to send this special packet with SYN
flag on.

When the ACK flag is on the Acknowledgement field in the tcp packet contains
the number of the next acknowledgeable tcp packet with this sequence number.
This bit is on almost in every packet. ACK flag tells to the target machine that the
sending machine has approved all packets with sequence number below the Ack
number in the packet.

If the reset flag (RST) is on then the connection is destroyed and all data
structures in memory for the connection must be freed.

With interactive connections PSH (push) flag is used to gain rapid and smooth
interaction. The packet is not queued but rather sent as soon as possible.
Interactive programs should thus use this flag.

11

FIN flag tells to the target machine that it should not take anymore data packets
from the sending machine. E.g. the sending machine tells that it won t send
anymore packets but can still receive packets by himself.

2.2 Three way handshake in TCP

Before any data can be transferred, a connection has to be established between the
two processes. One of the processes (usually the server) issues a passive OPEN call, the
other an active OPEN call. The passive OPEN call remains dormant until another process
tries to connect to it by an active OPEN.

On the network, three TCP segments are exchanged (see Figure 2.2):

ISNc: Initial sequence number of client
ISNs: Initial sequence number of server

Figure 2.2: Three way handshaking

1. CLIENT picks an initial sequence number (ISNc) and sends a segment to
SERVER containing: SYN_FLAG=1, ACK_FLAG=0, and SEQ=ISNc.

2. When SERVER receives the SYN, it chooses its initial sequence number (ISNs)
and sends a TCP segment to CLIENT containing: SYN_FLAG=1,

12

ACK_FLAG=1, SEQ=ISNs, ACK=(ISNc+1). At this point SERVER allocates
resources for new TCP connection.

3. When CLIENT receives SERVER's response, it acknowledges SERVER's choice
of an initial sequence number by sending a dataless third segment containing:
SYN_FLAG=0, ACK_FLAG=1, SEQ=ISNc+1, ACK=(ISNs+1) (data length =
0). At this point CLIENT allocates resources for the new TCP connection.

4. Data transfer may now begin.

Note: The sequence number used in SYN segments are actually part of the sequence
number space. That is why the third segment that Client sends contains SEQ=(ISNc + 1
). This is required so that we don't get confused by old SYNs that we have already seen.
To ensure that old segments are ignored, TCP ignores any segments that refer to a
sequence number outside of its receive window. This includes segments with the SYN bit
set.

2.3 State Transition Diagram

Different states of the TCP server and client are sketched out in the Figure 2.3. The state
diagram illustrates only state changes, together with the causing events and resulting
actions, but addresses neither error conditions nor actions which are not connected with
state changes. This diagram is only a summary and must not be taken as the total
specification [11].

2.4 Weakness of the TCP protocol

There are many weaknesses in the TCP protocol and we are going to get deeper
with the problem in the handshaking transaction. Consider again the handshaking. What
if the machine A sends a fake packet to machine B. Fake because the source address
(should be the B's IP address), is unreachable host in this network segment. Target
machine B accepts the SYN packet and tries to send SYN/ACK packet to the fake
address. The answer will never get to the target. Request for Comments file number 1122
(rfc1122) gives good advices:

Address Validation

 Reject OPEN call to invalid IP address x

 Reject SYN from invalid IP address x

 Silently discard SYN to bcast/mcast addr x

Here the x means that it MUST be implemented. Unfortunately as the
flood is possible with fake source address (demonstrated below) this address validation
schema hasn't been used (except the third one). The fact that two first advices are not
followed it is possible to do SYN flood DoS attack.

13

Figure 2.3: State Transition Diagram of TCP

Using a spoofed IP address not in use on the Internet, an attacker sends multiple
SYN packets to the target machine. For each SYN packet received, the target machine
allocates resources and sends an acknowledgement (SYN-ACK) to the source IP address.

14

Because the target machine doesn't receive a response from the attacking machine, it
attempts to resend the SYN-ACK five times, at 3-, 6-, 12-, 24-, and 48-second intervals,
before deallocating the resources 96 seconds after attempting the last retry. If you add it
all together, you can see that the target machine allocates resources for more than 3
minutes to respond to just one SYN attack.

There is also quite similar DoS attack called RST flood which isn't covered in our
project. By sending RST packets with correct sequence numbers (packets can be sniffed
from the network) the activating (in the handshaking phase) tcp connection can be torn
down quite effectively. The purpose and effect of this kind of attack is similar to syn
flood DoS attack.

2.5 SYN Flood attack in TCP

Although this mechanism works for all valid TCP requests, attackers can leverage
weaknesses in this system to create a DoS condition. The problem occurs due to the fact
that most systems allocate a finite number of resources when setting up a potential
connection or a connection that has not yet been established. Although most systems can
sustain hundreds of concurrent connections to the same port (e.g. port 80 for http), it may
only take a dozen or so potential connection requests to exhaust all resources allocated
to setup a new connection. Thus SYN Flooding is a resource starvation attack.

When a SYN Flood attack is initiated the following sequence occurs:

Figure 2.4: SYN Flood attack

15

1. CLIENT picks an initial sequence number (ISNc) and sends a segment to

SERVER containing: SYN_FLAG=1, ACK_FLAG=0, and SEQ=ISNc. The
client initiating the attack spoofs, or changes, the source IP address in its SYN
messages to that of a currently unreachable host.

2. When SERVER receives the SYN, it chooses its initial sequence number (ISNs)
and sends a TCP segment to CLIENT containing: SYN_FLAG=1,
ACK_FLAG=1, SEQ=ISNs, ACK=(ISNc+1). At this point SERVER allocates
resources for new TCP connection.

3. If the spoofed IP address is reachable then the host that receives the server's SYN-
ACK will respond with a RST (Reset) message. A RST is transmitted when a host
receives a packet that does not appear to be correct for the referenced connection.
This would defeat the attack since a RST message from an active host owning the
spoofed IP address would cause the backlogged connection to be removed from
the server's pending TCP connection data structure.

4. If the spoofed IP address is unreachable then this will result in a half open
connection at the server side, leading to locking up of resources for the request
until time out occurs. This means that the victim server will not be able to accept
legitimate connections from other clients until the pending TCP connection data
structure is emptied. Depending on the server's TCP/IP implementation, a worst
case scenario could result in the exhaustion of the server's memory and a potential
system crash. It is important to note that in a TCP SYN Flooding attack the actual
service is not damaged; only the ability to provide the service to legitimate clients
is impeded.

The connection queue is small; attackers may only have to send a few spoofed
SYN packets every 10secs to completely disable a port. The victim system will never be
able to clear the backlog of half open connections, before receiving a new spoofed SYN
packet.

This attack has the advantage (for the attacker) in that it requires very little
bandwidth to disable a port. It is also a stealth attack, since the source SYN packet
contains a spoofed IP address.

2.6 Severity of SYN attack

As with many other DoS attacks the SYN flood doesn't do any physical damage
for the information in the machine. Nor does it make any damage to physical devices.
The natures of DoS attacks are to deny something from users or other
machines/processes. It may not sound very severe but when you think it more deeply it is
very unpleasant effect in the growing and more commercial internet. The www browsers
are used almost for every access to internet resources nowadays. WWW services are used
more and more. Little by little comes the electronic cash possibilities and other growing
services. Browser is the main tool in the internet communications. For example with syn
flood you can deny access to the port 80 where the http server resides in a vulnerable
machine. The mail server, ftp, telnet and ssh. The list is quite long.

16

2.7 Existing Security mechanisms

There are several existing security mechanisms which deal with SYN attack.
Some of the mechanisms are,

Firewall: This is a preventive mechanism which tries to thwart attacks before they harm
the system. Firewall uses filtering and trace back as the main strategy. It scans each
packet which passes through the firewall. This increases packet processing time, and also
overhead on the server increases. But in our solution, overhead on the server increases
only when it experiences attack.

Dynamic Queue size: In the event of an attack, you should ensure that legitimate
requests remain in a queue long enough to receive responses and get passed to the
established connections queue. The higher the partial connection queue limit value, the
less likely legitimate packets will be dropped. But the queue size is a bottleneck as it
cannot be increased indefinitely. Using cryptographic technique we create a feeling of
infinity size queue without actually consuming any extra resources.

SYN cookie: SYN cookies do not store any state on the machine, but keeps all state
regarding the initial TCP connection in the network, treating it as an infinitely deep
queue. This is done by use of a cryptographic function to encode all information into a
value that is sent to the client with the SYN, ACK and returned to the server in the final
portion of the 3 way handshake. In this SYN cookie mechanism, cryptographic function
is used to encode information for all packets, which decreases the performance of server.
But we use cryptographic function only when server experiences attack, thus saving the
CPU cycles. We have increased security of the cryptographic function by using a random
number in calculating hash value. SYN cookie mechanism is not able to serve other TCP
options but we have an edge over this mechanism as we can serve them in Normal TCP
mode (as described in section 3.1).

17

Chapter 3

Design Principles of Cryptographic TCP

In the 3-way handshaking process during TCP connection establishment, server
allocates resources before the client does. But in the proposed method server allocates
resources after the resource allocation by the client.

3.1 Handshake in Cryptographic TCP

Large SYN queues and random early drops make SYN flooding more expensive
but don't actually solve the problem. We are using cryptographic technique to solve the
problem.

ISNc: Initial sequence number of client
ISNs: Initial sequence number of server

Figure3.1: Cryptographic handshaking

18

In our solution we are considering two modes of handshake depending upon the

load on the queue, one mode is normal TCP and another is cryptographic TCP. We
switch from normal TCP mode to cryptographic TCP mode when there is no space left in
queue and move back to normal TCP mode when there is any vacancy in queue. A
connection which starts in any mode will continue to be in that mode itself until the
connection is established.

Steps involved in cryptographic handshaking are as follows:

1. CLIENT picks an initial sequence number (ISNc) and sends a segment to
SERVER containing: SYN_FLAG=1, HASH_FLAG=0, ACK_FLAG=0, and
SEQ=ISNc.

2. When SERVER receives the SYN, it chooses its outgoing sequence number
(ISNs) as a one way hash of the incoming information [9] and sends a TCP
segment with the hash value in data part to CLIENT containing: SYN_FLAG=1,
HASH_FLAG=1, ACK_FLAG=1, SEQ=ISNs, ACK=(ISNc+1). At this point
SERVER remains in LISTEN state.

If the partial connection queue becomes full i.e. when the server is experiencing a
SYN attack, we don't have to drop connections. Instead server sends back a SYN+ACK,
exactly as if the SYN queue had been larger. With the difference that we create the
outgoing sequence number as a one-way hash of the incoming information (IP addresses,
port number, and sequence number), followed by a secret key, and a random number that
changes every minute using formula,

SHA1 (secret_key, server_addr, server_port, client_addr, client_port) + ISNc +
random_number

Server s sequence number will be the last 32 bits of the hash value calculated by the
above formula.

3. When CLIENT receives SERVER's response, it acknowledges SERVER's choice
of an initial sequence number; echoing data as third segment containing:
SYN_FLAG=0, HASH_FLAG=1, ACK_FLAG=1, SEQ = ISNc+1,
ACK=(ISNs+1). At this point CLIENT goes to ESTABLISHED state.

When client receives server s SYN-ACK, first check the HASH_FLAG. If the
flag is not set then it responds like normal TCP, otherwise it copies the data part to the
new packet with the HASH_FLAG and ACK_FLAG set and sends it back to server.

4. When SERVER recieves CLIENT s acknowledgement, it validates hash value
echoed in the packet i.e. client is validated. At this point SERVER goes to
ESTABLISHED state. Data transfer may now begin.

When the client s SYN-ACK is received we check the HASH_FLAG first. If it is
not set then we will check its entry in the partial connection queue. If the entry is present

19

(i.e. TCB already exists) then establish the connection according to normal TCP, as this
client had requested during normal TCP mode. Otherwise reject this request as a bogus
client request. If the HASH_FLAG is set then we will recalculate the hash value for last
few random numbers using this formula,

SHA1 (secret_key, server_addr, server_port, client_addr, client_port) + (ISNc - 1) +
random_number

Compare the hash value echoed by client with the calculated hash value. If the
hash value matches then the client is legitimate and a connection is established, with
server changing its state from LISTEN to ESTABLISHED state. A TCB is created for
this connection now.

We are taking a random number which will be changed after every 60 seconds.
We will keep track of last three random numbers to calculate hash value. Instead of using
random number to calculate message digest we just add to it. Advantage of this technique
is that we don't have to calculate message digest again as the random number changes.

3.2 Algorithm for handshake

Client side:
Client sends a SYN packet to server.
If the client receives SYN acknowledged packet then,

If hash flag is set then,
create a new packet,
set the HASH, ACK flag and echo the hash value in the
data part to the server.

else
set the ACK flag and send the packet to server.

Server side:
If the packet has only SYN flag set then,

If the partial connection queue has vacant space then,
make an entry in the queue,
create TCB for this request,
create a new packet,
set the SYN and ACK flag of the packet and send it to client.

else
calculate the hash value,
create a new packet,
set the SYN, HASH, ACK flag of the packet and copy the hash
value in the data part and send it to client.

else
If ACK flag is set in the packet then,

If HASH flag is set in the packet then,
recalculate hash value,

20

compare it with echoed hash value,
If hash value are same then,

establish the connection with the client.
else

drop the packet.
else

search the entry for this request in the partial connection
queue,
If the entry is found then,

establish the connection with the client.
else

drop the packet.

3.3 SHA-1 Algorithm

Pseudo code for the SHA-1 algorithm follows [10]:

Initialize variables:

a = h0 = 0x67452301
b = h1 = 0xEFCDAB89
c = h2 = 0x98BADCFE
d = h3 = 0x10325476
e = h4 = 0xC3D2E1F0

Pre-processing:

paddedmessage = (message) append 1
while length (paddedmessage) < 512n - 64:

paddedmessage = paddedmessage append 0
paddedmessage = paddedmessage append (length (message) in 64-bit format)

Process the message in successive 512-bit chunks:

while 512-bit chunk(s) remain(s):
break the current chunk into sixteen 32-bit words w (i), 0 <= i <= 15

Extend the sixteen 32-bit words into eighty 32-bit words:

for i from 16 to 79:
w (i) = (w (i-3) xor w (i-8) xor w (i-14) xor w (i-16)) leftrotate 1

Main loop:

for i from 0 to 79:
temp = (a leftrotate 5) + f (b, c, d) + e + k + w (i) (all addition is mod 232)

21

where:
(0 <= i <= 19): f (b, c, d) = (b and c) or ((not b) and d), k = 0x5A827999
(20 <= i <= 39): f (b, c, d) = (b xor c xor d), k = 0x6ED9EBA1
(40 <= i <= 59): f (b, c, d) = (b and c) or (b and d) or (c and d), k =
 0x8F1BBCDC
(60 <= i <= 79): f (b, c, d) = (b xor c xor d), k = 0xCA62C1D6

e = d
d = c
c = b leftrotate 30
b = a
a = temp

h0 = h0 + a
h1 = h1 + b
h2 = h2 + c
h3 = h3 + d
h4 = h4 + e
digest = hash = h0 append h1 append h2 append h3 append h4

Note: Instead of the formulation from FIPS PUB 180-1 shown, the following may be
used for improved efficiency:

(0 <= i <= 19): f (b, c, d) = (d xor (b and (c xor d)))
 (40 <= i <= 59): f (b, c, d) = (b and c) or (d and (b or c)))

3.4 State Transition Diagram

The rules regarding the initiation and termination of a TCP connection
implementing cryptographic handshaking can be summarized in a state transition diagram
[11]. State transition diagram of Normal TCP is same as that of existing TCP. Normal
TCP mode works same as existing TCP. Here we have marked the normal client
transitions with a solid arrow and normal server transition with a dashed arrow.

In Normal TCP mode, client side and the server side are as described below (Figure 2.3):

Towards the client side, client first sends the packet to the server with the SYN
flag set and goes to the SYN_SENT state. After receiving SYN acknowledgement
from the server it changes its state from SYN_SENT to ESTABLISHED.

Towards the server side, after receiving the packet from client with the SYN flag
set the server changes its state from passive open to SYN_RCVD. When it
receives packet from the client with the ACK flag set it goes to ESTABLISHED
state.

22

Figure 3.2: State transition diagram of Crypt TCP mode

23

In Crypt TCP mode, client and the server side are as described below (Figure 3.2):

Towards the client side, client first sends the packet to the server with the SYN
flag set and goes to the SYN_SENT state. After receiving the packet with HASH,
SYN and ACK flag set from the server it changes its state from SYN_SENT to
ESTABLISHED. It also echoes the data part of the packet which contains the
hash value sent by the server.

Towards the server side, after receiving the packet from client with the SYN flag
set the server remains in the same LISTEN state. When it receives packet from
the client with the ACK and HASH flag set it goes to ESTABLISHED state after
comparing the hash value sent by the client otherwise it drops the packet.

The two transitions leading from the ESTABLISHED state are for termination of
a connection. The ESTABLISHED state is where data transfer can occur between the two
ends in both directions.

We ve collected the four boxes in the lower left of this diagram within a dashed
box and leveled it active close. Two other boxes (CLOSE_WAIT and LAST_ACK) are
collected in a dashed box with the level passive close.

The state CLOSED is not really a state, but is the imaginary starting point and
ending point for the diagram. The state diagram from LISTEN to SYN_SENT is legal but
is not supported in Berkley-derived implementations.

3.5 Advantages

a) It avoids SYN DoS attack on the server. In the proposed method the client is
validated and made to allocate resources before the server, thus the server will
allocate resources only for legitimate clients. If a client is using IP spoofing for
the SYN DoS attack then server will not allocate resources unless the client is
confirmed to be legitimate.

b) There is no degradation in performance when there is no SYN attack on the
server; instead it behaves as the normal TCP.

c) Even if the queue size is less than the legitimate requests made, still our solution
will serve all the requests as it is not in the case of normal TCP where requests are
discarded when the queue is full.

d) We are able to serve all kinds of TCP options (e.g. T/TCP) in Normal TCP mode.

3.6 Disadvantages

a) The performance of the server decreases when it is under SYN attack, because we
need to calculate hash value of the client state which takes more CPU time. But
recent processors have higher speed thus making the CPU time, taken for
calculating hash value, negligible as compared to network speed.

24

b) In our solution we cannot serve other TCP options when we are in Crypt TCP

mode. But we can overcome this problem by reserving some percentage of the
queue for it.

c) When SYN, ACK arrives at a client but the return ACK is lost, this result in a
disparity about the established state between the client and server. Resulting in
client waiting for server s response.

25

Chapter 4

Implementation

We have implemented the project in ns-2 (network simulator) [12].The output is
shown graphically considering client server architecture in network animator (nam). We
have used Tcl language in writing code for network instance and C++ for the core
simulator.

Network Simulator (ns) is an object oriented simulator, written in C++, with an
OTcl interpreter as a front end. The simulator supports a class hierarchy in C++ (also
called the compiled hierarchy), and a similar class hierarchy within the OTcl interpreter
(also called the interpreted hierarchy). The two hierarchies are closely related to each
other; from the user s perspective, there is a one-to-one correspondence between a class
in the interpreted hierarchy and one in the compiled hierarchy. ns uses two languages,
C++ and OTcl because C++ is fast to run but slower to change, making it suitable for
detailed protocol implementation. OTcl runs much slower but can be changed very
quickly (and interactively), making it ideal for simulation configuration. ns (via tclcl)
provides glue to make objects and variables appear on both languages.

In ns simulator Full TCP considers handshaking during connection setup.
Inheriting Full TCP we have made three new agents [13]:

a) Original TCP Agent: In Original TCP we have implemented partial connection
queue which was not present in Full TCP. Thus we are able to show connection
drop during the handshake process. In Full TCP there is no provision for multi-
client connection but in Original TCP we have simulated multi-client connection
using two agents for each connection.

b) Crypt TCP Agent: In Crypt TCP we are using a reserved bit from the tcp header
for the Hash flag. This flag is set whenever the handshake is done in
cryptographic mode; server will calculate hash value using SHA1 hash algorithm
and handshake will proceed as described in section 3.1. Both the modes of
handshake are implemented in this agent.

c) Attacker TCP Agent: In Attacker TCP we have implemented client side in such
a way that it continues sending SYN packets and will drop all incoming packets.

26

Chapter 5

Testing and Results

In our project we have shown the results for two test cases for each test case we
are comparing the performance of TCP and Cryptographic TCP.

a) Case 1: Some clients are trying to make Tcp connection on the server out of
which one is an attacker, which is continuously bombarding SYN packets on the
server; while other clients are legitimate clients. Partial connection queue size is
greater than the number of clients requesting for the connection at a particular
moment.

In TCP, some of the clients are denied from tcp connection with the
server. Attacker is sending SYN packets continuously to the server which fills up
the partial connection queue, giving less chance for legitimate clients to make a
connection. This situation is shown in Appendix A.1.

In Cryptographic TCP, number of connections made by the server at an
instant is not restricted by the size of the partial connection queue. If the queue
becomes full then we change the mode from the Normal Tcp to Crypt Tcp. Any
requests coming in a mode are served in the same mode itself. In Normal Tcp
mode the requests for tcp connections are served in the same manner as they are
done in the existing Tcp. Any request coming when the queue is full are served
under Crypt Tcp mode, in this mode the request, instead of being dropped as in
the existing Tcp are acknowledged by the server as described in the section 3.1.
Thus in our proposed solution all the legitimate clients are able to make the
connection and are not affected by the presence of attacker. This situation is
shown in Appendix A.2.

b) Case 2: All the clients are legitimate and are trying to establish tcp connection
with the server at the same instant. Partial connection queue size on the server
side is less than number of client s request for tcp connection at an instant.

In TCP, all the requests coming after the queue is full are dropped. Thus
all the requests are not served. This situation is shown in Appendix B.1.

In Cryptographic TCP, as number of connections made by the server at an
instant is not restricted by the size of the partial connection queue, thus all the
client s request are successfully served. This situation is shown in Appendix B.2.

27

0

5

10

15

20

Number of
SYN

case
1

case
2

Performance of server

Legitimate

Attacker

TCP

Cryptgraphic
TCP

Figure 5.1: Bar chart showing performance of server

The results of the implementation are shown in the bar chart. Performance of one
sample server is compared between TCP and Cryptographic TCP with the partial
connection queue size of four.

28

Chapter 6

Conclusions

Denial of service attack has become increasingly popular due to easy
accessibility, and the fact that little programming knowledge is required to launch an
attack. These attacks are among the most vicious because they quickly consume all
network resources on even the largest hosts, rendering them useless. We have
studied various aspects of SYN attack and its effects on the server. This attack exploits a
small flaw in the TCP protocol, which can be overcome using authentication of the client.
SYN attack has been simulated on the server under various conditions and network
topologies. SYN attack is simulated on the modified server, which uses our cryptographic
technique (SHA-1 one way hash algorithm) of authenticating the client before giving
service. Thus server is able to overcome the SYN attack. The other existing method for
combating with SYN flood attack is SCTP implementation. But it calculates hash value
for each SYN packet whether it is attacked or not. Rather in our solution we calculate
hash value only when partial connection queue becomes full. Thus load on CPU in our
solution is far less than that in SCTP implementation.

29

Bibliography
[1] CNN.com, The denial of service aftermath, Feb 2000,

 http://www. cnn.com/2000/TECH/computing/02/14/dos.aftermath.idg/index.html

[2] Philip Preville, The Montreal Mirror Online Archive, On the trail of Mafiaboy,

 Jun 2000, http://www.montrealmirror.com/ARCHIVES/2000/022400/news1.html

[3] Paul Roberts, IDG News Service, Al-Jazeera Sites Hit With Denial-of-Service
 Attacks,

Mar 2003, http://www.nwfusion.com/news/2003/0326aljahobbl.html

[4] C. A. Huegen, The latest in denial of service attacks: Smurfing description
 and information to minimize effects, Feb. 2000,
 http://users.quadrunner.com/chuegen/smurf.cgi.

[5] S. Bellovin, Security problems in the TCP/IP protocol suite, Comput. Commun.
 Rev., vol. 19, no. 2, pp. 32-48, Apr. 1989.

[6] Cisco Systems, Inc., Defining strategies to protect against TCP SYN denial of
service attacks, July 1999, http://www.cisco.com/warp/public/707/4.html.

[7] Ahsan Habib, Mohamed M. Hefeeda, and Bharat K. Bhargava., Detecting Service
 Violations and DoS Attacks, CERIAS and Department of Computer Sciences,
 Purdue University, West Lafayette, 2003.

[8] Postel, J., Transmission Control Protocol", RFC 793, USC/Information Sciences
 Institute, September 1981.

[9] http://cr.yp.to/syncookies/idea

[10] http://en.wikipedia.org/wiki/Pseudocode

[11] W.R. Stevens, TCP/IP Illustrated, Volume I, Pearson Education Asia, 2001.

[12] http://www.isi.edu/nsnam/ns/

[13] http://nile.wpi.edu/NS/

http://www.montrealmirror.com/ARCHIVES/2000/022400/news1.html
http://www.nwfusion.com/news/2003/0326aljahobbl.html
http://users.quadrunner.com/chuegen/smurf.cgi
http://www.cisco.com/warp/public/707/4.html
http://cr.yp.to/syncookies/idea
http://en.wikipedia.org/wiki/Pseudocode
http://www.isi.edu/nsnam/ns/
http://nile.wpi.edu/NS/

30

APPENDIX A

Figure A.1: Attack on TCP server

In Figure A.1 nodes 1, 2, 3, 4 and 5 represent legitimate clients. Node 6 represents
attacker and node 7 represents server. Due to partial connection queue size of 4 in this
example, only client 1 and client 2 are successful to make a connection with the server.
When other clients send SYN packets, they are dropped because the queue is full with the
attacker's SYN packets. This is the case with existing TCP.

31

Figure A.2: Attack on Cryptographic TCP server

In Figure A.2, nodes 1, 2, 3, 4 and 5 represent legitimate clients. Node 6 represents
attacker and node 7 represents server. Here partial connection queue size is 4 but when
the queue becomes full by the SYN packets from the attacker, switching from Normal
TCP mode to Crypt TCP mode takes place. And all clients are able to make a connection
with the server.

32

APPENDIX B

Figure B.1: Overload on TCP server

In Figure B.1 nodes 1, 2, 3, 4, 5 and 6 represent legitimate clients and node 7 represent
server. Size of the partial connection queue is 4, thus when all try to make tcp connection
with the server at the same instant only 4 are able to get service. Rests of the SYN packet
which reach server when the partial connection queue becomes full are dropped out. This
is the case with existing TCP.

33

Figure B.2: Overload on Cryptographic server

In Figure B.2 node 1, 2, 3, 4, 5 and 6 represent legitimate clients and node 7 represent
server. Size of the partial connection queue is 4, thus when all try to make TCP
connection with the server at the same instant, all are able to get service. SYN packets
which reach server when the partial connection queue becomes full are served in Crypt
TCP mode.

