www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

A
paper presentation on

[network security]
DATA VALIDATIONS FOR SECURE WEB APPLICATIONS

Abstract: This paper deals with how to protect our websites. We use many websites and we should always be aware of the hackers who try to change the data present in our website and this paper presents how to defend the attacks that a hacker can perform and provide a modular approach to the attacks of the hacker by performing thorough data validation in modern web applications so that the benefits of modular component based design; extensibility, portability are recognised. It starts with an explanation of the vulnerabilities introduced through poor validation which is the root cause of a number of serious security vulnerabilities affecting applications and then goes on to discuss the merits of a number of common data validation methodologies. Finally, a modular approach is introduced together with practical examples of how to implement such a scheme in a web application. This follows two main principles:

· Data should be validated in the data model, where the validation rules have maximum scope for interpreting the context; and

· Escaping of harmful meta-characters should be performed just before the data is processed, typically in the data access components.

· Implementing such a modular approach contributes to the application being loosely coupled and ensures that it can safely be extended and components reused, without incurring unnecessary development time to re-implement validation routines. And a detailed explanation is given in this paper.

 This paper is very much useful for Budding Web Designers.
Introduction:
Inadequate input validation is listed as the most serious security issue affecting web applications according to the OWASP top ten .Many common security issues in applications are caused by inadequate input validation including:

• Parameter manipulation, and therefore subversion of logic or security controls.

• Code injection, such as Cross Site Scripting, SQL Injection and Operating System command injection attacks (OWASP – 4 and 6).

• Legacy C/C++ vulnerability classes, such as buffer overflows, integer wrap and format string vulnerabilities.

A number of approaches can be adopted when implementing data validation mechanisms within an application. A modular approach to software design allows components and tiers to be loosely coupled. This allows the individual components to be re-used in other applications and makes the task of extending the application. When a data validation mechanism is designed it should also support modular design principles to ensure that when the application is extended or components re-used, very little additional work has to be done in the way of validation

.

1. Common Attack vectors:

The vulnerabilities introduced by inadequate input validation are varied, but the cause is the same. The result is that an attacker could subvert the application logic, execute unauthorized commands or code on backend systems or compromise the trust the user has in the application. The following are some of the attacks that are present:
1.1 Parameter manipulation:
Parameter manipulation is a broad term to describe a group of vulnerabilities that can be exploited by changing client side supplied parameters which are treated as trusted data by the web application. Consider the following URL:

http://www.example.co.in/buySpatula.jsp?modelNumber=234
Now consider this code segment from the backing bean:

public void setPrice(double price) {this.price = price;}
Since the “price” instance variable has a corresponding public set Price method and the bean was initialized with all the parameters from the query string it is possible for an attacker to change the price of the spatula by using the following URL:

http://www.example.co.in/buySpatula.jsp?modelNumber=234&price=0.1

Since no validation is performed by the bean, the price can be set through the web interface, subverting the business logic of the application.

Parameter manipulation vulnerabilities generally exploit a lack of validation in the data model or the business logic.

1.2 Code injection:

When data is processed it is passed to a program that operates in a particular processing context. This context has its own rules for distinguishing between data and commands. This distinction is important from a security perspective because commands are issued from a trusted source, whereas data could be supplied from a non-trusted source. Code injection attacks attempt to subvert this mechanism so that data is interpreted as commands.
The most common code injection vulnerabilities in web applications are Cross Site Scripting, SQL, Injection, LDAP injection and, to a lesser extent, Operating System command execution.

1. 3. Cross Site Scripting (XSS):

Perhaps one of the reasons why this vulnerability is so misunderstood is because of its misleading title. In essence, it allows an attacker to execute arbitrary scripting content under the guise of a trusted domain.

An attack that could exploit this vulnerability could be used to hijack a user’s session by reading the session cookie or alternatively instructing the user’s browser to perform an operation under that user’s context, such as sending an e-mail or purchasing a product. To capture the user’s session cookie, the attacker could setup their own web server which simply logs all requests to it. Next the attacker would attempt to insert a piece of JavaScript into the comments field which would obtain the session cookie and post it to their web server:

<script>document.write('')</script>
The script will first read the users cookies, and then append them to the request for the image. Since the request is made to the attacker’s web server, the attacker would log the request along with the cookies containing the session ID.
This form of Cross Site Scripting vulnerability is known as persistent Cross Site Scripting, but XSS can also be exploited in a non-persistent form.

<form method="GET" action="search.jsp">
In this example, it would seem that this is of little consequence, since the attacker would be inserting content that would be viewed only by them, but the technique could be adapted to attack other users by combining with some form of social engineering. XSS vulnerabilities could also be used to
Completely rewrite the HTML page presented, since JavaScript has access to the DOM. This could be used to “publish” false or misleading information on a site, and since the apparent source of this information is the site itself the attack is all the more effective.

1. 4. SQL Injection:

As the name implies, SQL injection vulnerabilities allow an attacker to inject (or execute) SQL commands within an application. The following Java servlet code, used to perform a login function, illustrates the vulnerability by accepting user input without performing adequate input validation.

String sql = "select * from user where username='" + username +"' and password='" + password + "'";

It is possible for attackers to provide a username containing special characters that subvert the intended function of the SQL statement. For example, by providing a username of:

admin' OR '1'='1

and a blank password, the generated SQL statement becomes:

select * from user where username='admin' OR '1'='1' and password=''

This allows an attacker to log in to the site without supplying a password, since the ‘OR’ expression is always true. Using the same technique attackers can inject other SQL commands which could extract, modify or delete data within the database.

Object/Relational Mapping (ORM) frameworks (such as Hibernate) are not immune to SQL injection either. The following code segment illustrates an HQL query that is vulnerable to HQL injection:

User =session.find ("from com.example.user.Account as book where book.id = " + request.getParameter("bookID"));

1.5.Operating System Command Injection:
When executing a command through a UNIX shell, the semicolon character has a special meaning and is used to separate commands. If a user supplied email address is used in the following shell command: mails Prospectus:some_user@example.nimra.edu </usr/data/prospectus.txt.If the application does not perform any validation on the email address prior to it being executed through the shell, then there is the risk that the user can enter the following as their email address:some_user@example.nimra.edu < /etc/passwd; /dev/null
This changes the shell command to:

Mails Prospectus some_user@example.nimra.edu </etc/passwd/dev/null><user/data/prospectus.txt.Such
attacks are becoming less common in modern web applications since fewer calls are made directly to the operating system.

1. 6. Other Attacks:

There are many more attacks that could potentially affect a web application that performs insufficient data validation. This includes the following:

• Path traversal

• Various buffer and format string vulnerabilities that affect compiled languages such as C and C++

• Encoder attacks, which aim to defeat security and validation mechanisms, such as the double decode and Unicode vulnerabilities that affected IIS version 5

• LDAP injections that affect the application in a similar fashion to SQL injection and allow an attacker to run arbitrary LDAP queries

2. Principles of validation:
2.1Reduce data to canonical form:

Before any processing can be performed on the data it should first be reduced to its canonical form, that is to say its simplest form. Data can be encoded in a number of different formats including ASCII, Unicode, URL encoded, UTF-8 and more. If the application fails to correctly decode this data before the validation functions are performed, they will be of little use, and may allow malformed data or attacks through to the data processor. There have been many security issues caused by errors in transforming data into canonical form in the past, including two serious vulnerabilities that affected Microsoft’s IIS web server1.

2.2 Validation Strategies:
2.2.1 Reject bad data:
Also known as a “black list” approach this is often the first strategy that springs to mind when thinking about data validation: simply define the set of attack data and reject it. This is analogous to defining firewall rules that accept all packets by default, but deny packets that meet the criteria for attack data. While this could be useful in some contexts, in the vast majority of cases this is not a recommended approach to data validation since it relies too heavily on accurately defining a list of attacks – and these are notoriously difficult to accurately predict and maintain. While detecting attacks can be of use in some cases, this should be done as a separate exercise and should not form the backbone of a validation strategy.
2.2.2 Accept only known good data

A general security principle which applies itself well to data validation is that of “deny by default” where data is rejected unless it specifically matches the criteria for known good data. This is also known as a “white list” approach and is the preferred method for performing data validation. It allows the developer to define a restricted range for valid data and reject everything that does not fit this set.

The set of valid data should be constrained by:

• Type – String, integer, unsigned integer, float etc;

• Length;1 Web Server Folder Directory Traversal Vulnerability (Unicode) and the Superfluous Decoding Vulnerability (Double Decode)
• Character set – for example, only alphabetic characters [a-zA-Z]*;

• Format – if appropriate the data could be further constrained by specifying a format, e.g.: \d\d\/\d\d\/\d\d

• Reasonableness – where possible, values should be compared to expected ranges

2.2.3 Sanitise data

Another approach to validation is to define a set of dangerous data, and then sanitise this data so that it does not pose any threat to the application. Used in isolation, this approach faces the same problems as the strategy of denying bad data, but used in conjunction with accepting known good data, it neatly solves the meta-character problem by allowing each processing context to define the meta-characters relative to it and applying the appropriate escape sequences.

3. A Modular Solution

When thinking about data validation, it becomes apparent that the context of the data plays an

important role in deciding what constitutes valid data and what doesn’t.`Firstly, the data context is important, because without knowing the type of data, it’s difficult to define the set of valid data.Secondly, the processing context is important, since different processing contexts have different meta-characters and also different attack types. With this in mind, it may be useful to consider two broad principles when designing a validation strategy:
3.1 Determining whether the input data meets the criteria for valid data should be performed in the business object

This is because the set of valid data is dependant on the type of data, and this is readily available where the data is defined. In addition, by performing validation in the business object, it becomes easy to detect parameter manipulation attacks since the context is clearly defined.This granular level of attack detection is not easily possible with catch-all application level IPS solutions because they are simply not aware of the context. By building these detection mechanisms into the application’s validation routines it becomes possible to simultaneously prevent and accurately identify attacks. For example, if a variable is designed to hold a value which represents a monetary amount that should always be a positive real number with potentially the addition of a currency symbol, comma and full stop, then any attempt to set a negative number should raise an alert. Since the validation is performed at the business object level, the model becomes more self contained and can easily be moved to another application without compromising the integrity of the data.

 3.2 The handling of meta-characters should be performed close to where the data is processed, typically in the Data Access Objects:
Since meta-characters and attacks which exploit meta-characters are entirely dependent on where the data is processed, it is only in this context that informed decisions can be made about correctly escaping meta-characters. Following this approach, each processing context, or data access object, will perform its own encoding
3.3 Consider the following Model-View-Controller (MVC) pattern:

Implementing validation at the entry points to the data model and the business logic means the model itself remains independent and can easily be moved to other applications without sacrificing the integrity of the validation rules. Common libraries are created to correctly encode data for differing processing contexts, so that SQL, LDAP, HTML and legacy applications can be safely accessed. In modern Web frameworks, encoding of HTML output is automatically implemented in the View.
[image: image1.png]
4. Implementation

4.1 Transform data to canonical form

Before any processing can be performed on the data, it should first be reduced to its canonical form.

Modern web application environments such as .NET and J2EE support Unicode natively and should

therefore be able to deal with canonicalisation issues without any explicit programming when using

standard methods to read user input.

Note: When using Java servlets, the javax.servlet.ServletRequest.getReader() and

javax.servlet.ServletRequest.getInputStream() methods do not perform canonicalisation

automatically. If data is read through these methods, then it will have to be canonicalised manually.
4.2 Optional attack detection

This step may be desirable in applications where a higher degree of security is required. The function and user base of the application should be considered when defining attack strings and appropriate responses to the attacks. The risk of misidentifying harmless data as malicious and labelling the user as an attacker could be greater than that of not identifying attacks at all. Bear in mind that attack detection is a purely complimentary step in the input validation process and that any malicious data

should be correctly rejected at the point of validation or by the routines performing the meta-character escaping .Accurately detecting malicious data is highly dependent on the context. If validation is performed in the business object or where the data is processed, then the context is much clearer. For example, a negative integer might be acceptable in a business object that acts as a rating system, but it could signal malicious intent if encountered as an item’s price. Client side values that are generally

transparent to the user could also be checked for tampering. For example, cookie values should

never be directly changed by the user and any changes in the expected format could be a sign of

deliberate tampering. As an example, consider the following extract from a bean that represents a bet placed in an online gaming application:

public void setStakeAmount (float untrustedAmount) {

if (untrustedAmount < 0) {

logAttack("Negative stake amount entered:"+untrustedAmount+" from user: "+userID);

} else if (untrustedAmount > MAX_STAKE) {

errorMessages.add("Stake amount is more than the maximum of: "+MAX_STAKE);

} else {

stakeAmount = untrustedAmount;

}

}

Besides the getter and setter methods, attack detection could also be applied to the business logic.

Attacks should also be flagged where values are encountered that clearly point to subversion of the

business logic.
4.3 Escaping meta-characters

The next stage of the data validation process would be to escape meta-characters that have specific

meanings in certain processing contexts.

4.3.1 SQL

The preferred method for preventing SQL injection attacks is to use prepared statements or parameterized stored procedures instead of blindly including user input in an SQL statement. Prepared statements will automatically escape meta-characters such as the single-quote and semicolon characters. For example, the following code segments illustrate the use of prepared statements:

Java:
String selectStatement = "select * from User where userId = ? ";

PreparedStatement prepStmt = con.prepareStatement(selectStatement);

prepStmt.setString(1, userId);

ResultSet rs = prepStmt.executeQuery();

.NET:

string CommandText = "select * from User where userId = @UserName)";

cmd = new SqlCommand(CommandText);

cmd.Connection = conn;

cmd.Parameters.Add(new SqlParameter("@UserName", System.Data.SqlDbType.NVarChar, 20, "UserName"));

cmd.Parameters["@UserName"].Value = txtUserNameFld.Text;

rdr = cmd.ExecuteReader();

Hibernate:

ORM frameworks such as Hibernate support similar prepared statements:

List users = session.find("from com.example.users.User as user where user.id <= ?", new Integer(id),

Hibernate.INTEGER);

In addition to escaping meta-characters the prepared statement, in this case, also ensures that the

data is of the correct type.

4.3.2 LDAP

Performing LDAP queries also requires correctly escaping certain meta-characters. Both the

distinguished name (DN) and the search filter have their own sets of meta-characters. In the case of

Java, it is also necessary to escape any JNDI meta-characters, since java uses JNDI to perform

LDAP queries. The examples below present java methods that could be used to perform this

escaping:

Java:

public String escapeDN (String name) {

final char[] META_CHARS = {'+', '"', '<', '>', ';', '/'};

String escapedStr = new String(name);

escapedStr = escapedStr.replaceAll("\\\\","\\\\");

escapedStr = escapedStr.replaceAll("^#","\\\\#");

escapedStr = escapedStr.replaceAll("^ | $","\\\\ ");

for (int i=0;i < META_CHARS.length;i++) {

escapedStr = escapedStr.replaceAll("\\"+META_CHARS[i],"\\\\" + META_CHARS[i]);

}

return escapedStr;

}

public String escapeSearchFilter (String filter) {

String escapedStr = new String(filter);

escapedStr = escapedStr.replaceAll("\\\\","\\\\5c");

escapedStr = escapedStr.replaceAll("*","\\\\2a");

escapedStr = escapedStr.replaceAll("\\(","\\\\28");

escapedStr = escapedStr.replaceAll("\\)","\\\\29");

return escapedStr;

}

.NET:

public string escapeDN (string name) {

char[] META_CHARS = new char[6] {'+', '"', '<', '>', ';', '/'};

string escapedStr = name;

escapedStr = Regex.Replace(escapedStr, "\\\\","\\\\");

escapedStr = Regex.Replace(escapedStr, "^#","\\#");

escapedStr = Regex.Replace(escapedStr, "^ | $","\\ ");

for (int i=0;i < META_CHARS.Length;i++) {

META_CHARS[i].ToString());

}

return escapedStr;

public string escapeSearchFilter (string filter) {

string escapedStr = filter;

escapedStr = Regex.Replace(escapedStr,"\\\\","\\5c");

escapedStr = Regex.Replace(escapedStr,"*","\\2a");

escapedStr = Regex.Replace(escapedStr,"\\(","\\28");

escapedStr = Regex.Replace(escapedStr,"\\)","\\29");

return escapedStr;

}
4.3.3 HTML

Un-validated data sent directly to an HTML page could introduce Cross Site Scripting vulnerabilities

into an application. Before data is rendered as HTML it should be appropriately encoded. This

means that any characters that could otherwise be interpreted as markup, should be escaped to valid

HTML data.

Modern MVC frameworks provide convenient methods to correctly encode data. These methods are

preferred over manual transformation. Using Java Server Faces, the following controls automatically

escape output as HTML:

• inputText

• inputHidden

• inputTextarea

• message

• messages

• outputFormat

• outputLink

• outputText

The “outputLabel” component does not perform any HTML escaping and care should be taken when

using it. If other JSF component libraries are used, their escaping of HTML data should be checked

before implementation.

Under Apache Struts, HTML components perform similar escaping and the following safely handle

HTML data:

• html:text

• html:textarea

• html:hidden

• bean:write

Under .NET, the HttpUtility.HtmlEncode method should be used to output all dynamic data.

If the escaping of HTML meta-characters is not supported by the framework, then HTML must be

manually escaped before it is sent to the browser
Conclusion:
Web applications is an ocean we can’t predict the attacks of hacker,along with technology the misuse of it also is taking place .Some attacks can be detected and a number of approaches can be taken to performing data validation in web applications to protect our data. A modular approach to data validation, where individual business objects are responsible for validating their own data and where processing contexts are responsible for escaping met characters, ensures that the application is loosely coupled and can safely be extended and components reused; without incurring unnecessary development time to re-implement validation routines.

References:

• OWASP Guide to Building Secure Web
 Applications v2 –
 http://www.owasp.org/documentation/guide/

 guide_about.html

• Apache Struts – http://struts.apache.org/struts-doc-

 1.2.x/userGuid

• Core Servlets JSF tutorial –

 http://courses.coreservlets.com/Course-

 Materials/pdf/jsf/09-Validation.pdf
PAGE
www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com Data Validation For Secure Web Applications

