www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

 DATA BASE DESIGN

Project

 on

 Help Systems

Description of Given Help System:

Our IT help desk as become a real problem! Currently, IT issues are sent by email to individual technicians. Once an issue is received by a technician, the technician looks into a solution for the issue. One of the problems is that multiple technicians may be looking into an issue that it only takes one technician to solve. Another problem is that the reported issue might not be in the particular technician’s area of expertise. Once the issue is resolved the technician moves onto the next issue. Currently no information is saved about how the issue was resolved or the date that issue was resolved. The manger of the IT department is going crazy because he’s not sure what his technicians are working on, how long the issues are taking to resolve, or if there are any issues that are not be handled.

The IT manager has hired you to design a help desk system that will track all the IT issues. When an issue is created it has an open date, a description of the problem, and the employee who is reporting the issue. For each issue there is also a status flag so the manager knows which issues are open or closed. To aid the IT manager, issues are categorized as either a hardware or software issue.

Once the IT manager has reviewed an issue he can assign it to one or more technicians. Each technician has a first name, last name, address, and badge number. Each technician has a number of different areas of expertise. Each technician has obtained one or more certifications.

The technicians can update the notes and steps taken to resolve the issue. Once the issue is resolved the issue is then closed and the date the issue was closed is stored.

Problems in Existing System:

· Help systems has become a real problem.

· Multiple technicians are looking into a single issue.

· Reported issue might not be in the particular technician’s area.

· No information is saved about how long the issue was resolved.

· Manager don’t know who are working, the time taken to resolve the solution and what are the issues not handled.

Current System to rectify:

· Manager organizes about issues.

· Manager creates team to solve particular issue.

· Then the issues are sent to the technicians.

· Technician looks for the solution.

ER DIAGRAM:

Definition:

An Entity-relationship model is a relational schema database modeling method used to model a system and its requirements in a top-down approach. This approach is commonly used in relational (RDBMS) database design. The diagrams created using this method are called ER diagrams.

Entity Relationship Diagrams (ERDs) illustrate the logical structure of databases.

 [image: image1.png]Entiy

erute

Airute

Relationship Entiy Attrioute
Relationship

itrioute Entiy Attrioute

eriute

 Sample ER Diagram

Entity Relationship Diagram Notations:

Peter Chen developed ERDs in 1976. Since then Charles Bachman and James Martin have added some sligh refinements to the basic ERD principles.

Entity
An entity is an object or concept about which you want to store information.

[image: image2.png]

Weak Entity
Attributes are the properties or characteristics of an entity.

 [image: image3.png]

Key attribute

A key attribute is the unique, distinguishing characteristic of the entity. For example, an employee's social security number might be the employee's key attribute.

 [image: image4.png]

Multivalued attribute

A multivalued attribute can have more than one value. For example, an employee entity can have multiple skill values.

 [image: image5.png]

Derived attribute

A derived attribute is based on another attribute. For example, an employee's monthly salary is based on the employee's annual salary.

 [image: image6.png]Attribute.

Relationships
Relationships illustrate how two entities share information in the database structure.

 [image: image7.png]Relationship

ER Diagram for given help systems

[image: image8.emf]
Functional Dependencies:

A functional dependency (FD) is a constraint between two sets of attributes in a relation from a database.

Given a relation R, a set of attributes X in R is said to functionally determine another attribute Y, also in R, (written X → Y) iff each X value is associated with precisely one Y value.

Properties of functional dependencies:
Given that X, Y, and Z are sets of attributes in a relation R, one can derive several properties of functional dependencies. Among the most important are Armstrong's axioms, which are used in database normalization:

· Subset Property (Axiom of Reflexivity): If Y is a subset of X, then X → Y

· Augmentation (Axiom of Augmentation): If X → Y, then XZ → YZ

· Transitivity (Axiom of Transitivity): If X → Y and Y → Z, then X → Z

From these rules, we can derive these secondary rules:

· Union: If X → Y and X → Z, then X → YZ

· Decomposition: If X → YZ, then X → Y and X → Z

· Pseudotransitivity: If X → Y and YZ → W, then XZ → W

· Acumulation: If X → YZ and Z → V, then X → YZV

· Extension: If X → Y and W → Z, then WX → YZ

Importance of functional dependencies;

 The concept of functional dependency (also known as normalization) was introduced by professor Codd in 1970 when he defined the first three normal forms (first, second and third normal forms). Normalization is used to avoid or eliminate the three types of anomalies (insertion, deletion and update anomalies) which a database may suffer from. These concepts will be clarified soon, but first let us define the first three normal forms.

Functional Dependencies in Help System:

1. Employee (empno, fname, mint, lname, contact, issuenum)

Empno -> primary key

Issuenum -> foreign key

 FDS:

Empno -> fname, minit, lname, contact, issuenum

2. Issue (Issuenum, Opendate, description, Statusflag, Category, Closeddate)
 Issuenum->primarykey
 FDS:
 Issuenum -> Opendate, description, statusflag, category, closeddate.

3. Manager (Issuenum, badgenum)

Issuenum, Badgenum -> Primary key

 Also

Issuenum is referenced from Issuedetails.

Badgenum is referenced from technician.

4. Technician (fname, lname, address, badgenum, areaofexp)

Badgenum -> primary key

 FDS:

 Badgenum -> fname, lname, address, areaofexp

Data Dictionary

SQL> desc employee;

 Name Null? Type

 --- -------- ----------------------------

 EMPNO NOT NULL NUMBER (7)

 FNAME VARCHAR2 (10)

 MINIT VARCHAR2 (2)

 LNAME VARCHAR2 (10)

 CONTACT NUMBER (6)

 ISSUENUM VARCHAR2 (4)

SQL> desc issuedetails;

 Name Null? Type

 --- -------- ----------------------------

 ISSUENUM NOT NULL VARCHAR2 (4)

 OPENDATE DATE

 DESCRIPTION VARCHAR2 (20)

 STATUSFLAG VARCHAR2 (6)

 CATEGORY VARCHAR2 (10)

 CLOSEDDATE DATE

SQL> desc technician;

 Name Null? Type

 --- -------- ----------------------------

 FNAME VARCHAR2 (7)

 LNAME VARCHAR2 (7)

 ADDRESS VARCHAR2 (27)

 BADGENUM NOT NULL VARCHAR2 (7)

 AREAOFEXP VARCHAR2 (8)

SQL> desc manager;

 Name Null? Type

 --- -------- ----------------------------

 ISSUENUM NOT NULL VARCHAR2 (3)

 BADGENUM NOT NULL VARCHAR2 (7)

SQL

DDL Commands:

Data Definition Language (DDL) statements are used to define the database structure or schema. Some examples:

· CREATE - to create objects in the database

· ALTER - alters the structure of the database

· DROP - delete objects from the database

· TRUNCATE - remove all records from a table, including all spaces allocated for the records are removed

· COMMENT - add comments to the data dictionary

· RENAME - rename an object

DML Commands:

Data Manipulation Language (DML) statements are used for managing data within schema objects. Some examples:

· SELECT - retrieve data from the a database

· INSERT - insert data into a table

· UPDATE - updates existing data within a table

· DELETE - deletes all records from a table, the space for the records remain

· MERGE - UPSERT operation (insert or update)

· CALL - call a PL/SQL or Java subprogram

· EXPLAIN PLAN - explain access path to data

· LOCK TABLE - control concurrency.

DCL Commands:

Data Control Language (DCL) statements. Some examples:

· GRANT - gives user's access privileges to database.

· REVOKE - withdraw access privileges given with the GRANT command.

TCL Commands:

Transaction Control (TCL) statements are used to manage the changes made by DML statements. It allows statements to be grouped together into logical transactions.

· COMMIT - save work done

· SAVEPOINT - identify a point in a transaction to which you can later roll back

· ROLLBACK - restore database to original since the last COMMIT

· SET TRANSACTION - Change transaction options like isolation level and what rollback segment to use.

DDL Commands in Help Systems:

Create: // Used to create the tables.

 create table employee

 (

empno number (7) primary key,

fname varchar2 (10),

minit varchar2 (2),

lname varchar2 (10),

contact number (6),

issuenum varchar2 (4),

constraint issuenum_fk foreign key(issuenum)

references issuedetails (issuenum) on delete cascade

);

 create table issuedetails

 (

issuenum varchar2 (4) primary key,

opendate date,

description varchar2 (20),

statusflag varchar2 (6),

category varchar2 (10),

closeddate date

);

create table manager

 (

issuenum varchar2 (3),

badgenum varchar2 (7),

constraint issue_badge_pk primary key (issuenum,badgenum),

constraint issuenum1_fk foreign key (issuenum)

references issuedetails (issuenum) on delete cascade,

constraint badgenum_fk foreign key (badgenum)

references technician (badgenum) on delete cascade

);

create table technician

(

fname varchar2 (7),

lname varchar2 (7),

address varchar2 (27),

badgenum varchar2 (7) primary key,

areaofexp varchar2 (8)

);

Alter Command:

Once you've created a table within a database, you may wish to modify the definition of it. The ALTER command allows you to make changes to the structure of a table without deleting and recreating it.

Some of the examples:

SQL> alter table issuedetails

 modify (statusflag varchar2 (10));

Table altered.

SQL> alter table technician

 add (email varchar2 (26));

Table altered.

SQL> alter table technician

 drop column email;

Table altered.

Drop Command:

Used to drop the table
Syntax:

Drop table <tablename>;

 Example:

drop table employee; // drops employee from data base

DML Commands in Help Systems:

Insert Command:

The INSERT statement is used to add rows to a table, either directly or through an updateable view.

Syntax:
INSERT INTO <table_or_view_name>

[(<column_name>,...)]

{ {VALUES (<literal> |

 <expression> |

 NULL |

 DEFAULT,...)} |

 {<select_statement>} }

Some of the examples:

// inserting in to employee table
insert into employee values (000010, 'Christine', 'L', 'Haas', 3978, 'A00');

insert into employee values (000020, 'Michael', 'I', 'Thompson', 3476, 'B01');

insert into employee values (000030, 'Sally', 'A', 'Kwan', 4738, 'C00');

insert into employee values (000040, 'John', 'B', 'Pulaski', 7831, 'A02');

insert into employee values (000050, 'Irring', 'F', 'Spenser', 5498, 'B00');

//inserting in to issuedetails table

insert into issuedetails values (‘A00’, '13-Nov-07', 'New issue', 'open', 'Software', '14-Nov-07');

insert into issuedetails values (‘B01’, '15-Nov-07', 'File Added', 'Closed', 'Hardware', '16-Nov-7');

insert into issuedetails values (‘C00’, '16-Nov-07', 'Summary', 'Closed', 'Hardware', '21-Nov-07');

insert into issuedetails values (‘A02’, '20-Nov-07', 'Version', 'Open', 'Software', '24-Nov-07');

insert into issuedetails values (‘B00’, '20-Nov-07', 'Notepad', 'Open', 'Software', '26-Nov-07');

//inserting in to manager

insert into manager values ('A00', 'T0101');

insert into manager values ('B01', 'T0102');

insert into manager values ('C00', 'T0130');

insert into manager values ('A02', 'T0104');

insert into manager values ('B00', 'T0106');

//inserting in to technician
insert into technician values ('Johnson' , 'Ken', 'CT', 'T0101', 'Analysis');

insert into technician values ('Rosca', 'Adam', 'NY', 'T0102', 'Testing');

insert into technician values ('Lee', 'Mech', 'IL', 'T0130', 'Coding');

insert into technician values ('Suda', 'Mehata', 'CT', 'T0104', 'Design');

insert into technician values ('Ram', 'Sing' , 'NJ', 'T0106', 'Testing');

Select Command:

Used to retrieve the information from the tables.

Example:

SQL > select fname, i.issuenum, opendate, description, statusflag, closeddate

from employee e, issuedetails i

where e.issuenum = i.issuenum;

FNAME ISSU OPENDATE DESCRIPTION STATUSFLAG CLOSEDDAT

---------- ---- --------- -------------------- ---------- ---------

Christine A00 13-NOV-07 New issue open 14-NOV-07

Michael B01 15-NOV-07 File Added closed 16-NOV-07

Sally C00 16-NOV-07 Summary open 21-NOV-07

John A02 20-NOV-07 Version open 24-NOV-07

Irring B00 20-NOV-07 Notepad open 26-NOV-07

Update Command:

The SQL UPDATE clause serves to update data in database table.

Syntax:
 UPDATE Table1
 SET Column1 = Value1, Column2 = Value2, …

Example:

SQL>update issuedetails

set statusflag = 'open'

where opendate = ' 16-Nov-07';

1 row updated.

Delete Command:

The SQL DELETE clause is used to delete data from a database table.

Syntax:
 DELETE FROM Table1

where cond……..

Example:

SQL> delete from employee

where empno = 000011;
1 row deleted.

Some more select and nested queries:

1. Get a command to retrieve the fname of employee with corresponding issue generated.

SQL> select fname, issuenum

 from employee;

FNAME
ISSU

Christine
 A00

Michael
 B01

Sally
 C00

John
 A02

Irring
 B00

2. Retrieve the employee details with their issue details.

SQL>select fname, i.issuenum, opendate, description, statusflag, closeddate

from employee e, issuedetails i

where e.issuenum = i.issuenum;

FNAME ISSU OPENDATE DESCRIPTION STATUS CLOSEDDAT

---------- ---- --------- -------------------- ------ ---------

Christine A00 13-NOV-07 new issue open 14-NOV-07

Michael B01 15-NOV-07 File Added closed 16-NOV-07

Sally C00 16-NOV-07 Summary open 21-NOV-07

John A02 20-NOV-07 Version open 24-NOV-07

Irring B00 20-NOV-07 Notepad open 26-NOV-07

3. Get the technician who is working under a particular issue and description

SQL>select i.issuenum, description, m.badgenum, t.fname, t.lname

from issuedetails i, manager m, technician t

where i.issuenum = m.issuenum and

m.badgenum = t.badgenum;

ISSU DESCRIPTION BADGENU FNAME LNAM

-------- -------------------- ---------------- ------------- ----------

A00 New issue T0101 Johnson Ken

B01 File Added T0102 Rosca Adam

C00 Summary T0130 Lee Mech

A02 Version T0104 Suda Mehata

B00 Notepad T0106 Ram Sing

4. Retrieve the details of technician who is working for employee Sally.

SQL>select * from technician

where badgenum = (select badgenum from manager

where issuenum = (select issuenum from employee

where fname = 'Sally'));

FNAME LNAME ADDRESS BADGENU AREAOFEX

------- ------- --------------- ------------ ------- --------

Lee Mech IL T0130 Coding

Views

Definition:

In database theory, a view is a virtual or logical table composed of the result set of a query. Unlike ordinary tables (base tables) in a relational database, a view is not part of the physical schema: it is a dynamic, virtual table computed or collated from data in the database. Changing the data in a table alters the data shown in the view.

· Also Views are virtual relations represented by their names and definitions only.

Examples:

SQL> create view emp_inum

as select fname, minit, lname from employee

where issuenum = 'A00';

View created.

SQL> create view issue_emp

 as select fname, i.issuenum, description from employee e, issuedetails i

 where e.issuenum = i.issuenum;

View created.

SQL> create view tech_manager

 as select fname, lname, address, issuenum, t.badgenum from technician t, manager m

where t.badgenum = m.badgenum;

View created.

Stored Procedures

Definition:

It’s a combination of SQL and procedural language statements.

Example:

Stored procedure to retrieve the details of technician for a given issue number

create or replace procedure techdetails (inum varchar2)

 is

fname varchar2(9);

 lname varchar2(8);

address varchar2(27);

 badgenum varchar2(6);

 issuenum varchar2(8);

 cursor cur_tech is

 select t.fname, t.lname, t.address, t.badgenum, i.issuenum

 from technician t, manager m, issuedetails i

 where m.badgenum = t.badgenum

and i.issuenum = m.issuenum and i.issuenum = inum;

 Begin

 open cur_tech;

loop

 fetch cur_tech into fname, lname, address, badgenum, issuenum ;

 exit when cur_tech%NOTFOUND;

 dbms_output.put_line (fname || ' ' || lname || ' ' || address || ' ' || badgenum || ' ' ||issuenum);

end loop;

 close cur_tech;

 end;

 /

Procedure created.

SQL> exec techdetails ('A00');

Johnson Ken CT T0101 A00

PL/SQL procedure successfully completed.

Example:

Stored procedure to retrieve employee details where issuenum = 'A00'

SQL> create or replace procedure empdetails

is

fname varchar2(9);

empno number(7);

minit varchar2(7);

lname varchar2(8);

contact number(7);

issuenum varchar2(5);

begin

select * into empno, fname, minit, lname, contact, issuenum

from employee

where issuenum = 'A00';

dbms_output.put_line (empno|| ' ' || fname || ' ' || lname || ' ' || contact || ' ' || issuenum);

end;

/

Triggers

Definition:

A special stored procedure that is executed when a particular event happen on a database.

Example:

SQL> create or replace trigger issue_insert

after insert on issuedetails

for insert

as

If (select * from issuedetails where opendate = '16-Nov-07')

begin

dbms_output.put_line("Cas9nt insert on 16th");

end;

[image: image9][image: image10][image: image11][image: image12]
PAGE
1
www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

image1.png

Employee -
@ Issuenum: VARCHAR(20)
% empno: INTEGER

e -
Gererates

 ssuenum: VARCHAR(ZD) o e v

o Employes_suenum; VARCHAR(ZD) (FC) <@ i

& Iname: VARCHAR(20)

© opendate: DATE
© phnum: INTEGER

& description: VARCHAR(20)
& statusfiog: VARCHAR (20) ided
G category: VARCHAR(20) proved to

& clossddate: DATE I F

3 ssue AIngex] @ issuenum: VARCHAR (20)

@ Employee_issuenum & badgenum: VARCHAR(20)

keeps track

note -
7 Manager_ssuenum: VARCHAR (20) (FK)

@ Technician_badgenum: VARCHAR(20) (FK)
© description: INTEGER

© updations: INTEGER

& result: VARCHAR(20)

assigns to

N

(3 rote_Adndex!
¢ Technican badgenum
3 note A2 mantar| Techrician -

@ Manager_ssuenum @ badgenum: VARCHAR(2D)

o Manager_suenum; VARCHAR(20) (FK)
< friame: VARCHAR(20)

& Iname: VARCHAR(20)

< address: VARCHAR(45)

< areanfexp: VARCHAR(20)

3 echnian_Adndex
@ Manager_issuenum

