www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

ABSTRACT

Applications that rely on replicated data have different requirements for how their data is managed. For example, some applications may require that updates propagate amongst replicas with tight time constraints, whereas other applications may be able to tolerate longer propagation delays. Some applications only require replicas to interoperate with a few centralized replicas for data synchronization purposes, while other applications need communication between arbitrary replicas. Similarly, the type of update conflicts caused by data replication varies amongst applications, and the mechanisms to resolve them differ as well. The challenge faced by designers of replicated systems is providing the right interface to support cooperation between applications and their data managers. Application programmers do not want to be overburdened by having to deal with issues like propagating updates to replicas and ensuring eventual consistency, but at the same time they want the ability to set up appropriate replication schedules and to control how update conflicts are detected and resolved. The Bayou system was designed to mitigate this tension between overburdening and under empowering applications. This paper illustrates ways to manage their data in an application-specific manner.

CHAPTER 1

INTRODUCTION

All of us are very much familiar with the word “mobile “. Mobile’s dictionary meaning is “moveable”, ”not fixed”. In mobile computing environment that includes portable machines with less than ideal network connectivity. In particular, a user’s computer may have a wireless communication device, such as cell modem or packet radio transceiver relying on a network infrastructure that is not universally available and perhaps unreasonably expensive. It may also use short-range line of sight communication, such as the “infrared -beaming “ ports available on some commercial personal digital assistant (PDAs). Alternatively computer may have a conventional modem requiring it to be physically connected to a phone line when sending and receiving data or May only be able to communicate with the rest of the system when inserted in a docking station. [1]

CHAPTER 2

 MOBILE COMPUTING ENVIRONMENT

2.1 Characteristics Of Wireless Communication

The main characteristic of these communicating capabilities is that a mobile computer may experience extended and sometimes involuntary disconnection from or all of the other devices with which it wants to share data[1]. A replicated, weakly consistent storage system is designed for mobile computing environment. [2] Also the data is in non-transparent format.

2.2 What Is A Replication?

Replication is copying and distributing data and databases object from one database to another and then maintaining synchronization between databases. Replication can roll up corporate data from geographically dispersed sites for reporting purposes and disseminate data to move users on a local area network or mobile users on dial up connection or the Internet. [3]
Whta Is “One-Copy-Equivalence And Replication Transparency?

Why To Use Non-Transparent Replica?
A major challenge faced by designer of general-purpose replicated storage system is providing application developer with some control over the replication process without burdening them with aspect of replication that are common to all applications. System models that present application with “one - copy - equivalence” have been proposed because of their simplicity for the application Developer. In particular the goal of “replication transparency” is to allow application that is developed assuming a centralized file system or database run unchanged on a top of a strongly consistent replicated storage system. Unfortunately, replicated system guarantying strong consistency requires substation mechanism for concurrency control and multitask atomic transaction and hence are not suitable for all operating environment. To get improved level of availability, Scalability and performance, especially in a widely distributed system or those with imperfect network connectivity, many replicated Storage systems have relaxed their consistency model. For instance many system have adopted an “ access anywhere” model in which application can read and update paragraph as between replica and update propagate between replicas in lazy manner. Such models are inherently more difficult for application developer who must cope with varying degree of consistency between replicas, designing schedulers and patterns for update propagation and manage conflicting updates. The harsh reality is that application must be involved in these difficult issues in order to maximize the benefits that they obtain from replication. [4]

2.3 Why Replication And Weak Consistency?

Replication is required since a single storage site may not be reachable from mobile clients or within disconnected workgroups. Consistency is desired since any replication scheme providing one copy serializability yields unacceptably low writes availability in partitioned network [2].

 The Bayou project at Xerox PARC has been designed a system to support data sharing among mobile users. Basically the Bayou system is a platform of replicated highly available variable consistency mobile databases on which to build collaborative applications [4].

CHAPTER 3

 BAYOU SYSTEM

3.1 Bayou Overview

Bayou is a replicated, weakly consistent storage system designed to support collaborative application in distributed computing environment with varying network connectivity. A typical example of such an environment is a system with mobile hosts that may disconnect over period of time, connect only through low bandwidth, radio networks or connect occasionally with expensive cellular modems. it’s model for replication and weak consistency allowing disconnection of servers from the network is designed to support extreme scalability, up to “world wide “ application. Bayou relies only on pair wise communication between the computers, which allows the system to cope up with arbitrary network connectivity [5].

3.2 Bayou System Model

In Bayou replication management by Bayou servers. Each server holds a complete replica of the data. The data model provided by current implementation of Bayou is a ‘relational database’, although other data models could be used as well. Bayou chosen a relational model because of its power and flexibility. In particular it naturally support fine-grained, structured access to the data, which is useful for application specific conflict detection and resolution mechanism, which is desired.

 As mentioned above bayou replicas are weakly consistent. That is, at any point in time different servers may have seen different sets of update and therefore hold the different data in their databases. Weak consistency distinguishes Bayou from many of replicated systems designed in the CSCW community. Some collaborative and distributed system are fairly strong forms of consistency, usually based on ‘Pessimistic locking’. That is, before data can be modified it must be locked to ensure that its access is serialized. Such strongly consistent scheme ensures that application always see a consistent picture of the data. However they do not support weakly connected application, and do not scale to the global application envisioned by Bayou.

 Bayou applications are free to run and update replicas without locking. Bayou guarantees that the distributed strong system will move towards eventually consistency by imposing a global order on write application and by providing propagation guarantees. Each write carries enough information so that a Bayou server can apply the writes; it has received in the correct order without coordinating with any server[5].

3.2.1 Bayou’s Mechanism for Application semantics:

One feature of Bayou that application can impose their own semantics on the operation executed at a replica. To this end, Bayou reads and writes are not the simple operations supported by most databases. Instead they include additional application supplied information, which ensures that application will receive the required level of services from the system[5]. Bayou’s mechanism for supporting application semantics fall into six categories:

· Application defined conflict detection

· Application defined conflict resolution

· Selecting of session guarantees.

· Selection of committed or tentative data

3.2.2 Conflict Detection and Resolution

The first two semantic categories are provided through the Bayou write operation and are designed to detect and resolve the conflicts that arises in a weakly consistent system. In Bayou a weakly a write consistent of three components:

· Dependency Check

· Update set

· Merge Procedure

The dependency check specifies a set of conditions that must hold so that update set can be applied to the replica’s database. A dependency check consists of a query to be performed at the database and the expected result of that query. If the actual result matches the expected result, then the update set consist of instruction, deletions or modifications of tuples in relation if the dependency check fails an application specifies conflict hasbeen detected and the merge procedure is executed. The merge procedure Or ‘mergeproc’ in short, is a fragment of code in a high level interpreted mergeproc language intends to generate an alternative update set to be applied to the database. Mergeprocs support application defined conflict resolution, meaning that conflicts are essentially handled through that code is executed by the Bayou infrastructure itself.

 Bayou use of mergeprocs differs from other systems. Which also support application supplied conflict resolution, in that Bayou allows different tresolution procedure to be associated with each individual writes. Thus Bayou provides applications with more fine-grained control over conflict handling. Further more because of conflict resolution procedure propagate with the write it is available at each server when needed.

3.2.3 Session Guarantees

The session guarantees mechanism is used by an application to establish a required level of consistency for its own operation. That is, while a set of Bayou server maintain data that is only weakly consistent, a running instance of an application can request that its view of the world maintain a particular level of consistency. Different application may have different requirements fro their desired level of consistency, and Bayou support a range of application needs through this mechanism.

 A session is an abstraction for a sequence of reads and writes performed during the execution of the application and session guarantees are implented by constraining the replicas that may be selected by the application during that session.

Four session guarantees are supported by Bayou

· Read Your Write ensures that the effects of any write made within the session are visible to later read within that session. in other words reads are restricted to replicas of the databases that includes all previous writes in the session.

· Monotonic Reads permits user to observe database that stays upto date over time. It ensures that reads are only made to databases replicas containing all writes whose effect were seen by previous reads within the session.

· Write Follows Reads ensures that traditional write/read dependencies are preserved in ordering of writes at all servers. That is, at every replica of database, writes made during the session are ordered of every writes whose effect were seen by previous reads in the session.

· Monotonic Writes says that writes must be followed previous writes within the session. In other words write is only incorporated into a replicas database copy if the copy includes all previous writes from that session and the writes ordered for these previous writes.

3.2.4 Stable Vs Tentative Values

Bayou provides a mechanism that establishes when a write is stable at a given server. That is when no new writes will ever be received by the server that will have to be ordered before that write. When a write becomes stable at a server, it’s conflicts detection and resolution mechanism will not be executed again, which means that it’s final effect on database is known. On the other hand, a write that is yet stable at a server is deemed tentative. Tentative writes may need to be re-executed if other writes with earlier write stamps are received by the server, and thus have a possible changing effect

on the database.

 The distinction between tentative and stable data is important from the application perspective. An application can be designed with a notion of “confirmation” or “commitment” that corresponds to Bayou’s option of stability. For example color codes can be used in graphical user interface to indicate whether a displayed item is tentative, that is may change later because of conflict or is stable and will not be changed due to conflict.

 Bayou also allows conflict to choose whether they will read from the database when tentative data has been applied, or only from the view of database that corresponds to applying only stable writes. This ability, allows clients to trade data availability fro assurance of data stability-application that can tolerate data has not been fully stabilized can read it immediately, without waiting fro it to become

stable.

 Although stability dose not enquire that consistency, when a collaborative application reads only the results of writes, it user will perceive a different “sense” of consistency than if the application also reads tentative data.

3.2.5 Replica Selection:

Another important feature that Bayou provide to an application to select which replica it will use for its operation. The ability to select from several replicas over the life-span of an application is particularly important in collaboration:

 A particular replica can be selected to optimize certain communication requirements. In particular autonomous users with disconnected laptop can run a server from for a local replica on that laptop. Application can choose this server, thus ensuring access to the database.

 Application operating on behalf of different users on different machines can be connected to the same replica to see updates as soon as they occur. In essence, the application can work together in a tightly integrated, strongly consistent, synchronize fashion. The ability of the application to connect to a single replica, and later split apart and communicate with different replicas, can be used to support transition between synchronous and asynchronous styles of collaboration.

3.2.6 Anti-Entropy Policies

Anti-entropy is the pair-wise process by which the server of two replicas bring each others database up to date . During the anti-entropy process two servers exchange the sets of writes known to one server but not the other.

 Although not fully implemented yet, the Bayou model supports client-supplied anti-entropy policies. Thus clients can influence when to propagate their changes to other servers.(Currently, anti-entropy is performed automatically at a set interval, or when manually requested by an application.) The ability to regulate when updates are propagated is important for applications like collaborative software development where users must ensure that a coherent picture of the code base is available at specific times.

CHAPTER 4

 ARCHITECTURAL DESIGN DECISIONS

Goal: Support for portable computers with limited resources.

Design: flexible client-server architecture

Many of the devices that we envision being commonly used, such as PDAs and ParcTab developed within our lab have insufficient storage for holding copies of all, perhaps any, of the data that their users wants to access. For this reason, our architecture is based on a division of functionality between servers, which stores data, and the clients, which reads and writes data managed by servers. A server is any machine that holds a complete copy of one or more databases. Clients are able to accessdata residing on any server to which they can communicate, and conversely, any machine holding a copy of database including personal laptops, should be willing to service read and write requests from other nearby machines. We expect that portable computer will be a server for some databases and clients for others. A commonly occurring case may be several users disconnected from the rest of the system while actively collaborating; a canonical example is group of colleagues taking a business trip together. Rather than giving the member of this disconnected working group access to only the data that they had the foresight to copy to their personal machine, the Bayou design that lets any group member have access to any data that is available in any group.

 Thus the bayou architecture differs from systems that maintain strong distinction between servers, which hold databases or file volumes, and clients which hold personal caches. Permitting "lightweight" servers to reside on portable machines is similar to the approach taken to support mobility in Lotus Notes or Ficus.

Goal: High availability of reads and writes.

Design: Read-any/write-any weakly consistent replication.

Replication is absolutely required in order for non connected users to access a common database. Many algorithms for managing replicated data, such as a those based on maintaining strong data consistency by automatically updating all available copies, do not work well in a partitioned network, particularly if site failure cannot be reliably detected. server-initiated callbacks for cached data invalidation presents similar problems. Quorum based schemes, which can accommodate some types of network partitions; do not work for disconnected individuals or small groups. Algorithm based on pessimistic locking are also unattractive since they severally limit availability and perform poorly when message costs are high, as is generally in the case of mobile computing environments.

 To maximize the user's ability to read and write data even while completed disconnected from the rest of the computing environment, we chose read-any/write-any replication scheme. That is a user is able to read from and write to any copy of the database. We cannot guarantee the timeless with which writes will propagate to all other replicas since communication with many of these replicas may be currently infeasible. Thus, the replicated databases are only weakly consistent replicated data, desired not only for their high availability but also for their scalability and simplicity, have been employed in variety of systems.

Goal: Reach eventual consistency while minimizing assumptions about communication characteristics.

Design: Peer-to-peer anti-entropy for propagation of updates.

Servers propagates writes among copies of databases using an "anti-entropy" protocol. This process is often called "reconciliation" when used to synchronize files systems. Anti-entropy ensures that all copies of a database are converging towards the same state and will eventually converge to identical states if there are no new updates. To achieve this server must not only receive all writes but must also order them consistently.

 Peer-to-peer anti-entropy is adopted to ensure that any two machines that are able to communicate will be able to propagate updates between themselves. Even machines that that never directly communicate can exchange updates via intermediaries. Each server periodically selects another server with which to perform a pair wise exchange of writes; the server selected depends on its availability as well as expected cost and benefits. At the end of this process, both servers have identical copies of the databases, that they have the same writes effectively performed in the same order. Anti-entropy can be structured as in incremental process so that even servers with very intermittent or asymmetrical connections can eventually bring their databases into a mutually consistent state.

Goal: System supports for detect updating conflicts.

Design: Dependency check on each write.

Because clients may make concurrent write to different servers may attempt to update some data based on reading an out- of date copy, update conflicts are unavoidable in a read-any/write-any application scheme. These conflicts have two basic forms: write-write conflicts in which two clients update the same data item(or sets of data items)in incompatible ways, and read-write conflicts in which a client update some data based on reading value of another data that is being concurrently updated by second client (or was previously updated on a different server than one being reading)

 Read write conflicts can be detected by recording and later checking an application's read-set. These technique ignore the applications' semantics.

 The Bayou detect update conflict in an application-specific manner. A write conflicts occurs when the set of database differs in an application-relevant way from that expected by a write operation includes not only data being written or updated but also a dependency set is collection of application supplied queries and their expected result A conflicts is detected if the queries, when run at the server against its' current copy of database, do not return the expected results.

 Bayou's dependency sets can provide traditional optimistic concurrency control by having the dependency query check the version stamps of any data that was read and on which the given updates depends. However the dependency checking mechanism is more general than this and can, for Example permit "blind" write where a client dose not have access to any copy of database yet wishes to inject a database update assuming that some condition holds. An example of this is a client that, from this Laptop, wishes to schedule a meeting a particular room is free at the desired time, but dose not currently have a copy of room's calendar.

Goal: Application-specific resolution of update conflicts.

Design: Merge procedure passed with each write to automatically resolve conflicts.

The, system along detecting update conflicts, must provides means for resolving such conflicts. One approach often takes in database system with optimistic concurrency control is to simply abort a conflicting transaction. Other systems relay on humans for resolving a problem in a mobile computing environment since a user may submit an update to some server ant then disconnect while the write is propagating in the background via anti-entropy; at the time write conflict is detected; i.e. the dependency check fails, the user may be inaccessible.

 Bayou allows writes to specify how to automatically resolve conflicts based on the premise that there are a significant number of applications for which the order of con-currently issued write operations is either not a problem or can be suitably dealt with in an application specific manner at each server maintaining a copy of a database. A Bayou writes operation includes an application-specific procedure called a mergeproc that is invoked when a write conflict is detected. This program reads the database copy residing at the executing server and resolves the conflict by producing an alternate set of updates that are appropriate-ate for the current database contents. Mergeprocs resemble mobile agents in that they originate at clients, are passed to servers, and are executed in a protected environment so that they cannot adversely impact the server’s operation. However, unlike more general agents, they can only read and write a server’s database. A mergeproc’s execution must be a deterministic function of the database contents and its static data.

 Automatic resolution of concurrent updates to file directories has been proposed for some time and is not being employed in systems like Ficus and Coda.These systems have recently added support for application-specific resolution procedures, similar to mergeprocs, that are registered with servers and are invoked automatically when conflicts arise. The appropriate resolution procedure to invoke is chosen based on file properties such as the type of the file being updated.

 Mergeprocs are more flexible since they may be customized for each write operation based on the semantics of the application and the intended effect of the specific write. For example, in the calendar application, a mergeproc may include a list of alternate meeting times to be tried if the first choice is already taken. In summary, a Bayou writes operation consists of a proposed update, a dependency set, and a mergeproc. The dependency set and mergeproc are both dictated by an application’s semantics and may vary for each write operation issued by the application. The verification of the dependency check, the execution of the mergeproc, and the application of the update set is done atomically with respect to other database accesses on the server.

Goal: Commit data to a stable value as soon as possible.

Design: Include a primary whose purpose is to commit data

and set the order in which data is committed.

Bayou’s weak consistency means that a write operation may produce the desired update at one server but be detected as a conflict at another server thereby producing a completely different update as the result of executing its mergeproc.

 Also, a write’s mergeproc may produce different results at different servers since its execution may depend on the current database state. Varying results can arise if the servers have seen different sets of previous writes or if they process writes in different orders. To achieve eventual consistency, servers must not only receive all writes but must also agree on the order in which they apply these writes to their databases. New writes obtained via anti-entropy may need to be ordered before writes that were previously obtained, and may therefore cause previous writes to be undone and reapplied to the server’s database copy. Reapplying a write may, in turn, cause it to update the database in a different way than its previous execution. How can a user ever be sure that the outcome of a write it issued has stabilized? One way to detect stability of a given write is together enough information about each server to determine that no other writes exist or will be accepted in the future that might be ordered prior to the write. Unfortunately, the rate at which writes stabilize in this fashion would depend on the rate at which anti-entropy propagates information Among all servers. A server that is disconnected for extended periods of time could essentially delay stability and possibly cause a large number of writes to be rolled back later. The Bayou design includes the notion of explicitly "committing" a write. Once a write is committed, no other non-committed writes will be ordered before it, and thus its outcome will be stable. A write that has not yet been committed is called “tentative”. A Bayou client can inquire as to whether a given write is committed or tentative. One way to commit a write would be to run some sort of consensus protocol among a majority of servers. However, such protocols do not work well for the types of net-work partitions that occur among mobile computers. Instead, each Bayou database has one distinguished server, the “primary”, which is responsible for committing writes. The other, “secondary” servers tentatively accept writes and propagate them toward the primary using anti-entropy. As secondary servers contact the primary, their tentative writes are converted to committed writes, and actable commit order is chosen for those writes by the primary server. Knowledge of committed writes and their ordering propagates from the primary back to the second-arise, again via anti-entropy.

 The existence of a primary server enables writes to commit even if other secondary servers remain disconnected. In many cases, the primary may be placed near the locus of update activity for a database; this allows writes to commit as soon as possible.

Goal: Permit disconnected clients and groups

to see their own updates.

Design: Clients can read tentative data with an expectation that it will be committed with the same effect if possible.

Clients that issue writes generally wish to see these updates reflected in their subsequent read requests to the database and may even issue writes that depend on reading their previous writes. This should hold even if the client is disconnected from the primary copy and the updates can not be immediately committed. Moreover, to the extent possible, clients should be unaware that their updates are tentative and should see no change when the updates later commit; that is, the tentative results should equal the committed results whenever possible. The Bayou system allows clients to read tentative data, if they so desire. Essentially, each server maintains two views of the database: a copy that only reflects committed data, and another “full” copy that also reflects the tentative writes currently known to the server. The full copy is an estimation of what the database will contain when the tentative writes reach the primary. When two secondary servers exchange tentative writes using anti-entropy, they agree on a “tentative” ordering for those writes. This order is based on times-tamps assigned to each write by the server that first accepted it so that any two servers with identical sets of writes will order them identically. Thus, a group of servers that are disconnected from the primary will reach agreement among themselves on how to order writes and resolve internal conflicts. This write ordering is only tentative in that it may differ from the order that the primary chooses to commit the writes. However, in the case where no clients outside the disconnected group perform conflicting updates, the writes can and will eventually be committed by the primary in the tentative order and produce the same effect on the committed database as they had on the tentative one.

Goal: Provide a client with a view of the replicated

data that is consistent with its own actions.

Design: Session guarantees.

A serious problem with read-any/write-any replication is that inconsistencies can appear even when only single user or application is making data modifications. For example, a mobile client could issue a write at one server, and later issue a read at a different server. The client would see inconsistent results unless the two servers had performed anti-entropy with one another sometime between the two operations.

 To alleviate such problems, we added session guarantees to the Bayou design. A session is an abstraction for the sequence of read and write operations performed on a database during the execution of an application. One or more of the following four guarantees can be requested on a per-session basis:

Read Your Writes - read operations reflect previous writes.

•Monotonic Reads - successive reads reflect a non-decreasing set of writes.

•Writes Follow Reads - writes are propagated after reads on which they depend.

•Monotonic Writes - writes are propagated after writesthat logically precede them.

 The intent is to present individual applications with a view of the database that is consistent with their own actions, even if they read and write from various, potentially inconsistent servers. Previous work on “causal operations” has tried to provide similar guarantees for weakly consistent replicated data, though without the per application fine-grain control. Session guarantees do not address the problem of isolation between concurrent applications. Practical implementations of the guarantees have been developed in which no system-wide state is maintained and no additional coordination among servers is needed. The amount of per-session state needed to ensure all of the guarantees is small, consisting of only two version vectors. Also, the cost of checking those version vectors against a server’s vectors to determine if the server is sufficiently up-to-date is small, and frequently can be amortized over many session operations.

Goal: Permit applications to choose an appropriate point in the consistency/availability trade-off.

Design: Individually selectable session guarantees.

Choice of committed or tentative data, age parameter on reads. Different applications have different consistency requirements and different tolerances for inconsistent data. For this reason, Bayou permits applications to choose just the session guarantees that they require. The main cost of requesting session guarantees is a potential reduction in availability since the set of servers that are sufficiently up-to-date to meet the guarantees may be smaller than all the available servers. Second, applications may choose between committed and tentative data. Those applications that are unprepared to deal with tentative data and its inherent instability may limit their read requests to only return committed data. This choice is similar to the strict and loose read operations provided in Tait and Duchamp’s file system .Finally, applications can specify an age parameter for their reads to ensure that they see committed data in a timely fashion. This parameter might implicitly affect The rate at which secondary servers perform anti-entropy with the primary. It provides clients with a type of bounded in consistency that resembles quasi-copies [2].

Goal: Give users ultimate control over the placement and use of databases.

Design: Fluid replication in which the number and locations for a database can vary over time as can its primary server.

The Bayou system uses “fluid” replication for managing copies of a database. That is, database copies are allowed to “flow” around in the system changing their degree of replication and their locations. The number of servers (or copies) can vary over time. It can be specified by clients, as well as possibly being determined by the system based on usage patterns and network characteristics. For example, a user with a database on his laptop is free to pass a copy of this database

to another user’s machine. thereby creating a new server for the database. The primary server for a database may also be changed. Dynamic replication is important in a mobile environment to deal with anticipated network disconnections and to minimize communication costs.

CHAPTER 5

 CONCLUSION

We have presented a system called Bayou that addresses many of these issues. Bayou has features that support both users and writers of asynchronous applications. Below we summarize some of the features of Bayou we feel are important for builders and users of asynchronous applications.

· Efficient anywhere/anytime access to data.

Bayou supports weakly consistent replication. Servers synchronize in a pair-wise fashion, supporting a range of work practices. For example, home and office machines can be synchronized through a laptop transported between locations; the home and office machines need never communicate directly with each other. This feature is used by BXMH to handle reading mail from any location, using exactly the same user interface even when disconnected. BibDB uses this feature for separation to support what is an intrinsically independent task.

· Automatic management of conflicts.

Dependency checks and mergeprocs provide a way for applications to not only define for themselves what constitutes a conflict, but also to establish the procedures to take to resolve conflicts that occur. Thus, Bayou applications can often resolve most conflicts automatically, reducing the need for user intervention and coordination, and enhancing independence. All of the current Bayou applications use this feature, and most provide multiple resolution options to their users. BXMH allows users to set general conflict resolution policies. The group calendar lets users specify fallback times for calendars that will be used in the event of a conflict.

· ”Self consistency” and awareness of data status.

Session guarantees further support seamless transitions between servers. Clients can choose to see only the progression of activity, and not move back and forth between older and newer states. All of our example applications use this facility.

 Also, Bayou provides a means for applications to detect the status of data in a database-whether it is tentative or committed. This information can be presented to the user in a number of forms. In the group calendar, color is used to mark which entries will no longer change.

 One weakness is that the current implementation does not notify applications (and hence users) when data changes—applications must poll the database to detect changes.

· Flexible data model.

Bayou provides a robust and flexible data model for applications. The system supports any granularity of shared data. So writers can modify a field of a tuple (such as the time in a calendar entry), or entire sets of tuples(such as new versions of source code or mail folders) at once.

 While the relational data model may not be a “natural” fit for all applications, the model can be generalized for storages of other types of structured data fairly easily.

· Fluid transition between synchronous and asynchronous modes of operations.

Multiple collaborators can connect to distinct servers for typical asynchronous operation, or connect to the same server for “tighter” synchronous operation.

 The Bayou architecture outlined in this paper has been implemented and runs on Sun SPARCstation’s running SunOS 4 and 5, and on 486-based subnotebooks running Linux. The query language used in read operations and dependency checks is a subset of SQL. The mergeproc language is based on the Tool Command Language, TCL , augmented by SQL.

CHAPTER 6

BIBILOGRAPHY

[1] Atan Demenrs, Karin Petersen, Mike Spreitzer, Douglas Terry, Marvin Theimer, Brent Welch. The Bayou Architecture : Support for Data Sharing Among Mobile Users.

[3] Korth. Database Management System

[4] Douglas B. Terry, Karin Petersen, Mike j. Spreitzer and Marvin M. Themer. The case for Non- Transparent Replication: Examples from Bayou

[5] W. Keith Edwards, Elizabeth D. Mynatt, Karin Petersen, Mike J. Spreizer, Douglas B. Terry, Marvin m. Theimer. Design and implementation a Asynchronous Collaborative application with Bayou.

PAGE
1
www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

