www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

INTRODUCTION

Clusters are essentially a group of computers connected over a network , which work in tandem to look like a single computer to an outside user .they are also called Network-of-Workstation(NoW) or Pile-of –PCs(PoPC).This is the new parallel processing architecture when the earlier design comprising of a single high performance computer failed to meet the requirements . The best supercomputer available today uses Symmetric Multi-Processing i.e. multiple processors within one box. These are expensive and use custom-made software. In contrast clusters use the common workstation software on all the workstations and distribute the workload to gain higher performance. These clusters can be designed for various purposes: They can be used for general high performance computing (Beowulf Class), or high performance web servers (MOSIX), or Virtual Parallel File-system (Grendal), or Virtual Shared Memory Supercomputers (SHRIMP and Locust) etc. Cluster use common hardware and can be used to reuse old hardware. This make clusters a much cheaper option than supercomputers. It is the good high price/performance ratio that has made these clusters popular.

What is Clustering?
Clustering is most widely recognized, as the ability to combine multiple systems in such a way that they provide services a single system could not. Clustering is used to achieve higher availability, scalability and easier management. Higher Availability can be achieved by use of "failover" clusters, in which resources can automatically move between 2 or more nodes in the event of a failure. Scalability can be achieved by balancing the load of an application across several computer systems. Simpler management can be attained through the use of virtual servers, as opposed to managing each individual computer system

What are High Availability Clusters?
High availability clustering joins together two or more servers to help ensure against system failures including planned shutdowns (e.g., maintenance, backups) and unplanned outages (e.g., system failure, software failure, operator errors). The group of connected systems is known as a cluster
BEOWULF HISTORY:

Beowulf was a cluster developed by Thomas Sterling of Center Excellence in Space Data and Flight Information Sciences(CESDIS) at NASA Goddard Space Flight Center[1],in 1994.That cluster employed 16 Intel 100MHz DX4 PCs each with 16 MB RAM and 2 Ethernet cards. It peaked at 60 MFlops as compared to 4.5 MFlops of each PC which is a degradation of 16% ,which is a very good result.
The idea was to use Commodity off the shelf (COTS) base components and build a cluster system to address a particular computational requirement for the ESS community. The Beowulf project was an instant success, demonstrating the concept of using a commodity cluster as an alternative and attractive choice for high-performance computing (HPC). Researchers within the HPC community now refer to such systems as High Performance Computing Clusters (HPCC). Nowadays, Beowulf systems or HPCC have been widely used for solving problems in various application domains. These applications range from high-end, floating-point intensive scientific and engineering problems to commercial data-intensive tasks. User employment of these applications includes seismic analysis for oil exploration, aerodynamic simulation for motor and aircraft design, molecular modeling for biomedical research, data mining or finance modeling for business analysis, and so much more.

DESIGN BASICS
A typical Beowulf system may comprise 16 nodes interconnected by 100 base T Fast Ethernet. Each node may include a single Intel Pentium II or Digital Alpha 21164PC processor, 128-512 MBytes of DRAM, 3-30 GBytes of EIDE disk, a PCI bus backplane, and an assortment of other devices. At least one node called master node will have video card, monitor, keyboard, CD-ROM, floppy drive and so forth. All the nodes in the cluster are commodity systems - PCs, workstations, or servers - running commodity software such as Linux-uses UDP protocols for transferring data. The master node acts as a server for Network File System (NFS) and as a gateway to the outside world. In order to make the master node highly available to users, High Availability (HA) clustering might be employed as shown in the figure.

[image: image1.png]
In addition, publicly available parallel processing libraries such as MPI and PVM are used to harness the power of parallelism for large application programs. A Beowulf system such as described here, taking advantage of appropriate discounts, costs about $40K including all incidental components such as low cost packaging and a generous assembly cost of $100/hr.

Beowulf is a parallel computer. It will not just run a uniprocessor "dusty deck" and benefit from all of the computing resources. A site must expect to run parallel programs, either acquired from others or developed in-house. A site without such skill base should probably not follow the Beowulf path. Beowulf is loosely coupled and is a distributed memory environment. It runs message passing parallel programs that do not assume a shared address space across processors. Its long latencies require a favorable balance of computation to communication and code written to balance the workload across processing nodes. A site without this class of application codes should probably not follow the Beowulf path. But within the constrained regime in which Beowulf is appropriate, the Beowulf path will always provide the best performance to cost and often comparable performance per node to vendor offerings. This means for restricted computing budgets, more science is done, more engineering problems are solved, and more students acquire experience. Beowulf assists parallel computer vendors by providing a low entry-level cost to parallel systems, expanding the role of parallel computing and the number of people capable of using parallel computers. This will create a larger customer base for vendor parallel computers in the long term.

BUILDING BEOWULF SYSTEM

1. Introduction
With the power and low prices of today's off-the-shelf PCs and the availability of 100 Mb/s Ethernet interconnect, it makes sense to combine them to build High-Performance-Computing and Parallel Computing environment. This is the concept behind the Beowulf parallel computing system we will describe. With free versions of Unix and public domain software packages, no commercially available parallel computing system can compete with the price of the Beowulf system. The drawback to this system is, of course, there will exist no support center to call when a problem arises. But there does exist a wealth of good information available through FTP sites, web sites and newsgroups.

The examples you find in this document will apply to using the RedHat or Mandrake Linux operating system.

[image: image2.png]
Figure 1: Example Beowulf System Setup

It requires that the problem have fine-grained parallelism so that it can parallelize the program easily. To process other kinds of data would require shared virtual memory for which kernel modification will be necessary. Processing them by this system would increase network traffic and the processing would be too slow to be of any use. Finely grained problem are those in which the data to be processed can be finely subdivided without changing its meaning.

2. Planning the system
Today, there's a wide range of switches available, ranging from 8 to over 100 ports, some with one or more Gigabit modules that lets you build large systems by interconnecting such switches or by using them with a Gigabit switch. Switches have become inexpensive enough that there's not much reason to build your network by using cheap hubs or by connecting the nodes directly in a hypercube network.
An example of parts to buy for a 16-node system + front-end system, where each node has a 400 MHz Pentium II processor, 256 MB RAM, a 10 GB disk drive, a 100 Mb/s network adapter and one SVGA adapter, could be something like:

	24-port network switch
	1

	Motherboard
	17

	400 MHz Pentium II
	17

	PC cases
	17

	128 MB SDRAM SIMMs
	34

	100 Mb/s Ethernet adapters
	18

	10 GB disks
	17

	1.44 MB Floppy drive
	17

	SVGA adapter
	17

	CD-ROM
	1

	Keyboard
	1

	17" Multisync Monitor
	1

	Monitor/keyboard 4 way switch boxes
	5

	Keyboard extension cables
	16

	Video extension cables
	16

	6' twisted pair network cables
	18

	6-Outlet Surge protectors
	3

Table 1: Shopping list

A typical setup will be to configure the nodes for a private beowulf network. The front-end machine will have two network adapters, one configured with a real IP address, the other configured for the private beowulf subnet. The suggested range of addresses for a private network is from 192.168.0.0 to 192.168.254.0. It does not matter which one you choose, since nobody will be able to connect directly to a compute node from outside this network anyway. The front-end system will act like a bridge from other machines to your Beowulf system. The monitor and the keyboard will be shared among all PCs, by using video/keyboard switch boxes.

[image: image3.png]
Figure 2: Connections of Video/Keyboard Switch Boxes

All the parts in the PCs are standard off-the-shelf components. The switch would typically have to be ordered through a distributor of the brand you decide to use.

3. Software Installation
To make the system as easy as possible to maintain, plan on making all compute nodes identical, i.e. same partition sizes, same software and same configuration files. This makes the software a whole lot easier to install and maintain. For partition sizes, I like to give 128 MB to root, 2X memory for swap partition for less than 128 MB RAM, 1X memory if you have 128 MB or more RAM. Some people would say, "Why have any swap space at all?" For most usage, swapping should not happen on the compute nodes, but accidents happen. For /usr partition it really depends on the number of packages you are planning to install, about 800 MB should go a long way for most systems.

It is recommend to install at least the following, if you are installing

RedHat or Mandrake Linux:

	[image: image4.png]
	Basic System Software, including networking software

	[image: image5.png]
	Kernel Sources

	[image: image6.png]
	C, C++, g77 compilers and libraries

	[image: image7.png]
	X11 with development libraries

	[image: image8.png]
	xntp or another time synchronizer

	[image: image9.png]
	Autofs

	[image: image10.png]
	Rsync

To install these packages, please follow the standard instructions that come with the Linux distribution you choose to use. You want to try to install all you need, before you start the cloning process. There are a few files that you probably want to edit before cloning the system:

	[image: image11.png]
	/etc/hosts

	[image: image12.png]
	/etc/hosts.equiv

	[image: image13.png]
	/etc/shosts.equiv

	[image: image14.png]
	/etc/fstab

	[image: image15.png]
	/etc/pam.d/rlogin

	[image: image16.png]
	/etc/ntp.conf

	[image: image17.png]
	/etc/lilo.conf

	[image: image18.png]
	/etc/exports

	[image: image19.png]
	/etc/auto.master

	[image: image20.png]
	/etc/auto.Beowulf

4. The Cloning Process
There are different ways to clone your first system. One way is to physically connect a drive to an already configured system and then copy the content from one drive to another. Another, maybe more elegant method, is to boot the nodes like diskless clients the first time and let setup scripts partition and copy the system from tar files or another already running system.

The first method is simpler, but it requires a lot of reboots and power shut downs. This is the only way to do it if you don't have a floppy drive in every system. When copying from one drive to another there are two simple ways of doing this:

1. Use dd on the entire drive. If your configured drive is hda and the unconfigured is hdb, you would do "dd if=/dev/hda of =/dev/hdb". This will take care of partitions as well as boot sector and files.

2. If you don't use the same type of drives in your nodes, create tar files of the root and usr partition of the configured system that you set up:

mkdir /usr/images
tar cvflz /usr/images/root.tar.gz /
tar dvflz /usr/images/usr.tar.gz /usr --exclude /usr/images
The "1" switch is important when doing the tar, to only archive files within the partition. You can now connect drives that will go into the other nodes one by one. Remember to power off the system before connecting and disconnecting drives. Partition and format the drives as you did with the first system. You will need to reboot after partitioning to make sure the drive gets reset properly with the new partitioning tables. After creating the file systems (ex. mkfs -t ext2 /dev/hdc1), you can extract the file systems for the root and usr partition. You are now ready to initialize lilo to update the boot sector. To do this, you need to have your cloned disk seen as the first disk (/dev/hda for IDE and /dev/sda for SCSI). When booting from floppy, at the boot prompt type "linux root=/dev/hda1" for IDE drives and "linux root=/dev/sda1" for SCSI drives. When the system is running, log in as root and type "lilo". This is also a good time to edit the network configuration files listed below.

After creating each clone, they need to be given their own identity. For RedHat and Mandrake Linux, you will have to edit the files:

	[image: image21.png]
	/etc/HOSTNAME

	[image: image22.png]
	/etc/sysconfig/network

	[image: image23.png]
	/etc/sysconfig/network-scripts/ifcfg-eth0

When booting diskless to clone the nodes, you need to use bootp or dhcp. . The package, NodeCloner.tar.gz, will help you setting up NFS root on the front-end machine. When adding a new node, all we now have to do is add the node to the NodeDatabase file under the NFS-root tree and add the hardware address for its ethernet adapter to /etc/bootptab, send an hangup signal to the bootpd, that should be running on the front-end machine, and we're ready to boot the new node diskless. As soon as the new node is done booting from the floppy, an init script, found in the sbin directory under the NFS-root tree, is run and does the whole cloning process. This script finally reboots the machine when the process is done and the node is ready to compute.

Difference between large SMP's and
Beowulf Class:
	
	Large SMPs
	Beowulf Class

	Scalability
	Fixed
	Unbounded

	Availability
	High
	High

	Ease of Technology Refresh
	Difficult
	Manageable

	Application Porting
	None
	Required

	Operating System Porting
	Difficult
	None

	Service and Support
	Expensive
	Affordable

	Standards vs. Proprietary
	Proprietary
	Standards

	Vendor Lock-in
	Required
	None

	System Manageability
	Custom; better usability
	Standard; moderate usability

	Application Availability
	High
	Moderate

	Reusability of Components
	Low
	High

	Disaster Recovery Ability
	Weak
	Strong

	Installation
	Non-standard
	Standard

	

Scalability: The ability to grow in overall capacity and to meet higher usage demand as needed. When an application or department requires additional computational resources, additional servers can be easily added to the cluster. Many clusters continue to grow, and are now comprised of thousands of servers.
Availability: Removal of any single point of failure in hardware and software helps ensure that any one system component, the system as a whole, or the solution (i.e., multiple systems) stay highly available. There is a great level of availability in an HPC solution because components can be isolated and in many cases the loss of a compute node in the cluster does not have a large impact on the overall cluster solution. The workload of that node will be allocated among the remaining compute nodes. This can increase availability in geographical disaster situations.
Ease of Technology Refresh: Integrating a new processor, memory, disk, or operating system technology can be accomplished with relative ease. In HPC, as technology moves forward, modular pieces of the solution stack can be replaced as time, budget and needs require or permit. There is no need for a one-time 'switch-over' to the latest technology. In addition, new technology can often be integrated more quickly into high volume servers than proprietary system providers.
Service and Support: Total cost of ownership including post-sales costs of maintaining the hardware and software, from standard upgrades to unit replacement to staff training and education can be lower when compared to proprietary implementations that typically come with a high level of technical services due to their inherently complex nature and sophistication.
Standards-based versus Proprietary: Use of industry-standard building blocks versus vendor-specific hardware and software components in building a solution.
Vendor Lock-in: Proprietary solutions usually require a commitment to a particular vendor whereas industry-standard implementations are often interchangeable. Many of the proprietary solutions require only components that have been developed by that vendor. Depending on the revision and technology, application performance may be diminished. HPCC enables solutions to be built from the best performing industry standard components.
System Manageability: System management is the installation, configuration and monitoring of key elements of computer systems, such as hardware, operating system and applications. Most of large SMPs have proprietary enabling technologies (custom hardware extension and software components) such that they complicate system management. On the other hand, it is easier to manage one large system compared to hundreds of nodes. With wide deployment of network infrastructure and enterprise management software, it becomes easy to manage multiple servers of a HPC system from a single point.
Reusability of Components: Commodity components can be reused when off line, therefore helping to preserve investment. In the future, when refreshing a PowerEdge solution with next generation platforms, the older PowerEdge

compute nodes can be deployed as File/Print servers, Web Servers or other infrastructure servers.
Disaster Recovery Ability: Large SMPs are monolithic entities that reside in one geographic location and therefore, are more susceptible to geographic disasters. A group of HPC can be co-located, or dispersed physically to tolerate disaster affecting a single location.
Installation: Specialized equipment generally requires expert installation teams trained to handle such complex projects. They may also require dedicated facilities such as power, cooling, etc. For HPC, since the components are commodities off the shelf, installation is generic and widely supported.
DESIGN AND IMPLEMENTATION

A. Resource and Job Management

All these require root privileges. So the software will be running in the background with root privileges i.e. it will be daemon process. This daemon will hence forth refer to as Infrastructure for Beowulf Class Cluster Daemon (ibccd). This Daemon will be identical for all nodes. The master node will be the one initiating the task.
Even before starting any program this daemon will have to pool in resource from all nodes. All the node have to be configured beforehand to determine the amount of resources each node is pooling. The configuration files will tell ibccd which file it has to use across the network. Ibccd starts the program when specified and then distribute load to all nodes in the ratio of resources pooled.

B. Parallelization:

It requires that the problem have fine-grained parallelism so that it can parallelize

the program easily. To process other kinds of data would require shared virtual memory for which kernel modification will be necessary. Processing them by this system would increase network traffic and the processing would be too slow to be of any use. Finely grained problem are those in which data to be processed can be finely subdivided without changing its meaning. For example consider a database table which retains its meaning even if we take out a single record out of it or an image file which contains the image data in RGB format and is divisible right up to a 3 byte group.

Starting the program on the node specified and also copying the files to be processed to the nodes distribute the load. The nodes then process their slice of data and store the result on disk. They also send signal to the master that the assigned job is done. The master then assigns next job in queue. Also the master joins the result of each node to form the complete result. If there is another stage of processing of file is then it is done in a similar way. After all processing has been done; the final result is stored on the master node for the output.

C. Load Balancing and Dispatch policy

The master node maintains an array holding the node number and also the information about how much work was assigned to it and how much time was taken to process it. When its job is complete, a flag is set indicating that the node is free and ready foe accepting next slice of work. Ibccd considers its processing power and uses this information to decide how much work it has
to be assigned next. In this way a queue is formed of the nodes waiting for and they are assigned their piece of work accordingly.

D. Message Passing

There are several messages that need to be passed between the daemon and between the processes. No messages are passed between the daemons and the processes because the processes are essentially unaware of the existence of the daemons. Also this does not limit the program, which use other massage passing libraries from communicating with each other. Such processes are aware of the existence of related processes on other nodes and can very well communicate with them using separate channels. Otherwise, the processes just know that they are unique and so cannot communicate with remote processes.

Daemons also need to pass several messages. First of all when the configuration file triggers the processing, that node becomes the master. It then broadcast an INIT message to all nodes indicating that if it is the master and also declares which are to be secondary master. After that TASK message follows which transfers the config file for each node that contains which processes are to be run and what file it has to process. Thereafter a TASK massage is send by the master which contains the program to process and data to be processed in the form of files. To the entire above message, the slave nodes respond to all above massages by an acknowledge ACK massage. When the task is done, the nodes transmit a DONE message together with final data. Data is transferred through XFER message. Apart from these, there are some other messages that need to be passed. The nodes transmit the process status PS at regular intervals for process control from the master. Master also sends process control signals SIG to the nodes. All the nodes exchange a LIVE message, which indicate that the node is alive and not frozen. The nodes can also request some file to be resent. This signal is sent by REDO message. It is also possible to save and stop the current processing so that it can be resumed at some later time. For this master will send STOP and RESUME message.

Table 1 summarizes the various messages.

Table 1: Various Message Types in Ibccd
	MESSAGE
	PURPOSE

	INIT
	Start of cluster

	ACK
	Acknowledge a message

	TASK
	Distribution of tasks

	DONE
	Task complete notification

	STAT
	Status of the job

	LIVE
	Notification of being alive

	REDO
	Resend a file

	STOP
	Save and halt the task

	RESUME
	Resume task after stop

	PS
	Process status of the node

	SIG
	Signal a remote process

	XFER
	Transfer output file

E. Process Management

The process management for local processes is done by using the /proc file-system. We will need an abstraction of a global /proc file-system containing the information about all the processes running on all nodes throughout the cluster which are concerned with the parallelize task. This will help in process management from the master node. There has to be a mapping between the abstract. The master node can send a SIG message for controlling the process.

The resources (used by each process on each node) have to be monitored too. This includes the memory used by each process. Any process, which violates the resources limits of a node, will have to be re prioritized. This will also be necessary when it is using too less of system resources. In that case its priority will have to be increased to use all allocated resource. This make the root privilege a necessary otherwise the daemon could be run wit lesser privileges.

One problem with resource managers is that there is no control over the processes forked from this main process. If this PID is not known to ibccd, such a process can use the system resources to any extent. This problem can be tackled by monitoring the /proc file-system. The PID of any child process and their off springs will have to be registered wit ibccd for control.

F. Check Pointing

It is possible that a job may be so big that to run for several hours and the resources are needed for some other work in between or the system has to be shutdown for some reason. Therefore a mechanism should be provided to stop the in middle and resume it at some other time. For this the intermediate result from the processes would have to be saved and pointers have to be set at the locations in data files up to where processing is complete. When the task is resumed, the process would have to be invoked and processing would start from the point it had been interrupted. It is highly independent upon the programming style so the programmer has to keep this in mind while programming.

For any possible failures, there are secondary masters who always mirror the activities of primary master and take up the control when primary master fails. In this way it recovers from failure of master node and no data is lost. If a slave node fails then the data on that node is lost. In that case, the master knows that this particular node is not responding (it has not sent LIVE message for a long time). The master then assigns that task to some other node and accepts its response.

G. Logging and Plug-in Support
The daemon should also maintain a log of processing done on the cluster and use it for benchmarking and further evaluation. It can also be used to restructure the problem for optimization.

There should be plug-in support for controlling the cluster from an outside tool to increase flexibility and to provide a better interface. This can be a configurator or a process manager with GUI, a visualization tool or even a benchmarking tool. For this FIFO can be used to send the output to external programs. The output can be the status of the processes on the entire nodes etc. this feature is implementation dependent.

PERFORMANCE CONSIDERATION

Clustering is an excellence way to increase processing power by grouping together several processors. It also has the best price-to-performance ratio. But this architecture has some drawbacks. There is performance degradation from as compared to ideal state. Say for e.g. that a particular processor can process at 20 MFlops then, in ideal condition, a cluster of 16 such computer should perform at say 320 MFlops but it perform at 300 MFlops of 6.67%. This degradation occurs because the managing and load balancing jugglery that has to be done. This extra calculation degrades performance.

In cluster one serious bottleneck is the network latency time. This is about 80 microseconds for Ethernet. Network Latency is the minimum time taken for data to be transferred over the network. Therefore the slice size is selected carefully and the programs are designed to reduce frequent network transfer. This is not very difficult task and can be achieved only by modifying the program and data slices sizes.

The network protocol selection is important TCP/IP protocol suite is not very best for clustering because there are lot of error detection and correction and resending is involved. Modern Ethernet are very reliable and can do away with the eeror checking. But, the protocol cannot be changed for now because our constraint specify that it has to run on a current network without modification. The least we can do is to use UDP instead of TCP. We have also rejected security and dynamic data slice optimization because these masters will require additional calculation overhead. We can neglect setting up of secondary master if we have value performance.

APPLICATION

This cluster can do general scientific calculations, which are fine grained for example Fourier Transform, Image Processing, 3D Rendering, Gravitational N-body Simulation (this is the classic use of cluster). We will do a case study of an image processing application using ibccd.

A. Case Study
We will examine this system will perform in case of an image processing task for large images such as those obtained from sensing and satellite imaging data Image Processing involves large matrix calculations which are both resource crunching and lengthy. For our purpose we consider a 1000 * 1000 image.

B.How to Use?
First we have configure the daemons. The master node entries in ibccd .conf file are shown in Fig 2

The task files, which define the task to be done, are shown in FIG 3.

C. Sample Run
 After configuring, we have to make the files transform 1, transform 2, image .bmp, head and tail. Of these, first two are programs. Third is the file to be used and the last two are the head and tail between the slices are sandwiched.

When the processing starts, ibccd distributes the required files over the clusters and triggers the job execution. To start with, the slices are fed in the grain sizes (300 B). After sometime when maser has the reasonable estimates of the node performances, it distributes slices in multiple of grain sizes. When transform 1 process has finished processing its slices, the output is fed to the transform 2 process on the same or other node. When transform2 has done its job, the resultant file is collected at the master node and joined. This is the output file output .bmp

#The following lines set system

Resource limits

Proc: 60 # percent

Mem: 64 # MB

Disk: 800 # MB

#The following line indicates start time

We can also specify time in Unix

#Data format

Start: now

The following line indicates when it

has to stop and resume

Stop: 24 sep 2001 16:30:00

Resume: 24 sep 2001 23:00:00

#Next, the working nodes have to be set

Nodes: node1, node2, node3, node4, node5, node6, node7, node8

Fig 2. Example of ibccd.conf file

The following lines sets the minimum

#slices size

#for given problem it is

10(pixel) (10(pixel) (10(pixel)

= 300 bytes

grain : 300

The following lines defines the

#program to be used

prog: transform1, transform2

#the following line set the header and footer files.

These are joined to all slices to make file meaningful

head: head

foot: foot

#Now we define the procedure for processing.

#First we define the head and tail files

#Now the input file is split and distributed.

#The slices are given to transform1 program

#The output slice is given to transform2

#The slices are then joined to give output file.

Proc:

1 head head

2 tail tail

3 div image.bmp

4 trasform1

5 transform2

6 join output.bmp

7 exit

Fig 3. Example of task file

CONCLUSION AND FUTRE WORK

Clustering is a very cheap and efficient architecture for high performance computing. It can be a boon for countries like ours where the educational institutions cannot afford a conventional supercomputer. This report suggests a design of infrastructure that makes managing such a cluster a very easy task. Also a program that is not parallel can be run on the clusters with minimal modifications, if any. This lowers the learning curve. But to fully exploit the benefits of clusters and for maximum flexibility we have to other more comprehensive options like MPI or PVM.

There is always a scope of improvement. This system cannot handle such task, which require much interprocess communication. Also, problem that are not fine grained are difficult to distribute. Also, this system does not provide a common global memory and disk file. This is important in the case of true massively parallel programs. Further we will be implementing this design and studying its practical functioning to find more areas requiring improvement.

REFERENCES:
1. www.beowulf.org
2. www.dell.com
3. www.cacr.caltech.edu
4. www.google.com
5. www.yahoo.com

www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

