www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com
www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

INTRODUCTION

Blowfish is a variable-length, a new secret-key block cipher. It is a Fiestal network, iterating a simple encryption function 16 times. Its main features are:

· Block cipher: 64-bit block.

· Variable key length: 32 bits to 488 bits.

· Much faster than IDEA and DES.

· Unpatented and royalty free.

· No license required.

DESCRIPTION OF BLOWFISH

Blowfish is a variable-length key, 64-bit block cipher. The algorithm consists of two parts: a key-expansion part and a data- encryption part. Key expansion converts a variable-length key of at most 56 bytes (448 bits) into several sub key arrays totaling 4168 bytes. Data encryption occurs via a 16-round Feistel network. Each round consists of a key-dependent permutation, and a key- and data-dependent substitution. The additional operations are four indexed array data lookups per round. Implementations of Blowfish that require the fastest speeds should unroll the loop and ensure that all sub keys are stored in cache. Sub keys:

 Blowfish uses a large number of sub keys. These keys must be precomputed before any data encryption or decryption.
1. The P-array consists of 18 32-bit sub keys: P1, P2,..., P18.

 2. There are four 32-bit S-boxes with 256 entries each:
 S1,0, S1,1,..., S1,255;
 S2,0, S2,1,..,, S2,255;
 S3,0, S3,1,..., S3,255;
 S4,0, S4,1,..,, S4,255.

 Encryption:

 Blowfish is a Feistel network consisting of 16 rounds. The input is a 64-bit data element, x.

 Divide x into two 32-bit halves: xL, xR

 For i = 1 to 16:

 xL = xL XOR Pi

 xR = F(xL) XOR xR

 Swap xL and xR

 Next I

 Swap xL and xR (Undo the last swap.)

 xR = xR XOR P17

 xL = xL XOR P18

 Recombine xL and xR (to get the cipher text)

 Function F:

 Divide xL into four eight-bit quarters: a, b, c, and d

 F(xL) = ((S1,a + S2,b mod 232) XOR S3,c) + S4,d mod 232

Decryption is exactly the same as encryption, except that P1, P2,..., P18 are used in the reverse order.

Generating the Sub keys:

 The sub keys are calculated using the Blowfish algorithm. The exact method is as follows:

1. Initialize first the P-array and then the four S-boxes, in order, with a fixed string. This string consists of the hexadecimal digits of pi (less the initial 3). For example:

 P1 = 0x243f6a88, P2 = 0x85a308d3, P3 = 0x13198a2e, P4 = 0x03707344
2.XOR P1 with the first 32 bits of the key, XOR P2 with the second 32-bits of the key, and so on for all bits of the key (possibly up to P14). Repeatedly cycle through the key bits until the entire P-array has been XORed with key bits.
3. Encrypt the all-zero string with the Blowfish algorithm, using the sub keys described in steps (1) and (2).

4. Replace P1 and P2 with the output of step (3).

5. Encrypt the output of step (3) using the Blowfish algorithm with the modified sub keys.

6. Replace P3 and P4 with the output of step (5).

7. Continue the process, replacing all entries of the P- array, and then all four S-boxes, with the output of the continuously-changing Blowfish algorithm.
In total, 521 iterations are required to generate all required sub keys. The speed comparisons of block ciphers on a Pentium for different algorithms are given below:

	Speed Comparisons of Block Ciphers on a Pentium

	Algorithm
	Clock cycles per round
	# of rounds
	# of clock cycles per byte encrypted
	Notes

	Blowfish
	9
	16
	18
	Free, unpatented

	DES
	18
	16
	45
	56-bit key

	IDEA
	50
	8
	50
	patented by Ascom-Systec

IMPLEMENTABLE PLATFORMS

 A standard encryption algorithm must be implementable on a variety of different platforms, each with their own requirements. These include:

Special hardware: The algorithm should be efficiently implementable in custom VLSI hardware.

Large processors: The algorithm should be efficient on 32-bit microprocessors with 4 KB program and data caches.

Medium-size processors: The algorithm should run on micro controllers and other medium-size processors, such as the 68HC11.

Small processors: It should be possible to implement the algorithm on smart cards.

The requirements for small processors are the most difficult. RAM and ROM limitations are severe for this platform. Also, efficiency is more important on these small machines.

ADDITIONAL REQUIREMENTS

 These additional requirements should, if possible, be levied on a standard encryption algorithm.

1. It should be simple to code. If possible, the algorithm should be robust against implementation mistakes.

2. It should have a flat key space, allowing any random bit string of the required length to be a possible key. There should be no weak keys.

3. It should facilitate easy key-management for software implementations. In particular, the password that the user enters becomes the key.

4. It should be easily modifiable for different levels of security, both minimum and maximum requirements.

5. All operations should manipulate data in byte-sized blocks. Where possible, operations should manipulate data in 32-bit blocks.

Design Decisions Of Variable Length-key (64-Bit Block Cipher)
Based on the above parameters, we have made these design decisions. The algorithm should:

· Manipulate data in large blocks, preferably 32 bits in size.

· Have either a 64-bit or a 128-bit block size.

· Have a scalable key, from 32 bits to at least 256 bits.

· Use simple operations that are efficient on microprocessors.

· Be implementable on an 8-bit processor with a minimum of 24 bytes of RAM (in addition to the RAM required to store the key) and 1 kilobyte of ROM.

· Consist of a variable number of iterations. For applications with a small key size, it is possible to reduce the number of iterations with no loss of security

· If possible, have no weak keys. If not, the proportion of weak keys should be small enough to make it unlikely to choose one at random.

· Use sub keys that are precomputable and one-way hash of the key. This allows the use of long pass phrases for the key without compromising security.

· Use a design that is simple to understand. This will facilitate analysis and increase the confidence in the algorithm.

BUILDING BLOCKS

There are a number of building blocks that have been demonstrated to produce strong ciphers.

 Large S-boxes: Larger S-boxes are more resistant to differential cryptanalysis. An algorithm with a 32-bit word length can use 32-bit S-boxes.

 Key-dependent S-boxes: key-dependent S-boxes are much more resistant to these attacks differential and linear cryptanalysis.

 Combining operations: Combining XOR mod 216, addition mod 216, and multiplication mod 216+1 [7].

 Key-dependent permutations: The fixed initial and final permutations of DES have been long regarded as cryptographically worthless.

DESIGN DECISIONS

A 64-bit block size yields a 32-bit word size, and maintains block-size compatibility with existing algorithms. Blowfish is easy to scale up to a 128-bit block, and down to smaller block sizes. The Feistel network that makes up the body of Blowfish is designed to be as simple as possible, while still retaining the desirable cryptographic properties of the structure. Round i of a general Feistel network: Rn,i and Ni are reversible, non-reversible functions of text and key. For speed and simplicity, XOR is chosen as reversible function. This lets to collapse the four XORs into a single XOR, since:

RP1,i+1 = R1,i+1 XOR R2,i-1 XOR R3,i XOR R4,i

 This is the P-array substitution in Blowfish. The XOR can also be considered to be part of the non-reversible function, Ni, occurring at the end of the function.
Function F, the non-reversible function, gives Blowfish the best possible avalanche effect for a Feistel network: every text bit on the left half of the round affects every text bit on the right half. Additionally, since every sub key bit is affected by every key bit, the function also has a perfect avalanche effect between the key and the right half of the text after every round. Hence, the algorithm exhibits a perfect avalanche effect after three rounds and again every two rounds after that. The non-reversible function is designed for strength, speed, and simplicity.

Four different S-boxes are used instead of one S-box primarily to avoid symmetries when different bytes of the input are equal, or when the 32-bit input to function F is a byte wise permutation of another 32-bit input. The four S-box design is faster, easier to program, and seems more secure. The function that combines the four S-box outputs should be as fast as possible. A simpler function would be to XOR the four values. The alternation of addition and XOR ends with an addition operation because an XOR combines the final result with xR. If the four indexes chose values out of the same S-box, a more complex combining function would be required to eliminate symmetries.

As the structure of the S-boxes is completely hidden from the cryptanalyst, the differential and linear cryptanalysis attacks have a more difficult time exploiting that structure. While it would be possible to replace these variable S-boxes with four fixed S-boxes that were designed to be resistant to these attacks, key-dependent S-boxes are easier to implement and less susceptible to arguments of hidden properties. Additionally, these S-boxes can be created on demand, reducing the need for large data structures stored with the algorithm.

Each bit of xL is only used as the input to one S-box. In DES many bits are used as inputs to two S-boxes, but this added complication is not necessary with key- dependent S-boxes. The P-array substitution can be considered to be part of the F function, and is already iteration-dependent. The number of rounds is set at 16. However, this number affects the size of the P- array and therefore the generation process; 16 iterations permits key lengths up to 448 bits. This number can be reduced, and greatly speed up the algorithm in the process.

In algorithm design, there are two basic ways to ensure that the key is long enough to ensure a particular security level. One is to carefully design the algorithm so that the entire entropy of the key is preserved, so there is no better way to cryptanalyze the algorithm other than brute force. The other is to design the algorithm with so many key bits that reduce the effective key length by several bits. Since Blowfish is designed for large microprocessors with large amounts of memory, the latter one is used.

The sub key generation process is designed to preserve the entire entropy of the key and to distribute that entropy uniformly throughout the sub keys. The digits of pi are chosen as the initial sub key table for two reasons: because it is a random sequence not related to the algorithm, and because it could either be stored as part of the algorithm or derived when needed. Any string of random bits--RAND tables, output of a random number generator--will suffice for pi. In the sub key generation process, the sub keys change slightly with every pair of sub keys generated. This is to protect against any attacks of the sub key generation process. It also reduces storage requirements. The 448-bits limit on key size ensures that every bit of every sub key depends on every bit of the key.

The key bits are repeatedly XORed with the digits of pi in the initial P-array to prevent the following potential attack: Assume that the key bits are not repeated, but instead padded with zeros to extend it to the length of the P-array. An attacker might find two keys that differ only in the 64-bit value XORed with P1 and P2 that produce the same encrypted value. If so, he can find two keys that produce all the same sub keys. This is a highly tempting attack for a malicious key generator. To prevent this same type of attack, the initial plaintext value in the sub key-generation process is fixed.

Highly correlated key bits, such as an alphanumeric ASCII string with the bit of every byte set to 0, will produce random sub keys. The time-consuming subkey-generation process adds considerable complexity for a brute-force attack. A total of 522 iterations of the algorithm are required to test a single key.

POSSIBLE SIMPLIFICATIONS

Several possible simplifications, aimed at decreasing memory requirements and execution time are outlined below:

Fewer and smaller S-boxes: It may be possible to reduce the number of S-boxes from four to one to reduce the memory requirements for the four S-boxes from 4096 bytes to 1024 bytes. Additionally, it may be possible to overlap entries in a single S-box to reduce the requirements from 1024 bytes to 259 bytes.

Fewer iterations: It is probably safe to reduce the number of iterations from 16 to 8 without compromising security.

On-the-fly subkey calculation: The current method of subkey calculation requires all sub keys to be calculated advance of any data encryption. An alternate method is the one where every subkey can be calculated independent of any other.

CRYPTANALYSIS OF BLOWFISH

The most interesting results are:

John Kelsey developed an attack that could break 3-round Blowfish, but was unable to extend it. This attack exploits the F function and the fact that addition mod 232 and XOR do not commute. Serge Vaudenay examined a simplified variant of Blowfish, with the S-boxes known and not key-dependent.

The discovery of weak keys in Blowfish is significant. A weak key is one for which two entries for a given S-box is identical. We have to do the key expansion and check for identical S-box entries after generating a Blowfish key.

AREAS OF APPLICATION:

 A standard encryption algorithm must be suitable for different applications:

Bulk encryption: The algorithm should be efficient in encrypting data files or a continuous data stream.

Random bit generation: The algorithm should be efficient in producing single random bits.

Packet encryption: The algorithm should be efficient in encrypting packet-sized data.

Hashing: The algorithm should be efficient in being converted to a one-way hash function.

Products that use Blowfish

 The products that use the Blowfish encryption algorithm are:

BF-SDK (Blowfish Software Development Kit) provides the basic functions to encrypt and decrypt data.CertifiedMail.com is a website that provides encrypted message delivery using Blowfish to transmit messages from an e-mail client to the CertifiedMail Server, then stores messages with Blowfish.

OpenBSD is a free Unix-like operating system that uses Blowfish by default for one-way password encryption. Scramdisk is a Disk encryption for Windows95 and Windows98. Ultra-Scan is an ultrasonic fingerprint scanner uses Blowfish to encrypt the fingerprint images.
 CONCLUSION:

 In this paper we discussed Blowfish, it is a variable-length key block cipher. It is only suitable for applications where the key does not change often, like a communications link or an automatic file encryptor. It is significantly faster than DES when implemented on 32-bit microprocessors with large data caches, such as the Pentium and the PowerPC. Although there is a complex initialization phase required before any encryption can take place, the actual encryption of data is very efficient on large microprocessors. Linux includes Blowfish in the mainline kernel, starting with v2.5.47.

Blowfish is a 16 pass block encryption algorithm that has never been broken. The most efficient way to break Blowfish is through exhaustive search of the key space. Although a number of excellent algorithms have been developed BLOWFISH is used frequently because:

· It has been repeatedly tested and found to be very secure.
· It is extremely fast due to its taking advantage of built-in instructions on the current microprocessors for basic bit shuffling operations.
· It was placed in the public domain.
REFERENCES

[1] E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryption Standard, Springer-Verlag, 1993.

[2] H. Feistel, "Cryptography and Computer Privacy," Scientific American.

[3] B. Schneier, "Data Guardians," MacWorld, Feb 1993.

[4] B. Schneier, Applied Cryptography, John Wiley & Sons, New York, 1994.

[5]J.L Smith, The Design of Lucifer, A Cryptographic Device for Data Communication, RC 3326, White Plains: IBM Research.

[6] www.howstuffworks.com

www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com
PAGE
10
www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

