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ABSTRACT

Collective intelligence is defined as the ability of a group to solve more problems 

than its individual members. It is argued that the obstacles created by individual cognitive limits and the difficulty of coordination can be overcome by using a collective mental map (CMM). A CMM is defined as an external memory with shared read/write access that represents problem states, actions and preferences 

for actions. It can be formalized as a weighted, directed graph. The creation of a network of pheromone trails by ant colonies points us to some basic mechanisms of CMM development: averaging of individual preferences, amplification of weak links by positive feedback, and integration of specialized subnetworks through division of labor. Similar mechanisms can be used to transform the World-Wide Web into a CMM, by supplementing it with weighted links. 

Two types of algorithms are explored: 

1) The co-occurrence of links in web pages or user selections can be used to compute a matrix of link strengths, thus generalizing the technique of “collaborative filtering”; 

2) Learning web rules extract information from a user’s sequential path through the web in order to change link strengths and create new links. The resulting weighted web can be used to facilitate problem solving by suggesting related links to the user, or, more powerfully, by supporting a software agent that discovers relevant documents through spreading activation.
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CHAPTER 1

INTRODUCTION


With the growing interest in complex adaptive systems, artificial life, swarms and simulated societies, the concept of “collective intelligence” is coming more and more to the fore. The basic idea is that a group of individuals can be smart in a way that none of its members is. Complex, apparently intelligent behavior may emerge from the synergy created by simple interactions between individuals that follow simple rules.  To be more accurate we can define intelligence as the ability to solve problems. A system is more intelligent than another system if in a given time interval it can solve more problems, or find better solutions to the same problems. A group can then be said to exhibit collective intelligence if it can find more or better solutions than the whole of all solutions that would be found by its members working individually.

1.1. Examples of collective intelligence

All organizations, whether they are firms, institutions or sporting teams, are created on the assumption that their members can do more together than they could do alone. Yet, most organizations have a hierarchical structure, with one individual at the top directing the activities of the other individuals at the levels below. Although no president, chief executive or general can oversee or control all the tasks performed by different individuals in a complex organization, one might still suspect that the intelligence of the organization is somehow merely a reflection or extension of the intelligence of its hierarchical head.
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CHAPTER 2

COLLECTIVE PROBLEM-SOLVING

To better understand collective intelligence we must first analyse intelligence in general, that is, the ability to solve problems. A problem can be defined as a difference between the present situation, as perceived by some agent, and the situation desired by that agent. Problem solving then means finding a sequence of actions that will transform the present state via a number of intermediate states into a goal state. Of course, there does not need to be a single, well-defined goal: the agent’s “goal” might be simply to get into any situation that is more pleasant, interesting or amusing than the present one. The only requirement is that the agent can distinguish between subjectively “better” and “worse” situations [1,2]. To generalize this definition of a problem for a collective consisting of several agents it suffices to aggregate the desires of the different agents into a collective preference and their perceptions of the present situation into a collective perception. 

2.1. Mental maps

The efficiency of mental problem solving depends on the way the problem is represented inside the cognitive system [1,2]. Representations typically consist of the following components: a set of problem states, a set of possible actions, and a preference function or “fitness” criterion for selecting the most adequate actions. The fitness criterion, of course, will vary with the specific goals or preferences of the agent. Even for a given preference, though, there are many ways to decompose a problem into states and actions. Changing the way a problem is represented, by 
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considering different distinctions between the different features of a problem situation may make an unsolvable problem trivial, or the other way around [1,2]. Actions can be represented as operators or transitions that map one state onto another one. A state that can be reached from another state by a single action can be seen as a neighbor of that state. Thus, the set of actions induces a topological structure on the set of states, transforming it into a problem space. The simplest model of such a space is a network, where the states correspond to the nodes of the network, and the actions to the edges or links that connect the nodes. The selection criterion, finally, can be represented by a preference function that attaches a particular weight to each link.  

To solve a problem, you need a general heuristic or search algorithm, that is, a method for selecting a sequence of actions that is likely to lead as quickly as possible to the goal. If we assume that the agent has only a local awareness of the mental map, that is, that the agent can only evaluate actions and states that are directly connected to the present state, then the most basic heuristic it can use is some form of “hill-climbing” with backtracking. This heuristic works as follows: from the present state choose the link with the highest weight that has not been tried out yet to reach a new state; if all links have already been tried, backtrack to a state visited earlier which still has an untried link; repeat this procedure until a goal state has been reached or until all available links have been exhausted. The efficiency of this method will obviously depend on how well the nodes, links and preference function reflect the actual possibilities and constraints in the environment. The better the map, the more easily problems will be solved. Intelligent agents, then, are characterized by the quality of their mental maps, that is, by the knowledge and understanding they have of their environment, their own capacities for action, and their goals. Increasing problem-solving ability will 
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generally require two complementary processes:

1) Enlarging the map with additional states and actions, so that until now unimagined options become reachable

2) Improving the preference function, so that the increase in total options is counterbalanced by a greater selectivity in the options that need to be explored to solve a given problem.

2.2. Coordinating individual problem-solutions

Let us apply this conceptual framework to collective problem solving. Imagine a group of individuals trying to solve a problem together. Each individual can explore his or her own mental map in order to come up with a sequence of actions that constitutes part of the solution. It would then seem sufficient to combine these partial solutions into an overall solution. Assuming that the individuals are similar, and that they live in the same environment, we may expect their mental maps to be similar as well. However, mental maps are not objective reflections of the real world “out there” they are individual constructions, based on subjective preferences and experiences [3]. Therefore, the maps will also be to an important degree different.

                       This diversity is healthy, since it means that different individuals may complement each other’s weaknesses. Imagine that each individual would have exactly the same mental map. In that case, they would all find the same solutions in the same way, and little could be gained by a collective effort.                  

                Imagine now that each individual would have a different mental map. In that case, individuals would need to communicate not only the solutions they have found, but the relevant parts of their mental maps as well, since a solution only 
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makes sense within a given problem representation. This requires a very powerful medium for information exchange, capable of transmitting a map of a complex problem domain. Moreover, it requires plenty of excess cognitive resources from the individuals who receive the transmissions, since they would need to parse and store dozens of mental maps in addition to their own. Since an individual’s mental map reflects that individual’s total knowledge, gathered during a lifetime of experience, it seems very unlikely that such excess processing and storage capacity would be available. If it were, this would mean that the individual has used only a fraction of his or her capacities for cognition, and this implies an individual who is very inexperienced or simply stupid. Finally, even if individuals could effectively communicate their views, there is no obvious mechanism to resolve the conflicts that would arise if their proposals contradict each other. It seems that we have  come back to our problem where we have intelligent individuals but a dumb collective. Let us see whether investigations of existing intelligent collectives can help us to overcome this problem of coordination between individuals.

2.3. Collective Mental Maps

In the  shared objects we discussed until now, the problem solving actions seem to be purely physical: amassing mud, kicking a ball towards the goal, producing goods. We might wonder whether stigmergy could also be used to support problem solving on the mental plane, where sequences of actions are first planned in the abstract before they are executed in reality. Again, insect societies can provide us 

with a most instructive example.

                          A collective mental map functions first of all as a shared memory. Various discoveries by members of the collective are registered and stored in this memory, so that the information will remain available for as long as necessary. 
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The storage capacity of this memory is in general much larger than the capacities of the memories of the individual participants. This is because the shared memory can potentially be inscribed over the whole of the physical surroundings, instead of being limited to a single, spatially localized nervous system. 
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CHAPTER 3

MECHANISM OF CMM DEVELOPMENT


3.1. Averaging preferences

Probably the most basic method for reaching collective decisions and avoiding conflicts is voting. This method assumes that all options are known by all individuals, and that the remaining question is to determine their aggregate preference. In the simplest case, every individual has one vote, which is given to the options that this individual prefers above all others. Adding all the votes together determines the relative preferences of the different alternatives for actions.  This is to some degree similar to the functioning of ant colonies, where the pheromone trail left by a particular ant can be seen as that ant’s “vote” in the discussion of where best to find food.

3.2. Feedback

One reason that the collective intelligence produced by averaging adds relatively little to the intelligence of the participating individuals is that the procedure is very redundant: every individual must build up a mental map of the whole domain before any CMM can be initiated. 
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CHAPTER 4

WEB TO COLLECTIVE MENTAL MAP


This is noted that the information stored in books can be seen as a rudimentary CMM for human society, albeit one that is too static and fragmented. The present trend to move all written information on-line, so that it becomes immediately and universally accessible, is a first step towards removing these obstacles. The World-Wide Web, with its distributed hypermedia format, seems particularly well suited as a medium to create a dynamic CMM. Let us review the main benefits of the Web. 

1. The storage space provided by the millions of computers connected to the network is practically unlimited. 

2. The stored information can be accessed virtually instantaneously, both for reading and for writing. 

If I have an idea that I would like to publicize, it suffices to write it down, save the document in HTML format on my server, and the text becomes immediately accessible to everyone in the world with an Internet connection. Unlike information in books, moreover, the HTML format allows different documents to be directly connected. Thus, I can comment on, or contribute to, other people’s ideas, while having both my comments and the original documents immediately available to the readers. The hyperlinks that connect web pages turn the web into a huge directed graph, consisting of nodes and links. Apart from the preference function, this is the same structure as the one we postulated for a mental map.
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4.1. Collaborative filtering

 The basic mechanism behind collaborative filtering systems is the following: 

1) A large group of people’s preferences are registered; 

2) Using a similarity metric, a subgroup of people is selected whose references are similar to the preferences of the person who seeks advice; 

3) A average of the preferences for that subgroup is calculated;

4) The resulting preference function is used to recommend options on which 

     the advice-seeker has expressed no personal opinion as yet.

 Typical similarity metrics are Pearson correlation coefficients between the users’ preference functions and vector distances or dot products.
                     The main bottleneck with existing collaborative filtering systems is the collection of preferences [4]. To be reliable, the system needs a very large number of people to express their preferences about a relatively large number of options. This requires quite a lot of effort from a lot of people. Since the system only becomes useful after a “critical mass” of opinions has been collected, people will not be very motivated to express detailed preferences in the beginning stages, when the system cannot yet help them. 

             One way to avoid this start-up problem is to collect preferences that are implicit in people’s actions [5]. For example, people who order books from an Internet bookshop implicitly express their preference for the books they buy over the books they do not buy. Customers who have bought the same book are likely to have similar preferences for other books as well. This principle is applied by the Amazon web bookshop, which for each book offers a list of related books that were bought by the same people. 

10

4.2. Co-occurrence matrices

Since the documents consulted by users with similar interests are likely to be in a number of respects similar themselves, collaborative filtering makes it possible to determine clusters of related documents. The principle is the same as with the books that are assumed to be related to a given book, because they have been bought by the same people. However, we are now shifting our attention from similarities between users to similarities between options, as expressed implicitly by the users’ preferences. This allows us to make abstraction of any specific users or groups in order to derive a collective preference function that describes associations between options, rather than merely evaluations of options. Thus, we can use this mechanism to develop a CMM. 

4.3. Using sequential selection data

The co-occurrence or collaborative filtering procedures to construct a collective preference function are intrinsically parallel: the link between two nodes is reinforced only because these nodes are simultaneously present in some selection. However, the basic activity on the web is sequential: a user will select one node after another. This sequential browsing pattern too can provide us with information about the users’ collective preferences. Moreover, since browsing is an on-going, real-time activity, this information can allow us to continuously update the CMM, thus supporting an interactive, feedback-based mechanism rather than the non-interactive “averaging” implied by co-occurrence. 

            To extract this sequential information, we may again consider ant trail laying as a source of inspiration. Each time an ant uses a trail to find food, the trail gets reinforced. Similarly, we might increase the weight of a link in the web by a 
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small, fixed amount each time a user selects this link. Frequently used links would thus get  a higher weight than less frequently used links. By renormalizing the link strengths after each operation, the links that did not get reinforced will lose strength relative to the others. This is similar to the evaporation of pheromones along an ant trail. Since a seemingly promising link can still lead to an uninteresting document, the system should ideally increase the weight of a link only in proportion to the user’s evaluation of the resulting document. If we want to avoid burdening the user by requesting an explicit rating, we can use implicit data, such as the time spent reading the document, which seems to correlate well with explicit evaluations. 

             There is a basic difference between the web and the terrain that ants explore to find food, though. An ant does not have to choose between existing trails: it can always deviate and start a wholly new trail. A web user, on the other hand, can only choose between the links that are available on the given web page. 

Therefore, the reinforcement of existing links by usage is intrinsically more constrained than the exploration used by ants.

             There are different ways to add more “creativity” to the procedure. An obvious method to introduce new links is to provide the user with a list of suggested links that are not coded in the page’s HTML content. In principle, we could let the user choose to go from the given page to any other page that exists somewhere in the Web. With hundreds of millions of Web pages, though, this method would be clearly impractical. We could also generate a small, random collection of web pages, and let the user choose between these. The probability that one of theses pages would be relevant to the user who has selected the given page seems very small, though. We can provide the user with a selection that is more 
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likely to be relevant by using co-occurrence or keyword similarity to find pages related to the present one. However, this will only change the relative weights of  links within the larger class of co-occurring or similar pages, and not create any really new links. 

4.4. Learning web algorithms

When a user follows a path a b c, the algorithm not only increases the weight of the direct links a b and b c (this is the “frequency” rule), but also of the indirect link a c (the “transitivity” rule), and of the inverse links b a, and c b (the “symmetry” rule). In that way, a number of links that were not initially available on the page get the chance to gather a non-zero weight. All these links are considered potentially relevant to the user. From those, the links with the highest weights are added to the web page as suggestions, so that the user can now select these links immediately. When a link thus becomes directly available, we may say that it has turned from “potential” to “actual”. 

             The transitivity rule opens up an unlimited realm of new links. Indeed, one or several increases in weight of a c may be sufficient to make the potential link actual. The user can now directly select a c, and from there perhaps c d.   This increases the strength of the potential link a d, which may in turn become actual, providing a starting point for an eventual further link a e, and so on. Eventually, an indefinitely extended path may thus be replaced by a single link a z. Of course, this assumes that a sufficient number of users effectively follow that path. Otherwise it will not be able to overcome the competition from paths chosen by other users, which will also increase their weights. 
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The underlying principle is that the paths that are most popular, i.e. followed most often, will eventually be replaced by direct links, thus minimizing the average number of links a user must follow in order to reach his or her preferred destination. 

                This basic mechanism is extended by the symmetry rule. When a user chooses a link a b, implying that there exists some association between the nodes a and b, we may assume that this also implies some association between b and a. Therefore, the reverse link b a gets a weight increase. This symmetry rule on its own is much more limited than transitivity, since it can only actualize a single new link for each existing link.

             However, the joint effect of symmetry and transitivity is much more powerful than that of any single rule. For example, consider two links a1 b, a2 b. The fact that a1 and a2 point to the same node seems to indicate that a1 and a2 have something in common, i.e. are related in some way. However, none of the rules will directly generate a link  between a1 and a2. Yet, the repeated selection of the link a2 b may actualize the link b a2 by symmetry. The repeated selection of the already existing link a1 b followed by this new link can then actualize the link a1 a2 through transitivity.  Similar scenarios can be conceived for different orientations or different combinations of the links. 

              A remaining issue is the relative importance of these three rules. In other words, how large should the increase in weight be for each of the rules? If we choose unity (1) to be the bonus given by the frequency rule, there are two remaining parameters or degrees of freedom: t is the bonus for transitivity, s for symmetry. Since the direct selection of a link by a user seems a more reliable indication of its usefulness than an indirect selection, we assume t < 1, s < 1. 
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 The actual values will determine the efficiency of the learning process. They play a role similar to the ants’ trail sensitivity higher values of t and s mean a higher probability for the creation of new links, but also a higher probability for the selection of irrelevant links.

4.5. Learning web applications

In order to test these algorithms in practice, this set up two experiments, one using all three rules, another using all rules except symmetry. We built a network consisting of 150 nodes, corresponding to the 150 most frequent nouns of the English language. All of the potential 149 149 links between nodes were given a small random weight to initialize the web. Every node would show the 10 strongest links, ordered according to their weights. The link weights would then evolve according to the above learning rules, with t = 0.5 and s = 0.3. 

                   We made the web available on the Internet, and invited volunteers to browse through it, selecting those links from a given node, which seemed somehow most related to it. For example, if the start node represented the noun “knowledge”, a user would choose a link to an associated word, such as “education” or “experience”, but not to a totally unrelated word, such as “face”. Of course, in the beginning of the experiment, there would be very few good associations available in the lists of 10 random words, and users might have to be satisfied with a rather weak association, such as “book”. However, when reaching the node “book”, they might be able to select there another association, such as “education”. Through transitivity, a new link to “education” might then appear in the node “knowledge”, displacing the weakest link in the list, while providing a much better association than the previously best one, “book”. 
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 The fact that it learns so quickly can be explained by a positive feedback mechanism similar to the one that enhances the ants’ trail network.  Indeed, as soon as a link has gathered a sufficient weight because of transitivity or symmetry, it becomes “actual” and can now be directly selected by the user. Such a direct selection boosts its weight, and makes it move up in the ordered list of suggested links. Since users consult lists from top to bottom, the higher the position of the link, the higher the probability that it will be selected by a following user and thus further increase its strength. However, the positive feedback is not so strong that if a new, much better link would appear at the end of the list, the users would ignore it. If the new last link is clearly better than the top link until then, it will be selected and starts to move up, until it finally reaches the top position.

                  In this small 150- node experiment, there was no division of labor: all users were equally likely to visit a particular node, and were equally competent to select a particular link. However, if a similar learning web system would be implemented on the Web as a whole, we should expect extensive specialization. 

A user who does not like sport is very unlikely to consult a website about baseball. Similarly, a user who does not understand anything about physics will not browse through a quantum mechanics site. The more a person is interested and expert in a domain, the more frequently he or she will use web documents about that domain. Thus, link weights in a large learning web will be learned primarily from the most competent users. Therefore, our learning web algorithms should not be expected to suppress controversial or eccentric preferences while merely promoting the “lowest common denominator”, as many people have suggested to us. “fringe” users will consult “Fringe” documents basically, and the links that the web learns from them will reflect the preferences of this fringe group, not the ones of the majority. Thus, the learning web algorithms preserve the diversity of perspectives that is essential 16

to true collective intelligence, while producing a much more complete and coherent tissue of links between related documents.

 4.6. Problem-solving in the CMM web

Both the co-occurrence algorithms and the learning web algorithms have the potential to transform the web into a true collective mental map, which continuously self-organizes and adapts to the changing preference of its users. The two mechanisms are complementary. Co-occurrence of links in existing web documents, possibly complemented by similarity between documents computed from the keywords they contain, seems a good basis to produce an initial list of weighted links for each node in the web. This list can then develop interactively according to something like the learning web algorithms. The question now is how we could most efficiently use the wealth of collective knowledge represented by the resulting distribution of links and weights. 

             For the individual user, the benefits would be obvious. Instead of being limited to the few links present in the document being consulted, a user would be able to choose from an extensive, but intelligently selected list of related documents, ordered by the probability that they would be relevant. Such a list of suggested links has already been implemented by the Alexa corporation and incorporated in the Netscape and Internet Explorer browsers. This list would continuously adapt, reflecting newly created documents as they become available. It would function like the collectively developed trail network that guides an individual ant in its search for food. This would make it much easier to find the documents the user is looking for. However, this assumes that the user already has a good idea of where to start looking. If one does not have any relevant document 
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to start with, one could use a traditional search engine to find documents that contain the  relevant keywords. These documents, through their learned links, could lead the user to other relevant documents, which do not necessarily contain the same keywords. However, users may still have to spend a lot of time browsing the web before they would find the documents that really answer their questions. 

            One way to speed up the process is to develop a software agent that browses the web instead of the user. The agent could be provided with a list of keywords that defines the problem and start with a selection of documents that contain those keywords. It would then explore further, linked documents in the order of their link strength. The importance it attaches to a newly found document would be a function of the incoming link strength and the degree to which the document matches the keywords. Since documents that match none of the keywords are most probably irrelevant, they should get overall preference zero. Documents that match the keywords partially but that are strongly linked to documents that do score high on the keyword match, on the other hand, are likely to be relevant.

18

CHAPTER 5

CONCLUSION


We have defined collective intelligence as collective problem-solving ability. Problem solving requires a mental map, which represents the different problem states, actions, and preferences. Collective problem solving therefore requires a collective mental map. Such a CMM is an external, shared memory, to which all members of the collective have some degree of read/write access. However, to efficiently support problem solving, a CMM must offer more than an edited collection of public notes. Cognitive limitations make it impossible for any individual(s) to fully control or oversee the development of a CMM. Therefore, we need a global, self-organizing mechanism. The development of pheromone trail networks by ants provided us with a paradigm for the emergence of a CMM from a

variety of local, individual contributions. Generalizing from this example, we suggested the following mechanisms for the development of a complex CMM: 

1) Superposition of several individual contributions, to average out fluctuations away from the optimum; 

2) Positive feedback between subsequent contributions, to amplify weak signals and accelerate overall development; 

3) Division of labor with overlap in the domains of expertise, to allow a diversity of specialized mental maps to be integrated into an encompassing CMM.

           We then set out to apply these mechanisms to the World-Wide Web. The web as a shared memory already has the node and link structure characteristic of a mental map, but lacks the preference weighting of links. 
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 We examined two complementary techniques to extract a collective preference function from the preferences that implicitly guide the web’s authors and users.               

           Collaborative filtering is a technique that assumes a “division-of-labor” differentiation between users, and that averages the preferences of a subgroup of similar individuals for the different options. However, by considering the co-occurrence of options in different user selections, it is possible to transform this collection of preference functions on nodes into a global preference function on links between options. This transformation simplifies the mathematical expressions, apparently without loss of information. Its usefulness still needs to be tested out in practice, though. 

           The complementary technique of learning web algorithms extracts the sequential link information from the on-going paths followed by users through web space. It thus directly uses the feedback mechanism to quickly blaze new trails, while indirectly supporting the division of labor mechanism. It has been successfully applied in a small-scale experiment, but needs to be tested further in more realistic web environments.

           Both techniques, on there own or together, would enrich the web with an extensive pattern of weighted links. This could be used either to suggest related links to a user, or to support a software agent that uses spreading activation to retrieve the pages that are most relevant to a user’s interests. In either case, it seems likely that such a CMM would greatly aid individuals or groups to find the solutions to their problems, by relying on the collective wisdom of all other users. 

           It seems that such a collective system would indeed be much more intelligent than its members, while still making full use of the individual intelligence of its content-providers and users. It could be further extended with 

techniques such as typed links and node clustering [3], discussion, workflow, 
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and market mechanisms. Perhaps the best metaphor for such a world wide, intelligent network would be the “global brain”. Although the first commercial applications of some of these techniques are already appearing, it is clear that we still need to do a lot of research before we can be certain that the proposed algorithms are ready for the task. There are many possible variations on the methods we discussed, and there are many other sources of collective knowledge to be mined. The best-combined method will likely be found by testing out a variety of approaches in a variety of circumstances. I hope that the present paper will inspire other researchers to take up this challenge and start experimenting with various algorithms to support collective intelligence.
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