www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

GRID COMPUTING

 ABSTRACT

Mankind is right in the middle of another evolutionary technological transition which once more will change the way we do things. And, you guessed right, it has to do with the Internet. It’s called "The Grid", which means the infrastructure for the Advanced Web, for computing, collaboration and communication.

Grid computing, most simply stated, is distributed computing taken to the next evolutionary level. The goal is to create the illusion of a simple yet large and powerful self managing virtual computer out of a large collection of connected heterogeneous systems sharing various combinations of resources.
 This paper aims to present the state-of-the-art concepts of Grid computing. A set of general principles, services and design criteria that can be followed in the Grid construction are given. One of the Grid application project Legion is taken up. We conclude with future trends in this yet to be conquered technology.

 INTRODUCTION

The popularity of the Internet as well as the availability of powerful computers and high-speed network technologies as low-cost commodity components is changing the way we use computers today. These technology opportunities have led to the possibility of using distributed computers as a single, unified computing resource, leading to what is popularly known as Grid computing.

 The term Grid is chosen as an analogy to a power Grid that provides consistent, pervasive, dependable, transparent access to electricity irrespective of its source. This new approach to network computing is known by several names, such as metacomputing, scalable computing, global computing, Internet computing, and more recently peer to peer (P2P) computing.

Grids enable the sharing, selection, and aggregation of a wide variety of resources including supercomputers, storage systems, data sources, and specialized devices that are geographically distributed and owned by different organizations for solving large-scale computational and data intensive problems in science, engineering, and commerce. Thus creating virtual organizations and enterprises as envisioned in as a temporary alliance of enterprises or organizations that come together to share resources and skills, core competencies, or resources in order to better respond to business opportunities or large-scale application processing requirements, and whose cooperation is supported by computer networks.

The concept of Grid computing started as a project to link geographically dispersed supercomputers, but now it has grown far beyond its original intent. The Grid infrastructure can benefit many applications, including collaborative engineering, data exploration, high-throughput computing, and distributed supercomputing.

[image: image1.png]Grid Information Service

:
h

Grid Resource roker

Resource rokos

¥ s

Grid Information Service

 Grid Computing: A Conceptual View

SERVICES OFFERED BY GRID:

A Grid can be viewed as a seamless, integrated computational and collaborative environment and a high-level view of activities within the Grid as shown in Figure. The users interact with the Grid resource broker to solve problems, which in turn performs resource discovery, scheduling, and the processing of application jobs on the distributed Grid resources. From the end-user point of view, Grids can be used to provide the following types of services.

· Computational services: These are concerned with providing secure services for executing application jobs on distributed computational resources individually or collectively. Resources brokers provide the services for collective use of distributed resources. A Grid providing computational services is often called a computational Grid. Some examples of computational Grids are: NASA IPG, the World Wide Grid, and the NSF TeraGrid.

· Data services: These are concerned with proving secure access to distributed datasets and their management. To provide a scalable storage and access to the data sets, they may be replicated, catalogued, and even different datasets stored in different locations to create an illusion of mass storage. The processing of datasets is carried out using computational Grid services and such a combination is commonly called data Grids. Sample applications that need such services for management, sharing, and processing of large datasets are high-energy physics and accessing distributed chemical databases for drug design.

· Application services: These are concerned with application management and providing access to remote software and libraries transparently. The emerging technologies such as Web services are expected to play a leading role in defining application services. They build on computational and data services provided by the Grid. An example system that can be used to develop such services is NetSolve.

· Information services: These are concerned with the extraction and presentation of data with meaning by using the services of computational, data, and/or application services. The low-level details handled by this are the way that information is represented, stored, accessed, shared, and maintained. Given its key role in many scientific endeavors, the Web is the obvious point of departure for this level.

· Knowledge services: These are concerned with the way that knowledge is acquired, used, retrieved, published, and maintained to assist users in achieving their particular goals and objectives. Knowledge is understood as information applied to achieve a goal, solve a problem, or execute a decision. An example of this is data mining for automatically building a new knowledge.

 GRID CONSTRUCTION: GENERAL PRINCIPLES

This section briefly highlights some of the general principles that underlie the construction of the Grid. In particular, the idealized design features that are required by a Grid to provide users with a seamless computing environment are discussed. Four main aspects characterize a Grid.

· Multiple administrative domains and autonomy: Grid resources are geographically distributed across multiple administrative domains and owned by different organizations. The autonomy of resource owners needs to be honored along with their local resource management and usage policies.

· Heterogeneity: A Grid involves a multiplicity of resources that are heterogeneous in nature and will encompass a vast range of technologies.

· Scalability: A Grid might grow from a few integrated resources to millions. This raises the problem of potential performance degradation as the size of Grids increases. Consequently, applications that require a large number of geographically located resources must be designed to be latency and bandwidth tolerant.

· Dynamicity or adaptability: In a Grid, resource failure is the rule rather than the exception. In fact, with so many resources in a Grid, the probability of some resource failing is high. Resource managers or applications must tailor their behavior dynamically and use the available resources and services efficiently and effectively.

The steps necessary to realize a Grid include:

· The integration of individual software and hardware components into a combined networked resource (e.g. a single system image cluster);

· The deployment of:

· low-level middleware to provide a secure and transparent access

 to resources;

· user-level middleware and tools for application development and the

 aggregation of distributed resources;

· The development and optimization of distributed applications to take advantage of the available resources and infrastructure.

[image: image2.png]APPLICATIONS

Applications and Portals

Collaboration_| [_Prob. Solving Eny. "Web cnabled Apps

USERLE EL
MIDDEEWARE

Development Environments and Tools

Langusges/Compilers | [Librwies | [Debuggers | [Monitors ‘Webtools

Resource Management, Selection, and Aggregation (BROKERS)

Distributed Resources Coupling Sersices

Information Data Process ‘Trading

SECURITY LAYER

Local Resource Managers EA RIC

Operating, Systems | [Queuing Systems | [Librries & App Kemels Intemet Protocols

Networked Resources across Organizations

Storage Systems |_Data Sources

 Grid Architecture and Components

The components that are necessary to form a Grid (shown in Figure) are as follows.

· Grid fabric: This consists of all the globally distributed resources that are accessible from anywhere on the Internet. These resources could be computers (such as PCs or Symmetric Multi-Processors) running a variety of operating systems (such as UNIX or Windows), storage devices, databases, and special scientific instruments such as a radio telescope or particular heat sensor.

· Core Grid middleware: This offers core services such as remote process management, co-allocation of resources, storage access, information registration and discovery, security, and aspects of Quality of Service (QoS) such as resource reservation and trading.

· User-level Grid middleware: This includes application development environments, programming tools and resource brokers for managing resources and scheduling application tasks for execution on global resources.

· Grid applications and portals: Grid applications are typically developed using Grid-enabled languages and utilities such as HPC++ or MPI. An example application, such as parameter simulation or a grand-challenge problem, would require computational power, access to remote data sets, and may need to interact with scientific instruments. Grid portals offer Web-enabled application services, where users can submit and collect results for their jobs on remote resources through the Web.

Legion An Example Grid Project:

There are many international Grid projects worldwide, which are hierarchically categorized as integrated Grid systems, core middleware, user-level middleware, and applications/application driven efforts. Now we look briefly about a project which is an object-based metasystem developed at the University of Virginia.

Legion provides the software infrastructure so that a system of heterogeneous, geographically distributed, high-performance machines can interact seamlessly. Legion attempts to provide users, at their workstations, with a single, coherent, virtual machine.

In the Legion system the following apply.

· Everything is an object: Objects represent all hardware and software components. Each object is an active process that responds to method invocations from other objects within the system. Legion defines an API for object interaction, but not the programming language or communication protocol.

· Classes manage their instances: Every Legion object is defined and managed by its own active class object. Class objects are given system-level capabilities; they can create new instances, schedule them for execution, activate or deactivate an object, as well as provide state information to client objects.

· Users can define their own classes: As in other object-oriented systems users can override or redefine the functionality of a class. This feature allows functionality to be added or removed to meet a user’s needs.

Legion core objects support the basic services needed by the metasystem. The Legion system supports the following set of core object types.

· Classes and metaclasses: Classes can be considered managers and policy makers. Metaclasses are classes of classes.

· Host objects: Host objects are abstractions of processing resources; they may represent a single processor or multiple hosts and processors.

· Vault objects: Vault objects represent persistent storage, but only for the purpose of maintaining the state of Object Persistent Representation (OPR).

· Implementation objects and caches: Implementation objects hide the storage details of object implementations and can be thought of as equivalent to executable files in UNIX. Implementation cache objects provide objects with a cache of frequently used data.

· Binding agents: A binding agent maps object IDs to physical addresses. Binding agents can cache bindings and organize themselves into hierarchies and software combining trees.

· Context objects and context spaces: Context objects map context names to Legion object IDs, allowing users to name objects with arbitrary-length string names. Context spaces consist of directed graphs of context objects that name and organize information.
CONCLUSION:

The Grid is analogous to the electricity (power) Grid and the vision are to offer (almost) dependable, consistent, pervasive, and inexpensive access to resources irrespective of their location for physical existence and their location for access.

There are currently a large number of projects and a diverse range of new and emerging Grid developmental approaches being pursued. These systems range from Grid frameworks to application testbeds, and from collaborative environments to batch submission mechanisms. It is difficult to predict the future in a field such as information technology where the technological advances are moving very rapidly. Hence, it is not an easy task to forecast what will become the ‘dominant’ Grid approach. Windows of opportunity for ideas and products seem to open and close in

the ‘blink of an eye’. However, some trends are evident. One of those is growing interest in the use of Java and Web services for network computing.

BIBILIOGRAPHY

1. Foster I, Kesselman C The Grid: Blueprint for a Future Computing Infrastructure. Morgan Kaufmann: San Francisco, CA, 1999.

2. www.cs.mu.oz.au
3. www.gridbus.org
www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

