Intermediate

Project report on

OPTIMAL BLENDING OF POLANGA OIL WITH DIESEL IN CI ENGINE USING ARTIFICIAL NEURAL NETWORKS.

	SL NO
	TOPIC
	PAGENO

	1
	Project objective
	01

	2
	Strategic steps for implementation
	02

	3
	Steps executed
	02

	4
	Literature study and data collection
	03-04

	5
	Determination of suitable soft computing method
	05-19

	6
	Suitable algorithm based on ANN
	19-23

	7
	Coding using MATLAB
	23-34

	8
	Laboratory testing for the parameters in CI engine
	34

	9
	Steps executed in forthcoming semester
	35

	10
	conclusion
	35

	11
	Future works
	35

contents

ABSTRACT
 This project deals with optimization of blending percentage of polanga oil with mineral diesel used in a conventional single cylinder compression ignition diesel engine. The various performance parameters for the engine are chosen to be load and speed as input & BHP, SFC, O2, NOx, CO emissions as the output. The various blending are 0%, 10%, 20%, 30%, 40% & 50% of polanga with an energy wise substitution of mineral diesel. With a variable load & speed combination the corresponding SFC, BHP & emissions of the above three gases in exhaust are to be experimentally found out. The data so obtained is confined to a finite number of observations spread over discrete points. For better understanding of performance the parameters must be obtained for all possible points in the operating range. For this artificial neural network, a soft computing method is to be used. The input parameters to the network are chosen to be load, speed & %blending. Output parameters SFC, BHP & emission of O2, NOx & CO etc are to be predicted at all possible points by the ANN model. Using some of the experimental data for training, an ANN model based on standard back-propagation algorithm for the engine is to be developed. Then, the performance of the ANN predictions are to be measured by comparing the predictions with the experimental results which are not used in the training process. The acceptable error in the process is confined within (3-6) %. From these experimental & predicted values an optimized blending is to be determined on the basis of maximum load with minimum SFC & emissions. The nature of the proposed ANN model is Multilayer perceptron, sigmoid activation function, LMSE with stochastic gradient descent error minimization. Thus the study will show an alternative to classical modeling technique of engine and provide an optimized blending for polanga oil in diesel engine.
Key words- ANN, back propagation algorithm, multi layer perceptron, sigmoid activation function, LMSE, Stochastic gradient descent error minimization.
1. Project objective:
 In these days of energy crisis and global warming renewable energy recourses in general and alternate fuel in specific are gaining momentum worldwide. Although alternate fuels are a viable option but they posses some constraints even more severe than mineral diesel. These fuels are costly to convert to biodiesel form; posses lower energy density, substantially variable self ignition property & non compatible knocking properties. Environmentally also a 100% biodiesel may be less eco-friendly than 100% mineral diesel. More ever the magnitude of production of biodiesel is much inferior as compared to the actual consumption of petroleum products. Hence, it is always recommended to find suitable blending of biodiesel in the conventional mineral diesel so that we can obtain same operational parameters as that of mineral diesel which will be more eco-friendly, economic & reduce the burden on mineral diesel. Again the source of biodiesel is quite diverse.
01

Starting from Jatropha to rape seed and from sugarcane to alcohol a variety of bio-fuels can be converted to biodiesel. Our project deals with a special fuel extensively found in the costal belt of eastern & western India locally known as polanga. The energy density of this seed is too high. Traditionally this has been used as a lightning fuel for years. Our project evaluates the optimal blending of this fuel in mineral diesel so as to operate at maximum load with minimum SFC, maximum BHP & minimum emissions of gases like O2, NOx & CO etc. Initially a number of experiments are performed with a variable load & speed combination to obtain corresponding values of other parameters in various blends. Now we can presume that in an engine testing the input & output parameters are nonlinearly related to each other. Depending upon this presumption we can go for a neural network system with the number of nodes equal to the number of input parameters to the engine & the output nodes as the number of output parameters from the engine. The number of hidden nodes is decided by plotting graphs between fractional variance & number of neurons. The maxima point indicates the number of optimal neurons for the system. The nature of the ANN model is a multilayer perceptron, sigmoid activation function, LMSE with stochastic gradient descent error minimization.

After training the system the complete performance characteristics are forecasted with a reasonable error. From both graphical & mathematical analysis of various blending an optimal blending is chosen.
2. Strategic steps for implementation:

· Extensive study of literature in soft computing & study of previous research works in neural networks.

· Determination of a suitable soft computing method to model the CI engine with pure conventional fuel & blending.
· Develop an algorithm capable of modeling a non-linear system based on the soft computing method chosen in step one.
· Coding of the algorithm developed by a computer language (In Matlab).

· A series of testing, determining the various parameters on the given CI engine to be modeled.

· Training of the neural network using the data obtained from the experiment.

· A mathematical & graphical analysis to determine an optimized blending from the trained network.
3. STEPS EXECUTED:

 The following steps have been taken in order for the sound execution of the project.
02
4.1 LITERATURE STUDY & DATA COLLECTION:

4.1.1 Previous research:

· Due to the capability of the ANNs in solving non-linear problems, they have been the centre of attraction since the late 80’s. Krijnsen et al. (1999) proposed the application of ANN as a precise tool to predict the engine’s NOx emission instead of using expensive NOx analyzers and computer models. Data were collected from a transient operating diesel engine and part of the data was used to train the network, while the other part was used to test the NOx emission prediction. A single-layer perceptron network with the inputs of engine speed, rack position, intake air pressure, intake air temperature and 644 Obodeh, O and Ajuwa, C. I their rates of change were chosen for the study. The average absolute deviation between the predicted and measured NOx emission was 6.7%. The work proved that the ANN is an accurate tool to predict the automotive NOx.

· Clark et al. (2002), in an effort to predict NOx emissions for sixteen different chassis test schedules using three different methods, showed that the ANN models trained by axle torque and axle speed as input variables were able to predict NOx emissions with 5% error.

· Traver et al. (1999) investigated the possibility of using in-cylinder, pressure-based variables to predict gaseous exhaust emissions levels from a Navistar T444 direct-injection diesel engine through the use of ANN. They concluded that NOx and CO2 responded very well to the method. NOx in particular gave good results, because its production is a direct result of high temperature in the cylinder and that associates directly with high peak pressure, which was they main input.

· Yuanwang et al. (2002) examined the application of a backpropagation neural network to predict exhaust emissions including unburned Hydrocarbon (HC), Carbonmonoxide (CO), particulate matter (PM) and NOx, cetane number was selected as an input and the effects of cetane improver and nitrogen were also analyzed.

· Desantes et al. (2002) suggested a mathematical model to correlate NOx and PM as a function of engine operating parameters and then simultaneously optimized a number of operating parameters to lower emissions. They implemented a wide range of inputs to their ANN including engine speed, fuel mass, air mass, fuel injection pressure, start of injcetion, exhaust gas recirculation (EGR) percentage and nozzle diameter to predict NOx, PM and BSFC (brake specific fuel consumption) for a single-cylinder direct injection engine turbocharged and aftercooled with common rail injection. They used a multi-layer perceptron with a backpropagation learning algorithm and they concluded that EGR rate, fuel mass and start of injection are the parameters for NOx, PM and BSFC.
03

· They claimed that their suggested objective function performed successfully in the task of minimizing BSFC and maintaining the emission values below the required level.
4.1.2 Journals/proceedings/books depicting neural networks:
1. www.elsevier.com/locate/apthermeng ,Applied Thermal Engineering 27 (2007) 46–54.
· Topic- “Performance and exhaust emissions of a gasoline engine using artiﬁcial neural network”.

· Author- Cenk Sayin a, H. Metin Ertunc b, Murat Hosoz c,Ibrahim Kilicaslan c, Mustafa Canakci c.

 a -Department of Mechanical Education, Marmara University, 34722 Istanbul, Turkey

b-Department of Mechatronics Engineering, Kocaeli University, 41040 Kocaeli, Turkey

c-Department of Mechanical Education, Kocaeli University, 41380 Kocaeli, Turkey
2. European Journal of Scientific Research ,ISSN 1450-216X Vol.33 No.4 (2009), pp.642-653 © EuroJournals Publishing, Inc. 2009 http://www.eurojournals.com/ejsr.htm.

 Topic- “Evaluation of Artificial Neural Network Performance in

Predicting Diesel Engine NOx Emissions”.

 Author-

· Obodeh, O Mechanical Engineering Department ,Ambrose Alli University, Ekpoma ,Edo State, Nigeria.

 E-mail: engobodeh@yahoo.com

· Ajuwa, C. I ,Mechanical Engineering Department ,Ambrose Alli University, Ekpoma ,Edo State, Nigeria.
3. Engineering letters 13.3, EL_13_3_14(Advance online publications:4 November 2006).
 Topic- “Genetic Algorithms and Artificial Neural Networks in Microarray Data Analysis:a Distributed Approach”

 Author- “Vitoantonio Bevilacqua, Giuseppe Mastronardi, Filippo Menolascina, Angelo Paradiso and Stefania Tommasi”

4. www.sciencedirect.com.

5. www.howstuffworks.com.

6. www.mathworks.com
7. A text book on “ Neural networks, fuzzy logic and genetic algorithm” by S Rajasekaran & G A Vijayalakshmi”, ISBN-978-81-203-2186-1.

8. A text book on “ Neuro-fuzzy and soft-computing” by J S R Jang,C T Sun & E Mizutani, vol 4, PHI pvt Ltd, New Delhi.
04
4.2 DETERMINATION OF A SUITABLE SOFT COMPUTING MODEL:

 Soft computing is a type of computing method which is tolerant of imprecision, uncertainty, partial truth, and approximation. In effect, the role model for soft computing is the human mind where as hard computing, i.e., conventional computing requires a precisely stated analytical model and often a lot of computation time.

 The guiding principle of soft computing is to exploit the tolerance for imprecision, uncertainty, partial truth, and approximation to achieve tractability, robustness and low solution cost.

4.2.1 Implications of Soft Computing:
• Soft computing employs NN, GA, FL etc, in a complementary rather than a competitive way.

• One example of a particularly effective combination is what has come to be known as "neuro-fuzzy systems.”

• Such systems are becoming increasingly visible as consumer products ranging from air conditioners and washing machines to photocopiers, camcorders and many industrial applications.

4.2.2 Current Applications using soft computing:
· Application of soft computing to handwriting recognition.

· Application of soft computing to automotive systems and manufacturing.

· Application of soft computing to image processing and data compression.

· Application of soft computing to architecture.

· Application of soft computing to decision-support systems.

· Application of soft computing to power systems Neuro-fuzzy systems & fuzzy logic control.
4.2.3 Basic soft computing methods:
	METHODOLOGY
	STRENGTH

	Neural Network
	Learning & adaptation

	Fuzzy set theory
	Knowledge representation via fuzzy if then rules

	Genetic algorithm
	Systematic random search

	Conventional artificial intelligence
	Symbolic manipulation

05
 Out of all these methods neural networks posses the capability of learning and adaptation. We have chosen this due to its following strengths.
1. Capability to model non-linear functions.

2. Ability to learn and adapt accordingly.

3. To develop a steady learning rate.

4. High error optimization.

5. Adapt to unknown situations
6. Powerful, it can model complex functions.
7. Ease of use, learns by example, and very little user domain‐specific expertise needed.
 Due to all these above points we have chosen artificial neural networks as our desired soft computing method to model the CI engine.

4.2.4 What is ANN?
 An artificial neural network (ANN) is either a hardware implementation or a computer program which strives to simulate the information processing capabilities of its biological exemplar. ANNs are typically composed of a great number of interconnected artificial neurons. The artificial neurons are simplified models of their biological counterparts.

 To understand ANN let’s understand how our brain works?
4.2.5 How human brain works?
· The Brain is a massively parallel information processing system.

· Our brains are a huge network of processing elements.
· A typical brain contains a network of 10 billion neurons.
· A neuron is connected to other neurons through about 10,000 synapses
· A neuron receives input from other neurons. Inputs are combined.

· Once input exceeds a critical level, the neuron discharges a spike ‐ an electrical pulse that travels from the body, down the axon, to the next neuron(s)
· The axon endings almost touch the dendrites or cell body of the next neuron.
· Transmission of an electrical signal from one neuron to the next is effected by neurotransmitters.
· Neurotransmitters are chemicals which are released from the first neuron and which bind to the second.
· This link is called a synapse. The strength of the signal that reaches the next neuron depends on factors such as the amount of neurotransmitter available.
06
[image: image1.png]
Fig 1.1

4.2.6 Biological ~ Artificial neuron:

[image: image2.png]
Fig 1.2
4.2.7 Artificial neural networks:
 An ANN is composed of processing elements called or perceptrons, organized in different ways to form the network’s structure.
 Processing elements: An ANN consists of perceptrons. Each of the perceptrons receives inputs, processes inputs and delivers a single output.
[image: image3.png]
Fig 1.3

07

 The input can be raw input data or the output of other perceptrons. The output can be the final result or it can be inputs to other perceptrons. Each ANN is composed of a collection of perceptrons grouped in layers.
[image: image4.png]
Fig 1.4

 Note: the three layers: input, intermediate (called the hidden layer) and output. Several hidden layers can be placed between the input and output layers.

4.2.8 Appropriate problems for neural networks:

· ANN learning is well-suited to problems in which the training data corresponds to noisy, complex sensor data. It is also applicable to problems for which functions are nonlinear.
· The back propagation (BP) algorithm is the most commonly used ANN learning technique. It is appropriate for problems with the characteristics:
· Input is high-dimensional discrete or real-valued (e.g. raw sensor input)
· Output is discrete or real valued
· Output is a vector of values
· Possibly noisy data
· Long training times accepted
· Fast evaluation of the learned function required.
· Not important for humans to understand the weights
08
· Examples:
· Speech phoneme recognition.
· Image classification.
· Financial prediction.

· Engine modeling.
4.2.9 Perceptrons:
· A perceptron takes a vector of real-valued inputs, calculates a linear combination of these inputs, then outputs
· 1 if the result is greater than some threshold
· –1 otherwise.
· Given real-valued inputs x1 through xn, the output o(x1, …, xn) computed by the perceptron is

o(x1, …, xn) = 1
if w0 + w1x1 + … + wnxn > 0

 -1
otherwise

where wi is a real-valued constant, or weight.

· Notice the quantify (-w0) is a threshold that the weighted combination of inputs w1x1 + … + wnxn must surpass in order for perceptron to output a 1.
· To simplify notation, we imagine an additional constant input x0 = 1, allowing us to write the above inequality as
 (ni=0 wixi >0

· Learning a perceptron involves choosing values for the weights w0, w1,…, wn.
09
[image: image5.png]
 Here the outlets of the summation of nodes pass through an activation function to produce the output in forward pass. There are several types of activation functions available in neural networks.
[image: image28.emf]

Step function

Sign function

+1

-1

0

+1

-1

0 X

Y

X

Y

+1

-1

0 X

Y

Sigmoid function

+1

-1

0 X

Y

Linear function

0 if ,0

0 if ,1

X

X

Y

step

0 if ,1

0 if ,1

X

X

Y

sign

X

sigmoid

e

Y

1

1

XY

linear

Fig 1.5
 Out of these, our system needs a non-linear activation function to model. Hence, the sigmoid function is chosen for this purpose.
· One way to learn an acceptable weight vector is to begin with random weights, then iteratively apply the perceptron to each training example, modifying the perceptron weights whenever it misclassifies an example. This process is repeated, iterating through the training examples as many as times needed until the perceptron classifies all training examples correctly.
· Weights are modified at each step according to the perceptron training rule, which revises the weight wi associated with input xi according to the rule.
 wi (wi + (wi , where
(wi = ((t – o) xi
· Here:
 t is target output value for the current training example
 o is perceptron output

 (is small constant (e.g., 0.1) called learning rate
· One way to learn an acceptable weight vector is to begin with random weights, then iteratively apply the perceptron to each training example, modifying the perceptron weights whenever it misclassifies an example. This process is repeated, iterating through the training examples as many as times needed until the perceptron classifies all training examples correctly.
10
· Weights are modified at each step according to the perceptron training rule, which revises the weight wi associated with input xi according to the rule.
 wi (wi + (wi
 where
(wi = ((t – o) xi
· Here:
 t is target output value for the current training example
 o is perceptron output

 (is small constant (e.g., 0.1) called learning rate
[image: image6.png]
Fig 1.6

4.2.9.1 Gradient descent & delta rule.
· Although the perceptron rule finds a successful weight vector when the training examples are linearly separable, it can fail to converge if the examples are not linearly separable. A second training rule, called the delta rule, is designed to overcome this difficulty.
· The key idea of delta rule: to use gradient descent to search the space of possible weight vector to find the weights that best fit the training examples. This rule is important because it provides the basis for the back propagation algorithm, which can learn networks with many interconnected units.
· The delta training rule: considering the task of training an un-thresholded perceptron, that is a linear unit, for which the output o is given by:
 o = w0 + w1x1 + ··· + wnxn

(1)

· Thus, a linear unit corresponds to the first stage of a perceptron, without the threshold.
· In order to derive a weight learning rule for linear units, let specify a measure for the training error of a weight vector, relative to the training examples. The Training Error can be computed as the following squared error.

11
 [image: image7.png][image: image8.png]
 where D is set of training examples, td is the target output for the training example d and od is the output of the linear unit for the training example d.Here we characterize E as a function of weight vector because the linear unit output O depends on this weight vector.
4.2.9.2 Hypothesis space:
· To understand the gradient descent algorithm, it is helpful to visualize the entire space of possible weight vectors and their associated E values, as illustrated.
· Here the axes wo,w1 represents possible values for the two weights of a simple linear unit. The wo,w1 plane represents the entire hypothesis space.
· The vertical axis indicates the error E relative to some fixed set of training examples. The error surface shown in the figure summarizes the desirability of every weight vector in the hypothesis space.
· For linear units, this error surface must be parabolic with a single global minimum. And we desire a weight vector with this minimum.
[image: image9.png]
Fig 1.7

 How can we calculate the direction of steepest descent along the error surface? This direction can be found by computing the derivative of E w.r.t. each component of the vector w.

4.2.9.3 Derivation of gradient descent rule:

· This vector derivative is called the gradient of E with respect to the vector <w0,…,wn>, written (E .
12
 [image: image10.png][image: image11.png]
Notice: (E is itself a vector, whose components are the partial derivatives of E with respect to each of the wi. When interpreted as a vector in weight space, the gradient specifies the direction that produces the steepest increase in E. The negative of this vector therefore gives the direction of steepest decrease.

 Since the gradient specifies the direction of steepest increase of E, the training rule for gradient descent is

w (w + (w

[image: image12.png] [image: image13.png]
· Here (is a positive constant called the learning rate, which determines the step size in the gradient descent search. The negative sign is present because we want to move the weight vector in the direction that decreases E. This training rule can also be written in its component form

wi (wi + (wi where

[image: image14.png][image: image15.png]
Which makes it clear that steepest descent is achieved by altering each component wi of weight vector in proportion to (E/(wi. The vector of (E/(wi derivatives that form the gradient can be obtained by differentiating E from Equation (2), as

[image: image16.png][image: image17.png]
13

 where xid denotes the single input component xi for the training example d. We now have an equation that gives (E/(wi in terms of the linear unit inputs xid, output od and the target value td associated with the training example. Substituting Equation (6) into Equation (5) yields the weight update rule for gradient descent.

[image: image29.emf][image: image18.png]
· The gradient descent algorithm for training linear units is as follows: Pick an initial random weight vector. Apply the linear unit to all training examples, them compute (wi for each weight according to Equation (7). Update each weight wi by adding (wi , them repeat the process. The algorithm is given in Figure 6.
· Because the error surface contains only a single global minimum, this algorithm will converge to a weight vector with minimum error, regardless of whether the training examples are linearly separable, given a sufficiently small (is used.
· If (is too large, the gradient descent search runs the risk of overstepping the minimum in the error surface rather than settling into it. For this reason, one common modification to the algorithm is to gradually reduce the value of (as the number of gradient descent steps grows.
4.2.9.4 Gradient descent training rule:
[image: image19.png]
14

4.2.9.5 Stochastic approximation to gradient descent:
· The key practical difficulties in applying gradient descent are:
· Converging to a local minimum can sometimes be quite slow (i.e., it can require many thousands of steps).
· If there are multiple local minima in the error surface, then there is no guarantee that the procedure will find the global minimum.
· One common variation on gradient descent intended to alleviate these difficulties is called incremental gradient descent (or stochastic gradient descent). The key differences between standard gradient descent and stochastic gradient descent are:
· In standard gradient descent, the error is summed over all examples before upgrading weights, whereas in stochastic gradient descent weights are updated upon examining each training example.
· The modified training rule is like the training example we update the weight according to
 (wi = ((t – o) xi

(10)

· Summing over multiple examples in standard gradient descent requires more computation per weight update step. On the other hand, because it uses the true gradient, standard gradient descent is often used with a larger step size per weight update than stochastic gradient descent.
[image: image20.png]
· Stochastic gradient descent (i.e. incremental mode) can sometimes avoid falling into local minima because it uses the various gradient of E rather than overall gradient of E to guide its search.
15
· Both stochastic and standard gradient descent methods are commonly used in practice.
Summary

· Perceptron training rule
· Perfectly classifies training data
· Converge, provided the training examples are linearly separable
· Delta Rule using gradient descent
· Converge asymptotically to minimum error hypothesis
· Converge regardless of whether training data are linearly separable
4.2.9.6 Multilayer networks
· Single perceptrons can only express linear decision surfaces. In contrast, the kind of multilayer networks learned by the back propagation algorithm are capaple of expressing a rich variety of nonlinear decision surfaces.
· This section discusses how to learn such multilayer networks using a gradient descent algorithm similar to that discussed in the previous section.
A Differentiable Threshold Unit

· What type of unit as the basis for multilayer networks?
(Perceptron : not differentiable -> can’t use gradient descent

(Linear Unit : multi-layers of linear units -> still produce only linear function

(Sigmoid Unit : smoothed, differentiable threshold function

· Like the perceptron, the sigmoid unit first computes a linear combination of its inputs, then applies a threshold to the result. In the case of sigmoid unit, however, the threshold output is a continuous function of its input.
· The sigmoid function ((x) is also called the logistic function.
· Interesting property:
[image: image21.png]
Output ranges between 0 and 1, increasing monotonically with its input.

 We can derive gradient decent rules to train one sigmoid unit Multilayer networks of sigmoid units (Back propagation
16
4.2.9.7 Back propagation algorithm:

· The BP algorithm learns the weights for a multilayer network, given a network with a fixed set of units and interconnections. It employs a gradient descent to attempt to minimize the squared error between the network output values and the target values for these outputs.
· Because we are considering networks with multiple output units rather than single units as before, we begin by redefining E to sum the errors over all of the network output units
· E(w) = ½ (((tkd – okd)2

(13)

 d (D k(outputs

where outputs is the set of output units in the network, and tkd and okd are the target and output values associated with the kth output unit and training example d.

· The BP algorithm is presented in Figure 8. The algorithm applies to layered feedforward networks containing 2 layers of sigmoid units, with units at each layer connected to all units from the preceding layer.
· This is an incremental gradient descent version of Backpropagation.
· The notation is as follows:
· xij denotes the input from node i to unit j, and wij denotes the corresponding weight.
· (n denotes the error term associated with unit n. It plays a role analogous to the quantity (t – o) in our earlier discussion of the delta training rule.
· In the BP algorithm, step1 propagates the input forward through the network. And the steps 2, 3 and 4 propagate the errors backward through the network.

· The main loop of BP repeatedly iterates over the training examples. For each training example, it applies the ANN to the example, calculates the error of the network output for this example, computes the gradient with respect to the error on the example, then updates all weights in the network. This gradient descent step is iterated until ANN performs acceptably well.

17
[image: image22.png]
· A variety of termination conditions can be used to halt the procedure.
· One may choose to halt after a fixed number of iterations through the loop, or
· Once the error on the training examples falls below some threshold, or
· Once the error on a separate validation set of examples meets some criteria.
4.2.9.8 Adding momentum:
· Because BP is a widely used algorithm, many variations have been developed. The most common is to alter the weight-update rule in Step 4 in the algorithm by making the weight update on the nth iteration depend partially on the update that occurred during the (n -1)th iteration, as follows:
 [image: image23.png]
· Here (wi,j(n) is the weight update performed during the n-th iteration through the main loop of the algorithm.

- n-th iteration update depend on (n-1)th iteration
18
- (: constant between 0 and 1 is called the momentum.
· Role of momentum term:

 - keep the ball rolling through small local minima in the error surface.

 - Gradually increase the step size of the search in regions where the gradient is unchanging, thereby speeding convergence.

4.2.9.9 Remarks on back propagation:

· Convergence and Local Minima
· Gradient descent to some local minimum
· Perhaps not global minimum...
· Heuristics to alleviate the problem of local minima
· Add momentum
· Use stochastic gradient descent rather than true gradient descent.
· Train multiple nets with different initial weights using the same data.
4.3 DEVELOPMENT OF A SUITABLE ALGORITHM BASED ON ANN:
 With all above concepts the next step is to develop a flexible algorithm or pseudo code so as to prepare a mathematical model. After step one we need a finite number of parameters as input & output. The model we have is based on stochastic gradient descent, multilayer perceptron, least mean square error estimation & back propagation.
 For better understanding we assumed 2 inputs & 2 outputs with a single hidden layer. The steps for the algorithm are described below.
Step 1: Assume 2 inputs given by [I] 2X1
Step 2: Assume the no. of neurons in the hidden layer to lie between 3(In actual practice we obtain it by plotting a graph between fractional variance & number of neurons).
19

Step 3: [w] represents the weight of synapses connecting input neurons and hidden neurons and [v] represent the weight of synapses connecting hidden neurons and output neurons. Initialize the weights to small random values usually from -1 to 1

[image: image30.wmf]

Step function

Sign function

+1

-

1

0

+1

-

1

0

X

Y

X

Y

+1

-

1

0

X

Y

Sigmoid function

+1

-

1

0

X

Y

Linear function

î

í

ì

<

³

=

0

if

,

0

0

if

,

1

X

X

Y

step

î

í

ì

<

-

³

+

=

0

if

,

1

0

if

,

1

X

X

Y

sign

X

sigmoid

e

Y

-

+

=

1

1

X

Y

linear

=

[image: image31.png]
 [w0] = w1 w2 w3
 w4 w5 w0 2x3

 v1 v2
 [V0]= v3 v4
 v5 v6 3x2
The α value is taken as 1

 [∆V]0 = [∆W]0 = 0

Step 4: The output of input layer is the input of next layer

 [Oi]2x1 = [I]2x1
Step 5: Input of hidden layer is obtained by multiplying corresponding synapses.

 [Ih]3x1 = [W]2x3 X [Oi]2x1
Step 6: The output of hidden layer units obtained by sigmoidal function.

 OH = [image: image25.png]

3x1
Step 7: The Input to the output layer is obtained by multiplying corresponding weights

 [I0]2x1 = [V]T3x2 X [OH]3x1
Step 8: The output of the output layer units can be obtained by sigmoidal function
20

 [Oo]2x1 = [image: image27.png]

This is the network output.
Step 9: Calculate the error

 Difference between the network output and the desire output as per the jth training set

 Ep =√ (Tj -Ooj) 2 ∕ n

Step 10: Find [d]

 (Tk - Ook)(Ook) (1- Ook)
 [d]=
.
 2x1
Step 11: Find [Y] matrix as

 [Y]3x2 = [OH]3x1 X [d]T1x2
Step 12: Find

 [∆V]t+1 = α[∆V]t2x3 + n[Y]3x2
Step 13: Find

 [e]3x1 = [V]3x2[d]2x1

21

.

.

 [d*] = ei(OHi)(1-OHi)

. 3x1

Find matrix [X] as

 [X] = [OI]2x1 [dt]T1x3
 = [II]2x1 [d*]T1x3
Step 14:

 Find [∆W]t+1 = α[∆V]T2x3 + n[X]2x3
Step 15:

 [V]t+1 = [V]t + [∆V]t+1
 [W]t+1 = [W]t + [∆W]t+1
Step 16:

 Find the error rate = ∑EP ∕ n set
Step 17:

 Repeat steps 4-16 until the convergence in the error rate less than tolerance value.

22

 Fig 1.8

· Layer 1- Input layer
· Layer 2-Hidden layer

· Layer 3- Output layer

1. w1, w2, w3, w4, w5, w6 are the weights assigned to the connectivity between input & hidden layer.

2. v1, v2, v3, v4, v5, v6 are the weights assigned to the connectivity between hidden & output layer.

 The pseudo code thus we develop is suitable for us to go for programming.

4.4 CODING USING MATLAB(7.1)
The program is to be designed in the following fragments & combined latter on.
23
1. Creation of input file.

 This segment is concerned with the data that we can obtain after performing experiments. Hence it is the last part to be designed & so far not implemented.

2. Non linear function approximation.

 This is meant for producing a flexible mould for the non linear 2D function which is supposed to exist between the input & output parameters. The codes are given below. This is executable for demonstration purposes.
Program
clear;

clc;

p = 3 ; % Number of inputs (2) plus the bias input

L = 12; % Number of hidden signals (with bias)

m = 2 ; % Number of outputs

na = 16 ; N = na^2; nn = 0:na-1; % Number of training cases

% Generation of the training cases as coordinates of points from two 2-D surfaces

% Specification of the sampling grid

X1 = nn*4/na - 2;

[X1 X2] = meshgrid(X1);

R = (X1.^2 + X2.^2 +1e-5);

D1 = X1 .* exp(-R); D = (D1(:))';

D2 = 0.25*sin(2*R)./R ; D = [D ; (D2(:))'];

Y = zeros(size(D)) ;

X = [X1(:)'; X2(:)'; ones(1,N)];

figure(1), clf reset, hold off

surfc([X1-2 X1+2], [X2 X2], [D1 D2]),

title('Two 2-D target functions'), grid on, drawnow

% Initialization of the weight matrices

% Hidden layer weight matrix

 Wh = randn(L-1, p)/p;

% Output layer weight matrix

 Wy = randn(m, L)/L ;

C = 100; % maximum number of training epochs

J = zeros(m, C); % Initialization of the error function

eta = [0.005 0.2]; % Training gains

figure(2), clf reset, hold off

tic

 for c = 1:C

% The forward pass

% Hidden signals (L by N) with appended bias signals

 H = ones(L-1, N)./(1+exp(-Wh*X));

Hp = H.*(1-H);
 % Derivatives of hidden signals

H = [H; ones(1,N)] ;

Y = tanh(Wy*H) ;
 % Output signals (m by N)

Yp = 1 - Y.^2 ;

 % Derivatives of output signals

%The backward pass

Ey = D - Y;

% The output errors (m by N)

24

JJ = (sum((Ey.*Ey)'))';
 % The total error after one epoch

J(:,c) = JJ ;
 % the performance function m by 1

delY = Ey.*Yp;

% Output delta signal (m by N)

dWy = delY*H';

% Update of the output matrix

Eh = Wy(:,1:L-1)'*delY; % The backpropagated hidden error

delH = Eh.*Hp ;
 % Hidden delta signals (L-1 by N)

dWh = delH*X';
 % Update of the hidden matrix

% The batch update of the weights:

Wy = Wy+eta(1)*dWy ; Wh = Wh+eta(2)*dWh ;

 D1(:)=Y(1,:)'; D2(:)=Y(2,:)';

surfc([X1-2 X1+2], [X2 X2], [D1 D2]), grid on, ...

 title(['epoch: ', num2str(c), ', error: ', num2str(JJ'), ...

 ', eta: ', num2str(eta)]), drawnow

 end % of the training

toc

figure(3)

clf reset

plot(J'), grid

title('The approximation error')

xlabel('number of training epochs')

3. Program for continuous training input.
 This is meant for training the network. This is non-executable as it is linked with the input file. Confined to approximately 70% of total data.
Program

% program to train backpropagation networktc "% program to train backpropagation network"
% disp('enter the architecture details ');tc "% disp('enter the architecture details ');"
% n=input('enter the no of input units');tc "% n=input('enter the no of input units');"
% p=input('enter the no of hidden units');tc "% p=input('enter the no of hidden units');"
% m=input('enter the no of output units');tc "% m=input('enter the no of output units');"
% Tp=input('enter the no of training vectors');tc "% Tp=input('enter the no of training vectors');"
 disp('Loading the input vector x');tc " disp('Loading the input vector x');"
tc ""
 fid=fopen('indata.txt','r');tc " fid=fopen('indata.txt','r');"
 x1=fread(fid,[4177,7],'double');tc " x1=fread(fid,[4177,7],'double');"
 fclose(fid);tc " fclose(fid);"
 disp(x1);tc " disp(x1);"
 disp('Loading the target vector t');tc " disp('Loading the target vector t');"
 tc " "
 fid1=fopen('targetdatabip.txt','r');tc " fid1=fopen('targetdatabip.txt','r');"
 t1=fread(fid1,[4177,4],'double');tc " t1=fread(fid1,[4177,4],'double');"
 fclose(fid1);tc " fclose(fid1);"
 disp(t1);tc " disp(t1);"
% alpha=input('enter the value of alpha');tc "% alpha=input('enter the value of alpha');"
disp('weights v and w are getting initialised randomly');tc "disp('weights v and w are getting initialised randomly');"
tc ""
 v1=-0.5+(0.5-(-0.5))*rand(n,p);tc " v1=-0.5+(0.5-(-0.5))*rand(n,p);"
 w=-0.5+(0.5-(-0.5))*rand(p,m);tc " w=-0.5+(0.5-(-0.5))*rand(p,m);"
25

 f=0.7*((p)^(1/n));tc " f=0.7*((p)^(1/n));"
 vo=-f+(f+f)*rand(1,p);tc " vo=-f+(f+f)*rand(1,p);"
 wo=-0.5+(0.5-(-0.5))*rand(1,m);tc " wo=-0.5+(0.5-(-0.5))*rand(1,m);"
tc ""
for i=1:ntc "for i=1\:n"
 for j=1:ptc " for j=1\:p"
 v(i,j)=(f*v1(i,j))/(norm(v1(:,j)));tc " v(i,j)=(f*v1(i,j))/(norm(v1(\:,j)));"
 endtc " end"
endtc "end"
for T=1:Tptc "for T=1\:Tp"
 for i=1:ntc " for i=1\:n"
 x(T,i)=x1(T,i);tc " x(T,i)=x1(T,i);"
endtc "end"
 for j=1:mtc " for j=1\:m"
 t(T,j)=t1(T,j);tc " t(T,j)=t1(T,j);"
 endtc " end"
endtc "end"
er=0;tc "er=0;"
for j=1:ptc "for j=1\:p"
 for k=1:mtc " for k=1\:m"
 chw(j,k)=0;tc " chw(j,k)=0;"
 chwo(k)=0;tc " chwo(k)=0;"
 endtc " end"
endtc "end"
for i=1:ntc "for i=1\:n"
 for j=1:ptc " for j=1\:p"
 chv(i,j)=0;tc " chv(i,j)=0;"
 chvo(j)=0;tc " chvo(j)=0;"
 endtc " end"
endtc "end"
iter=0;tc "iter=0;"
 prerror=1;tc " prerror=1;"
 while er==0,tc " while er==0,"
 disp('epoch no is');tc " disp('epoch no is');"
 disp(iter);tc " disp(iter);"
 totaler=0;tc " totaler=0;"
 for T=1:Tptc " for T=1\:Tp"
 for k=1:mtc " for k=1\:m"
 dk(T,k)=0;tc " dk(T,k)=0;"
 yin(T,k)=0;tc " yin(T,k)=0;"
 y(T,k)=0;tc " y(T,k)=0;"
 endtc " end"
 for j=1:ptc " for j=1\:p"
 zin(T,j)=0;tc " zin(T,j)=0;"
 dinj(T,j)=0;tc " dinj(T,j)=0;"
 dj(T,j)=0;tc " dj(T,j)=0;"
 z(T,j)=0;tc " z(T,j)=0;"
 endtc " end"
 for j=1:ptc " for j=1\:p"
 for i=1:ntc " for i=1\:n"
26

zin(T,j)=zin(T,j)+(x(T,i)*v(i,j));tc " zin(T,j)=zin(T,j)+(x(T,i)*v(i,j));"
 endtc " end"
 zin(T,j)=zin(T,j)+vo(j);tc " zin(T,j)=zin(T,j)+vo(j);"
 z(T,j)=((2/(1+exp(-zin(T,j))))-1);tc " z(T,j)=((2/(1+exp(-zin(T,j))))-1);"
 endtc " end"
 for k=1:mtc " for k=1\:m"
 for j=1:ptc " for j=1\:p"
 yin(T,k)=yin(T,k)+(z(T,j)*w(j,k));tc " yin(T,k)=yin(T,k)+(z(T,j)*w(j,k));"
 endtc " end"
 yin(T,k)=yin(T,k)+wo(k);tc " yin(T,k)=yin(T,k)+wo(k);"
 tc " "
 y(T,k)=((2/(1+exp(-yin(T,k))))-1);tc " y(T,k)=((2/(1+exp(-yin(T,k))))-1);"
 totaler=0.5*((t(T,k)-y(T,k))^2)+totaler;tc " totaler=0.5*((t(T,k)-y(T,k))^2)+totaler;"
 endtc " end"
 tc " "
 for k=1:mtc " for k=1\:m"
 dk(T,k)=(t(T,k)-y(T,k))*((1/2)*(1+y(T,k))*(1-y(T,k)));tc " dk(T,k)=(t(T,k)-y(T,k))*((1/2)*(1+y(T,k))*(1-y(T,k)));"
 tc " "
 endtc " end"
 for j=1:ptc " for j=1\:p"
 for k=1:mtc " for k=1\:m"
 chw(j,k)=(alpha*dk(T,k)*z(T,j))+(0.8*chw(j,k));tc " chw(j,k)=(alpha*dk(T,k)*z(T,j))+(0.8*chw(j,k));"
 endtc " end"
 endtc " end"
 for k=1:mtc " for k=1\:m"
 chwo(k)=(alpha*dk(T,k))+(0.8*chwo(k));tc " chwo(k)=(alpha*dk(T,k))+(0.8*chwo(k));"
 endtc " end"
 for j=1:ptc " for j=1\:p"
 for k=1:mtc " for k=1\:m"
 dinj(T,j)=dinj(T,j)+(dk(T,k)*w(j,k));tc " dinj(T,j)=dinj(T,j)+(dk(T,k)*w(j,k));"
 endtc " end"
 dj(T,j)=(dinj(T,j)*((1/2)*(1+z(T,j))*(1-z(T,j))));tc " dj(T,j)=(dinj(T,j)*((1/2)*(1+z(T,j))*(1-z(T,j))));"
 endtc " end"
 for j=1:ptc " for j=1\:p"
 for i=1:ntc " for i=1\:n"
 chv(i,j)=(alpha*dj(T,j)*x(T,i))+(0.8*chv(i,j));tc " chv(i,j)=(alpha*dj(T,j)*x(T,i))+(0.8*chv(i,j));"
 endtc " end"
 chvo(j)=(alpha*dj(T,j))+(0.8*chvo(j));tc " chvo(j)=(alpha*dj(T,j))+(0.8*chvo(j));"
 endtc " end"
 for j=1:ptc " for j=1\:p"
 for i=1:ntc " for i=1\:n"
 v(i,j)=v(i,j)+chv(i,j);tc " v(i,j)=v(i,j)+chv(i,j);"
 endtc " end"
 vo(j)=vo(j)+chvo(j);tc " vo(j)=vo(j)+chvo(j);"
 endtc " end"
 for k=1:mtc " for k=1\:m"
 for j=1:ptc " for j=1\:p"
 w(j,k)=w(j,k)+chw(j,k);tc " w(j,k)=w(j,k)+chw(j,k);"
 endtc " end"
 wo(k)=wo(k)+chwo(k);tc " wo(k)=wo(k)+chwo(k);"
 endtc " end"
27

 endtc " end"
 iter=iter+1;tc " iter=iter+1;"
 finerr=totaler/(Tp*7);tc " finerr=totaler/(Tp*7);"
 disp(finerr);tc " disp(finerr);"
 if prerror>=finerrtc " if prerror>=finerr"
 fidv=fopen('vntmatrix.txt','w');tc " fidv=fopen('vntmatrix.txt','w');"
 count=fwrite(fidv,v,'double');tc " count=fwrite(fidv,v,'double');"
 fclose(fidv);tc " fclose(fidv);"
 tc " "
 fidvo=fopen('vontmatrix.txt','w');tc " fidvo=fopen('vontmatrix.txt','w');"
 count=fwrite(fidvo,vo,'double');tc " count=fwrite(fidvo,vo,'double');"
 fclose(fidvo);tc " fclose(fidvo);"
 tc " "
 fidw=fopen('wntmatrix.txt','w');tc " fidw=fopen('wntmatrix.txt','w');"
 count=fwrite(fidw,w,'double');tc " count=fwrite(fidw,w,'double');"
 fclose(fidw);tc " fclose(fidw);"
 tc " "
 fidwo=fopen('wontmatrix.txt','w');tc " fidwo=fopen('wontmatrix.txt','w');"
 count=fwrite(fidwo,wo,'double');tc " count=fwrite(fidwo,wo,'double');"
 fclose(fidwo);tc " fclose(fidwo);"
endtc "end"
 if (finerr<0.01)|(prerror<finerr)tc " if (finerr<0.01)|(prerror<finerr)"
 er=1;tc " er=1;"
 elsetc " else"
 er=0;tc " er=0;"
 endtc " end"
 prerror=finerr; tc " prerror=finerr; "
endtc "end"
 tc " "
disp('final weight values are')tc "disp('final weight values are')"
disp('weight matrix w');tc "disp('weight matrix w');"
disp(w);tc "disp(w);"
disp('weight matrix v');tc "disp('weight matrix v');"
disp(v); tc "disp(v); "
disp('weight matrix wo');tc "disp('weight matrix wo');"
disp(wo);tc "disp(wo);"
disp('weight matrix vo');tc "disp('weight matrix vo');"
disp(vo);tc "disp(vo);"
disp('target value');tc "disp('target value');"
disp(t);tc "disp(t);"
disp('obtained value');tc "disp('obtained value');"
disp(y);tc "disp(y);"
msgbox('End of Training Process','Face Recognition');tc "msgbox('End of Training Process','Face Recognition');"
4. Program for continuous testing input.
 This is meant to test the error. It is confined to approximately 30% of the total data. It is not executable presently as linked to the input file.
28

Program

%Testing Program for Backpropagation networktc "%Testing Program for Backpropagation network"
% Tp=input('enter the no of test vector');tc "% Tp=input('enter the no of test vector');"
fid=fopen('vntmatrix.txt','r');tc "fid=fopen('vntmatrix.txt','r');"
v=fread(fid,[7,3],'double');tc "v=fread(fid,[7,3],'double');"
fclose(fid);tc "fclose(fid);"
tc ""
fid=fopen('vontmatrix.txt','r');tc "fid=fopen('vontmatrix.txt','r');"
vo=fread(fid,[1,3],'double');tc "vo=fread(fid,[1,3],'double');"
fclose(fid);tc "fclose(fid);"
tc ""
fid=fopen('wntmatrix.txt','r');tc "fid=fopen('wntmatrix.txt','r');"
w=fread(fid,[3,4],'double');tc "w=fread(fid,[3,4],'double');"
fclose(fid);tc "fclose(fid);"
tc ""
fid=fopen('wontmatrix.txt','r');tc "fid=fopen('wontmatrix.txt','r');"
wo=fread(fid,[1,4],'double');tc "wo=fread(fid,[1,4],'double');"
fclose(fid);tc "fclose(fid);"
tc ""
fid=fopen('targetdatabip.txt','r');tc "fid=fopen('targetdatabip.txt','r');"
t=fread(fid,[4177,4],'double');tc "t=fread(fid,[4177,4],'double');"
fclose(fid);tc "fclose(fid);"
tc ""
tc ""
disp('initializing the input vector');tc "disp('initializing the input vector');"
fid=fopen('indatadis.txt','r');tc "fid=fopen('indatadis.txt','r');"
x=fread(fid,[4177,7],'double');tc "x=fread(fid,[4177,7],'double');"
fclose(fid);tc "fclose(fid);"
tc ""
for T=1:Tptc "for T=1\:Tp"
 for j=1:3tc " for j=1\:3"
 zin(T,j)=0;tc " zin(T,j)=0;"
 endtc " end"
 for k=1:4tc " for k=1\:4"
 yin(T,k)=0;tc " yin(T,k)=0;"
 endtc " end"
 for j=1:3tc " for j=1\:3"
 for i=1:7tc " for i=1\:7"
 zin(T,j)=x(i)*v(i,j)+zin(T,j);tc " zin(T,j)=x(i)*v(i,j)+zin(T,j);"
 endtc " end"
 zin(T,j)=zin(T,j)+vo(j);tc " zin(T,j)=zin(T,j)+vo(j);"
 z(T,j)=(2/(1+exp(-zin(T,j))))-1;tc " z(T,j)=(2/(1+exp(-zin(T,j))))-1;"
 endtc " end"
endtc "end"
tc ""
for T=1:Tptc "for T=1\:Tp"
 for k=1:4tc " for k=1\:4"
29

 for j=1:3tc " for j=1\:3"
 yin(T,k)=yin(T,k)+z(T,j)*w(j,k);tc " yin(T,k)=yin(T,k)+z(T,j)*w(j,k);"
 endtc " end"
 yin(T,k)=yin(T,k)+wo(k);tc " yin(T,k)=yin(T,k)+wo(k);"
 y(T,k)=(2/(1+exp(-yin(T,k))))-1;tc " y(T,k)=(2/(1+exp(-yin(T,k))))-1;"
 if y(T,k)<0tc " if y(T,k)<0"
 y(T,k)=-1;tc " y(T,k)=-1;"
 elsetc " else"
 y(T,k)=1;tc " y(T,k)=1;"
 endtc " end"
 d(T,k)=t(T,k)-y(T,k);tc " d(T,k)=t(T,k)-y(T,k);"
 endtc " end"
endtc "end"
count=0;tc "count=0;"
for T=1:Tptc "for T=1\:Tp"
 for k=1:4tc " for k=1\:4"
 if d(T,k)==0tc " if d(T,k)==0"
 count=count+1;tc " count=count+1;"
 endtc " end"
 endtc " end"
endtc "end"
pereff=(count/(Tp*4))*100;tc "pereff=(count/(Tp*4))*100;"
disp('Efficiency in percentage');tc "disp('Efficiency in percentage');"
disp(pereff);tc "disp(pereff);"
pere=num2str(pereff);tc "pere=num2str(pereff);"
di='Efficiency of the network ';tc "di='Efficiency of the network ';"
dii=' %';tc "dii=' %';"
diii=strcat(di,pere,dii);tc "diii=strcat(di,pere,dii);"
msgbox(diii,'Face Recognition');

5. Master program for implementation of back propagation networks.
Final program. Partially executable.

clc;tc "clc;"
clear;tc "clear;"
tc ""
%--------TRAINING AND TESTING INPUTBOX CREATION------------%tc "%--------TRAINING AND TESTING INPUTBOX CREATION------------%"
tc ""
prompt = {'Enter the % of training data','Enter the % of testing data:'};tc "prompt = {'Enter the % of training data','Enter the % of testing data\:'};"
title = 'Training and testing';tc "title = 'Training and testing';"
lines= 1;tc "lines= 1;"
answer = inputdlg(prompt,title,lines);tc "answer = inputdlg(prompt,title,lines);"
p_trn=str2double(answer(1));tc "p_trn=str2double(answer(1));"
p_tst=str2double(answer(2));tc "p_tst=str2double(answer(2));"
tc ""
30

%-------------DATA CALCULATION---------------------------%tc "%-------------DATA CALCULATION---------------------------%"
tc ""
tot_dat = 2000;tc "tot_dat = 2000;"
trn_dat = tot_dat * (p_trn/100);tc "trn_dat = tot_dat * (p_trn/100);"
tst_dat = tot_dat * (p_tst/100);tc "tst_dat = tot_dat * (p_tst/100);"
n=9;tc "n=9;"
p=3;tc "p=3;"
m=3;tc "m=3;"
tc ""
%---------------NETWORK DETAILS DISPLAY----------------------%tc "%---------------NETWORK DETAILS DISPLAY----------------------%"
tc ""
prompt = {'Total number of data','Number of training data:','Number of testing data:'};tc "prompt = {'Total number of data','Number of training data\:','Number of testing data\:'};"
title = 'Data';tc "title = 'Data';"
lines= 1;tc "lines= 1;"
def = {num2str(tot_dat),num2str(trn_dat),num2str(tst_dat),};tc "def = {num2str(tot_dat),num2str(trn_dat),num2str(tst_dat),};"
answer = inputdlg(prompt,title,lines,def);tc "answer = inputdlg(prompt,title,lines,def);"
tc ""
prompt = {'Number of input neurons:','Number of hidden neurons:','Number of output neurons:'};tc "prompt = {'Number of input neurons\:','Number of hidden neurons\:','Number of output neurons\:'};"
title = 'Network details';tc "title = 'Network details';"
lines= 1;tc "lines= 1;"
def = {'9','3','3'};tc "def = {'9','3','3'};"
answer = inputdlg(prompt,title,lines,def);tc "answer = inputdlg(prompt,title,lines,def);"
tc ""
 %----------INPUTBOX CREATION----------------%tc " %----------INPUTBOX CREATION----------------%"
 tc " "
flg=1;tc "flg=1;"
while(flg==1)tc "while(flg==1)"
prompt = {'Enter the value of alpha(0<=a<=1)','Enter the value of momentum parameter:'};tc "prompt = {'Enter the value of alpha(0<=a<=1)','Enter the value of momentum parameter\:'};"
title = 'Initialisation';tc "title = 'Initialisation';"
lines= 1;tc "lines= 1;"
answer = inputdlg(prompt,title,lines);tc "answer = inputdlg(prompt,title,lines);"
alp=str2double(answer(1));tc "alp=str2double(answer(1));"
mom=str2double(answer(2));tc "mom=str2double(answer(2));"
if (0<=alp & alp<=1 & 0<=mom & mom<=1) tc "if (0<=alp & alp<=1 & 0<=mom & mom<=1) "
 flg=0;tc " flg=0;"
else tc "else "
 prompt ={'Parameter exceed limit'};tc " prompt ={'Parameter exceed limit'};"
 title = 'Error';tc " title = 'Error';"
 lines=0.01;tc " lines=0.01;"
 an = inputdlg(prompt,title,lines);tc " an = inputdlg(prompt,title,lines);"
endtc "end"
endtc "end"
tc ""
%----------WAIT BAR---------------------------%tc "%----------WAIT BAR---------------------------%"
h = waitbar(0,'Please wait...');tc "h = waitbar(0,'Please wait...');"
waitbar(0.25);tc "waitbar(0.25);"
tc ""
%----------------INITIAL WEIGHT MATRIX GENERATION---------------------%tc "%----------------INITIAL WEIGHT MATRIX GENERATION---------------------%"
 v1 = -0.5 + (0.5-(-0.5)) * rand(n,p)
31tc " v1 = -0.5 + (0.5-(-0.5)) * rand(n,p)"
w = -0.5 + (0.5-(-0.5)) * rand(p,m)tc " w = -0.5 + (0.5-(-0.5)) * rand(p,m)"
 sf=0.7*((p)^(1/n));tc " sf=0.7*((p)^(1/n));"
 vo = -sf+(sf+sf)*rand(1,p)tc " vo = -sf+(sf+sf)*rand(1,p)"
 wo=-0.5+(0.5-(-0.5))*rand(1,m)tc " wo=-0.5+(0.5-(-0.5))*rand(1,m)"
 for i=1:ntc " for i=1\:n"
 for j=1:ptc " for j=1\:p"
 v(i,j)=(sf*v1(i,j))/(norm(v1(:,j)));tc " v(i,j)=(sf*v1(i,j))/(norm(v1(\:,j)));"
 endtc " end"
 endtc " end"
waitbar(.5);tc "waitbar(.5);"
tc ""
%-----TARGET VECTOR DIGITIZATION-----------%tc "%-----TARGET VECTOR DIGITIZATION-----------%"
tc ""
f=fopen('G:\MATLAB6p1\work\shuttle\shutt_train_targ.txt','r');tc "f=fopen('G\:\MATLAB6p1\work\shuttle\shutt_train_targ.txt','r');"
for j=1:tot_dattc "for j=1\:tot_dat"
x(j)=fscanf(f,'%d',1);tc "x(j)=fscanf(f,'%d',1);"
for i=1:mtc "for i=1\:m"
 if(i==x(j))tc " if(i==x(j))"
 t(j,i)=1;tc " t(j,i)=1;"
 elsetc " else"
 t(j,i)=-1;tc " t(j,i)=-1;"
 endtc " end"
endtc "end"
endtc "end"
fclose(f);tc "fclose(f);"
waitbar(.75);tc "waitbar(.75);"
tc ""
%---------INPUT VECTOR DIGITIZATION------------------------%tc "%---------INPUT VECTOR DIGITIZATION------------------------%"
tc ""
X1=load('G:\MATLAB6p1\work\shuttle\shutt_train.txt');tc "X1=load('G\:\MATLAB6p1\work\shuttle\shutt_train.txt');"
s=size(X1);tc "s=size(X1);"
r=s(1);tc "r=s(1);"
c=s(2);tc "c=s(2);"
a=max(X1,[],1);tc "a=max(X1,[],1);"
b=min(X1,[],1);tc "b=min(X1,[],1);"
for i=1:tot_dattc "for i=1\:tot_dat"
 for j=1:ctc " for j=1\:c"
 X2(i,j)=(X1(i,j)-b(j))/(a(j)-b(j));tc " X2(i,j)=(X1(i,j)-b(j))/(a(j)-b(j));"
 endtc " end"
endtc "end"
 for i=1:tot_dattc " for i=1\:tot_dat"
 for j=1:ctc " for j=1\:c"
 if(X2(i,j)<0.5)tc " if(X2(i,j)<0.5)"
 X(i,j)=-1;tc " X(i,j)=-1;"
 elsetc " else"
 X(i,j)=1;tc " X(i,j)=1;"
 endtc " end"
 endtc " end"
 endtc " end"
tc ""
32tc ""
waitbar(1);tc "waitbar(1);"
close(h)tc "close(h)"
%--------------------TRAINING--------------------------------%tc "%--------------------TRAINING--------------------------------%"
tic;tc "tic;"
ep=0;tc "ep=0;"
delv=v*0;tc "delv=v*0;"
delw=w*0;tc "delw=w*0;"
delwo=wo*0;tc "delwo=wo*0;"
delvo=vo*0;tc "delvo=vo*0;"
sq=1;tc "sq=1;"
sc=100;tc "sc=100;"
h = waitbar(0,'Training in Progress.......'); tc "h = waitbar(0,'Training in Progress.......'); "
while(ep<sc)tc "while(ep<sc)"
 sq=0;tc " sq=0;"
 for c=1:trn_dattc " for c=1\:trn_dat"
 for j=1:ptc " for j=1\:p"
 z_in(j)=vo(j);tc " z_in(j)=vo(j);"
 for i=1:ntc " for i=1\:n"
 z_in(j)=z_in(j)+X(c,i)*v(i,j);tc " z_in(j)=z_in(j)+X(c,i)*v(i,j);"
 endtc " end"
 tc " "
 z(j)=(2/(1+exp(-z_in(j))))-1;tc " z(j)=(2/(1+exp(-z_in(j))))-1;"
 endtc " end"
 for k=1:mtc " for k=1\:m"
 y_in(k)=wo(k);tc " y_in(k)=wo(k);"
 for j=1:ptc " for j=1\:p"
 y_in(k)=y_in(k)+z(j)*w(j,k);tc " y_in(k)=y_in(k)+z(j)*w(j,k);"
 endtc " end"
 y(k)=(2/(1+exp(-y_in(k))))-1;tc " y(k)=(2/(1+exp(-y_in(k))))-1;"
 sq=sq+0.5*((t(c,k)-y(k))^2);tc " sq=sq+0.5*((t(c,k)-y(k))^2);"
 endtc " end"
 for k=1:mtc " for k=1\:m"
 dk(k)=(t(c,k)-y(k))*0.5*((1+y(k))*(1-y(k)));tc " dk(k)=(t(c,k)-y(k))*0.5*((1+y(k))*(1-y(k)));"
 for j=1:ptc " for j=1\:p"
 delw(j,k)=alp*dk(k)*z(j)+mom*delw(j,k);tc " delw(j,k)=alp*dk(k)*z(j)+mom*delw(j,k);"
 endtc " end"
 delwo(k)=alp*dk(k)+mom*delwo(k);tc " delwo(k)=alp*dk(k)+mom*delwo(k);"
 endtc " end"
 for j=1:ptc " for j=1\:p"
 d_in(j)=0;tc " d_in(j)=0;"
 for k=1:mtc " for k=1\:m"
 d_in(j)=d_in(j)+dk(k)*w(j,k);tc " d_in(j)=d_in(j)+dk(k)*w(j,k);"
 endtc " end"
 dj(j)=d_in(j)*0.5*((1+z(j))*(1-z(j)));tc " dj(j)=d_in(j)*0.5*((1+z(j))*(1-z(j)));"
 for i=1:ntc " for i=1\:n"
 delv(i,j)=alp*dj(j)*X(c,i)+mom*delv(i,j);tc " delv(i,j)=alp*dj(j)*X(c,i)+mom*delv(i,j);"
 endtc " end"
 delvo(j)=alp*dj(j)+mom*delvo(j);tc " delvo(j)=alp*dj(j)+mom*delvo(j);"
 endtc " end"
 for k=1:mtc " for k=1\:m"
 for j=1:ptc " for j=1\:p"
33
 w(j,k)=w(j,k)+delw(j,k);
tc " w(j,k)=w(j,k)+delw(j,k);"
 endtc " end"
 wo(k)=wo(k)+delwo(k); tc " wo(k)=wo(k)+delwo(k); "
 endtc " end"
 for j=1:ptc " for j=1\:p"
 for i=1:ntc " for i=1\:n"
 v(i,j)=v(i,j)+delv(i,j);tc " v(i,j)=v(i,j)+delv(i,j);"
 endtc " end"
 vo(j)=vo(j)+delvo(j); tc " vo(j)=vo(j)+delvo(j); "
 endtc " end"
 endtc " end"
 ep=ep+1;tc " ep=ep+1;"
 disp(ep);tc " disp(ep);"
 sq=sq/trn_dattc " sq=sq/trn_dat"
 waitbar(ep/sc);tc " waitbar(ep/sc);"
 endtc " end"
 close(h);tc " close(h);"
endtc "end"
 These are the set of programs we have designed for our neural network. As we did not prepare the data for training, hence it is not executable so far completely. However, for demonstration we make some programs to run on imaginary data.

4.5 LABORATORY TESTINGS FOR THE PARAMETRES IN THE CI ENGINE:

 With the installation of the new exhaust gas analyzer we can test the following parameters in the available engine hardware in our thermal laboratory.

 These tests are not performed so far………
34
6. STEPS to be EXECUTED in the forthcoming semester:
6.1 A series of experiments detailing the observations with the above input output combinations.
6.2 Creation of an input file with 70% of the total collected data.

6.3 Testing of the trained master program with the remaining 30% data for determination of tolerable error.

6.4 Complete modeling of the engine.

6.5 Determination of the optimal blending from the neural network & the corresponding graphical & mathematic analysis.
7. Conclusion:

· A complete engine can be modeled to obtain all possible outputs from the possible inputs within engine specification.

· All performance parameters can be determined comprehensively with reasonably low error.
· The modeling also included the blending and the corresponding performance.

· A suitable blending can be determined for polanga oil in diesel.

· Can be a tool for a low carbon economy & mobility.

8. Future works:

1. The behavior of all types engines i.e. SI engines, Gas turbine engines, steam engines, rotary engines etc can be determined for various fuels and operating conditions without even testing them.

2. Can be used as a strong tool for pattern specification.

3. A splendid mechanism for stock market predictions in the foreseeable future.

4. A splendid tool for determination of roots for high degree non-linear equations.

 & many more…………..
35
� EMBED Word.Picture.8 ���

� EMBED PBrush ���

Layer 2

Layer 3

Layer 1

Input 1 1 1

Output 1

Input 2 1 1

Output 2

Hidden 1

LOAD

BSEC

Compression ignition diesel engine with pure diesel & polanga blending

%BLENDIGNGG

SPEED

EMISSIONS

BHP

SFC

BTE

_1321024988.doc
[image: image1.wmf]+1

[image: image2.wmf]+1

[image: image3.wmf]+1

[image: image4.wmf]+1

[image: image5.wmf]X

Y

linear

=

[image: image6.wmf]X

sigmoid

e

Y

-

+

=

1

1

[image: image7.wmf]î

í

ì

<

-

³

+

=

0

if

,

1

0

if

,

1

X

X

Y

sign

[image: image8.wmf]î

í

ì

<

³

=

0

if

,

0

0

if

,

1

X

X

Y

step

[image: image9.wmf]î

í

ì

<

³

=

0

if

,

0

0

if

,

1

X

X

Y

step

[image: image10.wmf]î

í

ì

<

-

³

+

=

0

if

,

1

0

if

,

1

X

X

Y

sign

[image: image11.wmf]X

sigmoid

e

Y

-

+

=

1

1

[image: image12.wmf]X

Y

linear

=

0

-1

Step function

�

0

Y

Linear function

X

Y

Sigmoid function

X

-1

�

Sign function

X

Y

Y

X

0

-1

�

0

-1

�

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

_926115495.unknown

_926116434.unknown

_927755807.unknown

_927756792.unknown

_927756978.unknown

_927756411.unknown

_927755481.unknown

_926116124.unknown

_926114167.unknown

_926115420.unknown

_926113588.unknown

_1321024990

