ACKNOWLEDGEMENTS
The satisfaction that accompanies the successful completion of the task would be put incomplete without the mention of the people who made it possible, whose constant guidance and encouragement crown all the efforts with success.

We express our heartfelt thanks to Mrs. B. V. S. L. Bharathi, Assistant Professor & Project Supervisor, Department of Electronics & Communication Engineering, Vardhaman College of Engineering, for his valuable guidance, and encouragement during my project.

We wish to express our deep sense of gratitude to Dr. J. V. R. Ravindra, Professor and Project coordinator for his able guidance and useful suggestions, which helped us in completing the project work, in time.

We are particularly thankful to Prof. Y. PanduRangaiah, Head, Department of Electronics and Communication Engineering for his guidance, intense support and encouragement, which helped us to mould our project into a successful one.

We show gratitude to our honorable Principal Dr.N. SambasivaRao, for having provided all the facilities and support

Finally thanks to all our friends for their continuous support and enthusiastic help.

 M. Dinesh Reddy

 K. Mohan Kumar

 A.Pavan Kumar


``````B. Srilekha
ABSTRACT
In this information age developments in the field of computers is very fast. It is encouraging people to do many things in ways that are practical and fully automated to save time, energy and mind, human especially now it no longer wants the headache made things trivial, such as: whether the fence was locked? Whether the lamp has been off the park? Is TV already turned off? That was the problems that arise in the community on issues arising again generally. Manufacturer of office, because companies nowadays do not want to have many employees who just do things that not necessary. They prefer to create automated systems for doing such trivial tasks. Therefore the need was inspired to create an automation system which is simple and can be monitored, so that only one user needs just to control it.

PC based electrical appliances control is an interesting PC based project, mainly useful for industrial applications, home automation, and supervisory control applications. This project gives exact concept of interfacing a high voltage electrical device or DC / AC motor to high sensitive personal computer system. This project is the first step to design of PC based industrial automation projects. We are using the RS232 as the communication medium between pc and controller. We are controlling the devices like light and fan and etc. by sending signals from the pc to controller.

In this project, a simplified procedure is proposed to create an automation system, which can control home appliances using PC through serial communication technique.

Contents
ABSTRACT
(iv)
Contentsiv)
List of Figures
(vii)
List of Tables
(ix)
viii)
11 INTRODUCTION
1
1.1
Overview
1
1.2
Problem statement
2
1.3
Motivation
2
1.4
Literature Survey
2
1.4.1
Serial communication
2
1.4.2
Home Automation
3
1.5
Organisation of the Report
4
22 HARDWARE IMPLEMENTATION
5
2.1
Description
5
2.1.1
Selection of Microcontroller:
5
2.2
Block Diagram
7
2.3
Implementation
8
2.3.1
Power Supply
8
2.3.2
LCD Interfacing with Microcontroller
8
2.3.3
Relay Connection with Microcontroller
10
33 DESCRIPTION OF HARDWARE INVOLVED
14
3.1
Introduction
14
3.2
Power Supply
14
3.2.1
Transformer
15
3.2.2
Rectifier:
16
3.2.3
Capacitor Filter:
19
3.2.4
Regulator
19
3.3
Microcontroller
20
3.3.1
Microcontroller Vs General Purpose Microprocessor
20
3.3.2
Microcontrollers For Embedded Systems
21
3.3.3
The 8051 Microcontroller
21
3.3.4
Interrupt Latency
22
3.3.5
Higher Integration
22
3.4
Overview of the 8051 Family
23
3.4.1
Brief History Of The 8051
23
3.4.2
8051 ARCHITECTURE:
24
3.5
The Microcontroller AT89C52
25
3.5.1
Features Of AT89C52
25
3.5.2
Interrupts
35
3.5.3
Special function registers:
37
3.6
Memory Organization
41
3.7
Liquid Crystal Display
41
3.7.1
LCD Operation
42
3.7.2
LCD Pin Description
43
3.7.3
LCD Command Code
44
3.7.4
Advantages:
46
3.8
RS232
47
3.8.1
Voltage levels:
47
3.8.2
Communication Standards
48
3.8.3
D-sub 9 Connector:
48
3.9
MAX232
50
3.9.1
Voltage levels:
51
3.10
RELAYS
52
44 SOFTWARE TOOLS
57
4.1
Keil µVISION3
57
4.2
HyperTerminal 
69
55 APPLICATIONS AND LIMITATIONS
72
5.1
Applications
72
5.2
Limitations
72
66 IMPLEMENTED RESULTS
73
77 CONCLUSION AND FUTURE SCOPE
75
7.1
Conclusion
75
7.2
Future scope
75
REFERENCES
84


List of Figures

7Figure 2.1. Block Diagram of PC based electrical equipment control system


8Figure2.2  LCD interfacing with microcontroller


9Figure.2.3  MAX IC interfacing with microcontroller


Figure 2.4 Relay interfacing with Microcontroller





10
11Figure 2.5  Flow process


Figure 2.6 Circuit Diagram








 12
15Figure 3.1 components of a typical linear power supply


26Figure 3.5 Block Diagram of AT89C52


27Figure 3.6 Pin Diagram of AT89C52


31Figure. 3.7 Crystal Connections


31Figure. 3.8 External Clock Drive Configuration


35Figure. 3.9 Interrupts Source


42Figure 3.10: 2x16 LCD display


47Figure 3.11 RS232 Voltage Level


49Figure.3.12 D-sub 9 Male
56
Figure.3.13 D-sub 9 Female


49Figure 3.14 DB9 Male


49Figure.3.14 DB9 Female


50Figure.3.15 RS232connector


51Figure.3.16 MAX232 Typical Connection Circuit


73Figure 6.1 Complete circuit


73Figure 6.2 Energized circuit


74Figure 6.3. LCD Displaying String


74Figure 6.4  LCD Displaying Operational Details




List of Tables
Table 3.1 Comparison of rectifier circuits






16
25Table 3.2 Comparison of 8051 family members


29Table 3.3 Special Features of port3


32Table 3.4 Status Of External Pins During Idle and Power Down Mode


33Table 3.5 Lock Bit Protection Modes


34Table 3.6 Timer 2 Operating Modes


36Table 3.7 Interrupts Enable Register


43Table 3.8 pin description of LCD


51Table.3.9 MAX232 Voltage Conversion levels




Acronyms

DTE

Data Terminal Equipment

DCE

Data circuit Equipment  

UART

Universel Asynchronous receiver/transiter
TTL

Transistor transistor logic 
RST

Reset
ALE

arithmetic logic unit

PSEN

Program store enable

RAM

Random access memory 

SP

stack point

DPL

Data pointer low

DPH

Data pointer High

EPROM
erasable programmable read only memory

LCD

Liquid crystal display

RS

Register Select 

RW

Read/Write

EN

Enable

CHAPTER 1
1 INTRODUCTION
1.1 Overview

In this competitive world and busy schedule human cannot spare more time to perform his daily activities manually. This project is a PC based home appliance control implementation using AT89S52 microcontroller. This project is useful in all applications where automation of electrical appliances is required. Use of embedded technology makes this closed loop feedback control system efficient and reliable. Microcontroller (AT89S52) allows dynamic and faster control. AT89S52 micro controller is the heart of the circuit as it controls all the functions.

The main aim of this project is to control various electrical appliances by means of PC using PC’s hyper terminal window. The person sitting in front of the PC can continuously check the loads being operated in the rooms and can switch off them wherever not required just by sitting in front of his PC. The controlling of loads is done by RELAY. The main advantage of using a RELAY to vary the status of loads is the RELAY reduces the energy flow to the loads and RELAY works very well for alternating currents.

In order to control the electrical appliances through PC, data transfer must be ensured between PC and microcontroller system. Serial data communication uses a single data line, which makes it not only cheaper but also, enables two computers located in two different cities to communicate over the telephone. There are special IC chips made by many manufacturers for serial data communication. These chips are usually referred to as USART (Universal synchronous-asynchronous receiver-transmitter) and UART (Universal asynchronous receiver-transmitter). 8052chip has an in-built UART i.e., it has an integrated serial port which enables one to read and write values to the serial port very easily. 

The rate of data transfer in serial data communication is stated in bps (bits per second) or baud rate. To allow data transfer between PC and 8052 system without any error, the baud rate of the 8052 system should match the baud rate of the PC’s COM port. Thus the operation mode and baud rate of the serial port is to be configured. Once configured, read or write operations can be performed accordingly. 
1.2 Problem statement

Now a days the automation field gets a wide growth in the worldwide. Under this concept here the project is developed. In this project the lab door, fans, lights and AC are automated by using embedded platform. For instance, if the PC connected to the circuit receive a command to switch on the fan then PC send an interrupt to microcontroller such that microcontroller sends a signal to Driver IC to switch on that device using the help of relay circuit. Similarly we can switch on any device that is connected to microcontroller circuit using serial communication.
1.3 Motivation
Several devices collect data from sensors and need to send it to another unit like a computer for further processing. Data transfer/communication is generally done in two ways, parallel and serial. In the parallel mode, the data transfer is fast and uses more number of lines. This mode is good for short range data transfer. Serial communication on the other hand, uses only one or two data lines to transfer data and is generally used for long distance communication. In serial communication the data is sent as one bit at a time. The interfacing of microcontroller (AT89C52) with a computer via serial port,RS232. Serial communication is commonly used in applications such as industrial automation systems, scientific analysis and certain consumer products.
The microcontroller AT89C52 has an inbuilt UART for carrying out serial communication. The serial communication is done in the asynchronous mode. A serial port, like other PC ports, is a physical interface to establish data transfer between computer and an external hardware or device. This transfer, through serial port, takes place bit by bit. Hyper Terminal, a Windows XP application, can be used to receive or transmit serial data through RS232.By utilizing the inbuilt UART of microcontroller and serial communication through hyper terminal controlling the electrical appliances through PC can be done. This system is designed to control home appliances on/off, to regulate their output power.
1.4 Literature Survey
1.4.1 Serial communication
In the early 1960s, a standards committee, today known as the Electronic Industries Association, developed a common interface standard for data communications equipment. At that time, data communications was thought to mean digital data exchange between a centrally located mainframe computer and a remote computer terminal, or possibly between two terminals without a computer involved. These devices were linked by telephone voice lines, and consequently required a modem at each end for signal translation. While simple in concept, the many opportunities for data error that occur when transmitting data through an analog channel require a relatively complex design. It was thought that a standard was needed first to ensure reliable communication, and second to enable the interconnection of equipment produced by different manufacturers, thereby fostering the benefits of mass production and competition. From these ideas, the RS232 standard was born. It specified signal voltages, signal timing, signal function, a protocol for information exchange, and mechanical connectors.

Over the 40+ years since this standard was developed, the Electronic Industries Association published three modifications, the most recent being the EIA232F standard introduced in 1997. Besides changing the name from RS232 to EIA232, some signal lines were renamed and various new ones were defined, including a shield conductor.
In RS-232, user data is sent as a time-series of bits. Both synchronous and asynchronous transmissions are supported by the standard. In addition to the data circuits, the standard defines a number of control circuits used to manage the connection between the DTE and DCE. Each data or control circuit only operates in one direction, that is, signaling from a DTE to the attached DCE or the reverse. Since transmit data and receive data are separate circuits, the interface can operate in a full duplex manner, supporting concurrent data flow in both directions. The standard does not define character framing within the data stream, or character encoding.
1.4.2 Home Automation
Automation has had a notable impact in a wide range of highly visible industries, independent systems and general public services. Medical processes are also carried out at much greater speed and accuracy by automated systems. Automated teller machines have reduced the need for bank visits to obtain cash and carry out transactions. In general, automation has been responsible for the shift in the world economy from agrarian to industrial in the 19th century and from industrial to services in the 20th century. The widespread impact of industrial automation raises social issues one of which is the impact on labor employment. Historical concerns about the effects of automation date back to the beginning of the industrial revolution, when a social movement of English textile machine operators in the early 1800s protested by destroying such textile machines, which they felt threatened their jobs. When automation was first introduced, it caused widespread fear. It was thought that the displacement of human operators by computerized systems would lead to severe unemployment – this situation might be vague but in certain cases it has been true. Automation might appear to diminish labor through its replacement with less-expensive machines. Since the 1960s, the nature of automation has undergone dramatic changes as a result of the availability of computers. For many years, automated machines were limited byt he amount of feedback data they could collect and interpret. Thus, their operation was limited to a relatively small number of alternatives. When an automated machine is placed under the control of a computer, however, that disadvantage disappears. The computer can analyze a vast number of sensory inputs from a system and decide which of many responses it should make. Today, the field of automation is quite advanced, and continues to advance increasingly more rapidly throughout the world and is influencing on more skilled and complicated tasks, yet during the same period the general well-being and quality of life of most people in the world have improved radically
1.5 Organisation of the Report 


The first chapter introduces the aim of the project along with the reason due to which this technology and motivation for the project. The 2nd chapter involves the  hardware implementation of the project. The 3rd chapter involves components description in detail which were involved in the project. The next chapter followed explains about the software tools involved in the project. Chapter 5 and 6 are devoted to the advantages, limitations, applications and future scope of the PC based home appliance control system. Finally the source code of the project is included.
CHAPTER 2
2 HARDWARE IMPLEMENTATION
2.1 Description

This chapter deals with the description of the project in detail with flow process and block diagram. The complete circuit to be implemented is also described in the chapter.  

The main idea of designing home appliance control using PC is to control various electrical appliances by means of PC using PC’s hyper terminal window. The person sitting in front of the PC can continuously check the loads being operated in the rooms and can switch off them wherever not required just by sitting in front of his PC. The controlling of loads is done by RELAY. The main advantage of using a RELAY to vary the status of loads is the RELAY reduces the energy flow to the loads and RELAY works very well for alternating currents.

In order to control the electrical appliances through PC, data transfer must be ensured between PC and microcontroller system. Serial data communication uses a single data line, which makes it not only cheaper but also, enables two computers located in two different cities to communicate.

In order to fulfill this application there are few steps that has been performed i.e.

1) Designing the power supply for the entire circuitry

2) Selection of microcontroller that suits application

3) Selection of RS232 Cable

4) Selection of Relay.

2.1.1 Selection of Microcontroller:

As we know that there so many types of micro controller families that are available in the market. Those are 

· 8051 Family

· AVR microcontroller Family

· PIC microcontroller Family

· ARM Family

Basic 8051 family is enough for our application; hence we are not concentrating on higher end controller families. In order to fulfill our application basic that is AT89C51 controller is enough. But still we selected AT89S52 controller because of inbuilt ISP (in system programmer) option. There are minimum six requirements for proper operation of microcontroller. 

Those are:

· power supply section

· pull-ups for ports (it is must for PORT0)

· Reset circuit

· Crystal circuit

· ISP circuit (for program dumping)

· EA/VPP pin is connected to Vcc.

PORT0 is open collector hence we use pull-up resistors which makes PORT0 as an I/O port. Reset circuit is used to reset the microcontroller. Crystal circuit is used for the microcontroller for timing pluses. In this project we are not using external memory, EA/VPP pin in the microcontroller is connected to Vcc that indicates internal memory is used for this application.

2.1.2 Selection of MAX232

A 16 pin MAX232 is used in the project to convert signals from an RS-232 serial port to signals suitable for use in TTL compatible digital logic circuits and vice versa.

2.1.3 Selection of RS232 cable


A computer's serial COM port (DTE) is usually a 9 pin male port   and any peripheral devices you connect to this port usually has a female connector (DCE).Hence a “DB-9” connector is chosen in this project.2

2.1.4 Selection of Relay

A single pole single throw relay is an electromagnetic switch, consist of a coil, one common terminal, one normally open terminal and one normally closed terminal. Here only one equipment is controlled using one relay either switched ON/OFF
2.2 Block Diagram

To implement the overall system i.e. PC Based Electrical Equipment Control System using Microcontroller, the following are the modules:
· Power supply

· Microcontroller(AT89C52)

· LCD(2x16)

· MAX232 interfacing

· RS232 cable connection

· Relay to drive load

[image: image54.png]—uU—
P1.0 | 1 40

P11 2 39

P12 3 38

P13 |4 37
P45 36

P15 6 35

P1.6 |7 34

P1.7 ] 8 33

RST °f 9 32

(RXD) P3.0 | 10 31
(TXD) P3.1 1] 11 30
(INTO) P3.2 | 12 29
(INT1) P3.3 | 13 28
(T0) P3.4 (| 14 27
(T1) P3.5 | 15 26
(WR) P3.6 | 16 25
(RD) P3.7 ] 17 24
XTAL2 f 18 23
XTALT o 19 22
GND T 20 21

vee

P0.0 (ADO)
P0.1 (AD1)
P0.2 (AD2)
P0.3 (AD3)
P0.4 (AD4)
P0.5 (ADS)
P0.6 (AD6)
P0.7 (AD7)
EA/VPP
ALE/PROG
PSEN
P2.7 (A15)
P2.6 (A14)
P2.5 (A13)
P2.4 (A12)
P2.3 (A11)
P2.2 (A10)
P2.1 (A9)
P2.0 (AB)



[image: image55.png]DB7
DBG
DBS
DB4
DB3
DB2
DB1
bBo

Vdd Vo

Vss




[image: image56.png]Waltage
250

space

space

Logie™

ey
Transtion Ragicn

B

Logic't

s

Mk

Tme



[image: image57.jpg]


[image: image1.png]Power supply

PC

MAX

232

Micro
Controller
(AT89C52)

Relay

FAN

Relay

LIGHT





Figure 2.1. Block Diagram of PC based electrical equipment control system

In the above block diagram firstly the power supply of +5 volts is provided to the microcontroller. The RS232 cable is connected to COM1 port of PC, and then it is interfaced with the microcontroller by using MAX232 IC which is a voltage converter to convert RS232’s signals to TTL. In order to display the functions of the project a LCD display is interfaced with the Microcontroller, and finally the Microcontroller is connected with relay to which the appliances which are to be controlled are connected. 
2.3 Implementation

This section looks at the concepts of interfacing the hardware modules for the successful implementation of the project. To implement the overall system the following are the modules:
· Power supply

· LCD interfacing with Microcontroller

· MAX232 interfacing

· RS232 cable connection

· Relay connection

2.3.1 Power Supply

The power supply is designed as shown in figure 3.1.The output is 5v DC which is used as Vcc in designing the system.
2.3.2 LCD Interfacing with Microcontroller

[image: image2.png]ArEvCes

3

\
,
3

PAra

s

§ERRreFer g
o

+

3





Figure2.2. LCD interfacing with microcontroller

LCD of 16 bit is used here, it is represented as 16 x 2 LCD which means 2 lines each of 16 characters with total of 32 characters can be displayed on LCD. IT has 5 x 8 dots with cursor. It can work with a power supply of +5 volts. It has 16 pins each with different functionality. Here interface of LCD with microcontroller is shown as below.

Port2.0



-
Register select of LCD

Port2.2



-
Enable of LCD

Port0.0 to Port 0.7

-
Data lines DB0- DB7

Port2.1



-
Read/Write

 Figure 4.1 shows the LCD interfacing to the microcontroller .Port 0.0 to P0.7 are given to DB0-DB7 of the controller with P2.0 to register select and P2.2 to enable of the LCD. Pins  and 16 are grounded where as pins  2 and 15 are connected to Vcc.

2.3.3 MAX232 interfacing and RS232 cable connection

[image: image3.png]



Figure.2.3. MAX IC interfacing with microcontroller

Firstly the second pin of DB9 connector on computer is for reception and third pin is for transmission, these two pins are connected to receiver and transmitter pins of MAX232 chip simultaneously, and fifth Pin of RS232 (DB9) is connected to ground.

To communicate over UART or USART, we just need three basic signals which are namely, RXD (receive), TXD (transmit), GND (common ground). So to interfaceMAX232with any microcontroller (AVR, ARM, 8051, PIC etc.) we just need the basic signals. A simple schematic diagram of connections between a microcontroller and MAX232 is shown in the figure 4.2. The Connections are so made that PC transmit pin is connected to R1in 13th pin, RS232 connector Receive pin to T1out 14th pin of Max IC respectively .The Ports 3.0 (RXD), Port 3.1(TXD) of the controller are connected to 12th pin (R1out), 11th pin (T1in) of the Max IC as shown in the figure 4.2.

2.3.3 Relay Connection with Microcontroller

The interface of Relay with the microcontroller is shown in below figure.The Microcontroller is connected with relay to which the appliances, which are to be controlled, are connected.[image: image4.jpg]AT 84(Sa

26

45V
i

2Nl

~e
Relay
Ne

L ]

+sv





Figure 2.4. Relay interfacing with microcontroller
2.4 Flow Process

[image: image58.png]



[image: image59.png]



[image: image60.png]e Connector

Locking Into the DTE De
Sec. Cle o Send DBz Nale

Shiad /'*‘ Mode
s e o7 Tarsmiter Sanal Timing

Samal D N, / (OTE Souree)
\“\ / —

frenetforteing) ~evy T® ./ —
-

-
i MR St

racaveaine o 1+
o b Az OTE Renay

Signal Ground —7—*

-
dy 115 oo Locpbask

s
Clear to send /o ~Racsiver Signl Tining

Request 1o Send 4™ / § \W Sance
cei o /

F— W pieks

19-B0w S Request 1o Send
DCE Rea

Shiskd Sac. Trarsmited Daa
DB9 Male
Shisd
Signal Ground . __

s g R dcter

DTE Readly s
o —— Clear to Send

Transmitted Data a3
7 Request
Received Data ——2 Request to send

'
Receved Line Sgnal Detect = ™ DCE Ready

@ Received by DTE Device
e—— P Tranemitted from DTE Device:




[image: image61.png]DT DCE
Sde Sde

2 Tt Doty e Ricé Dt 2
3 Receted (1) s Tt D2 3
B Requestto fend —P Qe to Send B
T Qe M et S 7




[image: image62.png]S DB25 Female se: Received Daa

Received Data Famiter Sanl Tirin
~— I Signa Timing

(’I/‘ R
o s esos

Clear to Send 8
Tl o R S Tiing
Request 1o S g 1 017 B St

o ety e, RO ocatostas

\‘
~.
Transmitted Data

/
1+

P

o,
it e DT Rencty
Somn b /> °‘z‘

" Remots Lot
Lrsewmuswmgy/ o °\ RemotaLoopbadk

\
[— )» ‘\ 2 s
WWE‘,,/‘Z \z, Daasnalkanssuacr

Sec. Recava e A A ——

Sianal Deae ), Wd \mmﬂw@

Sex. Requestto Send Tt M

B9 Female
RacsivadLing Signe Datec
~ o DCERendy
Transmitted Data ;.
7 Clear to Send
Received Data —3
o
DIE Ready —+ - Request to send

5
Signal Ground

Ring Indicator

Shied

@t Rxceved by DLE Davice
P Tranimitet rom DCE Device



[image: image63.png]Protection
Diode

+12v

Coil

§—ono

I miitvy
NC

Input

Relay Contacts

Transistor
ov




[image: image64.jpg]



[image: image65.jpg]



Figure 2.5. Flow process

The above flow chart represents the flow process for the PC Based Electrical Equipment control project. In first step we set Baud rate, parity, data bits for serial port initialization for serial communication using HyperTerminal, and next wait until serial interrupt is available if interrupt is available send pattern then Microcontroller receives and read the message from PC and checks with the available control words and compare with them,  if control word is not available control go back to previous step. Here convert the control word with the suitable o/p signal to control appropriate device. In this way the flow process is carried out and relevant message is displayed on LCD.
2.5 Circuit Diagram

[image: image5.jpg]toare

.0

n

7

o
e)

Rs- 23
oB-%

\Q_ 0?0 Te

vlul g..,.lv‘
i

RsT

B.olRen
Ba/rep

%TAL2
XTALI

b

AT 84(Sa

129

SAAR
v

AAAA

_AAR s
Av‘v“
SIP rok

Vee
&’ /bo"'fi’
bour f0, |1

Ba/Ao s,
B3 /00y

o /A0,

gy

‘1/“‘ 73

f-3/b0y -1y
€n/vpp

ﬂ-l.f/ e‘; BL

2¢

82
D83
DB
DEs
D86
D87?

(eo”
teo -

Ry
A, 2L

Ry i 22
Rol -t

&/

e
ep
Prns

AAAA

6] Relay
Neo

+3sv





Figure 2.6. Circuit diagram
2.5.1 Circuit Description


The above figure shows the circuit diagram of PC based electrical equipment control using microcontroller. Here we used AT89C52 microcontroller.
As soon as we switch on the power supply an LED glows to indicate the proper functioning of the power supply circuit. The output of the power supply section is 5v.The LCD which is interfaced to the microcontroller in 8-bit mode displays the name of the project “PC Based Control System Using 89C52” and then displays a “BULB OFF FAN OFF ” indicting that loads connected to the microcontroller through relays are in off state..The reader when transmits this control code to microcontroller through MAX232 (Voltage level converter).The controller verifies the code with its database and displays the corresponding details like FAN ON, FAN OFF, BULB ON, BULB OFF, after some delay it is displayed on LCD. The crystal oscillator of frequency 11.0592 MHz is connected to 19 and 18 pin of microcontroller to generate clock signals. And Reset circuit is connected to 9th pin of microcontroller (AT89C52).
A receive interrupt (RI) is generated when the reader sends the control code to the controller from HyperTerminal of Personal computer, after level conversion; this code is stored in SBUF of the controller (RI is reset). Then it is compared with the control code stored on flash of the controller and corresponding details of load section either ON/OFF isdisplayed.The Ports 3.0 (RXD), Port 3.1(TXD) of the controller are connected to 12th pin (R1out), 11th pin (T1in) of the Max IC as shown in the circuit diagram.
The Microcontroller pin P2.5 is connected with relay to which the appliances which are to be controlled are connected. In order to drive the relay a transistor 2N222 is interfaced,  which is used for switching the relay ON and OFF. Here we used a Single Pole Single Throw relay, it has two terminals which can be connected or disconnected, and the appliances which are to be controlled are connected to this relays.
In this way, a simplified procedure is proposed to create an automation system which can control home appliances using PC through serial communication technique, which in turn save man power and also help to save electrical power.
Chapter 3
3 DESCRIPTION OF HARDWARE INVOLVED

3.1 Introduction
This chapter covers the components description in detail which were involved in the Project. 
To implement the overall system i.e. Smart purchase in Supermarkets Using RFID, the following are the modules:
· Power supply

· Microcontroller with minimum requirements

· LCD interfacing in 4-bit mode

· MAX232

· RS232 cable 

· Relay

3.2 Power Supply

The power supplies are designed to convert high voltage AC mains electricity to a suitable low voltage supply for electronic circuits and other devices. A RPS (Regulated Power Supply) is the Power Supply with Rectification, Filtering and Regulation being done on the AC mains to get a Regulated power supply for Microcontroller and for the other devices being interfaced to it. 

A power supply can by broken down into a series of blocks, each of which performs a particular function. A d.c power supply which maintains the output voltage constant irrespective of a.c mains fluctuations or load variations is known as “Regulated D.C Power Supply”.

The main blocks for the power supply section are transformer, rectifier, filter, regulator and this section is supplied to the load.
For example a 5V regulated power supply system as shown below: 

[image: image6.png]Tout
—
o
- T +
To AC line for:;; Rectifier Filter Regulator Vour | Load
o
A 2 N
Vaul
t—

Components of a typical linear power supply





Figure 3.1 components of a typical linear power supply

3.2.1 Transformer

A transformer is an electrical device which is used to convert electrical power from one Electrical circuit to another without change in frequency.

Transformers convert AC electricity from one voltage to another with little loss of power. Transformers work only with AC and this is one of the reasons why mains electricity is AC.  Step-up transformers increase in output voltage, step-down transformers decrease in output voltage. Most power supplies use a step-down transformer to reduce the dangerously high mains voltage to a safer low voltage.   The input coil is called the primary and the output coil is called the secondary. There is no electrical connection between the two coils; instead they are linked by an alternating magnetic field created in the soft-iron core of the transformer. The two lines in the middle of the circuit symbol represent the core.   Transformers waste very little power so the power out is (almost) equal to the power in. Note that as voltage is stepped down current is stepped up.   The ratio of the number of turns on each coil, called the turn’s ratio, determines the ratio of the voltages. A step-down transformer has a large number of turns on its primary (input) coil which is connected to the high voltage mains supply, and a small number of turns on its secondary (output) coil to give a low output voltage. 

[image: image7.png]



Figure 3.2 An electrical transformer
Turns ratio = Vp/ VS = Np/NS

Power Out= Power In
VS X IS=VP X IP
Vp=primary(input)voltage
Np=number of turns on primary coil

Ip  = primary (input) current    
3.2.2 Rectifier:
             A circuit which is used to convert a.c to dc is known as RECTIFIER. The process of conversion a.c to d.c is called “rectification”

Types of Rectifiers:

Half wave Rectifier

Full wave rectifier

1. Centre tap full wave rectifier.

2. Bridge type full bridge rectifier.  
Comparison of rectifier circuits
Table 3.1 comparison of rectifier circuits

	Parameter
	                              Type of Rectifier

	
	   Half wave                  Full wave              Bridge

	Number of   diodes
	1
	2
	4

	PIV of diodes
	Vm
	2Vm
	Vm

	D.C output voltage
	Vm/z
	2Vm/[image: image8.png]



	2Vm/[image: image9.png]




	Vdc, at no-load                  
	0.318Vm
	0.636Vm
	0.636Vm

	Ripple factor
	1.21
	0.482
	0.482

	Ripple frequency
	F
	2f
	2f

	Rectification efficiency
	0.406
	0.812
	0.812

	Transformer Utilization Factor(TUF)   
	0.287
	0.693
	0.812

	RMS voltage Vrms
	Vm/2
	Vm/√2
	Vm/√2


Full-Wave Rectifier:


From the above comparison we came to know that full wave bridge rectifier as more advantages than the other two rectifiers. So, in our project we are using full wave bridge rectifier circuit.

Bridge Rectifier: 


A bridge rectifier makes use of four diodes in a bridge arrangement as shown in fig (a) to achieve full-wave rectification. This is a widely used configuration, both with individual diodes wired as shown and with single component bridges where the diode bridge is wired internally.

[image: image10][image: image11.png]D

D3

D2

D4

JATA'A

OUTPUT




Figure 3.3Bridge Rectifier

Operation:


During positive half cycle of secondary, the diodes D2 and D3 are in forward biased while D1 and D4 are in reverse biased as shown in the fig(b). The current flow direction is shown in the fig (b) with dotted arrows.

[image: image12.png]OUTPUT




Figure (B)


During negative half cycle of secondary voltage, the diodes D1 and D4 are in forward biased while D2 and D3 are in reverse biased as shown in the Figure(c). The current flow direction is shown in the Figure (c) with dotted arrows.       

[image: image13.png]OUTPUT




Filter:


A Filter is a device which removes the a.c component of rectifier output but allows the d.c component to reach the load.

3.2.3 CapacitorFilter:


We have seen that the ripple content in the rectified output of half wave rectifier is 121% or that of full-wave or bridge rectifier or bridge rectifier is 48% such high percentages of ripples is not acceptable for most of the applications. Ripples can be removed by one of the following methods of filtering.
(a)  A capacitor, in parallel to the load, provides an easier by –pass for the ripples voltage though it due to low impedance. At ripple frequency and leave the D.C. to appear at the load.

(b) An inductor, in series with the load, prevents the passage of the ripple current (due to high impedance at ripple frequency) while allowing the d.c (due to low resistance to d.c).

(c) Various combinations of capacitor and inductor, such as L-section filter  [image: image14.png]


 section filter, multiple section filter etc. which make use of both the properties mentioned in (a) and (b) above. Two cases of capacitor filter, one applied on half wave rectifier and another with full wave rectifier.


Filtering is performed by a large value electrolytic capacitor connected across the DC supply to act as a reservoir, supplying current to the output when the varying DC voltage from the rectifier is falling. The capacitor charges quickly near the peak of the varying DC, and then discharges as it supplies current to the output. Filtering significantly increases the average DC voltage to almost the peak value (1.4 × RMS value). 

To calculate the value of capacitor(C),

                                    C = ¼*√3*f*r*Rl

              Where,

f = supply frequency,

r = ripple factor,

Rl = load resistance

Note: In our circuit we are using 1000µF hence large value of capacitor is placed to reduce ripples and to improve the DC component. 
3.2.4 Regulator

Voltage regulator ICs is available with fixed (typically 5, 12 and 15V) or variable output voltages. The maximum current they can pass also rates them. Negative voltage regulators are available, mainly for use in dual supplies. Most regulators include some automatic protection from excessive current ('overload protection') and overheating ('thermal protection').  Many of the fixed voltage regulators ICs have 3 leads and look like power transistors, such as the 7805 +5V 1A regulator shown on the right. The LM7805 is simple to use. You simply connect the positive lead of your unregulated DC power supply (anything from 9VDC to 24VDC) to the Input pin, connect the negative lead to the Common pin and then when you turn on the power, you get a 5 volt supply from the output pin. 

[image: image15.png]



Figure 3.4 A Three Terminal Voltage Regulator

3.3 Microcontroller
3.3.1 Microcontroller Vs General Purpose Microprocessor
The micro processor contains no RAM, no ROM and no I/O ports on the chip itself. For this reason they are commonly referred to as general purpose micro processors. The addition of external RAM, ROM, and I/O ports make these systems bulkier and much more expensive, they have the advantage of versatility such that the designer can decide on the amount of RAM ROM, and I/O ports needed to fit the task at hand.
            A microcontroller has a CPU (micro processor) in addition to a fixed amount of RAM, ROM, I/O ports and a timer all on a single chip. Therefore, the designer cannot add any external memory, I/O or timer to it. The fixed amount of on chip ROM, RAM and number of I/O ports in microcontroller make them ideal for many applications in which cost and space are critical. 
3.3.2 Microcontrollers For Embedded Systems

Embedded systems are information processing systems that are embedded into the large product and that normally not directly visible to a user. The examples of embedded systems include information processing systems in telecommunication equipment and consumer electronics.

             A general purpose definition of embedded systems is that they are devices used to Control, monitor or assist the operation of equipment, machinery or plant. “Embedded” reflects the fact that they are an integral part of this system. in many cases, their embedded feature may be such that their presence is far from obvious to the casual observer and even the more ‘technically skilled might need to examine the operation of a piece of equipment for sometime before being able to conclude that an embedded control system was involved in its functioning.

            An embedded product uses a micro processor (or micro controller) to do one task only. The embedded systems are capable of performing only a single function or a set of functions to meet a single predetermined purpose. In more complex systems an application program that enables the embedded system to be used for a particular purpose in a specific application determines the functioning of embedded systems. The ability to have programs means that the same embedded system can be used for a variety of different purposes. In some cases, a micro controller may be designed in such a way that the application software for a particular purpose can be added to the basic software in a second process, after which it is not possible to make further changes. 

3.3.3 The 8051Microcontroller
                  A Microcontroller (MCU) is a computer-on-a-chip. It is a type of microprocessor emphasizing self-sufficiency and cost-effectiveness, in contrast to a general-purpose microprocessor. A highly integrated chip that contains all the components comprises a controller. Typically this includes a CPU, RAM, some form of ROM, 110 ports, and timers. Unlike a general-purpose computer, which also includes all of these components, a microcontroller is designed for a very specific task i.e. controls a particular system. As a result, the parts can be simplified and reduced, which cut down on production costs. 

              It is a general-purpose device, which is meant to read data, perform limited calculations on that data and control its environment based on those calculations. The prime use of microcontroller is to control the operation of a machine using a fixed program that is stored in ROM and that does not change over the lifetime of the system. The microcontroller is concerned with getting the data to its own pins. The architecture and instruction set are optimized to handle data in bit and byte size.        


There are also multiple architectures used, but the predominant architecture is CISC (Complex Instruction Set Computer), which allows the microcontroller to contain multiple control instructions that can be executed with a single macro instruction. Some use a RISC (Reduced Instruction Set Computer) architecture, which implements fewer instructions, but delivers greater amount of wiring and PCB space that would be needed to produce equivalent systems using separate chips and have proved to be highly popular in Embedded Systems Integration. 

               These have provided EPROM versions that have a “window” on the top of the device through which program memory can be erased by ultra violet light, ready for reprogramming after a programming (“burn”) and test cycle. Other versions may be available where the ROM is accessed as an external device rather than internal memory. A simple EPROM programmer, rather than a more complex and expensive microcontrollers programmer, may then be used, however there is a potential loss of functionality through pin outs being tied up with external memory addressing rather than for general input/output. 

3.3.4 Interrupt Latency
              Interrupt Latency is the time between the generation of an interrupt by a device and the servicing of the device which generated the interrupt. In contrast to general-purpose computers, microcontrollers used in embedded systems often seek to minimize interrupt latency over instruction throughout. When an electronic device causes an interrupt, the intermediate results, the registers, have to be saved before the software responsible for handling the interrupt can run, and then must be put back after it is finished. If there are more registers, this saving and restoring process takes more time, increasing the latency. Low-latency CPUs generally have relatively few registers in their central processing units, or they have “shadow registers” that are only used by the interrupt software. 
3.3.5 Higher Integration
                  In contrast to general-purpose CPUs, microcontrollers do not have an address bus or a data bus, because they integrate all the RAM and non-volatile memory on the same chip as the CPU. Because they need fewer pins, the chip can be placed in a much smaller, cheaper package. Integrating the memory and other peripherals on a single chip and testing them asa unit increases the cost of that chip, but often results in decreased net cost of the embedded system asa whole. (Even if the cost of a CPU that has integrated peripherals is slightly more than the cost of a CPU + external peripherals, having fewer chips typically allows a smaller and cheaper circuit board, and reduces the labor required to assemble and test the circuit board). This trend leads to design. 

A microcontroller is a single integrated circuit, commonly with the following features:

· Central processing unit — ranging from small and simple 4-bit processors to sophisticated 32 or 64-bit processor .
· Input/output interfaces such as serial ports (UARTs) .
· Other serial communications interfaces like 12C; Serial Peripheral Interface and Controller Area Network for system interconnect. 

· Peripherals such as timers and watchdog.
· RAM for data storage .
· ROM, EPROM, EEPROM or Flash memory for program storage. 

· Clock generator — often an oscillator for a quartz timing crystal, resonator or RC circuit.

· Many include analog-to-digital converters  
Micro controllers are sometimes called embedded microcontrollers, which means that they are part of an embedded system i.e., one part of a larger device or system. 
3.4 Overview of the 8051 Family

3.4.1 Brief History Of The 8051

In 1981 Intel Corporation introduced an 8-bit micro controller called 8051. This micro controller has 128 bytes of RAM, 4k bytes of on chip ROM, two timers, one serial port and 4 ports (each 8 bits wide) all on a single chip. At that time it was “system on chip”. The 8051 is an 8-bit processor, meaning that the CPU can work on only 8 bits of data at a time. Data larger than 8 bits can have a maximum of 64K bytes of on chip ROM; many manufactures have put only 4K bytes on the chip.
            The 8051 became widely popular after Intel allowed other manufactures to make and market any flavor of the 8051. Although there are different flavors of the 8051 in terms of speed and amount of on chip ROM they are compatible with the original 8051 as far as the instructions are concerned. That means once the program is written it will run on any one of them regardless of the manufactures. 

       The 8051 microcontroller’s generic part number actually includes a whole family of micro controllers have numbers range from 8031 to 8751 and is available in N-channel metal oxide silicon (NMOS) and complementary metal oxide silicon (CMOS) construction in a variety of package. Intel Corporation manufactured the 8051 micro controller. In this chapter we will study a generic 8051, housed in a 40 pin DIP and will direct our investigations towards a particular type. The 8051 is an 8-bit processor, meaning that the CPU can work on only 8 bits of data at a time.
3.4.2 8051 ARCHITECTURE

8051 architecture consists of the following specific features: 

· 8-bit CPU with registers A (accumulator) and 16-bit program counter (PC) and data pointer    (DPTR). 

· 8-bit program status word.

· 8-bit stack pointer.

· Internal ROM or EPROM (0 bytes in 8031 to 4K in 8051)

· Four registers bank, each 8 registers.

· 1 6-byte, which may be addressed at the bit level.

· 8-bytes of general purpose data memory.

· It has two 8 bit timers.

· 32 110 pins timer/counters: TO and Ti.
· Full duplex serial data receiver/traflsm1ff SBUF.

· Control registers: TCON, TMOD, SCON, PCON, IP and IE .
· Two external and three internal interrupt sources. 

· Oscillator and clock circuits.
Table 3.2: Comparison of 8051 family members

	Feature
	8051
	8052
	8031

	ROM(on chip program memory in bytes)
	4k
	8k
	0k

	RAM(bytes)
	128
	256
	128

	Technology
	MOS
	MOS
	MOS

	Timers
	2
	3
	2

	I/O pins
	32
	32
	32

	Serial port
	1
	1
	1

	Interrupt services
	6
	8
	6


3.5 The Microcontroller AT89C52

Description:

               The AT89C52 is a low-power, high-performance CMOS 8-bit microcomputer with 8K bytes of Flash programmable and erasable read only memory (PEROM). The device is manufactured using Atmel’s high-density nonvolatile memory technology and is compatible with the industry-standard 80C51 and 80C52 instruction set and pin out. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C52 is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications.
3.5.1 Features Of AT89C52

• Compatible with MCS-51 Products

• 8K Bytes of In-System Reprogrammable Flash Memory

• Endurance: 1,000 Write/Erase Cycles

• Fully Static Operation: 0 Hz to 24 MHz

• Three-level Program Memory Lock

• 256 x 8-bit Internal RAM

• 32 Programmable I/O Lines

• Three 16-bit Timer/Counters

• Eight Interrupt Sources

• Programmable Serial Channel

• Low-power Idle and Power-down M
Block diagram
[image: image16.emf]
Figure 3.5 Block Diagram of AT89C52

The AT89C52 provides the following standard features: 8K bytes of Flash, 256 bytes of RAM, 32 I/O lines, three 16-bit timer/counters, a six-vector two-level interrupt architecture, a full-duplex serial port, on-chip oscillator, and clock circuitry. In addition, the AT89C52 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and interrupt system to continue functioning. The Power-down mode saves the RAM contents but freezes the oscillator, disabling all other chip functions until the next hardware reset.

[image: image66.png]—
i

NO
COM
NC



Pin Diagram
 SHAPE  \* MERGEFORMAT 



Figure 3.6 Pin Diagram of AT89C52
Pin Description
VCC  



Pin 40 provides Supply voltage to the chip. The voltage source is +5v
GND.


Pin 20 is the grounded
Port 0

Port 0 is an 8-bit open drain bidirectional I/O port from pin 32 to 39. As an output port each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs. Port 0 may also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode P0 has internal pull-ups.

      Port 0 also receives the code bytes during Flash programming, and outputs the code bytes during program verification. External pull-ups are required during program verification.

Port 1

Port 1 is an 8-bit bidirectional I/O port with internal pull-ups from pin 1 to 8. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pull-ups. 

In addition, P1.0 and P1.1 can be configured to be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively, as shown in following table. 

Port 1 also receives the low-order address bytes during Flash programming and program verification.

	Port Pin
	Alternate Functions

	P1.0
	T2(external count input to Timer/counter2), clock-out

	P1.1
	T2EX (Timer/counter2 capture/reload trigger and direction control) 


Port 2

Port 2 is an 8-bit bidirectional I/O port with internal pull-ups from pin 21 to 28. The Port 2 output buffers can sink / source four TTL inputs. When 1s are written to Port 2 pins they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pull-ups.

Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that uses 16-bit addresses (MOVX @ DPTR).  In this application it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that uses 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.
Port 3
Port 3 is an 8-bit bidirectional I/O port with internal pull-ups from pin 10 to 17. The Port 3 output buffers can sink / source four TTL inputs. When 1s are written to Port 3 pins they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL) because of the pull-ups. 

Port 3 also serves the functions of various special features of the AT89C52 as listed below
Table 3.3 Special Features of port3
	Port Pin
	Alternate Function

	P3.0
	RXD (serial input port)

	P3.1
	TXD (serial output port)

	P3.2
	[image: image67.jpg]


INT0 (external interrupt0)

	P3.3
	[image: image68.jpg]


INT1 (external interrupt1)

	P3.4
	T0 (timer 0 external input)

	P3.5
	T1 (timer 1 external input)

	P3.6
	[image: image69.png]veo

—e

TOFE 2y, orefloe
A PN Lt
Fima V-8
100 ]
T Se- oo
Wz
1 12
s a
Rs22 m
1o awos
14 11




WR (external data memory write strobe)

	P3.7
	RD (external data memory read strobe)


Port 3 also receives some control signals for Flash programming and programming verification.

RST

Pin 9 is the Reset input. It is active high. Upon applying a high pulse to this pin, the microcontroller will reset and terminate all activities. A high on this pin for two machine cycles while the oscillator is running resets the device.

ALE/PROG

Address Latch is an output pin and is active high. Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming. In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. 

Note, however, that one ALE pulse is skipped during each access to external Data Memory. If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

PSEN

Program Store Enable is the read strobe to external program memory. When the AT89S52 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.

EA/VPP

External Access Enable EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset. EA should be strapped to VCC for internal program executions. This pin also receives the 12-volt programming enable voltage (VPP) during Flash programming when 12-volt programming is selected.
XTAL1

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2

Output from the inverting oscillator amplifier.

Oscillator Characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on chip oscillator, as shown in Figure 5.3. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven .

[image: image18.wmf]
Figure. 3.7 Crystal Connections

[image: image19.png]NC

EXTERNAL
OSCILLATOR
SIGNAL

XTAL2

XTAL1

GND




Figure. 3.8 External Clock Drive Configuration

There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.

Idle Mode



In idle mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset. It should be noted that when idle is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. 
On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.
Power down Mode

In the power down mode the oscillator is stopped, and the instruction that invokes power down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the power down mode is terminated. The only exit from power down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before VCC is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.

Table 3.4 Status Of External Pins During Idle and Power Down Mode
	Mode
	Program memory
	ALE
	PSEN
	PORT 0
	PORT 1
	PORT 2
	PORT 3

	Idle
	Internal
	1
	1
	Data
	Data
	Data
	Data

	Idle
	External
	1
	1
	Float
	Data
	Address
	Data

	Power down
	Internal
	0
	0
	Data
	Data
	Data
	Data

	Power down
	External
	0
	0
	Float
	Data
	Data
	Data


Program Memory Lock Bits

On the chip are three lock bits, which can be left un-programmed (U) or can be programmed (P) to obtain the additional features listed in the table 5.4. When lock bit 1 is programmed, the logic level at the EA pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value, and holds that value until reset is activated. It is necessary that the latched value of EA be in agreement with the current logic level at that pin in order for the device to function properly.
Table 3.5 Lock Bit Protection Modes

	S/N
	Program lock Bits
	Protection Bits.

	
	LB1
	LB2
	LB3
	

	1
	U
	U
	U
	No program features.

	2
	P
	U
	U
	MOVC instructions are excluded from external memory are disabled from fetching code bytes internal memory, EA is sampled and latched on reset, and further program is disabled.

	3
	P
	P
	U
	Same as mode 2,verify is disabled. 

	4
	P
	P
	P
	Same as mode 3, external execution is disabled. 


TIMERS
Timer 0 and 1

Timer 0 and Timer 1 in the AT89S52 operate the same way as Timer 0 and Timer 1 in the AT89S52.

Register pairs (TH0, TL1), (TH1, TL1) are the 16-bit counter registers for timer/c;ounters 0 and 1.

Timer 2

Timer 2 is a 16-bit Timer/Counter that can operate as either a timer or an event counter. The type of operation is selected by bit C/T2 in the SFR T2CON. Timer 2 has three operating modes: capture, auto-reload (up or down counting), and baud rate generator. Bits in T2CON, as shown in Table 5.2, select the modes. Timer 2 consists of two 8-bit registers, TH2 and TL2. In the Timer function, the TL2 register is incremented every machine cycle. Since a machine cycle consists of 12 oscillator periods, the count rate is 1/12 of the oscillator frequency. 
Table 3.6 Timer 2 Operating Modes
	RCLK + TCLK
	CP/RL2
	  TR2
	      MODE

	          0
	      0
	    1
	16-bit Auto-reload

	          0
	      1
	    1
	16-bit Capture

	          1
	     X
	    1
	Baud rate Generator

	         X
	     X
	    0
	      (Off)


In the Counter function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since two machine cycles (24 oscillator periods) are required to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the oscillator frequency. To ensure that a given level is sampled at least once before it changes, the level should be held for at least one full machine cycle.

There are no restrictions on the duty cycle of external input signal, but it should for at least one full machine to ensure that a given level is sampled at least once before it changes.

Capture Mode

In the capture mode, two options are selected by bit EXEN2 in T2CON. If EXEN2 = 0, Timer 2 is a 16-bit timer or counter which upon overflow sets bit TF2 in T2CON.This bit can then be used to generate an interrupt. IfEXEN2 = 1, Timer 2 performs the same operation, but a 1-to-0 transition at external input T2EX also causes the current value in TH2 and TL2 to be captured into RCAP2H andRCAP2L, respectively. In addition, the transition at T2EXcauses bit EXF2 in T2CON to be set. The EXF2 bit, likeTF2, can generate an interrupt. 

Auto-reload (Up or Down Counter)

Timer 2 can be programmed to count up or down when configured in its 16-bit auto-reload mode. This feature is invoked by the DCEN (Down Counter Enable) bit located in the SFR T2MOD (see Table 4). Upon reset, the DCEN bit is set to 0 so that timer 2 will default to count up. When DCEN is set, Timer 2 can count up or down, depending on the value of the T2EX pin.
3.5.2 Interrupts
The AT89C52 has a total of six interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (Timers 0, 1, and 2), and the serial port interrupt. These interrupts are all shown in below
[image: image20.wmf]
Figure. 3.9 Interrupts Source

Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in Special Function Register IE. IE also contains a global disable bit, EA, which disables all interrupts at once. 

Note that Table 5.3 shows that bit position IE.6 is unimplemented. In the AT89C51, bit position IE.5 is also unimplemented. User software should not write 1s to these bit positions, since they may be used in future AT89 products.    
	(MSB)                                                                         (LSB)

EA

-

ET2

ES

ET1

EX1

ET0

EX0

Enable Bit = 1 enables the input.

Enable Bit = 0 disables the input.



	Symbol
	Position
	Function

	EA
	IE.7
	Disables all interrupts. If EA=0, no interrupt is acknowledged. If EA=1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.

	-
	IE.6
	Reserved.

	ET2
	IE.5
	Timer2 interrupt enable bit.

	ES
	IE.4
	Serial Port interrupt enable bit.

	ET1
	IE.3
	Timer1 interrupt enable bit.

	EX1
	IE.2
	External interrupt 1 enable bit.

	ET0
	IE.1
	Timer 0 interrupt enable bit.

	EX0
	IE.0
	External interrupt 0 enable bit.

	User software should never write 1s to unimplemented bits,

Because they may be used in future AT89 products.


Table 3.7 Interrupts Enable Register

z
Timer 2 interrupt is generated by the logical OR of bits TF2 and EXF2 in register T2CON. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and that bit will have to be cleared in software.

The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag, TF2, is set at S2P2 and is polled in the same cycle in which the timer overflows.
3.5.3 Special function registers:


Special function registers are the areas of memory that control specific functionality of the 89c52 microcontroller.
a) Accumulator (0E0h)


As its name suggests, it is used to accumulate the results of large no. of instructions. It can hold 8 bit values.

b) B Registers (0F0h)


The B register is very similar to accumulator. It may hold 8-bit value. The B register is only used by MUL AB and DIV AB instructions. In MUL AB the higher byte of the products gets stored in B register. In DIV AB the quotient gets stored in B with the remainder in A.

c) Stack Pointer (081h)


The stack pointer holds 8-bit value. This is used to indicate where the next value to be removed from the stack should be taken from. When a value is to be pushed on to the stack, the 8052 first store the value of SP and then store the value at the resulting memory location. When a value is to be popped from the stack, the 8052 returns the value from the memory location indicated by SP and then decrements the value of SP.

d) Data pointer (Data pointer low/high, address 82/83h)


The SFRs DPL and DPH work together to represent a 16-bit value called the data pointer. The data pointer is used in operations regarding external RAM and some instructions code memory. It is a 16-bit SFR and also an addressable SFR.

e) Program counter 


The program counter is a 16 bit register, which contains the 2 byte address, which tells the next instruction to execute to be found in memory. When the 8052 is initialized PC starts at 0000h and is incremented each time an instruction is executes. It is not addressable SFR.
f) PCON (power control, 87h)

The power control SFR is used to control the 8052’s power control modes. Certain operation modes of the 8052 allow the 8052 to go into a type of “sleep mode” which consumes low power
g)TCON(Timer control, 88h)

The timer mode control SFR is used to configure and modify the way in which the 8052’s two timers operate. This SFR controls whether each of the two timers is running or stopped and contains a flag to indicate that each timer has overflowed. Additionally, some non-timer related bits are located in TCON SER. These bits are used to configure the way in which the external interrupt flags are activated, which are set when an external interrupt occur.


	TF1
	 TR1 
	  TF0
	  TR0
	 IE1
	 IT1
	  IE0
	  IT0


h)TMOD(Timer Mode,89h)


The timer mode SFR is used to configure the mode of operation of each of the two timers. Using this SR your program may configure each timer to be a 16-bit timer, or 13 bit timer, 8-bit auto reload timer, or two separate timers. Additionally you may configure the timers to only count when an external pin is activated or to count “events” that are indicated on an external pin.

	Gate
	‌

C/ T
	 M1
	 M0
	Gate
	‌

 C/ T
	M1
	M0



                               TIMER1


                TIMER0
i) T0 (Timer 0 low/ high, address 8A/ 8C h) 

These two SFRs together represent timer 0. Their exact behavior depends on how the timer is configured in the TMOD SFR; however, these timers always count up. What is configurable is how and when they increment value.

j) T1 (Timer 1 low/ high, address 8B/ 8D h) 


These two SFRs together represent timer 1. Their exact behavior depends on how the timer is configured in the TMOD SFR; however, these timers always count up. What is configurable is how and when they increment in value.
k) P0 (Port 0, address 80h, bit addressable)


This is port 0 latch. Each bit of this SFR corresponds to one of the pins on a micro controller. Any data to be outputted to port 0 is first written on P0 register. For e.g., bit 0 of port 0 is pin P0.0, bit 7 is pin P0.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to low level. 

l) P1(Port 1, address 90h, bit addressable)


This is port 1 latch. Each bit of this SFR corresponds to one of the pins on a micro controller. Any data to be outputted to port 1 is first written on P1 register. For e.g., bit 0 of port 1 is pin P1.0, bit 7 is pin P1.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to low level. 

m) P2 (Port 2, address 0A0h, bit addressable)


This is port 2 latch. Each bit of this SFR corresponds to one of the pins on a micro controller. Any data to be outputted to port 2 is first written on P2 register. For e.g., bit 0 of port 2 is pin P2.0, bit 7 is pin P2.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to low level. 

n) P3 (Port 3, address 0B0h, bit addressable)


This is port 3 latch. Each bit of this SFR corresponds to one of the pins on a micro controller. Any data to be outputted to port 3 is first written on P3 register. For e.g., bit 0 of port 3 is pin P3.0, bit 7 is pin P3.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to low level. 

o) IE (Interrupt Enable, 0A8h)


The interrupt enable SFR is used to enable and disable specific interrupts. The low 7 bits of the SFR are used to enable/disable the specific interrupts, where the MSB bit is used to enable or disable all the interrupts. Thus, setting a lower bit enables if the high bit of IE 0 all interrupts are disabled regardless of whether an individual interrupt. 

	   EA
	 _ _ _ 
	  ET2
	  ES
	  ET1
	  EX1
	  ET0
	  EX0


p) IP (Interrupt Priority, 0B8h)

The interrupt priority SFR is used to specify the relative priority of each interrupt. On 8052, an interrupt may be either low or high priority. An interrupt may interrupt interrupts. For e.g., if we configure all interrupts as low priority other than serial interrupt. The serial interrupt always interrupts the system; even if another interrupt is currently executing no other interrupt will be able to interrupt the serial interrupt routine since the serial interrupt routine has the highest priority.

	_ _ _
	_ _ _
	   PT2
	  PS
	  PT1
	   PX1
	  PT0
	  PX0


q)PSW (Program Status Word, 0D0h)


The Program Status Word is used to store a number of important bits that are set and cleared by 8052 instructions. The PSW SFR contains the carry flag, the auxiliary carry flag, the parity flag and the overflow flag. Additionally, it also contains the register bank select flags, which are used to select, which of the “R” register banks currently in use.

	  CY
	   AC
	  F0
	   RS1
	  RS0
	   OV
	- - - -
	    P


r) SBUF (Serial Buffer, 99h)


SBUF is used to hold data in serial communication. It is physically two registers. One is writing only and is used to hold data to be transmitted out of 8052 via TXD. The other is read only and holds received data from external sources via RXD. Both mutually exclusive registers use address 99h.
3.6 Memory Organization

The total memory of 89C52 system is logically divided in Program memory and Data memory. Program memory stores the programs to be executed, while data memory stores the data like intermediate results, variables and constants required for the execution of the program. Program memory is invariably implemented using EPROM, because it stores only program code, which is to be executed, and thus it need not be written into. However, the data memory may be read from or written to and thus it is implemented using RAM.


Further, the program memory and data memory both may be categorized as on-chip (internal) and external memory, depending upon whether the memory physically exists on the chip or it is externally interfaced. The 89C52 can address 8Kbytes on-chip memory whose map starts from 0000H and ends at 1FFFH. It can address 64Kbytes of external program memory under the control of PSEN (low) signal.


The AT89C52 implements 256 bytes of on-chip RAM. The upper 128 bytes occupy a parallel address space to the Special Function Registers. That means the upper 128bytes have the same addresses as the SFR space but are physically separate from SFR space. When an instruction accesses an internal location above address 7FH, the address mode used in the instruction specifies whether the CPU accesses the upper 128 bytes of RAM or the SFR space. Instructions that use direct addressing access SFR space. For example, the following direct addressing instruction accesses the SFR at location 0A0H (which is P2).

MOV 0A0H, #data

            Instructions that use indirect addressing access the upper128 bytes of RAM. For example, the following indirect addressing instruction, where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H)

.MOV @R0, #data

Note that stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space.
3.7 Liquid Crystal Display
A Liquid crystal display (LCD) is a thin, flat panel used for electronically displaying information such as text, images, and moving pictures. Its uses include monitors for computers, televisions, instrument panels, and other devices ranging from aircraft cockpit displays, to every-day consumer devices such as video players, gaming devices, clocks, watches, calculators, and telephones. Among its major features are its lightweight construction, its portability, and its ability to be produced in much larger screen sizes than are practical for the construction of cathode ray tube (CRT) display technology. Its low electrical power consumption enables it to be used in battery-powered electronic equipment. It is an electronically-modulated optical device made up of any number of pixels filled with liquid crystals and arrayed in front of a light source (backlight) or reflector to produce image Specifications.
3.7.1 LCD Operation

                Current passed through specific portions of the liquid crystal solution causes the crystals to align, blocking the passage of light. Doing so in a controlled and organized manner produces visual images on the display screen. The advantage of LCDs is that they are much lighter and consume less power than other display technologies (e.g., cathode-ray tubes). These characteristics make them an ideal choice for flat-panel displays, as in portable laptop and notebook computers.

             (Liquid Crystal Display) A display technology that uses rod-shaped molecules (liquid crystals) that flow like liquid and bend light.Unenergized, the crystals direct light through two polarizing filters, allowing a natural background color to show. When energized, they redirect the light to be absorbed in one of the polarizer’s; causing the dark appearance of crossed polarizer’s to show. The more the molecules are twisted, the better the contrast and viewing angle.


Figure 3.10: 2x16 LCD display
	Features

	[image: image21.png]


16 Characters x 2 Lines
[image: image22.png]


5 x 8 Dots with Cursor
[image: image23]Built in Controller (HD44780 or equivalent)
[image: image24.png]


+5V Power Supply
[image: image25]1/16 Duty Circle


\

The above figure explains the features of LCD

3.7.2 LCD Pin Description
Table 2.10 pin description of LCD
	Pin No
	       Name
	     I/O
	Description

	     1
	        Vss
	      Power
	GND

	     2
	        Vdd
	      Power
	+5v

	     3
	        Vo
	      Analog
	Contrast Control

	     4
	        RS
	      Input
	Register Select

	     5
	        R/W
	      Input
	Read/Write

	     6
	        E
	      Input
	Enable(Strobe)

	     7
	        D0
	      I/O
	Data LSB

	     8
	        D1
	      I/O
	Data

	     9
	        D2
	      I/O
	Data

	    10
	        D3
	      I/O
	Data

	    11
	        D4
	      I/O
	Data

	    12
	        D5
	      I/O
	Data

	    13
	        D6
	      I/O
	Data

	    14
	        D7
	      I/O
	Data MSB


RS (REGISTER SELECT)

 There are two important registers in the LCD. When RS is low (0), the data is to be treated as a command or special instruction (such as clear screen, position cursor, etc.). When RS is high (1), the data that is sent is a text data, which should be displayed on the screen. For example, to display the letter "T" on the screen you would set RS high.
RW (READ/WRITE):

The RW line is the "Read/Write" control line. When RW is low (0), the information on the data bus is being written to the LCD. When RW is high (1), the program is effectively querying (or reading) the LCD. Only one instruction ("Get LCD status") is a read command. All others are write commands, so RW will almost be low.
EN (ENABLE):

The EN line is called "Enable". This control line is used to tell the LCD that you are sending it data. To send data to the LCD, your program should first set this line high (1) and then set the other two control lines and/or put data on the data bus. When the other lines are completely ready, bring EN low (0) again. 
D0-D7 (DATA LINES)


The 8-bit data pins, D0-D7 are used to send information to the LCD or read the content of the LCD’s internal registers. To display letters and numbers, we send ASCII codes for the letters A-Z, a-z and numbers 0-9 to these pins while making RS=1. There are also instruction command codes that can be sent to the LCD to clear the display or force the cursor to the home position or blink the cursor. We also use RS=0 to check the busy flag bit to see if the LCD is ready to receive the information. The busy flag is D7 and can be read when R/W = 1 and RS=0, as follows: if R/W = 1, RS = 0.  When D7=1 (busy flag = 1), the LCD is busy taking care of internal operations and will not accept any new information. When D7 = 0, the LCD is ready to receive new information. Note: it is recommended to check the flag before writing any data to LCD.
3.7.3 LCD Command Codes
The different command codes for liquid crystal display are tabulated as below. Here Description of each operation is explained

Table 3.11 LCD functions
	Instruction
	RS
	RW
	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0
	Description
	Clock

	NOP
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	No Operation
	0

	Clear Display
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	Clears display & sets address counter to zero.
	165

	Cursor Home
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	Sets address to zero, returns shifted display to original position. DDRAM contents remain unchanged.
	3

	Entry Mode Set
	0
	0
	0
	0
	0
	0
	0
	1
	I/D
	S
	Sets cursor move direction, and specifies automatic shift.
	3

	Display Control
	0
	0
	0
	0
	0
	0
	1
	D
	C
	B
	Turns display (D), cursor on/off(c) or cursor blinking (B).
	3

	Cursor display shift
	0
	0
	0
	0
	0
	1
	S/C
	R/L
	0
	0
	Moves cursor and shift display. DDRAM contents remain unchanged.
	3

	Function Set
	0
	0
	0
	0
	1
	DL
	N
	M
	G
	0
	Sets interface data width (DL), number of display lines (N, M) and voltage generator control (G).
	3

	Set CGRAM Addr
	0
	0
	0
	1
	       Character Generator RAM
	Sets CGRAM Address
	3

	Set DDRAM Addr
	0
	0
	1
	                  Display Data RAM address
	Sets DDRAM Address
	3

	Busy flag & Addr
	0
	1
	BF
	                  Address counter
	Read s Busy Flag & Address counter
	0

	Read Data
	1
	0
	                             Read Data
	Reads data from CGRAM or DDRAM
	3

	Write Data
	1
	1
	                             Write Data
	Writes data from CGRAM or DDRAM
	3


Code                                Command of LCD instruction

(Hex)                                 Register
  1                                              Clear display screen

  2                                              Return home

  4                                              Decrement cursor (shift cursor to left)

  6                                              Increment cursor (shift cursor to right)

  5                                              Shift display right

  7                                              Shift display left

  8                                              Display off, cursor off   

  A                                             Display off, cursor on

  C                                             Display on, cursor off

  E                                             Display on, cursor blinking

  F                                             Display off, cursor blinking

  10                                           Shift cursor position to left

  14                                           Shift cursor position to right

  18                                           Shift entire display to left

  1C                                          Shift entire display to right

  80                                           Force cursor to beginning of first line

  C0                                          Force cursor to beginning of second line

  38                                           2 lines and 5 *7 matrix

  30                                           1 line and 5 *7 matrix
3.7.4 Advantages:

LCD interfacing with 8051 is a real-world application. In recent years the LCD is finding widespread use replacing LED’s (seven segment LED’s or other multi segment LED’s). 
This is due to following reasons:

· The declining prices of LCD’s.

· The ability to display numbers, characters and graphics. This is in contrast to LED’s, which are limited to numbers and a few characters. An intelligent LCD displays two lines, 20 characters per line, which is interfaced to the 8051.

· Incorporation of a refreshing controller into the LCD, thereby relieving the CPU to keep displaying the data.

· Ease of programming for characters and graphics.
3.8 RS232

The RS-232 (Recommended Standard 232) interface is the Electronic Industries Association (EIA) standard for the interchange of serial binary data between two devices (DTE (Data terminal equipment) and a DCE (Data Circuit-terminating Equipment)).
It was initially developed by the EIA to standardize the connection of computers with telephone line modems. UART (Universal Asynchronous Receiver Transmitter) or USART (Universal Synchronous Asynchronous Receiver Transmitter) are one of the basic interfaces, which you will find in almost all the controllers available in the market till date. This interface provides a cost effective simple and reliable communication between one controller to another controller or between a controller and PC.
 The standard allows as many as 20 signals to be defined, but gives complete freedom to the user. Three wires are sufficient: send data, receive data, and signal ground. The remaining lines can be hardwired on or off permanently. The signal transmission is bipolar, requiring two voltages, from 5 to 25 volts, of opposite polarity.

3.8.1 Voltage levels:

The RS-232 standard defines the voltage levels that correspond to logical one and logical zero levels. Valid signals are plus or minus 3 to 25 volts as shown in the figure2.6. The range near zero volts is not a valid RS-232 level; logic one is defined as a negative voltage, the signal condition is called marking, and has the functional significance of OFF. Logic zero is positive, the signal condition is spacing, and has the function ON.
So a Logic Zero represented as +3V to +25V and Logic One represented as -3V to -25V

Figure 3.11 RS232 Voltage Level
3.8.2 Communication Standards
The industry custom is to use an asynchronous word consisting of: a start bit, seven or eight data bits, an optional parity bit and one or two stop bits. The baud rate at which the word sent is device-dependent. The baud rate is usually 150 times an integer power of 2, ranging from 0 to 7 (150, 300, 600... 19,200). Below 150 baud, many system-unique rates are used. A baud rate of 9600 is used in our project.

[image: image26.png]Logic '

Logic '0*

Start

7 |stop

45V

ov




The figure 2.7 shows the expected waveform from the UART when using the common 8N1 format. 8N1 signifies 8 Data bits, No Parity and 1 Stop Bit. The RS-232 line, when idle is in the Mark State (Logic 1). A transmission starts with a start bit which is (Logic 0). Then each bit is sent down the line, one at a time. The LSB (Least Significant Bit) is sent first. A Stop Bit (Logic 1) is then appended to the signal to make up the transmission. The data sent using this method, is said to be “framed”. That is the data is framed between a Start and Stop Bit. The figure 2.8 represents the signal present on the RS-232 Port of your computer. 

[image: image27.png]Mark.

Space

Start

7 |stop

10V

+10V




3.8.3 D-sub 9 Connector:

The DE-9 D-sub 9-pin connector is also referred as the "DB-9" connector.  The "E" refers to the shell size.  A "DB-25" connector has a "B" size shell, but the common nine-pin connector is smaller and has an "E" size shell.  These connectors are used for a variety of purposes.  Two common applications are RS-232/EIA-232 (serial) connections (including UPS cables), and a variety of video interfaces on the IBM PC. A computer's serial COM port (DTE) is usually a male port as shown in the figure 2.9, and any peripheral devices you connect to this port usually has a female connector (DCE) as shown in the figure 2.10.

Figure.3.12 D-sub 9 MaleFigure.3.13 D-sub 9 Female

Figure 3.14 DB9 Male


Figure.3.14 DB9 Female


Figure 2.13 shows the RS232connector, this connector type is also referred to as a DB9 connector.

 
Figure.3.15RS232connector

3.9 MAX232
The MAX232 is an integrated circuit that converts signals from an RS-232 serial port to signals suitable for use in TTL compatible digital logic circuits. The MAX232 is a dual driver/receiver and typically converts the RX, TX, CTS and RTS signals. The drivers provide RS-232 voltage level outputs (approx. ± 7.5 V) from a single + 5 V supply via on-chip charge pumps and external capacitors. This makes it useful for implementing RS-232 in devices that otherwise do not need any voltages outside the 0 V to + 5 V range, as power supply design does not need to be made more complicated just for driving the RS-232 in this case. The receivers reduce RS-232 inputs (which may be as high as ± 25 V), to standard 5 V TTL levels. These receivers have a typical threshold of 1.3 V, and a typical hysteresis of 0.5 V.The later MAX232A is backwards compatible with the original MAX232 but may operate at higher baud rates and can use smaller external capacitors – 0.1 μF in place of the 1.0 μF capacitors used with the original device.

3.9.1 Voltage levels:

When a MAX232 IC receives a TTL level to convert, it changes a TTL Logic 0 to between +3 and +15 V, and changes TTL Logic 1 to between -3 to -15 V, and vice versa for converting from RS232 to TTL as shown in the following table 2.7.

Table.3.12 MAX232 Voltage Conversion levels

	RS232 Line Type & Logic Level
	RS232 Voltage
	TTL Voltage to/from MAX232

	Data Transmission (Rx/Tx) Logic 0
	+3 V to +15 V
	0 V

	Data Transmission (Rx/Tx) Logic 1
	-3 V to -15 V
	5 V

	Control Signals (RTS/CTS/DTR/DSR) Logic 0
	-3 V to -15 V
	5 V

	Control Signals (RTS/CTS/DTR/DSR) Logic 1
	+3 V to +15 V
	0 V


MAX-232 includes a Charge Pump, which generates +10V and -10V from a single 5v supply. The driver requires a single supply of +5V. It provides 2-channel RS232C port and requires external 10uF capacitors. Figurers 2.14, 2.15 show the pin description and the typical connection of the IC respectively. 

Figure.3.16 MAX232 Typical Connection Circuit
3.10 RELAYS
A relay is an electrically operated switch. Current flowing through the coil of the relay creates a magnetic field which attracts a lever and changes the switch contacts. The coil current can be on or off so relays have two switch positions and they are double throw (changeover) switches. 


Relays allow one circuit to switch a second circuit which can be completely separate from the first. For example a low voltage battery circuit can use a relay to switch a 230V AC mains circuit. There is no electrical connection inside the relay between the two circuits, the link is magnetic and mechanical. 

The coil of a relay passes a relatively large current, typically 30mA for a 12V relay, but it can be as much as 100mA for relays designed to operate from lower voltages. Most ICs (chips) cannot provide this current and a transistor is usually used to amplify the small IC current to the larger value required for the relay coil. The maximum output current for the popular 555 timer IC is 200mA so these devices can supply relay coils directly without amplification. 

Relays are usually SPDT or DPDT but they can have many more sets of switch contacts, for example relays with 4 sets of changeover contacts are readily available. For further information about switch contacts and the terms used to describe them please see the page on switches. 

Most relays are designed for PCB mounting but you can solder wires directly to the pins providing you take care to avoid melting the plastic case of the relay. The supplier's catalogue should show you the relay's connections. The coil will be obvious and it may be connected either way round. Relay coils produce brief high voltage 'spikes' when they are switched off and this can destroy transistors and ICs in the circuit. To prevent damage you must connect a protection diode across the relay coil. 

The animated picture shows a working relay with its coil and switch contacts. You can see a lever on the left being attracted by magnetism when the coil is switched on. This lever moves the switch contacts. There is one set of contacts (SPDT) in the foreground and another behind them, making the relay DPDT. 


The relay's switch connections are usually labeled COM, NC and NO: 

· COM = Common, always connect to this, it is the moving part of the switch. 

· NC = Normally Closed, COM is connected to this when the relay coil is off. 

· NO = Normally Open, COM is connected to this when the relay coil is on. 

· Connect to COM and NO if you want the switched circuit to be on when the relay coil is on.

· Connect to COM and NC if you want the switched circuit to be on when the relay coil is off. 
Choosing a relay

You need to consider several features when choosing a relay: 

1. Physical size and pin arrangement
If you are choosing a relay for an existing PCB you will need to ensure that its dimensions and pin arrangement are suitable. You should find this information in the supplier's catalogue. 

2. Coil voltage
The relay's coil voltage rating and resistance must suit the circuit powering the relay coil. Many relays have a coil rated for a 12V supply but 5V and 24V relays are also readily available. Some relays operate perfectly well with a supply voltage, which is a little lower than their rated value. 

3. Coil resistance
The circuit must be able to supply the current required by the relay coil. You can useOhm's law to calculate the current: 

	Relay coil current   =
	  
 supply voltage/ Coil Resistance 

	
	


4. For example: A 12V supply relay with a coil resistance of 400[image: image28.png]


 passes a current of 30mA. This is OK for a 555 timer IC (maximum output current 200mA), but it is too much for most ICs and they will require a transistor to amplify the current. 

5. Switch ratings (voltage and current)
The relay's switch contacts must be suitable for the circuit they are to control. You will need to check the voltage and current ratings. Note that the voltage rating is usually higher for AC, for example: "5A at 24V DC or 125V AC". 

6. Switch contact arrangement (SPDT, DPDT etc.)
Most relays are SPDT or DPDT which are often described as "single pole changeover" (SPCO) or "double pole changeover" (DPCO). For further information please see the page on switches. 

Protection diodes for relays


Transistors and ICs (chips) must be protected from the brief high voltage 'spike' produced when the relay coil is switched off. The diagram shows how a signal diode (eg 1N4148) is connected across the relay coil to provide this protection. Note that the diode is connected 'backwards' so that it will normally not conduct. Conduction only occurs when the relay coil is switched off, at this moment current tries to continue flowing through the coil and it is harmlessly diverted through the diode. Without the diode no current could flow and the coil would produce a damaging high voltage 'spike' in its attempt to keep the current flowing. 

Reed relays

Reed relays consist of a coil surrounding a reed switch. Reed switches are normally operated with a magnet, but in a reed relay current flows through the coil to create a magnetic field and close the reed switch. 

Reed relays generally have higher coil resistances than standard relays (1000[image: image29.png]


 for example) and a wide range of supply voltages (9-20V for example). They are capable of switching much more rapidly than standard relays, up to several hundred times per second; but they can only switch low currents (500mA maximum for example). 

The reed relay shown in the photograph will plug into a standard 14-pin DIL socket ('chip holder'). For further information about reed switches please see thepageonswitches. 
Relays and transistors compared
Like relays, transistors can be used as an electrically operated switch. For switching small DC currents (< 1A) at low voltage they are usually a better choice than a relay. However transistors cannot switch AC or high voltages (such as mains electricity) and they are not usually a good choice for switching large currents (> 5A). In these cases a relay will be needed, but note that a low power transistor may still be needed to switch the current for the relay's coil! The main advantages and disadvantages of relays are listed below: 

Advantages of relays:
· Relays can switch AC and DC, transistors can only switch DC. 

· Relays can switch high voltages, transistors cannot. 

· Relays are a better choice for switching large currents (> 5A). 

· Relays can switch many contacts at once. 

Disadvantages of relays:
· Relays are bulkier than transistors for switching small currents. 

· Relays cannot switch rapidly (except reed relays), transistors can switch many times per second. 

· Relays use more power due to the current flowing through their coil. 

· Relays require more current than many chips can provide, so a low power transistor may be needed to switch the current for the relay's coil. 
 CHAPTER 4
4 SOFTWARE TOOLS
4.1 KEIL µVISION3

Keil adds many new features to the Editor like Text Templates, Quick Function Navigation, and Syntax Coloring with brace high lighting Configuration Wizard for dialog based startup and debugger setup. Keil is fully compatible to µVision2 and can be used in parallel with µVision2.
Keil is an IDE (Integrated Development Environment) that helps you write, compile, and debug embedded programs. It encapsulates the following components:

· A project manager.

· A make facility.

· Tool configuration.

· Editor.

· A powerful debugger.

To help you get started, several example programs (located in the \C51\Examples, \C251\Examples, \C166\Examples, and \ARM\...\Examples) are provided.

HELLO is a simple program that prints the string "Hello World" using the Serial Interface.

Building an Application in µVision2 :

To build (compile, assemble, and link) an application in µVision2, you must:

1. Select Project - (for example, 166\EXAMPLES\HELLO\HELLO.UV2).

2. Select Project - Rebuild all target files or Build target.

                µVision2 compiles, assembles, and links the files in your project.

Creating Your Own Application in µVision2 :

To create a new project in µVision2, you must:

1. Select Project - New Project.
2. Select a directory and enter the name of the project file.

Select Project - Select Device and select an AT89C52device from the Device Database.

3. Create source files to add to the project.

4. Select Project - Targets, Groups, Files, Add/Files, select Source Group1, and add the source files to the project.

5. Select Project - Options and set the tool options. Note when you select the target device from the Device Database™ all special options are set automatically. You typically only need to configure the memory map of your target hardware. Default memory model settings are optimal for most applications.

6. Select Project - Rebuild all target files or Build target.

Debugging an Application in µVision2 :

To debug an application created using µVision2, you must:

1. Select Debug - Start/Stop Debug Session.

2. Use the Step toolbar buttons to single-step through your program. You may enter G, main in the Output Window to execute to the main C function.

3. Open the Serial Window using the Serial #1 button on the toolbar.

Debug your program using standard options like Step, Go, Break, and so on.
Starting µVision2 and creating a Project:
µVision2 is a standard Windows application and started by clicking on the program icon. To create a new project file select from the µVision2 menu

Project – New Project…. This opens a standard Windows dialog that asks you for the new project file name.

We suggest that you use a separate folder for each project. You can simply use the icon Create New Folder in this dialog to get a new empty folder. Then select this folder and enter the file name for the new project, i.e. Project1.

µVision2 creates a new project file with the name PROJECT1.UV2 which contains a default target and file group name. You can see these names in the Project.
Window – Files 
Now use from the menu Project – Select Device for Target and select a CPU for your project. The Select Device dialog box shows the µVision2 device database. Just select the microcontroller you use. We are using for our examples the Philips 80C51RD+ CPU. This selection sets necessary tool options for the 80C51RD+ device and simplifies in this way the tool Configuration 

Building Projects and Creating a HEX Files

Typical, the tool settings under Options – Target are all you need to start a new application. You may translate all source files and line the application with a click on the Build Target toolbar icon. When you build an application with syntax errors, µVision2 will display errors and warning messages in the Output

Window – Build page. A double click on a message line opens the source file on the correct location in a µVision2 editor window.

Once you have successfully generated your application you can start debugging.

After you have tested your application, it is required to create an Intel HEX file to download the software into an EPROM programmer or simulator. µVision2 creates HEX files with each build process when Create HEX files under Options for Target – Output is enabled. You may start your PROM programming utility after the make process when you specify the program under the option Run User Program #1.

CPU Simulation

µVision2 simulates up to 16 Mbytes of memory from which areas can be mapped for read, write, or code execution access. The µVision2 simulator traps and reports illegal memory accesses being done.

In addition to memory mapping, the simulator also provides support for the integrated peripherals of the various 8051 derivatives. The on-chip peripherals of the CPU you have selected are configured from the Device 

Database selection
You have made when you create your project target. Refer to page 58 for more Information about selecting a device. You may select and display the on-chip peripheral components using the Debug menu. You can also change the aspects of each peripheral using the controls in the dialog boxes.
Start Debugging

You start the debug mode of µVision2 with the Debug – Start/Stop Debug Session command. Depending on the Options for Target – Debug Configuration, µVision2 will load the application program and run the startup code µVision2 saves the editor screen layout and restores the screen layout of the last debug session. If the program execution stops, µVision2 opens an editor window with the source text or shows CPU instructions in the disassembly window. The next executable statement is marked with a yellow arrow. During debugging, most editor features are still available. 

For example, you can use the find command or correct program errors. Program source text of your application is shown in the same windows. The µVision2 debug mode differs from the edit mode in the following aspects:

_ The “Debug Menu and Debug Commands” described on page 28 are Available. The additional debug windows are discussed in the following.
_ The project structure or tool parameters cannot be modified. All build Commands are disabled.
Disassembly Window

The Disassembly window shows your target program as mixed source and assembly program or just assembly code. A trace history of previously executed instructions may be displayed with Debug – View Trace Records. To enable the trace history, set Debug – Enable/Disable Trace Recording. 

If you select the Disassembly Window as the active window all program step commands work on CPU instruction level rather than program source lines. You can select a text line and set or modify code breakpoints using toolbar buttons or the context menu commands.

                You may use the dialog Debug – Inline Assembly… to modify the CPU instructions. That allows you to correct mistakes or to make temporary changes to the target program you are debugging.
1. Click on the KeiluVision Icon on Desktop

2. The following fig will appear

[image: image30.png]¥ Vision2.

ExpresssCH-DAPCB... | i Documentt - Mirosof... {1 ision2




3. Click on the Project menu from the title bar

4. Then Click on New Project

[image: image31.png]pVision2

[ Ele 9 ow Pt Dobug Pl Porphersls Toob SHCS indow 1l

asud
1 [& (@] proe:

© [ {8 doseProject

Prod Worsores  Conponents, Erirorment ok,

Select Device for Target

Import pisiont Project

Remove Item

oo aksr
(%] Build target F7
£ mebuid et s

© Trandae e
% stop buld

L0ssncetisspr.uvz
2 Ciimashavillinking.uv2

3CHKeNCS\ExamplesiHeloitello.Uvz
4 CHKeiCS1\Examplesieasure|Measure. vz

Create a new project o | O Rjw

e : ‘s





5. Save the Project by typing suitable project name with no extension in u r own folder sited in either C:\ or D:\

[image: image32.png]EEC- I EE %% % Ve B s
#|& QR er e
copL|Es o

Sovein [D empadn =]
[wj7emp

‘

File name:

Temp.Opt

Save s ype: | Temp.h2
Temp_Lv2.Bak

Bl Fites

oW R fw





6. Then Click on save button above.

7. Select the component for u r project. i.e. Atmel 
8. Click on the + Symbol beside of Atmel 

[image: image33.png]© hol
< herfler UTHE

 hndog Devices

@ drchaChips

e

S melWieless

@ Cast e

@ Chipeon

 OML Microciis
 Cybemetic Mito Systems
@ GbaTech

S Cyonalitegraed Prodicly

< )

EER-=N scicct Device for Target ‘Target 1"

88| o |

S i

Froject Workapae| /1900 Almel
' o I~ Use Extended Linker (X51) nstead of BL51
aroe

Faniy ™ Use Extended Assemblr (AX5T) nstead of AT
Database Desciptin:
@ hcerLabs ~

o | O Rjw

)





9. Select AT89C52 as shown below

[image: image34.png]EER-=N scicct Device for Target ‘Target 1"
5|8 m |
S i
Vendor Atmel
Profec workspad
Tt Do ATes ™ Use Extended Liker (LX51) rstead o BLS1
aroe
Famiy MCSST T Use Evteded Assemblr (851 nstead of 5T
Database Desciptin:
ATBIBIC512 A | [B051-based Fully Static 20MHz CMOS contiller with 32 1/0 Lines,
TRa/BeER2 2 Timers/Couniers, 6 Inenupts2 Prrty Levels, LART.
Thee-Level Pogram biemory Lock, 4k Epts Fash Menary,
128 Bytes Onchip ARM

ATBTFSIRC
ATBIFE2

ATBICTOS
ATBICTOS1U

aTeSCHICO

o | O Rjw

)





10. Then Click on “OK”

11. The Following fig will appear

[image: image35.png]i Temp - pVision2

and Acd

ExpressSCH -DHPCD.. | i Documentd - Micosoh, | B Temp - iviion 125240




12. Then Click either YES or NO………mostly “NO”

13. Now your project is ready to USE

14. Now double click on the Target1, you would get another option “Source group 1” as shown in next page.

[image: image36.wmf]
15. Click on the file option from menu bar and select “new”

[image: image37.png]i Temp - pVision2

crlvo

4j start Expross5CH - DIPCB, 4 PROGRAMMING STEP, 5 Temp - visionz ) 12:57 A0




16. The next screen will be as shown in next page, and just maximize it by double clicking on its blue boarder.

[image: image38.png]mp. - pVision2 1

et 5 e Erowc: oy P Pehra Tods S it |
PedEd s B0 o m .

e anE ere

cEE s A K

=33 Target 1
(23 Source Group 1

Fies
For o, press L.

e





17. Now start writing program in either in “C”  or “ASM”

18. For a program written in Assembly, then save it with extension “. asm”  and  for “C” based program save it with extension “ .C”

[image: image39.png][BYeie et yew Bojct Dobuo Fash Pespherss Loos 51CS indon e

== x|

BEEF R0
W& @ mmE| oeme

| me s s e o]

Projact Workspace x|
=33 Target 1

(23 Source Group 1

[Brene. iz

File name:

Save as pe:

[EXAMPLE ASM]

[AlFies )

Lscist

cap fuum |





19. Now right click on Source group 1 and click on “Add files to Group Source”

[image: image40.png]Temp. - p¥ision2 - [D:\tempsadan\EXAMPLE. ASM]

|Edle et yow eroject Dobug Flash pererls Tods SHCs window ek ETR
2N A r-R S L I |}

e anE ere

| me s s e o]

o Watspars =5 R o SSTART AT 0 RODRESS
e SO WAIN NP OVER TO KATN LADLE
ma: coL B compLENENT THE. STATUS

NP BACK TO THE LABLE "HAIN"
D THE PROGRAIN HERE

Select Device for Target Target 1"

Options for Graup ‘Source Group I

openrie

i rebuidtarger

(%] Build target F7
T e

% sop st

Manage Companerts

Remave Group Saurce Group 1'and s Flles:

[ okt Depereterces

Ak Fles to curent Project Group [ Lscs [





20. Now you will get another window, on which by default “C” files will appear.

[image: image41.png]Temp - pVision2

tempsadan\EXAMPL

[BYeie et yew Bojct Dobuo Fash Pespherss Loos 51CS indon e

== x|

BEEF R0
W& @ mmE| oeme

o %%t

| me s s e o]

[ Source Group 1

[ e T —
= Tt Add Files o Group 'Source Group 1°

Lookin: | 3 tempsadan

File name:

Files of type:

C Source fie (-c)

Lirary e ()
Text il [t
Al fes ]





21. Now select as per your file extension given while saving the file

22. Click only one time on option “ADD”

23. Now Press function key F7 to compile. Any error will appear if so happen.

[image: image42.png]Mempsadan\EXAMPLE. ASM]

|Edle et yow eroject Dobug Flash pererls Tods SHCs window ek _|=

X

BEEF (Do
W& @ mE e

A T T Yo T ~la

[Swme s KTaen o]

Projet iorkapace —=] ORG 08 JETART AT 0 ADDRESS
SR et | sour AT J3UMP OVER TO WATH LABLE
5 Sowes Group | : CPL P10 JCONPLEMENT THE STATUS
SIMP MATH (TP BACK TO THE LABLE "NATH"
= 23 JEND THE PROGRAN HERE
fies [§ [We
*[Build target 'Target 1'
' |assembling EXAMPLE.ASM. ..
linking...
§|Program Size: data-8.0 xdata-D code=6
['Temp" - 0 Error(s), 0 Warning(s).
3T\ puild { Command , FrdinFies ILe o





24. If the file contains no error, then press Control+F5 simultaneously.

25. The new window is as follows

[image: image43.png]Temp - pVision2 - [D:\empsadan\EXAMPLE. ASM]

|Edle et yow eroect Dobug Flash perperls Tods SHCs window ek ETR
2N A r-R S L I |}

@ & anE e
[lsonren 2o AREYSOE »

Projec Workspace —=] O0RG 0H JETART AT 0 ADDRESS
Feger o) SIMp MATN 7TMMP OVER TO MATH LABLE
e mn: CPL P10 JCONPLEMENT THE STATUS

SIMP MATH (TP BACK TO THE LABLE "NATH"
o 000 £ JEND THE PROGRAN HERE
i 000
2 000 Wision2
a 000
" 000 ‘ EVALUATION VERSION
5 000 Runring with Code Size Lini: 26
® 000
7 000 o
o [ 1]
a 00
b 000
» 000
smar 007
e 000,
FC Cox
sales 0
sec 000
pw 000

e & [@s





26. Then Click “OK”

27. Now Click on the Peripherals from menu bar, and check your required port as shown in fig below

[image: image44.png]Temp. - p¥ision2 - [D:\tempsadan\EXAMPLE. ASM]

|Bree ot yew projct Debug Fiash [pedpherls Took SICS window Hep _ = x|
L D i
(%] ‘é ”@”ﬁﬂ ) gy [ Interrupt.
[gslmom®o ol
ot Worapace = T , T
Fegser v 1=l| [ P OVER TO MATN LABLE
- s FLEET THE STATUS
Regs STMP MATN ;JUMP BACK TO THE LABLE "MAIN"
0 v e (am e PRocRAn FERE
2 o
B o
u o
B o
B o
K o
= Sys
. o
s b
B & [@e
*|Running with Code Size Limit: 2K -
"|Load "D:\\tempsadan\\Temp"
E
‘g@ >
3 ASM ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess -
3T 0T Buid ), Command £ FndinFies /. Il 3

T Lsca [l [ Rw





28. Drag the port a side and click in the program file.

[image: image45.png]Temp. - p¥ision2 - [D:\tempsadan\EXAMPLE. ASM]

|Edle et yow eroject Dobug Flash pererls Tods SHCs window ek _|= x|
PP B[R0 %R =l
@ 8 qmE oere
[gslnompo o 28 AREYSOE »
o Workipcs == e o ST AT 0 RonREs
Fegser v 1=l| [ s wATH SIUNP OVER TO MATN LABLE
- s oot 7110 LcomrEmET T STATUS
Regs STMP MATN ;JUMP BACK TO THE LABLE "MAIN"
0 v = [ e prosea raRe
2 o
I o Parallel Port 1
u o
5 o — Bits 1]
B o o WO
K o =
o Tl
. o
s b
B & [Wo
*|Running with Code Size Limit: 2K -
"|Load "D:\\tempsadan\\Temp"
E
‘g@ >
3 ASM ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess -
3T 0T Buid ), Command £ FndinFies /. < 3
T L5 C:33 cp [ Riw

Ready





29. Now keep Pressing function key “F11” slowly and observe.

30. You are running your program successfully

4.2 HyperTerminal
HyperTerminal is an application you can use in order to connect your computer to other remote systems. These systems include other computers, bulletin board systems, servers, Telnet sites, and online services. However, you would need a modem, an Ethernet connection, or a null modem cable before you can use HyperTerminal. Within HyperTerminal’s user interface, you will find menus, buttons, icons, and messages. All these elements and controls work together so as to provide convenience for the user, especially for accessing the necessary features and performing various tasks. This application is a useful tool, particularly for testing if your modem is working well and in verifying if you have a stable connection with other sites.

In order to check if your modem’s settings are configured correctly or if your modem is connected properly, you can send a set of commands through HyperTerminal and view the results given. Other functions of HyperTerminal would include the recording of data being sent to and from the service of the computer you are connected to. Through this information, you will be able to determine the stability of your connections. In addition, communication with the user of the computer on the other side of the remote connection is made possible through the scroll feature of HyperTerminal. This is a feature that allows you to receive and view texts on the screen as well as the capability to send your own text messages. Another notable feature of HyperTerminal is its option that enables you to transfer files from your desktop PC onto a portable device such as a laptop computer via a serial port. Furthermore, you will be able to start using the functions provided by HyperTerminal once a new connection has been configured. To do this, you need to initially open the HyperTerminal and enter the information about your location. 

Here in our project we use Pcomm lite software tool for serial communication. This is hyper terminal software it works in any platform.Pcomm lite records the messages passed to and from the computer or service on the other end of your connection. Therefore, it can serve as a valuable troubleshooting tool when setting up and using your modem. To make sure that your modem is connected properly or to view your modem's settings, you can send commands through HyperTerminal and check the results. Pcomm lite has scroll functionality that allows you to look at received text that has scrolled off the screen.
To start pcomm lite go to start(Pcomm lite2000(Pcomm lite terminal emulator 

The terminal emulator window is opened as shown below

[image: image46.png]2 o Temial Emaater . ——————— =

Profile Port Mar

2| El| &g 38|

5PM |

132012 | |




In order to set the Baud rate , parity ,data bits and start bits select Port Manager in task bar
Port Manager (New connection  ( set communication parameters

[image: image47.png]



After setting communication parameters a window is opened as shown below

[image: image48.png]*ZE e 0 EIE e




In order to send pattern through terminal emulator, firstly select send pattern in task bar ( send data pattern ( select type of data and count( start send

[image: image49.png]Data Pattern

L —

Count.

@ Repeat Count :[1
Cancel

7 W B . EIE ap—




As shown in the above process the data is sent through serial communication techniques using Pcomm lite (Hyper Terminal software).
CHAPTER 5
5 APPLICATIONS AND LIMITATIONS

5.1 Applications

 This project is useful in all applications where automation of electrical appliances is required. Use of embedded technology makes this closed loop feedback control system efficient and reliable. Few applications are

· In Home automation – to control appliances in the house by sitting in front of your personal computer

· To control any electrical appliance in organizations which can be switched ON/OFF 

· In offices to control electrical equipment like motor pumps, elevator control

· In large medical centers to control machines like packing and coolant containers

· In industries to control the synchronous motors for power demand improvement 

5.2 Limitations

The limitations of this project are

· This project is wired connected on increase in number of appliances wiring increases which makes complexity in circuit.
· In order to control the devices connected to PC the computer should be kept always in ON state

· A lot of wiring required in order to control a device which is far away from the PC
CHAPTER 6

6 IMPLEMENTED RESULTS

This chapter constitutes the individual output results obtained at every stage.
[image: image50.jpg]



Figure 6.1. Complete circuit
[image: image51.jpg]



Figure 6.2. Energized circuit

[image: image52.jpg]AV AR R R AR R A

AC BRASED CONTRUL
SYSTEM USNG 895





Figure 6.3. LCD Displaying String

[image: image53.jpg]/

BULE OFF
FAN OFF :




Figure 6.4. LCD Displaying Operational Details
CHAPTER 7
7 CONCLUSIONS AND FUTURE SCOPE

7.1 Conclusions
In this project, a simplified procedure is proposed to create an automation system which can control home appliances using PC through serial communication technique, which in turn save man power and also help to save electrical power.

· This project aims at reducing the human strains and to increase the quality of work by the implementation of the automated machine.

· The usage of PC for switching different machines, reduce the human direct control in time consuming process.

7.2 Future scope

The Home Automation could be developed further by making it more stable and put more effort on the visual design of the product.

· All the devices could be equipped with IR receiver to control the electrical devices at home that support the IR communication. More sophisticated actions and scenarios can be created with this. IR commands enable larger variety for controlling electrical devices that only the power outlet.

· In future this project can be enhanced to control the devices using GPRS for internet connection to send messages to another system by using EMAIL.
· Home automation using GSM, by sending the message from mobile phone we can operate any appliances.
· Home automation can also be done using DTMF technique.
Source code:
#include<reg52.h>

#include<stdio.h>

#include<string.h>

 #define ON 1

 #define OFF 0

sfrMyLCD_data=0x80;

sbit LED=P1^0;

sbit RS=P2^0;

sbit RW=P2^1;

sbit EN=P2^2;

sbit relay1=P2^5;

sbit relay2=P1^6;

voidLCD_Init();

voidLCD_cmd(unsigned char);

voidLCD_wrt(unsigned char*);

void Delay(unsigned int);

voidSerial_Init();

voidSerial_Tx(unsigned char*);

unsigned char count,cnt;

unsigned char chr=0;

unsigned char Rx_Char();

unsigned char message[10];

 //   ................. M A I N   Program ......

void main()

        {

unsigned char ch;

 // unsigned char code str1[]=" PC BASED CONTROL";

  //unsigned char code str2[]="SYSTEM USING 8952";

 // unsigned char code str3[]=" VARDHAMAN";

  P0=0xFF;

  LED=OFF;   //  LED ON

Serial_Init();

LCD_Init();

LCD_wrt("PC BASED CONTROL");    // first Message to LCD

Delay(10);

Serial_Tx("PC BASED CONTROL\r\n\n");  //  First Message to HypperTerminal

  /* Delay(200);

LCD_cmd(0x01);    //  clear LCD screen

LCD_cmd(0x85);

LCD_wrt("SYSTEM USING 8952");    // second message to LCD

Delay(10);

Serial_Tx("SYSTEM USING 8952\r\n\n");  // second message to HypperTerminal

LCD_cmd(0x01); //  clear LCD screen

LCD_cmd(0xC5);

LCD_wrt("VARDHAMAN");   // Fourth Message to LCD

Delay(10);

Serial_Tx("VARDHAMAN\r\n\n");  // Fourth Message to HypperTerminal

Delay(200);

LCD_cmd(0x01);

LCD_cmd(0x80);

LCD_wrt("BULB OFF\n FAN OFF\n");

Delay(260);
Serial_Tx("BULB OFF\n FAN OFF\r\n\n");

while(1)

    {

      //while(Rx_Char()!='\n');

cnt=0;

message[cnt]=Rx_Char();

ch=message[0];

while(ch=='B' || ch=='F' || ch=='1'||ch=='2')

          {

switch(ch)

           {

case 'B':              

            {

relay1=1;



LCD_cmd(0x80);



LCD_wrt(" BULB ON");



Delay(260);



Serial_Tx(" BULB ON\r\n\n");



Delay(200);



cnt=0;



message[cnt]=Rx_Char();



ch=message[0];

break;

          }

case 'F':

                {

relay2=1;



LCD_cmd(0x80);



LCD_wrt(" FAN ON");




Delay(260);


Serial_Tx(" FAN ON\r\n\n");



cnt=0;



message[cnt]=Rx_Char();



ch=message[0];




break;

          }

case '1':

                {

relay1=0;


LCD_cmd(0x80);


LCD_wrt(" BULB OFF ");


Delay(260);



Serial_Tx(" BULB OFF\r\n\n");



Delay(100);



cnt=0;



message[cnt]=Rx_Char();



ch=message[0];




break;

          }

case '2':

{


relay2=0;



LCD_cmd(0x80);



LCD_wrt("FAN OFF");



Delay(260);


Serial_Tx(" FAN OFF\r\n\n");


cnt=0;



message[cnt]=Rx_Char();



ch=message[0];




break;

              }

default :

                  {



LCD_cmd(0x80);



LCD_wrt("WRONG message");



Delay(100);


cnt=0;



message[cnt]=Rx_Char();



ch=message[0];




break;

             }

          }//s

          }//w  

    }  //w

    }//v

unsigned char Rx_Char()

    {

while(!RI);


RI=0;


return SBUF;

    }

 //........  LCD Initialization  ...............

voidLCD_Init()

  {

LCD_cmd(0x38);


Delay(10);

LCD_cmd(0x0E);


Delay(10);

LCD_cmd(0x01);


Delay(10);

LCD_cmd(0x0C);


Delay(10);

LCD_cmd(0x80);


Delay(10);

   }

   // ........... LCD Command.............
voidLCD_cmd(unsigned char cmd)

      {


MyLCD_data = cmd;

  RS=0;



 RW=0;

  EN=1;


Delay(1);

  EN=0;

   }

 // .............. LCD Write.......
voidLCD_wrt(unsigned char *str)

  {

unsigned char ch;


for(ch=0;str[ch]!='\0';ch++)


 {



MyLCD_data=str[ch];



 RS=1;



RW=0;



EN=1;


Delay(1);



 EN=0;

         }

   }

    //  ......... Serial Initialization.......

voidSerial_Init()

     {


 TMOD=0x20;


 TH1=0xFD;


  SCON=0x50;
   TR1=1;

   }

   //  ......... Serial Transmit.........

voidSerial_Tx(unsigned char *str)

     {


while(*str!=0x0)


{


 SBUF=*str;


while(!TI);



 TI=0;



str++;

       }

    }

   //  ......... Delay.............
void Delay(unsigned int x)

    {



unsignedinti,j;



for(i=0;i<=x;i++)



for(j=0;j<=500;j++);

   }
`
REFERENCES

[1]. IEEE paper on, “The Designing of Serial Communication Based on RS232”.

[2]. Liu Yanling, “The Use of Communication between MCS-51 Single Chip Microcomputer and PC Microcomputer with MAX232”, Journal of Tianjin Institute of Technology, 1999. 

[3]. T. Castagnet, "Intelligent Power Management Improves Appliance Safety and Efficiency" in Appliance Design, October 2006.
[4]. “The 8051 microcontoller”, by I.ScottMacKenize and Raphel C.W Phan.
[5].  Muhammad Ali Mazidi and   Janice Gillespie Mazidi, “The 8051 Microcontroller and    Embedded Systems”, Pearson Education, 2nded., 2008.

[6].  The website viewed “ www.keil.com” .

Liquid crystal display





Serial port initialization





NO





YES








Not available





Available





No





Yes








(iii)

