 1. INTRODUCTION
1.2 SCOPE:

In this project we substantially improve the ability of low-cost ScPs to protect their secrets. We use DOWN policy which relies on the ability to operate with fractional parts of secrets. Taking full advantage of the DOWN policy requires consideration of the nature of computations performed with secrets and even the mechanisms employed for distribution of secrets.
1.3 PURPOSE:
 2. SOFTWARE AND HARDWARE REQUIREMENTS

SOFTWARE REQUIREMENTS

VS .NET 2005, C#

SQL SERVER 2000

Windows XP.

HARDWARE REQUIREMENTS

Hard disk

:
40 GB

RAM

:
512mb

Processor

:
Pentium IV

Monitor :
17’’Color Monitor

ASP.NET TECHNOLOGIES:

WHAT IS “.NET”?

Microsoft .NET is a set of Microsoft software technologies for rapidly building and integrating XML Web services, Microsoft Windows-based applications, and Web solutions. The .NET Framework is a language-neutral platform for writing programs that can easily and securely interoperate. There’s no language barrier with .NET: there are numerous languages available to the developer including Managed C++, C#, Visual Basic and Java Script.

The .NET framework provides the foundation for components to interact seamlessly, whether locally or remotely on different platforms. It standardizes common data types and communications protocols so that components created in different languages can easily interoperate. “.NET” is also the collective name given to various software components built upon the .NET platform. These will be both products (Visual Studio.NET and Windows.NET Server, for instance) and services (like Passport, .NET My Services, and so on).

THE .NET FRAMEWORK

The .NET Framework has two main parts:

1. The Common Language Runtime (CLR).

2. A hierarchical set of class libraries.

The CLR is described as the “execution engine” of .NET. It provides the environment within which programs run. The most important features are:
· Conversion from a low-level assembler-style language, called Intermediate Language (IL), into code native to the platform being executed on.

· Memory management, notably including garbage collection.

· Checking and enforcing security restrictions on the running code.
· Loading and executing programs, with version control and other such features.

· The following features of the .NET framework are also worth description:

Managed Code - is code that targets .NET, and which contains certain extra information - “metadata” - to describe itself. Whilst both managed and unmanaged code can run in the runtime, only managed code contains the information that allows the CLR to guarantee, for instance, safe execution and interoperability.

Managed Data - With Managed Code comes Managed Data. CLR provides memory allocation and Deal location facilities, and garbage collection. Some .NET languages use Managed Data by default, such as C#, Visual Basic.NET and JScript.NET, whereas others, namely C++, do not. Targeting CLR can, depending on the language you’re using, impose certain constraints on the features available. As with managed and unmanaged code, one can have both managed and unmanaged data in .NET applications - data that doesn’t get garbage collected but instead is looked after by unmanaged code.
Common Type System - The CLR uses something called the Common Type System (CTS) to strictly enforce type-safety. This ensures that all classes are compatible with each other, by describing types in a common way. CTS define how types work within the runtime, which enables types in one language to interoperate with types in another language, including cross-language exception handling. As well as ensuring that types are only used in appropriate ways, the runtime also ensures that code doesn’t attempt to access memory that hasn’t been allocated to it.
Common Language Specification - The CLR provides built-in support for language interoperability. To ensure that you can develop managed code that can be fully used by developers using any programming language, a set of language features and rules for using them called the Common Language Specification (CLS) has been defined. Components that follow these rules and expose only CLS features are considered CLS-compliant.

THE CLASS LIBRARY

.NET provides a single-rooted hierarchy of classes, containing over 7000 types. The root of the namespace is called System; this contains basic types like Byte, Double, Boolean, and String, as well as Object. All objects derive from System. Object. As well as objects, there are value types. Value types can be allocated on the stack, which can provide useful flexibility. There are also efficient means of converting value types to object types if and when necessary.

The set of classes is pretty comprehensive, providing collections, file, screen, and network I/O, threading, and so on, as well as XML and database connectivity.

The class library is subdivided into a number of sets (or namespaces), each providing distinct areas of functionality, with dependencies between the namespaces kept to a minimum.

LANGUAGES SUPPORTED BY .NET:
The multi-language capability of the .NET Framework and Visual Studio .NET enables developers to use their existing programming skills to build all types of applications and XML Web services. The .NET framework supports new versions of Microsoft’s old favorites Visual Basic and C++ (as VB.NET and Managed C++), but there are also a number of new additions to the family:
Visual Basic .NET has been updated to include many new and improved language features that make it a powerful object-oriented programming language. These features include inheritance, interfaces, and overloading, among others. Visual Basic also now supports structured exception handling, custom attributes and also supports multi-threading.
Visual Basic .NET is also CLS compliant, which means that any CLS-compliant language can use the classes, objects, and components you create in Visual Basic .NET.
Managed Extensions for C++ and attributed programming are just some of the enhancements made to the C++ language. Managed Extensions simplify the task of migrating existing C++ applications to the new .NET Framework.
C# is Microsoft’s new language. It’s a C-style language that is essentially “C++ for Rapid Application Development”. Unlike other languages, its specification is just the grammar of the language. It has no standard library of its own, and instead has been designed with the intention of using the .NET libraries as its own.

Microsoft Visual J# .NET provides the easiest transition for Java-language developers into the world of XML Web Services and dramatically improves the interoperability of Java-language programs with existing software written in a variety of other programming languages.
Active State has created Visual Perl and Visual Python, which enable .NET-aware applications to be built in either Perl or Python. Both products can be integrated into the Visual Studio .NET environment. Visual Perl includes support for Active State’s Perl Dev Kit.

Other languages for which .NET compilers are available include:

· FORTRAN

· COBOL

· Eiffel

Fig1 .Net Framework

	 ASP.NET

 XML WEB SERVICES
	 Windows Forms

	 Base Class Libraries

	 Common Language Runtime

	 Operating System

INTRODUCTION TO ASP.NET
ASP.NET is the .NET framework layer that handles Web requests for specific types of files, namely those with (.aspx or .ascx) extensions. The ASP.NET engine provides a robust object model for creating dynamic content and is loosely integrated into the .NET framework.
WHAT IS ASP.NET?

ASP.NET is part of the .NET framework. ASP.NET programs are centralized applications hosted on one or more Web servers that respond dynamically to client requests. The responses are dynamic because ASP.NET intercepts requests for pages with a specific extension (.aspx or .ascx) and hands off the responsibility for answering those requests to just-in-time (JIT) compiled code files that can build a response “on-the-fly.”
ASP.NET deals specifically with configuration (web.config and machine.config) files, Web Services (ASMX) files, and Web Forms (ASPX) files. The server doesn’t “serve” any of these file types—it returns the appropriate content type to the client.

The configuration file types contain initialization and settings for a specific application or portion of an application. Another configuration file, called machine.web, contains machine-level initialization and settings. The server ignores requests for web files, because serving them might constitute a security breach.
Client requests for these file types cause the server to load, parse, and execute code to return a dynamic response. For Web Forms, the response usually consists of HTML or WML. Web Forms maintain state by round-tripping user interface and other persistent values between the client and the server automatically for each request.
A request for a Web Form can use View State, Session State, or Application State to maintain values between requests. Both Web Forms and Web Services requests can take advantage of ASP. Net’s integrated security and data access through ADO.NET, and can run code that uses system services to construct the response. So the major difference between a static request and a dynamic request is that a typical Web request references a static file. The server reads the file and responds with the contents of the requested file.
ASP.NET uses .NET languages. ASP.NET code exists in multithreaded JIT compiled DLL assemblies, which can be loaded on demand. Once loaded, the ASP.NET DLLs can service multiple requests from a single in-memory copy.

ASP.NET supports all the .NET languages (currently C#, C++, VB.NET, and JScript, but there are well over 20 different languages in development for .NET), so you will eventually be able to write Web applications in your choice of almost any modern programming language.
In addition to huge increases in speed and power, ASP.NET provides substantial development improvements, like seamless server-to-client debugging, automatic validation of form data.

Fig2. Interoperability

 [image: image1.png]VB

Compiler

Compiler Compiler Compiler

CIL-Code
(+ Metadata)

Loader
Verifyer

JIT-Compiler

Machine Code

ASP.NET EVENTS .NET events and why they are cool

Every time an ASP.NET page is viewed, many tasks are being performed behind the scenes. Tasks are performed at key points ("events") of the page's execution lifecycle.

The most common events are:

On Init

The first event in our list to be raised is OnInit. When this event is raised, all of the page's server controls are initialized with their property values. Post Back values are not applied to the controls at this time.

On Load

The next event to be raised is On Load, which is the most important event of them all as all the pages server controls will have their Post Back values now.

Post Back Events

Next all the Post Back events are raised. These events are only raised when the page view is the result of a Post Back. The order that these events are raised can't be defined or relied upon; the only consistency with the order that Post Back events are raised is that they are all raised between the Unload and OnPreRender events.

On Pre Render

This event is raised just prior to the page or server control's html output being written into the response stream that's sent to the client web browser. This is last chance you have to make any modifications. By this point, all the server controls on the page have the final data applied.

On Unload

This is the last event in our list to be raised and you should destroy any un-managed objects and close any currently open database connection at this point. It is not possible to modify any controls on the page at this point as the response stream has already been sent to the client web browser.

As each event of the page is raised it also automatically tells all its child controls to raise their own implementation of the same event. In turn each of those controls will tell its own child controls to do the same and so on down the control tree till all controls have done so. Then execution flow is passed back to the main page class to continue onto the next event and the process is repeated for that event.

MAIN FEATURES OF ASP.NET

Successor of Active Server Pages (ASP), but completely different architecture

• Object-oriented

• Event-based

• Rich library of Web Controls

• Separation of layout (HTML) and logic (e.g. C#)

• Compiled languages instead of interpreted languages

• GUI can be composed interactively with Visual Studio .NET

• Better state management

NAMESPACES

ASP.NET uses a concept called namespaces. Namespaces are hierarchical object models that support various properties and methods. For example, HTML server controls reside in "System.web.UI.HtmlControls" namespace, web server controls reside in “System.web.UI.WebControls" namespace and ADO+ resides in "System. Data" namespace.
LANGUAGE INDEPENDENT

An ASP.NET page can be created in any language supported by .NET framework. Currently .NET framework supports VB, C#, JScript and Managed C++.

ASP.NET SERVER CONTROLS

Using ASP.NET Server Controls, browser variation is handled because these controls output the HTML themselves based on the browser requesting the page.
TYPES OF CONTROLS

ASP.NET has two basic types of controls: HTML server controls and Web server controls.HTML Server Controls are generated around specific HTML elements and the ASP.NET engine changes the attributes of the elements based on server-side code that you provide. Web server controls revolve more around the functional you need on the page. The ASP.NET engine takes the extra steps to decide based upon the container of the requester, what HTML to output.

 Field Training
ADO.NET

ADO.NET provides a set of classes which a script can use to interact with databases. Scripts can create instances of ADO.NET data classes and access their properties and methods. A set of classes which work with a specific type of database is known as a .NET Data Provider. ADO.NET comes with two Data Providers, the SQL Server.NET Data Provider (which provides optimized access for Microsoft SQL Server databases) and the OLEDB.NET Data Provider, which works with a range of databases. The main ADO.NET OLEDB data access classes are OLEDBConnection, OLEDBCommand, OLEDBDataReader and OLEDBDataAdapter.

FEATURES OF VISUAL BASIC .NET

Visual Studio .NET is the single IDE that all the .NET languages can use. It makes everything available to all languages.

Visual Studio .NET is a great Multilanguage development environment and offers a complete set of tools to build Windows Forms , ASP.NET Web applications , and XML Web services.

Start Page

The Start page offers three tabs at the top of the window that enables to modify Visual Studio.NET as well as find important information. The tabs are

	 HTML Server Controls versus Web Server Controls

	 Control Type
	 When to use this Control Type

	HTML Server Controls
	When converting traditional ASP 3.0 Web pages to ASP.NET Web pages and speed of completion is a concern. It is a lot easier to change your HTML elements to HTML server controls than it is to change them to Web server controls.

When you prefer a more HTML-type programming model.

When you wish to explicitly control the code that is generated for the browser.

	Web Server Controls
	When you require a rich set of functionality to perform complicated page requirements.

When you are developing web pages that will be viewed by a multitude of browser types and that require different code based on these types.

When you prefer a more Visual Basic-type programming model that is based on the use of controls and control properties.

Projects tab: This tab is the one to start new projects and launch projects that already exists. This tab lets you to create a new project or open an existing project.

Online Resources tab: This tab provides a number of online resources when connected to the Internet.

My Profile tab: This tab enables to customize the Visual Studio.NET environment to resemble the structured environment that is familiar with.

Server Explorer

This window enables to perform a number of functions such as database connectivity, performance monitoring, and interacting with event logs.

By using Server Explorer you can log on to a remote server and view database and system data about that server. Many of the functions that are performed with the Enterprise Manager in SQL Server can now be executed in the Server Explorer.

Solution Explorer

This provides an organized view of the projects in the application.

The toolbar within the Solution Explorer enables to

· View code page of the selected item.

· View design page of the selected item.

· Refresh the state of the selected item.

· Copy the Web project between Web servers.

· Show all the files in the project, including the hidden files.

· See Properties of the selected item.
Class View

The Class View window can be viewed from the Start Page by clicking the Class View tab. The Class View shows all the classes that are contained within your solution.

The Class View shows the hierarchical relationship among the classes in your solution as well as the number of other items including methods, enumerations, namespaces, unions, and events. It is possible to organize the view of these items within the window by right-clicking anywhere in the Class View area and choosing how the items are sorted.

Toolbox

The Toolbox window enables to specify elements that will be part of the Windows Forms or Web Forms. It provides a drag and drop means of adding elements and controls to the pages or forms. The code snippets can also be stored within the Toolbox.

Properties window

This window provides the properties of an item that is part of the application. This enables to control the style and behavior of the item selected to modify.

Dynamic Help

This window shows a list of help topics. The help topics change based on the item selected or the action being taken.

The Dynamic Help window shows the help items displayed when you have a Button control on the page selected. After the item is selected, a list of targeted help topic is displayed. The topics are organized as a list of links. Clicking one of the links in the Dynamic Help window opens the selected help topic in the Document window.

Document window

The Document window is the main window within Visual Studio.NET where the applications are built.

 The Document window shows open files in either Design or HTML mode. Each open file is represented by a tab at the top of the Document window. Any number of files can be kept open at the same time, and you can switch between the open files by clicking the appropriate tab.
Design mode versus HTML mode

Visual Studio.NET offers two modes for viewing and building files: Design and HTML. By clicking the Design tab at the bottom of the Document window, you can see how the page will view to the user. The page is built in the Design mode by dragging and dropping elements directly onto the design page or form. Visual Studio .NET automatically generates the appropriate code.

When the page is viewed in HTML mode, it shows the code for the page. It enables to directly modify the code to change the way in which the page is presented.

Working with SQL Server through the Server Explorer

Using Visual Studio.NET, there is no need to open the Enterprise Manager from SQL Server. Visual Studio.NET has the SQL Servers tab within the Server Explorer that gives a list of all the servers that are connected to those having SQL Server on them. Opening up a particular server tab gives five options:

· Database Diagrams

· Tables

· Views

· Stored Procedures

· Functions

Database Diagrams

To create a new diagram right click Database diagrams and select New Diagram. The Add Tables dialog enables to select one to all the tables that you want in the visual diagram you are going to create.

Visual Studio .NET looks at all the relationships between the tables and then creates a diagram that opens in the Document window.

Each table is represented in the diagram and a list of all the columns that are available in that particular table. Each relationship between tables is represented by a connection line between those tables.

The properties of the relationship can be viewed by right clicking the relationship line.
Tables

The Server Explorer allows towork directly with the tables in SQL Server. It gives a list of tables contained in the particular database selected.

By double clicking one of the tables, the table is seen in the Document window. This grid of data shows all the columns and rows of data contained in the particular table.

The data can be added or deleted from the table grid directly in the Document window. To add a new row of data, move to the bottom of the table and type in a new row of data after selecting the first column of the first blank row. You can also delete a row of data from the table by right clicking the gray box at the left end of the row and selecting Delete.

By right clicking the gray box at the far left end of the row, the primary key can be set for that particular column. The relationships to columns in other tables can be set by selecting the Relationships option.

To create a new table right-click the Tables section within the Server Explorer and selecting New Table. This gives the design view that enables to start specifying the columns and column details about the table.

To run queries against the tables in Visual Studio .NET, open the view of the query toolbar by choosing View->Toolbars->Query.

To query a specific table, open that table in the Document window. Then click the SQL button which divides the Document window into two panes-one for query and other to show results gathered from the query.

The query is executed by clicking the Execute Query button and the result is produced in the lower pane of the Document window.

Views

To create a new view, right-click the View node and select New View. The Add Table dialog box enables to select the tables from which the view is produced. The next pane enables to customize the appearance of the data in the view.

1.4.2 Features of SQL-SERVER

The OLAP Services feature available in SQL Server version 7.0 is now called SQL Server 2000 Analysis Services. The term OLAP Services has been replaced with the term Analysis Services. Analysis Services also includes a new data mining component. The Repository component available in SQL Server version 7.0 is now called Microsoft SQL Server 2000 Meta Data Services. References to the component now use the term Meta Data Services. The term repository is used only in reference to the repository engine within Meta Data Services

SQL-SERVER database consist of six type of objects,

They are,

1. TABLE

2. QUERY

3. FORM

4. REPORT

5. MACRO

TABLE

A database is a collection of data about a specific topic.

VIEWS OF TABLE

We can work with a table in two types,
1. Design View

2. Datasheet View

Design View

To build or modify the structure of a table we work in the table design view. We can specify what kind of data will be hold.

Datasheet View

To add, edit or analyses the data itself we work in tables datasheet view mode.

QUERY:

A query is a question that has to be asked the data. Access gathers data that answers the question from one or more table. The data that make up the answer is either dynaset (if you edit it) or a snapshot(it cannot be edited).Each time we run query, we get latest information in the dynaset.Access either displays the dynaset or snapshot for us to view or perform an action on it ,such as deleting or updating.

FORMS:

A form is used to view and edit information in the database record by record .A form displays only the information we want to see in the way we want to see it. Forms use the familiar controls such as textboxes and checkboxes. This makes viewing and entering data easy.

Views of Form:

We can work with forms in several primarily there are two views,

They are,

1. Design View

2. Form View

Design View

To build or modify the structure of a form, we work in forms design view. We can add control to the form that are bound to fields in a table or query, includes textboxes, option buttons, graphs and pictures.

Form View

The form view which display the whole design of the form.
REPORT:

A report is used to vies and print information from the database. The report can ground records into many levels and compute totals and average by checking values from many records at once. Also the report is attractive and distinctive because we have control over the size and appearance of it.
MACRO:

A macro is a set of actions. Each action in macros does something. Such as opening a form or printing a report .We write macros to automate the common tasks the work easy and save the time.
DESIGN OVERVIEW:

 Design involves identification of classes, their relationships as well as their collaboration. In objector, classes are divided into entity classes, interface classes and control classes. The Computer Aided Software Engineering (CASE) tools that are available commercially do not provide any assistance in this transition. CASE tools take advantage of Meta modeling that are helpful only after the construction of the class diagram. In the Fusion method, some object-oriented approaches like Object Modeling Technique (OMT), Classes, Responsibilities, Collaborators (CRC), etc, are used. Objector used the term “agents” to represent some of the hardware and software systems .In Fusion method, there is no requirement phase, where a user will supply the initial requirement document. Any software project is worked out by both the analyst and the designer. The analyst creates the use case diagram. The designer creates the class diagram. But the designer can do this only after the analyst creates the use case diagram. Once the design is over, it is essential to decide which software is suitable for the application.
Networking
TCP/IP stack

The TCP/IP stack is shorter than the OSI one:

[image: image2.png]application | | application| OSI 5-7
TCP UDP Osl 4
P 0Osl 3
[

Y
h/w interface oSl 1-2

FIGURE 3 – TCP/IP STACK

TCP is a connection-oriented protocol; UDP (User Datagram Protocol) is a connectionless protocol.

IP datagram’s

The IP layer provides a connectionless and unreliable delivery system. It considers each datagram independently of the others. Any association between datagram must be supplied by the higher layers. The IP layer supplies a checksum that includes its own header. The header includes the source and destination addresses. The IP layer handles routing through an Internet. It is also responsible for breaking up large datagram into smaller ones for transmission and reassembling them at the other end.

TCP

TCP supplies logic to give a reliable connection-oriented protocol above IP. It provides a virtual circuit that two processes can use to communicate.

Internet addresses

In order to use a service, you must be able to find it. The Internet uses an address scheme for machines so that they can be located. The address is a 32 bit integer which gives the IP address. This encodes a network ID and more addressing. The network ID falls into various classes according to the size of the network address.

Network address

Class A uses 8 bits for the network address with 24 bits left over for other addressing. Class B uses 16 bit network addressing. Class C uses 24 bit network addressing and class D uses all 32.

Subnet address

Internally, the UNIX network is divided into sub networks. Building 11 is currently on one sub network and uses 10-bit addressing, allowing 1024 different hosts.

Host address

8 bits are finally used for host addresses within our subnet. This places a limit of 256 machines that can be on the subnet.
Total address

[image: image3.png]137.92.11.13
N

/]

network subnet host

FIGURE 4 - IP ADDRESSING

The 32 bit address is usually written as 4 integers separated by dots.

Port addresses

A service exists on a host, and is identified by its port. This is a 16 bit number. To send a message to a server, you send it to the port for that service of the host that it is running on. This is not location transparency! Certain of these ports are "well known".

Sockets

A socket is a data structure maintained by the system to handle network connections. A socket is created using the call socket. It returns an integer that is like a file descriptor. In fact, under Windows, this handle can be used with Read File and Write File functions.

 3. SYSTEM STUDY

[image: image4.png]Server

User Logins to

Selects Existing P or

Sets Trusted

Keysis entered for

send file new P entered System f needed Encryption
Trusted Normal File Read-Only.
System File
Other Decrypisiile
System using ey

 4. ANALYSIS PHASE

4.1 EXISTING SYSTEM
In case of the existing system each and every system are considered as a trusted computer. And so the attacker finds it easy to attack the system with fake signals. And also in the emerging network where many are used for some good purpose. And in those there a lot of chance for the attacker to send unwanted information. In case of the fire alarm, if all the system are considered as trusted they could send false alarm where it lead to a heavy loss. And so we need a system to protect it. Hence we develop a new system.

4.2 PROPOSED SYSTEM:
The proposed system we introduce a new technology to protect the network. This is achieved by the following way. Realizing widespread adoption of such applications mandates sufficiently trustworthy computers that can be realized at low cost. Apart from facilitating deployment of futuristic applications, the ability to realize trustworthy computers at low cost can also addresses many of the security issues that plague our existing network infrastructure. Although, at first sight, “inexpensive” and “trustworthy” may seem mutually exclusive, a possible strategy is to reduce the complexity of the components inside the trusted boundary. The often heard statement that “complexity is the enemy of security” is far from dogmatic. For one, lower complexity implies better verifiability of compliance. Furthermore, keeping the complexity inside the trust boundary at low levels can obviate the need for proactive measures for heat dissipation. Strategies constrained to simultaneously facilitate shielding and heat dissipation tend to be expensive. On the other hand, unconstrained shielding strategies can be reliable and inexpensive to facilitate.

 5. DESIGN PHASE

5.1 MODULE DESIGN
 LOGIN MODULE

 TRUSTED SYSTEM MODULE

 CRYPTOGRAPHY
 Encryption

 Decryption

 SENDING MODULE

 RECEIVING MODULE

MODULE DESCRIPTION:
LOGIN MODULE:

User gives the required username and password and then logins. If the login name and password in correct then he goes to the next form else he is asked to give the correct username and password.

TRUSTED SYSTEM MODULE:

Any trusted computer defines a clear trust boundary. For example, for a single chip ScP all components inside the chip may fall under such a trust boundary. Enforcing the trust boundary is by proactive measures for protection of components within the boundary. However, the regions inside a trust boundary that are physically protected can change dynamically, depending on the state of the ScP. when the CPU is off, there is no need to extend protection to all regions. However, when the CPU is on, the scope of protection will need to be wider.
CRYPTOGRAPHY:
Encryption:

In this module, we investigate the suitability of DOWN for identity-based encryption (IBE) and signature (IBS) schemes. We then motivate the need for low complexity ID-based authentication schemes for ScPs for evolving application scenarios. This includes an overview of some existing low-complexity ID-based KPS
Decryption:

In this module a private exponent d is used for decryption and signing. More specifically, the private exponent needs to be stored in RAM for performing computations like decryption and signing. Modular exponentiation is often performed using the square-and-multiply algorithm.
SENDING MODULE:

In this module, the encrypted file is sent to the non-trusted system with the key, normal file is sent to the trusted system and also read only files are sent while sending the files details about the file and the path of the file is stored in data base. Before sending the file to the trusted and non-trusted systems we have to make sure that the server is made to run so that it can receive files from the client.

RECEIVING MODULE:

In this module the files are received. If it’s a trusted system then the files receives without decryption else it receives in encryption mode with a secret key to decrypt the encrypt file and view the file. The file are usually stored in the path “c:\receive”. If it’s a read only file the user cannot edit or modify the file.

INPUT/OUTPUT:

The input will be choosing trusted system and selecting IP address of both the trusted and non-trusted systems if there is no stored IP then new IP address will be entered and the output will be IP address gets stored in database and direct us to the main form.

5.2 DATA FLOW DIAGRAM
A data-flow diagram (DFD) is a graphical representation of the "flow" of data through an information system. DFDs can also be used for the visualization of data processing (structured design).

 The Data Flow diagram is a graphic tool used for expressing system requirements in a graphical form. The DFD also known as the “bubble chart” has the purpose of clarifying system requirements and identifying major transformations that to become program in system design.

 Thus DFD can be stated as the starting point of the design phase that functionally decomposes the requirements specifications down to the lowest level of detail. The DFD consists of series of bubbles joined by lines. The bubbles represent data transformations and the lines represent data flows in the system. A DFD describes what data flow is rather than how they are processed, so it does not depend on hardware, software, data structure or file organization.
On a DFD, data items flow from an external data source or an internal data store to an internal data store or an external data sink, via an internal process.

A DFD provides no information about the timing of processes, or about whether processes will operate in sequence or in parallel. It is therefore quite different from a flowchart, which shows the flow of control through an algorithm, allowing a reader to determine what operations will be performed, in what order, and under what circumstances, but not what kinds of data will be input to and output from the system, nor where the data will come from and go to, nor where the data will be stored (all of which are shown on a DFD).

[image: image18.emf]Files

Encrypt()

Encrypt File

Decrypt()

Normal file

view()

Read only File

View()

5.3 E-R DIAGRAM

5.4 UML DIAGRAMS

Introduction to UML:
Learning UML is the quintessential tutorial for the Unified Modelling Language (UML). The Unified Modelling Language is a language for communicating about systems: an evolutionary, general-purpose, broadly applicable, tool-supported, and industry-standardized modelling language for specifying, visualizing, constructing, and documenting the artifacts of a system-intensive process.

USECASE DIAGRAM
A use case is a set of scenarios that describing an interaction between a user and a system. A use case diagram displays the relationship among actors and use cases. The two main components of a use case diagram are use cases and actors. An actor is represents a user or another system that will interact with the system modeled. A use case is an external view of the system that represents some action the user might perform in order to complete a task.

[image: image5.emf]Receiver

Encrypted File

Sender

Normal File

Readonly File

Decryption

SEQUENCE DIAGRAM

Sequence diagrams, also known as interaction diagrams, depict how elements interact over time. A horizontal axis shows the elements involved in the interaction, and a vertical axis represents time proceeding down the page. Sequence diagrams have the following types of elements:

Classes and objects

Classes are shown much the same way as on class diagrams. Objects may also be shown much the same way as on object diagrams.

Lifeline
Shown as a vertical dashed line from an element, this represents the existence of the element over time.

[image: image6.emf]Sender

IP Address Mode System Decrypt Receiver

Select Existing or New IP

Normal File

Read Only File

Trusted System

Non Trusted System

Key Word

Converted File

COLLABORATION DIAGRAM

A collaboration diagram shows elements as they interact over time and how they are related. That is, it shows a collaboration or collaboration instance. While sequence diagrams are time-oriented and emphasize the overall flow of an interaction, collaboration diagrams are time- and space-oriented and emphasize the overall interaction, the elements involved, and their relationships. Sequence diagrams are especially useful for complex interactions, because you read them from top to bottom. Collaboration diagrams are especially useful for visualizing the impact of an interaction on the various elements, because you can place an element on a diagram and immediately see all the other elements with which it interacts.

[image: image7.emf]Sender

IP Address

Mode

System

Decrypt

Receiver

1: Select Existing or New IP Address

2: Normal File

3: Read Only File

4: Trusted System

5: Non Trusted System

6: Key Word

7: Converted File

CLASS DIAGRAM

Class diagrams are the mainstay of object-oriented analysis and design. Class diagrams show the classes of the system, their interrelationships (including inheritance, aggregation, and association), and the operations and attributes of the classes. Class diagrams are used for a wide variety of purposes, including both conceptual/domain modelling and detailed design modelling.

ACTIVITY DIAGRAM

Activity diagrams are typically used for business process modelling, for modelling the logic captured by a single use case or usage scenario, or for modelling the detailed logic of a business rule. Although UML activity diagrams could potentially model the internal logic of a complex operation it would be far better to simply rewrite the operation so that it is simple enough that you don’t require an activity diagram. In many ways UML activity diagrams are the object-oriented equivalent of flow charts and data flow diagrams (DFDs) from structured development.
[image: image8.emf]Normal File

Read Only File

Encrypted File

Trusted System

Non Trusted

System

Receiver

Sender1

 6. CODING AND IMPLEMENTATION
LOGIN MODULE
private void btnLogin_Click_1(object sender, EventArgs e)

 {

 if (txtPass.Text == "" || txtUname.Text == "")

 {

 lblError.Text = "";

 lblError.Text = "Password or User Name cannot be null";

 }

 else

 {

 if (txtPass.Text == "admin" && txtUname.Text == "admin")

 {

 lblMess.Text = "Ready to use the tool";

 gbox();

 }

 else

 {

 lblError.Text = "";

 lblError.Text = "User Name or Password error try again";

 }

 }

 }

EXPLANATION
This is the login module in which we have the method btnLogin_Click_1() which is an event generated when the login button is clicked.

It has got if else ladder to provide the authentication for the user.The first “if” block says that if the user try to login with empty fields it generates a text message “Password or User name cannot be null “

If the user enters the username and password as admin a message is generated as “Ready to use the tool” and the user is successfully authenticated.

DECRYPT MODULE

public partial class Decrypt : Form

 {

 SqlConn sq = new SqlConn();

 SqlCommand cmd,cmd1,cmd2;

 SqlDataReader dr;

 string pass, inputFile, file, exe, ini, outputFile,name,fname;

 public Decrypt()

 {

 InitializeComponent();

 }

 private void Decrypt_Load(object sender, EventArgs e)

 {

 listBox1.Enabled = false;

 btnKey.Enabled = false;

 btnDecrypt.Enabled = false;

 }

 private void btnView_Click(object sender, EventArgs e)

 {

 listBox1.Items.Clear();

 DirectoryInfo di = new DirectoryInfo("C:\\Receive");

 foreach (FileInfo fi in di.GetFiles())

 {

 string name = fi.FullName.ToString();

 name = name.Replace("\\", "/");

 while (name.IndexOf("/") > -1)

 {

 name = name.Substring(name.IndexOf("/") + 1);

 fname = name;

 }

 listBox1.Items.Add(fname);

 }

 listBox1.SelectedIndex = 0;

 listBox1.Enabled = true;

 btnKey.Enabled = true;

 }

 string str = "A@#HJER";

 private void btnKey_Click(object sender, EventArgs e)

 {

 file = listBox1.SelectedItem.ToString();

 sq.open();

 cmd2 = new SqlCommand("select * from recEn where fname='" + file + "'", sq.cn);

 ReadOnly obj = new ReadOnly();

 obj.fileN = file;

 dr = cmd2.ExecuteReader();

 dr.Read();

 if (dr.HasRows)

 {

 inputFile = dr[1].ToString();

 pass = dr[1].ToString();

 txtKey.Text = "!@312"+str+"NewKey";

 FileInfo fi1 = new FileInfo("c:\\Receive\\"+dr[1].ToString());

 }

 str = "DErf" + str;

 }

EXPLANATION
In the decrypt module we have a partial class Decrypt and we create objects for the classes Sqlconn as sq ;SqlCommand as cmd cmd1 cmd2 ;SqlDataReader dr;

Sqlconn Sq

This object is used to provide the connection to the sqlserver and the connection is established to the database for storing the files.

SqlCommand cmd,cmd1,cmd2

The objects of the class SqlCommand are used to store the query.

SqlDataReader dr

This class is used to read the data.

The decryption module mainly contains two events namely
1. btnView_Click(object sender, EventArgs e)

If the user selects to view the files then the . btnView_Click(object sender, EventArgs e) method is executed and all the files from the Directorinfo class are listed in the box.

2. btnKey_Click(object sender, EventArgs e)

If the user click on the button KEY then the method btnKey_Click(object sender, EventArgs e) is executed.After receiving the file name the query to open the file from the database is executed and the decryption technique is applied “txtKey.Text”.

ENCRYPT MODULE

public partial class Encrypt : Form

 {

 SqlConn sq = new SqlConn();

 SqlCommand cmd;

 SqlCommand cmd1,cmd2,cmd3,cmd4;

 SqlDataReader dr;

 int i = 0;

 string ser1, exe,fileN;

 string fileDes, cryptFile, password, fileIni,fileDir,path1;

 public Encrypt()

 {

 InitializeComponent();

 }

 private void Encrypt_Load(object sender, EventArgs e)

 {

 btnEncrypt.Enabled = false;

 txtKey.Enabled = false;

 btnSend.Enabled = false;

 listBox1.Items.Clear();

 sq.open();

 cmd = new SqlCommand("select * from IP", sq.cn);

 dr = cmd.ExecuteReader();

 while (dr.Read())

 {

 if (dr.HasRows)

 {

 listBox1.Items.Add(dr[0].ToString());

 }

 }

 dr.Close();

 sq.close();

 listBox1.SelectedIndex = 0;

 }

 private void btnOpen_Click(object sender, EventArgs e)

 {

 lblError.Text = "";

 txtKey.Text = "";

 txtFileName.Text = "";

 openFileDialog1.ShowDialog();

 fileDes = openFileDialog1.FileName;

 if (fileDes == "openFileDialog1")

 {

 lblError.Text = "";

 lblError.Text = "Select a File first";

 txtFileName.Text = "";

 }

 else

 {

 txtFileName.Text = openFileDialog1.FileName;

 exe = fileDes.Substring(fileDes.IndexOf("."), 4);

 exe = exe.Substring(1, 3);

 fileIni = fileDes.Substring(fileDes.IndexOf("\\") + 1, fileDes.IndexOf(".") - 3);

 fileN = fileDes.Substring(fileDes.IndexOf("\\") + 1);

 fileDir = fileDes.Substring(0, fileDes.IndexOf("\\") + 1);

 if (exe == "doc" || exe == "txt")

 {

 txtKey.Enabled = true;

 }

 else

 {

 lblError.Text = "";

 lblError.Text = "Choose *.doc or *.txt file only";

 }

 }

 }

 private void btnSend_Click(object sender, EventArgs e)

 {

 if (listBox1.SelectedItem.ToString() == "")

 {

 lblError.Text = "";

 lblError.Text = "Select IP from List";

 }

 else

 {

 ser1 = listBox1.SelectedItem.ToString();

 send();

 FileInfo fi = new FileInfo(cryptFile);

 if (fi.Exists)

 {

 fi.Delete();

 }

 }

 }

 public void send()

 {

 try

 {

 IPAddress[] ipAddress = Dns.GetHostAddresses(ser1);

 IPEndPoint ipEnd = new IPEndPoint(ipAddress[0], 5656);

 Socket clientSock = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.IP);

 string filePath = "";

 fileDes = cryptFile;

 fileDes = fileDes.Replace("\\", "/");

 while (fileDes.IndexOf("/") > -1)

 {

 filePath += fileDes.Substring(0, fileDes.IndexOf("/") + 1);

 fileDes = fileDes.Substring(fileDes.IndexOf("/") + 1);

 }

 byte[] fileNameByte = Encoding.ASCII.GetBytes(fileDes);

 lblError.Text = "";

 lblError.Text = "Buffering ...";

 byte[] fileData = File.ReadAllBytes(filePath + fileDes);

 byte[] clientData = new byte[4 + fileNameByte.Length + fileData.Length];

 byte[] fileNameLen = BitConverter.GetBytes(fileNameByte.Length);

 fileNameLen.CopyTo(clientData, 0);

 fileNameByte.CopyTo(clientData, 4);

 fileData.CopyTo(clientData, 4 + fileNameByte.Length);

 lblError.Text = "";

 lblError.Text = "Connection to server ...";

 clientSock.Connect(ipEnd);

 lblError.Text = "";

 lblError.Text = "File sending...";

 clientSock.Send(clientData);

 lblError.Text = "";

 lblError.Text = "Disconnecting...";

 clientSock.Close();

 lblError.Text = "";

 lblError.Text = "File transferred.";

 }

 catch (Exception ex)

 {

 if (ex.Message == "A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond")

 {

 lblError.Text = "";

 lblError.Text = "No Such System Available Try other IP";

 }

 else

 {

 if (ex.Message == "No connection could be made because the target machine actively refused it")

 {

 lblError.Text = "";

 lblError.Text = "File Sending fail. Because server not running.";

 }

 else

 {

 lblError.Text = "";

 lblError.Text = "File Sending fail." + ex.Message;

 }

 }

 }

 }

 private void btnEncrypt_Click(object sender, EventArgs e)

 {

 fileen();

 En();

 db();

 }

 public void En()

 {

 try

 {

 password = txtKey.Text; // Your Key Here

 UnicodeEncoding UE = new UnicodeEncoding();

 byte[] key = UE.GetBytes(password);

 //extend = fileName.Substring(fileName.IndexOf(".") + 1);

 cryptFile = "" + fileDir + "" + "" + fileIni + "&en" + i.ToString() + "." + exe + "";

 txtFile.Text = "" + fileIni + "&en" + i.ToString() + "." + exe + "";

 FileStream fsCrypt = new FileStream(cryptFile, FileMode.Create);

 RijndaelManaged RMCrypto = new RijndaelManaged();

 CryptoStream cs = new CryptoStream(fsCrypt,

 RMCrypto.CreateEncryptor(key, key),

 CryptoStreamMode.Write);

 string inputFile = fileDes;

 FileStream fsIn = new FileStream(inputFile, FileMode.Open);

 int data;

 while ((data = fsIn.ReadByte()) != -1)

 cs.WriteByte((byte)data);

 fsIn.Close();

 cs.Close();

 fsCrypt.Close();

 }

 catch (Exception ex)

 {

 }

 btnEncrypt.Enabled = false;

 txtKey.Enabled = false;

 btnSend.Enabled = true;

 }
EXPLANATION
In the encryption module we have that a default function is executed on loading the window.The Encrypt_Load(object sender, EventArgs e) method is used to load all the trusted system Ip’s in the listbox.

 btnOpen_Click(object sender, EventArgs e)

The method is used to open the file which shows a dialog box from which the user selects the file.

btnSend_Click(object sender, EventArgs e)

The method is used to send the file after decryption.All exceptions are handled during the file transmission.

btnEncrypt_Click(object sender, EventArgs e)

This method is executed after the user select the file to encrypt

//Based upon the file properties the key is generated.
SENDING MODULE

private void Normal_File_Load(object sender, EventArgs e)

 {

 btnSend.Enabled = false;

 listBox1.Items.Clear();

 sq.open();

 cmd = new SqlCommand("select * from IP", sq.cn);

 dr = cmd.ExecuteReader();

 while (dr.Read())

 {

 if (dr.HasRows)

 {

 listBox1.Items.Add(dr[0].ToString());

 }

 }

 dr.Close();

 sq.close();

 listBox1.SelectedIndex = 0;

 }

 int flag = 0;

 private void btnOpen_Click(object sender, EventArgs e)

 {

 flag++;

 txtFilePath.Text = "";

 openFileDialog1.ShowDialog();

 txtFilePath.Text = openFileDialog1.FileName;

 fileDes = openFileDialog1.FileName;

 if (fileDes == "openFileDialog1")

 {

 lblError.Text = "";

 lblError.Text = "Select a File first";

 txtFilePath.Text = "";

 }

 else

 {

 len = fileDes.Length;

 fileini = fileDes.Substring(fileDes.IndexOf("\\") + 1);

 }

 FileStream fs = new FileStream("c:\\Receive\\Encrypt"+flag + openFileDialog1.FileNames.ToString() , FileMode.Create, FileAccess.ReadWrite);

 StreamWriter sw = new StreamWriter(fs);

 sw.Write("asdf");

 sw.Close();

 fs.Close();

 btnSend.Enabled = true; }
EXPLANATION
In the sending Module we have got two important functionalities

1.Normal_File_Load(object sender, EventArgs e)

This function is executed when the Normal file window is opened it first opens the database connection with the object Sq.With the datareader class all the trusted IP’s from the table are listed in the listbox in the following way listBox1.Items.Add(dr[0].ToString());

2. btnOpen_Click(object sender, EventArgs e)

This event is generated when the user clicks on the open button.A dialog box is opened which asks the user to selecta file if it is empty it generates a message “Select a File first “.After selecting the file if the user clicks on send button the file is sent to the destination.
TRUSTED SYSTEM

public partial class Trust : Form

 {

 SqlConn sq = new SqlConn();

 SqlCommand cmd;

 SqlCommand cmd1;

 SqlCommand cmd2;

 SqlDataReader dr;

 SqlCommand cmd3;

 public string ipaddress;

 public Trust()

 {

 InitializeComponent();

 }

 private void btnIP_Click(object sender, EventArgs e)

 {

 if (txtIP.Text == "")

 {

 lblError.Text = "";

 lblError.Text = "Enter A valid IP";

 }

 else

 {

 sq.open();

 cmd = new SqlCommand("insert into IP values(@ip)", sq.cn);

 cmd.Parameters.Add(new SqlParameter("@ip", SqlDbType.VarChar));

 cmd.Parameters["@ip"].Value = txtIP.Text;

 cmd.ExecuteNonQuery();

 sq.close();

 txtIP.Text = "";

 lblError.Text = "";

 lblError.Text = "IP Added ";

 }

 }

 private void Trust_Load(object sender, EventArgs e)

 {

 btnView.Enabled = false;

 groupBox1.Visible = false;

 btnUse.Enabled = false;

 sq.open();

 cmd2 = new SqlCommand("select * from IP", sq.cn);

 dr = cmd2.ExecuteReader();

 dr.Read();

 if (dr.HasRows)

 {

 lblMess.Text = "";

 lblMess.Text = "Previous records available";

 btnView.Enabled = true;

 btnUse.Enabled = true;

 }

 else

 {

 lblMess.Text = "";

 lblMess.Text = "No IP found Enter new IP's";

 btnAddNew.Enabled = true;

 }

 dr.Close();

 sq.close();

 }

 private void btnView_Click(object sender, EventArgs e)

 {

 sq.open();

 cmd3 = new SqlCommand("select * from IP", sq.cn);

 dr = cmd3.ExecuteReader();

 while (dr.Read())

 {

 if (dr.HasRows)

 {

 listBox1.Items.Add(dr[0].ToString());

 }

 }

 dr.Close();

 sq.close();

 }

EXPLANATION
In the Trusted System Module all the stored trusted IP’s are listed from the IP table The following query is executed in order to retrieve the stored IP’s from the table new SqlCommand("select * from IP", sq.cn);

A new Ip is added after entering in the text box provided for the user to set an IP address as trusted.
 7. TESTING
PROCESS:

 The purpose of testing is to discover errors. Testing is the process of trying to discover every conceivable fault or weakness in a work product. It provides a way to check the functionality of components, sub assemblies, assemblies and/or a finished product It is the process of exercising software with the intent of ensuring that the Software system meets its requirements and user expectations and does not fail in an unacceptable manner. There are various types of test. Each test type addresses a specific testing requirement.
TYPES OF TESTS:

 UNIT TESTING:

 Unit testing involves the design of test cases that validate that the internal program logic is functioning properly, and that program input produces valid outputs. All decision branches and internal code flow should be validated. It is the testing of individual software units of the application .it is done after the completion of an individual unit before integration. This is a structural testing, that relies on knowledge of its construction and is invasive. Unit tests perform basic tests at component level and test a specific business process, application, and/or system configuration. Unit tests ensure that each unique path of a business process performs accurately to the documented specifications and contains clearly defined inputs and expected results.

INTEGRATION TESTING:

 Integration tests are designed to test integrated software components to determine if they actually run as one program. Testing is event driven and is more concerned with the basic outcome of screens or fields. Integration tests demonstrate that although the components were individually satisfaction, as shown by successfully unit testing, the combination of components is correct and consistent. Integration testing is specifically aimed at exposing the problems that arise from the combination of components.

FUNCTIONAL TESTING:

Functional tests provide systematic demonstrations that functions tested are available as specified by the business and technical requirements, system documentation and user manuals.
Functional testing is centred on the following items:

Valid Input : identified classes of valid input must be accepted.

Invalid Input : identified classes of invalid input must be rejected.

Functions : identified functions must be exercised.

Output : identified classes of application outputs must be exercised.

Systems/Procedures: interfacing systems or procedures must be invoked.

 Organization and preparation of functional tests is focused on requirements, key functions, or special test cases. In addition, systematic coverage pertaining to identify Business process flows; data fields, predefined processes, and successive processes must be considered for testing. Before functional testing is complete, additional tests are identified and the effective value of current tests is determined.

SYSTEM TESTING:

 System testing ensures that the entire integrated software system meets requirements. It tests a configuration to ensure known and predictable results. An example of system testing is the configuration oriented system integration test. System testing is based on process descriptions and flows, emphasizing pre-driven process links and integration points.

WHITE BOX TESTING:

 White Box Testing is a testing in which the software tester has knowledge of the inner workings, structure and language of the software, or at least its purpose. It is used to test areas that cannot be reached from a black box level.

BLACK BOX TESTING:

 Black Box Testing is testing the software without any knowledge of the inner workings, structure or language of the module being tested. Black box tests, as most other kinds of tests, must be written from a definitive source document, such as specification or requirements document, such as specification or requirements document. It is a testing in which the software under test is treated, as a black box .you cannot “see” into it. The test provides inputs and responds to outputs without considering how the software works.
Unit Testing:

Unit testing is usually conducted as part of a combined code and unit test phase of the software lifecycle, although it is not uncommon for coding and unit testing to be conducted as two distinct phases.

Test strategy and approach

Field testing will be performed manually and functional tests will be written in detail.

Test objectives

· All field entries must work properly.

· Pages must be activated from the identified link.

· The entry screen, messages and responses must not be delayed.

· Features to be tested

· Verify that the entries are of the correct format

· No duplicate entries should be allowed

· All links should take the user to the correct page.

Integration Testing:

Software integration testing is the incremental integration testing of two or more integrated software components on a single platform to produce failures caused by interface defects.

The task of the integration test is to check that components or software applications, e.g. components in a software system or – one step up – software applications at the company level – interact without error.

Acceptance Testing:
User Acceptance Testing is a critical phase of any project and requires significant participation by the end user. It also ensures that the system meets the functional requirements.

Test Results:

All the test cases mentioned above passed successfully. No defects encountered.

 8. SCREEN SHOTS
[image: image9.png]File

-

Edit View Project Build Debug Data

T EH@ s aB(9 A

ST |53 0 B R e i e | & 41 82 et

3| b Debug

~ Any CPU

Format Tools Test Analyze Window Help

R

MR e RN =R

Login

[menustript

Trustworthy

Send

& timert.

View

5 backgroundWorkerl

42 Find Symbol Results

worthy C:

Trust - Microsoft Visual Studio

9 Trust - Micros. Untitled - Paint

=N S
55| Admin.cs” Admin.cs Designl"| Trust.cs| Trust.cs [Design] | ReadOniyics) ReadOnly.cs Design] | Nommal Fil.cs| Normal Filecs [Desgni | FileNormalcs Design]] 5 X [Cless View
2 ~lgile =B
g [o2 admin (oo e <Search> g
| Tt

TSamedoid] 12101353 HOmIoS)

[image: image10.png]Edit View Project Build Debug Data Format Tools Test Analyze Window Help
EREAE 1 IR R - P L)

JEF@REa-T

2 & S| T o |

G| = = |FE-

[CesView <~ EX|

<Search>

st

[amadoid &

[image: image11.png]File

(R=R A" N IR AR <1

4| b Debug - AmyCPU

Edit View Project Build Debug Data Format Tools Test Analyze Window Help

MG e P2y iR

e & ST |53 50 B e o] 2 4D 8 et]
;| ~Encrypt.cs [Design] | Decrypt.cs [Design] | Admin.cs"| Admin.cs [Design]*| Trust.cs| Trust.cs [Design]| ReadOnly.cs | ReadOnly.cs [Design] | Normal File.cs| 5 x_[ClassView
g -
g Gile = |B
g 3 Encrypt <Search>
B st

<l

] openileDiclogl

TSamedoid] 12101353 HOmIoS)

42 Find Symbol Results|

[image: image12.png]File Edt View Project Buld Debug Data Format Tools Test Analyze Window Help

(SRR = N I RS = R =N .)

Flle &SI b o |22 FIBR v e e | 2 XD EY et

- Any CPU -l o

=T

MR e RN =R

|xoai001 5¢|

Encrypted Files

FileEncrypt.cs [Design]| Encrypt.cs [Design | Decryptcs [Designl | Admin.cs”| Admin.cs [Design]"| Trust.cs | Trustcs [Design] | ReadOnly.cs = x [ClassView
G| = | [-
5 FileEncrypt (o= s <Search>
& Trust

TSamedoid] 12101353 HOmIoS)

42 Find Symbol Results|

[image: image13.png]File

-

4| b Debug - AmyCPU

Edit View Project Build Debug Data Format Tools Test Analyze Window Help

T EH@ | aB9 A

o % | E

MR e RN =R

o FileNormal

[E=8 5o

Blde & ST ok o | 52 81 EE G s 5 o | 2 D BE el 2

35| FileNormal.cs IDesignl | FieEncryptcs [Design] | Encrypt.cs [Design] | Decryptcs Designi | Admin.cs*| Admin.cs [Design]*| Trust.cs| Trustcs Design]| = x [ClassView

o B
g IR
H <Searc>

st

[somiadoid & [1e10idxa Uomnios o)

42 Find Symbol Results

[image: image14.png]File

B |12 & S| T o i |52

[B feoe 3 0% W | & %2 8% k|

Edt Viw Project Buld Debug Data Formst Tool Test Anshze Window Help
- Sl @] % R0 E-5] b Debug - AnyCPU

e HF@xEO-]

ERAEIE

|xoai001 5¢|

 FileReadOnly.cs [Designl | FileNormslcs [Design] | FileEncryptcs Designi | Encrypt.cs [Design] | Decrypt.cs Design] | Admin.cs*| Admin.cs [Design!”| Trustcs|

= x

a2 FileReadOnly

File Sent As Read Only

ok

Class View

Gl = B

<Search>

3 Trust

[somiadoid & [1e10idxa Uomnios o)

% Find Symbol Results

[image: image15.png]Edit View Project Build Debug Data Format Tools Test Analyze Window Help

File
B | b Debug - AnyCPU QAF @R BO-L
= k3 # & er|[HE| W E
Normal File.cs [Designl| Prograrm.cs| FileReadOnly.cs [Design] | FileNommalcs [Design] | FileEncyptcs [Designi | Encrypt.cs [Design] | Decyptcs Designi | = x [CassView TEX
il 8-
<search> a

st

%00|001 3|

TSamedoid] 12101353 HOmIoS)

il

<l

& openFileDiaiog

42 Find Symbol Results

[image: image16.png]File Edt View Project Buld Debug Data Format Tools Test Analyze Window Help

A== - IR N AR

1| b Debug - AnyCPU =X MEN=Nec iy Y= R

a2 ReadOnly

[=]

Eul i I

] openfieDisogl

HANEENE T =R A A R T
3|~ ReadOnly.cs [Design]| Normal File.cs [Design | Program.cs| FileReadOnly.cs [Design] | FileNormal.cs [Design] | FileEncrypt.cs [Design] | Encrypt.cs [Design] | = x [ClassView SIx
g G| = = |-

<Search>

3 Trust

[somiadoid & [1e10idxa Uomnios o)

42 Find Symbol Results|

[image: image17.png]Microsoft Visual Studio
File Edt View Project Buld Debug Data Format Tools Test Analyze Window Help

| b Debug ~ AmyCPU - | @ o N =
H R A A L e R E T
3| Trust.cs IDesignl|ReadOniy:cs [Designi | Norma Filecs [Design] | Programs| FileReadOniy.cs [Design] | FileNorm.cs [Design] | FileEncrypt.cs (Designi | = x [ClassView TEx
g [RREAN =R
g (=] <Search> g

3 Trust

TSamedoid] 12101353 HOmIoS)

View Stored IP's

istBox1

Use The Same
Add New

42 Find Symbol Results

 12. CONCLUSION
Capabilities are well known in the operating systems literature, but have failed to catch on in many mainstream systems, likely because they are perceived as too heavyweight a mechanism to address the relatively simple access problems of single-user systems. In contrast, we believe capabilities are extremely well-suited for use in wide-area Internet routing. Unlike today’s PCs, which typically are used by at most a small number of users with similar goals and policy constraints, the Internet serves an extremely large number of users with an even larger number of motivations, all attempting to simultaneously share widely distributed resources. Most importantly, there exists no single arbiter (for example, a system administrator or user logged in at the console) who can make informed access decisions. Looking forward, while much work has gone into understanding existing Internet routing policy and describing how to specify it better, we believe that much of the complexity of Internet routing policy stems from inflexibility of existing routing protocols. We aim to study how one might implement inter-AS traffic engineering policies through capability pricing strategies. For example, an AS with multiple peering routers that wishes to encourage load balancing may be able to do so through variable pricing of capabilities for the corresponding Platypus waypoints. While properly modelling the self-interested behaviour of external entities may be difficult, we are hopeful that this challenge is simplified by the direct mapping between Platypus waypoints and path selection (as compared, for example, to the intricate interactions of various BGP parameters).
yes

Receiver

View File

File Sent

Read-Only File

Encrypt File

Normal File

Select Type of File

User/Sender

Select IP

Receiver

Readable File

Decrypt

Read Only

Normal

Encryption

Sender

Decrypt File

No

No

yes

yes

No

1

