PAGE
1

Robust Spanning Tree Topology for Data Collection and Dissemination in Distributed Environment
TABLE OF CONTENTS
1. Introduction

2. Literature Survey
3. Analysis and Design

4. Implementation

5. Testing and Debugging

6. Conclusion
7. References / Bibilography
CHAPTER 1

INTRODUCTION
Large-Scale distributed applications are subject to frequent disruptions due to resource contention and failure. Such disruptions are unpredictable and therefore robustness is a designable property for the distributed operated environment. Describe and evaluate a robust topology for applications that operate on a spanning tree overlay network. This technique is used for improving the robustness of a distributed system. Spanning trees are used in communication network to disseminate information from one node to all other nodes and/or to collect information at a single designated node. The most common spanning trees are shortest path and minimum spanning tree.
The distance in edge weights of the path from each node to the root node is mini mum. Such a tree is efficiently constructed by Dijkstra’s algorithm. Designated this method as SP.The distance in number of hops along the path from each node to the root node is minimum. This method is equivalent to SP when all edge weights are equal and, therefore, Dijkstra’s algorithm may be employed. Designate this method by FH.The topology itself is able to simultaneously withstand disturbances and exhibit good Performance.

The design and implementation of distributed computing systems has historically been carried out with performance being the dominant goal. Typically the objective is to optimize a criterion such as response time, make span, or hit rate. Furthermore, the performance metrics are usually viewed from an individual perspective and may not correspond to the social optima. In order to realize the benefits from such performance-oriented designs, the distributed environment in which the application is deployed must be somewhat predictable.
That is, calculation of the optimal schedule often requires accurate and ´a priori knowledge of system load, communication latencies, and execution times of individual tasks. With the current trend toward large-scale, geographically separated systems with shared computational resources, the assumption of exact knowledge of system parameters is unrealistic. Hence there is a need to incorporate robustness into the design of distributed systems. Robust systems perform well across a wide range of operating conditions and exhibit graceful degradation under anomalous conditions.
 In this work we present a technique for improving the robustness of a distributed system for applications that operate on a spanning tree overlay network. Spanning trees are widely used in communication networks as a means to disseminate information from one node to all other nodes and/or to collect information at a single designated node. The defining characteristic of our spanning tree topology when compared to other types of commonly seen spanning trees is that the resulting trees perform well for multiple, conflicting metrics; the trees are robust.
The importance of robustness in the design of complex and distributed systems is well established. Biological systems naturally form robust topologies that are resilient to attack. Social networks exhibit the small-world phenomenon in which any two members are separated by just a few acquaintances. This phenomenon can be viewed as a form of robustness since information reaches every person in the network very quickly despite the fact that some people will not pass on the information. More pertinent to our interests is the ability of distributed computing systems to maintain performance despite the presence of various perturbations.
His should be a fundamental concept in the design of distributed systems. Particularly when network bandwidth and computational resources are shared, robustness is a desirable system property because communication delays and execution times are inherently difficult to predict. Nonetheless, whenever we have some choice in the design of the system, e.g. the topology of an overlay network, then we can influence the system’s response to various disturbances. There is often a trade-off for incorporating robustness into a system and our work is no exception in this regard. However, we will show that the price paid in performance loss is well worth that gained when the operating environment is unpredictable.
CHAPTER 2

LITERATURE SURVEY

Several researchers have argued that robustness is a crucial property in the design and operation of distributed systems. Using techniques such as admission control, system introspection, and adaptive control to achieve robustness in distributed applications. These techniques are all adaptive in nature.
Our approach is different in that we take a proactive approach toward robustness and therefore adaptation is not required. Thus our work is most appropriate in situations where an immediate change in the network topology is undesirable. In the physics community, Carlson and Doyle have introduced a concept for the incorporation of robustness into the design of complex systems. They have named this concept highly optimized tolerance (HOT).
Using examples from biology and engineering, they show how high-performance (or high-yield) systems can be made robust against disturbances for which they were designed to handle, yet can fail catastrophically when subjected to unanticipated disturbances. This is the trade-off between the need for high-performance and the increased sensitivity to randomness. In a similar fashion, our approach strikes a trade-off between performance and resilience to network disruptions.

In present a technique for the delivery of continuous-media documents over unreliable communication links. Progress in this area is important in order to realize the widespread adoption of video-on-demand services over the Internet. The solution presented is to deliver multiple installments of the document to the client. Each installment is transferred from a different, distributed server. A proxy at the client assembles the pieces. By making a small, adjustable portion of each installment overlap with the adjoining section, the system is able to withstand a certain amount of data loss without compromising the continuous nature of the delivery. Similar to our work, the authors of assume no knowledge of where network disruptions will occur. Given the desired probability of interrupt-free playback, the authors show how to compute the appropriate amount of overlap.
With respect to the divisible load scheduling problem investigate probing strategies for estimation of network parameters and subsequent use of those parameters to allocate work to processors. Thus, no previous knowledge of bandwidth or computing speeds is required. Indeed, one strategy that was investigated employs continuous probing and can adapt to changing network parameters. However, any probing strategy requires a certain amount of overhead. Furthermore, we again stress that our work is purely proactive in nature as opposed to being adaptive or reactive. As such the overhead associated with measuring and adapting is not an issue.
 The robustness of scheduling meta-programs onto grid-like distributed systems. Meta-programs can be represented as directed acyclic graphs (trees) in which nodes are component programs and edges are data, communication, or host dependencies among components. The problem addressed by the authors is that the execution times of the component programs are non-deterministic. An unexpected long execution time of a component may cause other dependent components to be late, resulting in an increase in the overall execution time of the meta-program. Their measure of the robustness of a schedule is based on the concept of a critical path, which is a path through the graph such that if any component along the path is late, then the meta-program will be late. Given the probabilities of individual components being late, one may compute the probability of any particular path in the schedule becoming critical. Then, a schedule with fewer critical paths is considered to be more robust. In our work with spanning trees we have something akin to a critical path whenever a node has many children because if that node fails then the entire sub tree below it is lost.

For many distributed applications, the routing of data and messages takes place on a virtual overlay network that is constructed on top of the underlying physical network. For example, nodes in peer-to-peer systems are connected via the physical links in the Internet; however, a node forwards queries only to nodes in its own list of neighbors, thus forming an overlay network. Not surprisingly, the topology of such an overlay network plays a significant role in the performance and efficiency of the distributed system. Herein we address distributed systems for which the overlay network is a spanning tree, i.e., a connected network that contains no cycles. Furthermore, one particular node in the network is designated as the root node. The root node acts as a collection point for data (as in a sensor network) and/or as a load origination point for the distribution of work (as in divisible load scheduling). Throughout this project nodes are identified by indices and the root node is always labeled with the numeral one.

For a moderate size network with just a few neighbors per node, there exist many possible spanning trees. For a dense network the number is enormous. Given the numerous possibilities, the question arises as to which spanning tree is best for a particular application. The most commonly seen forms of spanning trees are the following. Shortest paths: The distance in edge weights of the path from each node to the root node is minimum. Such a tree is efficiently constructed by Dijkstra’s algorithm. We

Designate this method as SP. Fewest hops: The distance in number of hops along the path from each node to the root node is minimum. This method is equivalent to SP when all edge weights are equal and therefore Dijkstra’s algorithm may be employed. We designate this method by FH.

Minimum weight: The total sum of edge weights is minimum. Such a tree can be constructed by either Kruskal’s algorithm or by Prim’s algorithm and does not take into consideration the location of the root node. We designate this method as MST. Spanning trees created by FH tend to be shallow and “fat”, with the average node degree being fairly large. This is because the only criterion for cost is the distance in hops from the root with no consideration of edge weights. We will show in Section IV that FH minimizes the expected value of the amount of data loss when a node or link fails. However, it is not the best choice for other performance metrics such as power consumption in sensor networks. At the other end of the spectrum, MST produces trees that are very deep and “skinny”.

Robust systems perform well across a wide range of operating conditions and exhibit graceful degradation under anomalous conditions. In this work, we present a technique for improving the robustness of a distributed system for applications that operate on a spanning tree overlay network. Spanning trees are widely used in communication networks as a means to disseminate information from one node to all other nodes and/or to collect information at a single designated node. The defining characteristic of our spanning tree topology when compared to other types of commonly seen spanning trees is that the resulting trees perform well for multiple, conflicting metrics; the trees are robust. The importance of robustness in the design of complex and distributed systems is well-established. Biological systems naturally form robust topologies that are resilient to attack. Social networks exhibit the small-world phenomenon in which any two members are separated by just a few acquaintances. This phenomenon can be viewed as a form of robustness since information reaches every person in the network very quickly, despite the fact that some people will not pass on the information. More pertinent to our interests is the ability of distributed computing systems to maintain performance despite the presence of various perturbations.
This should be a fundamental concept in the design of distributed systems. Particularly when network bandwidth and computational resources are shared, robustness is a desirable system property because communication delays and execution times are inherently difficult to predict. Nonetheless, whenever we have some choice in the design of the system, e.g., the topology of an overlay network, then we can influence the system’s response to various disturbances. There is often a trade-off for incorporating robustness into a system and our work is no exception in this regard. However, we will show that the price paid in performance loss is well worth that gained when the operating environment is unpredictable.

Spanning trees created by FH tend to be shallow and “fat,” with the average node degree being fairly large. This is because the only criterion for cost is the distance in hops from the root with no consideration of edge weights. We will show in Section 4 that FH minimizes the expected value of the amount of data loss when a node or link fails.
However, it is not the best choice for other performance metrics such as power consumption in sensor networks. At the other end of the spectrum, MST produces trees that are very deep and “skinny.” This is natural since the only criterion is edge weight and the location of the root node is not taken into consideration. The shape of trees produced by SP is influenced by the distribution of edge weights, but they tend to be deeper and have smaller node degrees than FH trees. In each of the three construction methods above, the spanning tree that results may not be unique. This fact will make no difference for our analysis and experiments. For example, we take a probabilistic approach to computing the amount of data that is lost when nodes fail. Any two MST trees of the same underlying original graph are equivalent in the sense that they both have the same expected value for the amount of data loss.

CHAPTER 3

ANALYSIS AND DESIGN
With the proposed concept the system provides the Large-scale distributed applications which are subject to frequent disruptions due to resource contention and failure and robustness is a desirable property for the distributed operating environment this protecting the relevant information and provides the information that is more important to different nodes or users.
The project is decided to build using Java Development Kit and Java runtime environment. Java programming language is an open source one and it is designed for use in distributed environment of the internet and for the professional programmer it is easy to learn and use effectively. The system is self-explanatory and doesn’t need any extra sophisticated training. The system has been built by concentrating on the graphical user interface concepts. The application can be handled very easily with a novice user.
3.1 Introduction

The design and implementation of distributed computing systems has historically been carried out with performance being the dominant goal. Typically the objective is to optimize a criterion such as response time, make span, or hit rate. Furthermore, the performance metrics are usually viewed from an individual perspective and may not.

3.1.1 Purpose

With the current trend toward large-scale, geographically separated systems with shared computational resources, the assumption of exact knowledge of system parameters is unrealistic. Hence there is a need to incorporate robustness into the design of distributed systems. Robust systems perform well across a wide range of operating conditions and exhibit graceful degradation under anomalous conditions.

3.1.2 Scope

In this work we present a technique for improving the robustness of a distributed system for applications that operate on a spanning tree overlay network. Spanning trees are widely used in communication networks as a means to disseminate information from one node to all other nodes and/or to collect information at a single designated node. The defining characteristic of our spanning tree topology when compared to other types of commonly seen spanning trees is that the resulting trees perform well for multiple, conflicting metrics; the trees are robust.

3.1.3 Definitions, Acronyms and Abbreviations

Software Requirements Specification: It’s a description of a particular software product, program or set of programs that performs a set of function in target environment.

3.1.4 Overview

The SRS contains the details of process, DFD’s, functions of the product, user characteristics. The non functional requirements if any are also specified.

3.2 Overall Description

The main functions associated with the product are described in this section of SRS. The characteristics of a user of this product are indicated. The assumptions in this section result from interaction with the project stakeholders.

3.2.1 Product Perspective

This Robust Spanning Tree Topology is an independent system, which provides the dissemination and data collection facility for enhanced solutions.

3.2.2 Product Functions

We describe and evaluate a robust topology for applications that operate on a spanning tree overlay network. Unlike previous work that is adaptive or reactive in nature, we take a proactive approach to robustness. The topology itself is able to simultaneously withstand disturbances and exhibit good performance. We present both centralized and distributed algorithms to construct the topology, and then demonstrate its effectiveness through analysis and simulation of two classes of distributed applications: Data collection in sensor networks and data dissemination in divisible load scheduling.
The results show that our robust spanning trees achieve a desirable trade-off for two opposing metrics where traditional forms of spanning trees do not. In particular, the trees generated by our algorithms exhibit both resilience to data loss and low power consumption for sensor networks. When used as the overlay network for divisible load scheduling, they display both robustness to link congestion and low values for the make span of the schedule

3.2.3 User Characteristics

User Characteristics indicates intended users of product and education level, experience, technical expertise required by user. The intended users of system are any nodes who want to communicate with each other in efficient fashion.

3.2.4 Constraints

The system or collection of nodes are dynamically changing hence it needs to maintain the current state of the network.
3.2.5 Assumptions and Dependencies

This project assumes that the nodes are linked and graph can be easily calculated for efficient functioning.

3.3. Specific Requirements
This section of the SRS provides a description of the observable behavior of a software system It also includes a description of the non-behavioral features of the software.

3.3.1 External Interface Requirements

Provide a detail description of all inputs into and outputs from the system.

3.3.1.1 User Interface

The user interfaces are provided in the screen shot section of the report which will be developed
3.3.1.2 Hardware Interface

A workstation or a Personal Computer.

3.3.1.3 Software Interface

Java Runtime Environment and Java Software Development Kit
3.3.1.4 Communication Interface
LAN connection with Intranet Facility is required.

3.3.2 Functional Requirements
Functional requirements will define the fundamental actions that must take place in the software in accepting and processing the inputs in processing and generating the outputs.

3.3.2.1 Information flows

Uses Case Diagram, Activity Diagrams, Sequence Diagrams, Collaboration Diagrams are provided which describes the flow of data between various processes of the system.

3.3.2.2 Process Description

Process descriptions are provided based on the process information.

3.3.3 Performance Requirements

This system has high performance, which computes the results in much less time than compared to manual searching.

3.3.4 Design constraints:

System must compatible with higher version of Linux Systems.
Software requirements:
	1.
	Operating System
	Windows 2000 / XP, Linux Fedora Core 4 and Above

	2.
	Languages/

Software
	Java Run time Environment, Java Development Kit 1.6.0

Hardware requirements:

	Number
	Description
	Alternatives (If available)

	1
	Pentium-4 PC with 20 GB hard-disk and 256 MB RAM, Keyboard, Mouse
	Not-Applicable

3.4 Use case Diagrams
[image: image1.emf]Initialize Network Graph

Compute Centralized Algorithm

Compute Distributed Algorithm

System

Compute Spanning Tree for Data

Dissemination

<<include>>

<<include>>

3.5 Activity Diagrams
[image: image2.emf]Scan Network

Topology

Compute Number of

Nodes

Compute

Number of Links

Initialize Graph

Parameters

[image: image3.emf]Input V and

Root

Input Edges

Compute Spanning Tree

according to function

[image: image4.emf]Input Neighbour

Nodes

Compute Spanning

Algorithm at Each Node

Exchange Messages

with its Neighbours

[image: image5.emf]Distribute Equal

Neighbour Uniformly

Check for Node

Degree

Calculate

Number of Hops

Display Shortest Path for

Data Dissimination

3.5 Sequence Diagrams
[image: image6.emf] : System

InitializeCtrl :

InitializeCtrl

Scan()

ComputeN()

ComputeE()

InitializeGraph()

[image: image7.emf] : System

ComCenAlgoCtrl :

ComCenAlgoCtrl

InputV()

InputE()

ComputeCenAlgo()

[image: image8.emf] : System

ComDistAlgoCtrl :

ComDistAlgoCtrl

InputNeighNode()

ComputeEach()

ExchangeMessages()

[image: image9.emf] : System

ComSpanTreeCtrl :

ComSpanTreeCtrl

UniformlyNeigh()

NodeDegree()

ComputeHops()

DisplayPath()

4.6 Collaboration Diagrams
[image: image10.emf] : System

InitializeCtrl :

InitializeCtrl

1: Scan()

2: ComputeN()

3: ComputeE()

4: InitializeGraph()

[image: image11.emf] : System

ComCenAlgoCtrl :

ComCenAlgoCtrl

1: InputV()

2: InputE()

3: ComputeCenAlgo()

[image: image12.emf] : System

ComDistAlgoCtrl :

ComDistAlgoCtrl

1: InputNeighNode()

2: ComputeEach()

3: ExchangeMessages()

[image: image13.emf] : System

ComSpanTreeCtrl :

ComSpanTreeCtrl

1: UniformlyNeigh()

2: NodeDegree()

3: ComputeHops()

4: DisplayPath()

CHAPTER 4
IMPLENTATION
4.1 JAVA

Implementation includes all those activities that take place to convert from the old system to the new. The new system may be totally new or replacing an existing manual or automated system or it may be a major modification to an existing system. Proper implementation is essential to provide reliable system to meet the organizational requirements. Successful implementation may not guarantee improvement in the organizational using the new system, as well as, improper installation will prevent any improvement.

The implementation phase involves the following tasks:

* Careful Planning.

* Investigation of system and constraints.

* Design of methods to achieve the changeover.

* Evaluation of changeover.

6.1.1 JAVA INTRODUCTION

Java quickly became a hot buzzword of the computing industry. People wanted to know Java - it was said to be great for creating dynamic interactive content for WebPages. Yet the true power of Java lies not in applets, but in its many other uses. Java is used for developing stand-alone applications, and for server-side programming. The face of Java has changed, but the core language remains the same.
 Java software comes in several flavors - the most common being the stand-alone application, and the applet. Web developers may have come across the term applet before, and perhaps even used one. An applet is a piece of software code that runs under the control of a web browser, as distinct from the application which requires an interpreter.

 Applets are commonly used to enhance the interactivity of a web page, and deliver client-side content. Applets run in their own frame, and can display graphics, accept input from GUI components, and even open network connections. Due the potential security risks associated with running applets from external and potentially malicious sources, most web browsers limit file access, and impose additional restrictions on applets (such as only being able to connect to the hostname from which the applet was downloaded). Fortunately, stand-alone applications have no such restrictions, and a full range of functionality is provided for in the way of pre-written Java classes.

 Stand-alone applications can run as a console application (writing text to the screen or terminal window), or they can have a graphical user-interface, by opening a new window or dialog box. You've used applications before, such as word processors, text editors, and games.

The Java language is capable of all this things. Since stand-alone applications offer more freedom to the programmer, and applets running under a browser often demonstrate a certain degree of instability depending on the platform under which it is run, this discussion will concentrate primarily upon the stand-alone application. The first thing required for writing stand-alone Java applications is a java compiler/interpreter. While there are commercial offerings available, such as Visual J++ and Borland JBuilder, a freely available SDK is available from Sun, the original creators of the Java language. It contains a compiler, interpreter, debugger, and more.
For those new to object-orientated programming, the concept of a class will also new. I defined a new class, called myfirstjavaprog. Simplistically, a class is the definition for a segment of code that can contain both data (called attributes) and functions (called methods).

 When the interpreter executes a class, it looks for a particular method by the name of main, which will sound familiar to C programmers. The main method is passed as a parameter an array of strings (similar to the argv [] of C), and is declared as a static method (more on this in a later tutorial). To output text from the program, we execute the ' println ' method of System. Out, this is Java’s output stream.

Java is two things: a programming language and a platform.
Java is a high-level programming language that is all of the following:

	(Simple
	(Architecture-neutral

	(Object-oriented
	(Portable

	(Distributed
	(High-performance

	(Interpreted
	(Multithreaded

	(Robust
	(Dynamic

	(Secure
	

 Java is also unusual in that each Java program is both compiled and interpreted. With a compiler, translate a Java program into an intermediate language called Java byte codes the platform-independent codes interpreted by the Java interpreter. With an interpreter, each Java byte code instruction is parsed and run on the computer. Compilation happens just once; interpretation occurs each time the program is executed. This figure 4.1 illustrates how this works.
[image: image14.png]
Figure 4.1 Java Program Executions
 We can think of Java byte codes as the machine code instructions for the Java Virtual Machine (Java VM). Every Java interpreter, whether it's a Java development tool or a Web browser that can run Java applets, is an implementation of the Java VM. The Java VM can also be implemented in hardware.

 Java byte codes help make "write once, run anywhere" possible. We can compile our Java program into byte codes on any platform that has a Java compiler. The byte codes can then be run on any implementation of the Java VM. For example, the same Java program can run on Windows NT, Solaris, and Macintosh. Below fig 4.2 refers the execution.

[image: image15.png]
Figure 4.2 Java Program Executions on Different Platforms

4.1.2 JAVA PLATFORM

A platform is the hardware or software environment in which a program runs. The Java platform differs from most other platforms in that it's a software-only platform that runs on top of other, hardware-based platforms. Most other platforms are described as a combination of hardware and operating system.

The Java platform has two components:

►
The Java Virtual Machine (Java VM)

►
The Java Application Programming Interface (Java API)

We've already been introduced to the Java VM. It's the base for the Java platform and is ported onto various hardware-based platforms.

 The Java API is a large collection of ready-made software components that provide many useful capabilities, such as graphical user interface (GUI) widgets. The Java API is grouped into libraries (packages) of related components. The next section, What Can Java Do? Highlights each area of functionality provided by the packages in the Java API.

The following figure 4.3 depicts a Java program, such as an application or applet, that's running on the Java platform. The below figure 6.3 shows, the Java API and Virtual Machine insulates the Java program from hardware dependencies.
[image: image16.png]
Figure 4.3 Java API

 As a platform-independent environment, Java can be a bit slower than native code. However, smart compilers, well-tuned interpreters, and just-in-time byte code compilers can bring Java's performance close to that of native code without threatening portability

4.1.3 THE LIFE CYCLE OF AN OBJECT
 Typically, a Java program creates many objects from a variety of classes. These objects interact with one another by sending each other message. Through these object interactions, a Java program can implement a GUI, run an animation, or send and receive information over a network. Once an object has completed the work for which it was created, it is garbage-collected and its resources are recycled for use by other objects. Follow the links below to learn about the typical phases of the life of an object:

1. Creating Objects

2. Using Objects

3. Cleaning Up Unused Objects
4.1.4 THE GARBAGE COLLECTOR

 The Java platform has a garbage collector that periodically frees the memory used by objects that are no longer needed. The Java garbage collector is a mark-sweep garbage collector. A mark-sweep garbage collector scans dynamic memory areas for objects and marks those that are referenced. After all possible paths to objects are investigated; unmarked objects (unreferenced objects) are known to be garbage and are collected. A more complete description of Java's garbage collection algorithm might be “a compacting, mark-sweep collector with some conservative scanning”.
 The garbage collector runs in a low-priority thread and runs either synchronously or asynchronously depending on the situation and the system on which Java is running. It runs synchronously when the system runs out of memory or in response to a request from a Java program.
The Java garbage collector runs asynchronously when the system is idle, but it does so only on systems, such as Windows 95/NT, that allow the Java runtime environment to note when a thread has begun and to interrupt another thread. As soon as another thread becomes active, the garbage collector is asked to get to a consistent state and terminate.

4.1.5 INTERFACE DESIGN

Interface design mainly focuses on the design of interface between software modules, external entities and the user. The design of internal program interfaces, sometime called inter modular interface design, is driven by the data that must flow between modules and the characteristics of the programming language in which the software is to be implemented.

External interface design begins with an evolution of each external entity represented in the DFD’s of the analysis model .Both internal and external interface design must be coupled with data validation and error handling algorithms with in module. Because side effects propagate across program interfaces, it is essential to check all data following from module to module to ensure that the data conform to bounds established during requirements analysis

User interface design has a much to do with the study of people as it does with technology issues. It should analyze facts like which the user is, how the user learns to interact with a new computer-based system. So the system should be developed in a user-friendly manner

4.1.6 FUNCTIONAL INDEPENDENCE

The concept of functional independence is direct outgrowth of modularity and the concepts of abstraction and information hiding. It is achieved by developing modules with “single-minded” function and an “aversion” to excessive interaction with other modules.

 Independent modules are easier to maintain because secondary effects caused by the design/ code modification are limited, error propagation is reduced and reusable modules are possible. To summarize, functional independence is a key to good design.

4.1.7 FEATURES

►
 OBJECT ORIENTED: Almost everything in Java is an object. All program code and data resides within objects and classes. Java comes with an extensive set of classes, arranged in packages.

►
 DISTRIBUTED: Java is designed as a distributed language for creating applications on networks. It has the ability to share both data and programs. Java applications can open and access remote objects on Internet as easily as they can do in a local system.

► ROBUST AND SECURE: Java uses a garbage collector, which manages all the memory management. The absence of pointers in Java ensures that programs cannot gain access to memory locations without proper authorization.

►
 SIMPLE: Java was modeled after C++, yet java is simple as pointers and multiple inheritances which often make programming complicated are not supported here.

►
 INTERPRETED: we need an interpreter to run java programs. The programs are compiled into java virtual machine code called bytecode. The byte code is machine independent and can run on any machine that has a Java interpreter.

►
 MULTITHREADED: Multithreading is the capability for a program to perform several tasks simultaneously within a program. Multithreading is particularly useful in graphical user interface (GUI) and network programming. Multithread programming is smoothly integrated in java.

►
 PORTABLE: java programs can run on any platform without having to be recompiled. This is one positive aspect of portability. The java environment itself is portable to new hardware and operating systems.
►
 SIMPLE: Java was modeled after C++, yet java is simple as pointers and multiple inheritances which often make programming complicated are not supported here.

►
 DYNAMIC: Java was designed to adapt to an evolving environment. A new method and a new property can be added to a class without affecting its clients. Also at runtime Java loads classes as they are needed.

►
 LIGHT WEIGHT COMPONENTS: In swing most of the components have their own view supported by the java look-and –feel classes. Thus, the components do not depend on any peer classes for their view.
►
 PLUGGABLE LOOK-AND-FEEL: This feature enables the user to switch the look-and-feel of swing components without restarting the application. The swing library supports a cross platform look-and-feel also called the Java look-and-feel that remains the same across all platforms wherever the program runs.
Environments do not allow needed data to be retrieved in a convenient and efficient manner.

►
NO CONCURRENT ACCESS ANOMALIES: The database allows users to access data concurrently without causing any anomalies.
►
SUPPORTS SECURITY: Not every user of the database should be able to access all the data. A security mechanism like password or hiding is provided.

►
TEMPORARY SPACE: The database supports temporary space in huge amounts, to store the temporary data.

►
 EASY BACKUP AND RECOVERY: Provides data to be easily backed-up and easy recovery.

CHAPTER 5
TESTING AND DEBUGGING
PREPARATION OF TEST DATA
5.1 TESTING OBJECTIVES
The objective is to design tests that systematically uncover different classes of errors and do so with a minimum amount of time and effort. Testing cannot show the absence of defects, it can only show that software defects are present.

Testing is a process of executing a program with the intent of finding an error.

A good test has a high probability of finding an as yet undiscovered error.

A successful test is one that uncovers an as yet undiscovered error

 5.2 UNIT TESTING

 5.2.1 INTERFACE

 # Number of input parameters should be equal to number of arguments

 # Parameter and argument attributes must match

 # Parameters passed should be in correct order

 # Global variable definitions consistent across modules.

 # If module does I/O:

* File attributes should be correct

* Open/Close statements must be correct

* Format specifications should match I/O statements

* Buffer Size should match record size

* Files should be opened before use

* End of file condition should be handled

* I/O errors should be handled

 * Any textual errors in output information must be checked

 5.2.2 LOCAL DATA STRUCTURES (COMMON SOURCE OF ERRORS!)

Improper or inconsistent typing

Erroneous initialization or default values

Incorrect variable names

Inconsistent date types

Overflow, underflow, address exceptions

5.2.3 BOUNDARY CONDITIONS AND INDEPENDENT PATHS

 ERROR HANDLING

Error description unintelligible

Error noted does not correspond to error encountered

Error condition handled by system run-time before error handler gets

 control

Exception condition processing incorrect

5.3 INTEGRATION TESTING

5.3.1 TOP DOWN INTEGRATION

Modules integrated by moving down the program design hierarchy. Can use depth first or breadth first top down integration

Verifies major control and decision points early in design process. Top-level structure tested most. Depth first implementation allows a complete function to be implemented, tested and demonstrated. Can do depth first implementation of critical functions early. Top down integration forced (to some extent) by some development tools in programs with graphical user interfaces.

5.3.2 BOTTOM UP INTEGRATION

 Begin construction and testing with atomic modules (lowest level modules).Bottom up integration testing as its name implies begins construction and testing with atomic modules. Because modules are integrated from the bottom up, processing required for modules subordinate to a given level is always available and the need for stubs is eliminated.

 5.4 VALIDATION TESTING

 Validation testing is aims to demonstrate that the software functions in a manner that can be reasonably expected by the customer. This tests conformance the software to the Software Requirements Specification.

5.4.1 VALIDATION TEST CRITERIA

A set of black box test is to demonstrate conformance with requirements. To check that all functional requirements satisfied, all performance requirements achieved, documentation is correct and ' human-engineered', and other requirements are met (e.g. compatibility, error recovery, and maintainability).

When validation tests fail it may be too late to correct the error prior to scheduled delivery. Need to negotiate a method of resolving deficiencies with the customer.

5.5 ALPHA AND BETA TESTING

It is difficult to anticipate how users will really use software. If there is one customer, a series of acceptance tests are conducted (by the customer) to enable the customer to validate all requirements. If software is being developed for use by multiple customers, cannot use acceptance testing. An alternative is to use alpha and beta testing to uncover errors.

A customer conducts alpha testing at the developer's site. The customer uses the software with the developer 'looking over the shoulder' and recording errors and usage problems. Alpha testing conducted in a controlled environment

Beta testing is conducted at one or more customer sites by end users. It is ' live ' testing in an environment not controlled by developer. The customer records and reports difficulties and errors at regular intervals.

5.6 SYSTEM TESTING

Software is only one component of a system. Software will be incorporated with other system components and system integration and validation test performance

5.7 RECOVERY TESTING

Many systems need to be fault tolerant-processing faults must not cause overall system failure. Other systems require after a failure within a specified time. Recovery testing is the forced failure of the software in a variety of ways to verify that recovery is properly performed.

5.8 SECURITY TESTING

System with sensitive information or which have the potential to harm individuals can be target for improper or illegal use. This can include:

 # attempted penetration of the system by outside individuals for fun or

 personal gain

 # disgruntled or dishonest employees.

During security testing the tester plays the role of the individual trying to penetrate the system. Large range of methods:

Attempt to acquire passwords through external clerical means

Use custom software to attack the system

Overwhelm the system with requests

Cause system errors and attempt to penetrate the system during recovery

Browse through insecure data.

Given time and resources, the security of most systems can be breached.
 5.9 PERFORMANCE TESTING

 For real-time and embedded systems, functional requirements may be satisfied but performance problems make the system unacceptable. Performance testing
checks the run-time performance in the context of the integrated system Can be coupled with stress testing, May require special software instrumentation.

5.10 TESTING UNDER VARIOUS SOFTWARE DEVELOPMENT STAGES

5.10.1 REQUIREMENTS STAGE

 The requirements documents are tested by disciplined inspection and review. The preparation of test plan, which should include:

1. Specification

2. Description of test precious

3. Test milestones

4. Test Schedule

5. Test data reduction

6. Evaluation criteria

5.10.2 DESIGN STAGE

 Design products are tested by analysis, simulation, walkthrough and inspection. Test data for functions are generated. Test cases based on structure of system are generated

5.10.3 CONSTRUCTION STAGE

 This Stage includes the actual execution of code with test data. Code walkthrough and inspection are conducted. Static analysis, Dynamic analysis, Construction of test drivers, hair nesses and stubs are done. Control and management of test process is critical. All test sets, test results and test reports should be catalogued and stored.
5.10.4 OPERATION AND MAINTENANCE STAGE

 Modifications done to the software requires retesting this is termed regression testing. Changes at a given level will necessitate retesting at all levels below it.

5.10.4.1 APPROACHES

Two basics approach:

 1. Black box or "Functional" analysis

 2. White box or "Structural" analysis

5.11 FUNCTIONAL TESTING

5.11.1 BOUNDARY VALUE ANALYSIS (STRESS TESTING)

 In this method the input data is partitioned and data inside and at the boundary of each partition is tested.

5.11.2DESIGN BASED FUNCTIONAL TESTING

 Functional hierarchy is constructed. For each function at each level extremal, non-extremal and special value test data are identified. Test data is identified such that it will generate extremal, non-extremal and special output values

5.11.3 CAUSE-EFFECT GRAPHING

 In this method the characteristic input stimuli (Causes), characteristic output classes (effects) are identified. The dependencies are identified using specification. These details are presented as directed graph. Test cases are chosen to test dependencies.

 5.12 STRUCTURAL TESTING

 5.12.1 COVERAGE-BASED TESTING

The Program is represented as control-flow graph. The paths are identified. Data are chosen to maximize paths executed under test conditions. For paths that are not always finite and those infeasible, Coverage metrics can be applied. .

 5.12.2 COMPLEXITY-BASED TESTING

 The Cyclomatic Complexity is measured. The paths actually executed by
program running on test data are identified and the actual complexity is set. A test set is devised which will drive actual complexity closer to Cyclomatic complexity.

 5.12.3 TEST DATA ANALYSIS

During Test Data Analysis “The Goodness of the test data set" is taken into
major consideration

5.12.4 STATISTICAL ANALYSIS AND ERROR SEEDING

Known errors are seeded into the code so that their placement is statistically similar to that of actual errors.

5.12.5 TEST RESULTS

 The listed tests were conducted in the software at the various developments stages. Unit testing was conducted. The errors were debugged and regression testing was performed. The integration testing will be performed once the system is integrated with other related systems like Inventory, Budget etc. Once the design stage was over the Black Box and White Box Testing was performed on the entire application. The results were analyzed and the appropriate alterations were made. The test results proved to be positive and henceforth the application is feasible and test approved.

CHAPTER 6

RESULTS

6.1Robust Spanning Tree Topology

[image: image17.png]
6.2 Robust Spanning Tree Topology

[image: image18.png]
6.3 Robust Spanning Tree Topology
[image: image19.png]
6.4 Robust Spanning Tree Topology

[image: image20.png]
6.5 Robust Spanning Tree Topology
[image: image21.png]
6.6 Spanning Trees by Shortest Path
[image: image22.png]
6.7 Spanning Trees by Fewest Hops
[image: image23.png]
6.8 Spanning Trees by Centralized Algorithm

[image: image24.png]
6.9 Spanning Trees by Distributed Algorithm
[image: image25.png]
CHAPTER 7
CONCLUSION

Robustness is an important property for distributed computing systems. These systems are subject to resource contention and hence node failures and transmission delays are common enough to warrant their consideration in system design. This is especially true when the application designer has some control over the manner in which data is routed and computations are performed, such as the choice of topology for an overlay network.
In this work we presented a methodology for constructing a spanning tree overlay network that exhibits robustness to network disturbances. The construction technique employs a weighted formula for hop count and path weight that changes the relative importance as the distance from the root node changes.
This results in trees that perform well for a wide variety of metrics. When compared to the most common forms of spanning trees, our robust trees are closest in appearance to fewest-hops spanning trees. However, the node degree distribution is not as highly skewed, which results in less probability for massive data loss when highly connected nodes fail.
REFERENCES

S.D. Gribble, “Robustness in Complex Systems,” Proc. IEEE Eighth Workshop Hot Topics in Operating Systems, pp. 21-26, May 2001.
D. England, J. Weissman, and J. Sadagopan, “A New Metric for Robustness with Application to Job Scheduling,” IEEE Int’l Symp. High Performance Distributed Computing (HPDC-14 ’05), July 2005.
D. Oppenheimer, V. Vatkovskiy, and D.A. Patterson, “Towards a Framework for Automated Robustness Evaluation of Distributed Services,” S.O.S. Survivability: Obstacles and Solutions, Proc. Second Bertinoro Workshop Future Directions in Distributed Computing (FuDiCo II), June 2004.
M. Aldana and P. Cluzel, “A Natural Class of Robust Networks,” Proc. Nat’l Academy of Sciences of the United States of Am., vol. 100, pp. 8710-8714, July 2003.
R. Albert, H. Jeong, and A.L. Baraba´si, “Error and Attack Tolerance of Complex Networks,” Nature, vol. 406, pp. 378-382, July 2000.
