 ABSTRACT

PROJECT TITLE: Cyclic Redundancy Codes (CRC) For Parallel And Serial Communications
INTRODUCTION:

Designers commonly use Cyclic Redundancy Codes (CRC) as an alternative to parity and checksum calculations for checking and correcting errors in data transmissions.

As it is easily imaginable, we all would like to have no errors when transmitting data over the Internet or any other media, but defects in materials, interferences and other sources can Corrupt the data, so we have to provide the communication with ways of detecting and if possible correcting those errors. It could be highly desirable to be able to check this in an ccurate and fast way, and therefore many different strategies have been developed in the early years, but almost all were based in performing some kind of mathematical operation over the bits we are transmitting. In this way, the so-called CRC was rapidly widespread as a good way of checking errors. A mathematical operation is performed over the data that is going to be sent, and the result is appended at the end of the data, thus resulting the packet that will actually be sent. At the far end of the channel, the same operation is made. If the result is the one expected then there have not been problems. Else, the data is corrupted and something will have to be made (this “something” is out of the scope of the CRC generator; it is usually an issue corresponding to the upper layers of the communication protocol).

There are various methods available for serial (example USB) and parallel (example PCI bus) communication protocols. With this motivation I would like to study various serial and parallel communications protocols needs for CRC and would like the implement the same.

BLOCK DIAGRAM:

[image: image1.emf]
CLK : Input This is the master clock signal RSTn : Input Asynchronous system reset(initialization)signal INITn : Input Synchronous reset(initialization) signal. LOAD: Input In parallel mode, When this signal is high the macro is enabled allowing the CRC to be calculated on incoming data. When this signal is low the previous CRC value is retained on the CRC output. In serial mode.When this signal is high the macro is enabled allowing the CRC to be calculated on incoming data. When this signal is low the calculatedn CRC is shifted out unaltered by incoming data.

D(M:O) Input CRC input data- 8,16,or 32 bits. For serial CRC computation,this is a single bit.

CRC(N:) Output CRC output data-8,16,or 32 bits. For serial CRC computation. This is a single bit.

CIRCUIT DIAGRAM:

[image: image2.emf]
ADVANTAGES:

 CRC codes of length n can be generated which detect:

– All single and double errors

– Any odd number of errors

– Any burst error _ n and most larger error bursts

– Sample questions

