Constructing IDPFs using BGP

CONSTRUCTING INTER-DOMAIN PACKET

 FILTERS BASED ON BGP UPDATES TO

 CONTROL IP SPOOFING

 Sep 25, 2009
	A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Networks.

	

ABSTRACT
Network Security is a very broad term. In its fullest sense, it means protecting data stored on or that travel over a network against both accidental and intentional unauthorized disclosure and modification. Ensuring that an IP packet carries a correct source address would be valuable for many purposes. Services that rely on correct source addresses (congestion control, fair queuing, and source based traffic control schemes) would profit. Network problem diagnosis are now able to locate the possible sources of a problem and could also be simplified. Moreover, this would assist in solving one of the most important problems in network security: attackers commonly forge source addresses to avoid responsibility for their malicious packets. Examples include DDoS attacks, TCP SYN flooding attacks, and smurf attacks. Reliably locating the attacker has been difficult because defenders cannot easily verify that a packet was indeed sent by the node specified in its source address.

The IP Spoofing is a critical threat to the valid use of the Internet throughout the world. All impediment mechanisms employed have been prevented by the capacity of attackers to invent or spoof the source addresses of the IP packets. By using IP spoofing, hackers can avoid discovery and for policing the attack packets put more burden on the destination network. Here, we suggest an Inter-Domain Packet Filter (IDPF) architecture which can minimize the level of IP spoofing on the Internet. The important point of this is we don’t need any Global Routing information .The IDPFs are implemented on the network border routers and build from the information gathered from Border Gateway Protocol (BGP) route updates. Here the IDPF framework works in such a way that it will not block packets with legitimate source addresses. At the end of this thesis we show that even with fragmentary implementation of the IDPFs on the Internet we can reduce the spoofing capacity of attackers and they can help in localize the source of an attack packet to a fewer number of candidate networks.
AKNOWLEDGMENTS
I would like to acknowledge the contributions of the following groups and individuals to the development of my paper/project/presentation:
TABLE OF CONTENT
ABSTRACT..1

ACKNOWLEDGMENT..2

TABLE OF CONTENT…... 3

LIST OF FIGURES...7
LIST OF TABLES ..7
LIST OF ACRONYMS…... 8

Chapter 1: Introduction…………………………………………………9
1.1 History………………………………………………………9
1.2 Proposed System………………………………………….10
1.3 Aims and Objectives……………………………………..10
1.4 TCP and IP Protocol……………………………………..11
1.5 How Spoofing works…………………………………….14
 1.5.1 Uses of Spoofing ……………………………………..14
 1.5.2 Spoofing purpose……………………………………15
 1.6 Conclusion………………………………………………..16
Chapter 2: Types of Spoofing…………………………………………17
 2.1 DDOS Attacks…………………………………………..17
 2.2 Non-Blind Spoofing…………………………………….17
 2.3 Blind Spoofing……………………………….……….…17
 2.4 Man in the middle attack……………………………….18
 2.5 Conclusion………………………....…………………….18
Chapter 3: Security Requirements……………………………………19
 3.1 Network security requirements……………………….19
 3.2 System security requirements…………...…………….20
 3.3 Information Security requirements……………………22
 3.4 Conclusion………………………………………………23
Chapter 4: Threats on data ……………………………………………24
 4.1 Hackers …………………………………………………24
 4.2 Vulnerability…………………………………………….25
 4.3 Viruses …………………………………………………..25
 4.4 Trojan horse programs …………………………….….26
 4.5 Attacks …………………………………………….……26
 4.6 Conclusion ………………………………………………27
Chapter 5: Security Policies …………………………………………..28
 5.1 What are policies? ...28
 5.2 Firewalls …………………………………………………28
 5.3 Encryption ………………………………………………29
 5.4 Intrusion Detection ……………………………………..29
 5.5 Conclusion ………………………………………………30
Chapter 6: Review on BGP Protocol …………………………………31
 6.1 Background ……………………………………………33
 6.2 BGP Operations ………………………………………33
 6.2.1 Interautonomous system routing …………….…33
 6.2.2 Intra-autonomous system routing ………………33
 6.2.3 Pass-through autonomous system ………………34
 6.3 BGP Routing ………………………………………….34
 6.4 BGP Message Types ………………………………….35
 6.4.1 Open message …………………………………...35
 6.4.2 Update message………………………………….35
 6.4.3 Notification message ……………….…………...36
 6.4.4 Keep-alive message ……………………………...36
 6.5 Conclusion ……………………………………………36
Chapter 7: BGP and AS interconnections ……………………………37
 7.1 Policies and Route Selection …………………………38
 7.2 AS Relationships and Routing Policies ………………39
 7.3 Conclusion ……………………………………………. 42
Chapter 8: IDPF Architecture ………………………………………...43
 8.1 IDPF Overview …………………………………………44
 8.2 Constructing IDPFs ……………………………………47
 8.2.1 Correctness of IDPF ……………………………48
 8.2.2 Routing policy complications ……………….…49
 8.3 Practical Deployment of IDPF ………………………52
 8.4 Conclusion ……………………………………………52
 Chapter 9: Design and Implementation ……………………….……53
 9.1 Technologies Used …………………………………….53
 9.1.1 Javax.swing ………………………………………53
 9.1.2 Java.io package ………………………………….53
 9.1.3 Java.net package …………………………………54
 9.1.4 Java.sql package ………….……………………..54
 9.1.5 Java.awt package …………………………………54
 9.2 Tools Used ………………………………………………55
 9.2.1 Jframe Builder Tool ………………………………55
 9.3 Code Snippet ………………………………………..….56
 9.4 Screen shots………………………………………….…..83
Chapter 10: Conclusion and Future work ……………………………88
References ………………………………………………………………89
List of Figures
Figure 1.3.1: TCP Protocol Header Forma
Figure 1.3.2: IP Protocol Header Format

Figure 8.1.a: An example network topology

Figure 8.1.b: Topological routes inferred by connectivity.

Figure 8.1.c: Feasible routes constrained by routing policies.

Figure 8.2.2.a: Automatic backup route.
Figure 8.2.2.b: Conditional route advertisement.

Figure 9.1 Node A Graphical User Interface
Figure 9.2 Node S Graphical User Interface
Figure 9.3 Nodes S Uploading a File
Figure 9.4 Selecting Destination Node and finding Feasible path
Figure 9.5 All Possible paths at Destination Node
Figure 9.6 Message received at Destination Node
List of Tables
 TABLE 7.2.1: Import Routing Policies at an AS

 TABLE 7.2.2: Export Routing Policies at an AS

LIST OF ACRONYMS
 IP Internet Protocol
 TCP Transmission Control Protocol

 DDOS Distributed Denial of Service attack
 BGP Border Gateway Protocol

 IDPF Inter Domain Packet Filter

 AS

 Autonomous System

 FTP File Transfer Protocol

 LAN Local Area Network
 WAN Wireless Area Network

 IDS Intruder Detection System
 Chapter 1: INTRODUCTION
1.1 History
What is the advantage of sending a spoofed packet? It is that the sender has some kind of spiteful intention and does not want to be recognized. We can trace the location of the sender by using the source address in the header of an IP datagram. Most systems keep logs of Internet activity, so if attackers want to hide their identity, they need to change the source address. The host receiving the spoofed packet responds to the spoofed address, so the attacker receives no reply back from the victim host. But if the spoofed address belongs to a host on the same subnet as the attacker, then the attacker can "sniff" the reply. You can use IP spoofing for several purposes; for some scenarios an attacker might want to inspect the response from the target victim (called "non-blind spoofing"), whereas in other cases the attacker might not care (blind spoofing). Following is a discussion about reasons to spoof an IP packet.

Packet filtering is the selective passing or blocking of data packets as they pass through a network interface. Filter rules clearly describes the criteria that a packet must match and when a match is found the resulting action, either block or pass, is taken. Filter rules are evaluated in successive order, first to last. The Existing System uses Route Based Packet Filters for controlling Ip spoofing. In the existing system the idea is to assume a single path routing, there is exactly one single path between source node s and the destination node d. Hence any packet with source address s and destination address d that appear in a router that is not in the path specified then that packet is discarded. Also the existing system uses Network Ingress Filters, which prevents a specific Network from being used for attacking others.[1 , 2]
1.1 Proposed work
Considering all the facts faced by the IP Spoofing last few years, I have come up with a proposal to develop a comprehensive approach with methodological guidance to analyze, develop and implement a logical and effective program to obtain security objectives of the organization. It works such a way that the proposed System use Inter domain Packet filters (IDPFs) architecture, a system that can be constructed solely based on the locally exchanged BGP updates. Each node only selects and propagates to neighbors based on two set of routing policies. They are Import and Export Routing policies.

The IDPFs uses a feasible path from source node to the destination node, and a packet can reach to the destination through one of its upstream neighbors. Such a filtering will not discard the packets with valid source address.

Advantages of the Proposed System:

· Minimize the denial of service attacks.

· For finding possible path we don’t need global routing information.

· Reducing the IP spoofing through BGP updates, this will overcome the drawback of finding BEST route

1.2 Objectives and deliverables

The main objectives of this project are as follows

· Constructing the routing table consists the network id, cost, next Hop using the

 Border Gateway Protocol (BGP).

· To find the feasible path among the possible paths.

· To analyze incoming packets Inter Domain Packet Filter (IDPF)

 Implementation.
· To Validate the packets (spoofed or not).

· To allow only valid packets to destination.

· To control the IP Spoofing IDPF architecture implementation uses BGP
 Protocol.
The project aims to provide the following deliverables:

· A methodological approach for the analysis, development and implementation
 of An IDPF architecture.
· Development of network infrastructure by using Border Gateway
 Protocol(BGP) and constructing the routing table on the basis of next hop

 without having Global Routing Information.

· Providing Security from the IP Spoofing in the public networks.

· Establishment of an effectiveness incoming packet monitoring mechanisms
 Throughout the system and controlling the IP Spoofing.
1.3 TCP and IP Protocol
IP explore the unreliable connectionless delivery service that forms the basis for all internet communication where as Transmission Control Protocol (TCP) introduces the second most important and well-known network-level service. TCP defines a key service provided by the internet known as reliable stream delivery.TCP provides a two way connection between two machines such that large volumes of data can be exchanged efficiently.

[image: image1.png]Source Port (16)

Destination Port (16)

Sequence Number (32)

Acknowledgment Number

(32)

Reserved (6) | Code bits(6)

Window (16)

Checksum (16)

Urgent Pointer (16)

Options (0 or 32)

Data (variable)

 Fig 1.3.1 TCP Header Format

In the above diagram we can observe that the difference between TCP header and an IP header. First row has port numbers of source and destination. Second row contains sequence number of a packet. Next row contains acknowledge number to give response to the sour ce.

Internet protocol (IP) works at layer 3 i.e., network of the OSI model. IP uses routing information to forward datagram’s; the computation consists of deciding where to send a datagram based on its destination address. It is a network protocol and connectionless, means there is no information regarding transaction state. It is used to route packets on a network. Finally there is no mechanism to find whether packets reached to destination are not.

[image: image2.png]Version | Header ToS

“4) Length(4) ®8) Total Length (16)

Identification (16) Fragment Offset (13)

Time to Live (8) Protocol (8) Header Checksum (16)

Source IP Address (32)

Destination IP Address (32)

Options (0 or 32)

Data (variable)

 Fig 1.3.2 IP Header Format
Above diagram shows the IP packet header, the first 12 bytes contain various information about the packet. Second row 8 bytes contain the source and destination IP address. By using different tools hijackers can change the source IP address of an ip packet.[1]
1.5 How spoofing works?

Internet Protocol is the basic protocol for sending data in the internet and other computer networks. Each packet has the header and body. Header contains the source IP, destination IP, source port, destination port, sequence number, protocol, time to live etc and body part contains the original data. While data is transmitting in the network from source computer to destination computer attacker (hacker) changes the IP address of source machine and masking himself and achieving control on the destination machine.
1.5.1 Uses of spoofing:
IP spoofing is most frequently used in distributed denial-of service (DDoS) attacks. In such attacks, the aim of the attacker is to flood the victim with overwhelming amounts of traffic, and the hacker does not care about receiving responses to his attack packets from the destination host. Packets with spoofed addresses are thus perfectly suitable for such DDoS attacks. They have some more additional advantages for this purpose - they are more difficult to filter since each spoofed packet appears to come from an original address, and they hide the true source of the attack. DDoS attacks that use spoofing typically randomly choose addresses from the IP address space, though more sophisticated spoofing mechanisms may avoid unroutable addresses or not used portions of the IP address space. The proliferation of large botnets make IP spoofing less important in denial of service attacks, but hackers typically have spoofing available as a tool, if they want to use it, so defenses against DDoS attacks that rely on the validity of the source IP address in attack packets may have trouble with spoofed packets. Backscatter is a technique used to identify denial-of-service attack activity in the Internet.
IP spoofing can also be used by network intruders to defeat network security measures on the public networks, such as an authentication based on IP addresses of the source. This type of attack on a remote system can be very typical, as it involves modifying thousands of packets at a time. Such an attack is mostly successful where trust relationships exist between two machines. For example, it is common on any corporate networks to have internal systems trust each other, so that a user can log in and access without a username or password provided he is connecting from another machine on the organization internal network. By spoofing a connection from a trusted machine of an internal employee, a hacker may be able to access the target machine without authenticating.[2]
1.5.2 Purpose:

IP Spoofing is the creation of TCP/IP packets using somebody else's IP address. Routers use only the "destination IP" address in order to forward packets through the internal network or the Internet, but ignore the "source IP" address. That source IP address is only used by the destination machine when it gives responds back to the source.

A common misunderstanding is that "IP spoofing" can be used to hide your IP address while surfing the Internet, chatting, sending e-mail, and many. This is usually untrue. Forging the source IP address causes the responses to be misrouted, which means we cannot create a normal network connection. The IP spoofing is an integral part of many network attacks that do not need to worry about responses.
The IP spoofing is a technique used to get unauthorized access to others computers, whereby the hacker sends messages to a computer with a forging IP address and masking themselves indicating that the message is coming from an authorized host. There are different types of attacks that use IP spoofing.

1.6 Conclusion
This chapter gives the basic information of this project. This is divided into five subparts. In history we learn about the existing system. In proposed work we discuss the work going to be done. In objectives and deliverables we learn about our project aim. In IP and TCP we identify the structure of the packet header and the last part is about spoofing. In this chapter we clearly learn about IPSpoofing purpose and how it works. In the next chapter we are going to learn the types of spoofing.
Chapter 2: Types of Spoofing
2.1 Distributed Denial of Service Attack
The IP spoofing is mostly used in Distributed denial of service attacks (DDoS), in which hackers are concerned with consuming bandwidth and resources by flooding the target host machine with as many packets as possible in a short span of time. To effectively conducting the attack, hackers spoof source IP addresses to make tracing and stopping the DDoS as difficult as possible. Here the attacker scans internet and identifies the hosts with known vulnerabilities and compromise them to install attack program and then exploits the vulnerabilities to gain the root access. [6]
2.2 Non-blind spoofing
This type of attack takes place when the hacker is on the same subnet as the target that can see sequence and acknowledgement of every packet. This type of spoofing is session hijacking and an attacker can bypass any authentication measures taken place to build the connection. This is achieved by corrupting the DataStream of an established connection, then re-establishing it based on correct sequence and acknowledgement numbers with the attack host machine.
2.2 Blind spoofing
This type of attacks may take place from outside where sequence and acknowledgement numbers are not reachable. Hackers usually send several packets to the target host machine in order to sample sequence numbers, which is suitable in previous days. Now a days, almost every OSs implement random sequence number generation for the packets, making it difficult to predict the sequence number of packets accurately. If, however, the sequence number was compromised, information can be sent to the target host machine.

2.4 Man in the Middle Attack
This type of attack is also called connection oriented hijacking. In this attack, a malicious party interrupts a legitimate communication between two hosts to controls the flow of communication and to eliminate or modify the information sent by one of the original participants without their knowledge. In this way, a hacker can fool a target host into disclosing confidential information by forging the identity of the original sender or receiver. Connection oriented hijacking gives a desynchronized state in TCP communication. When the packet sequence number in a received packet is not the same as the expected sequence number, then the connection is called "desynchronized". Depending on the actual value of the received sequence number, the TCP layer may decide either discard the packet or buffer the packet. When two host machines are desynchronized, they will discard or ignore packets from each other. An attacker can then inject spoofed packets with the accurate sequence numbers and modify or add messages to the communication. This requires the attacker to be located on the communication path between the two hosts in order to modify packets being sent. The key concept to this attack is creating the desynchronized state in a network. [12]
2.5 Conclusion

This chapter gives explanation on various types of IPSpoofing and attacks with IPSpoofing. Here we learned four types of spoofing attacks like Distributed Denial of Service Attack, Non-blind spoofing, blind spoofing and Man-in-the-middle attack. Here we learned how these attacks can create problems to the destination machines. In the next chapter we are going to learn Various Security requirements.
Chapter 3: Security Requirements

3.1 Network security requirements

The Internet is undoubtedly become the largest public data network, enabling and facilitating both personal and business communications worldwide. A lot of traffic moving over the Internet, as well as corporate networks, is increasing exponentially every day. More and more speed communication is taking place via e-mail; mobile workers, telecommuters, branch offices are using the Internet to remotely connect to their corporate networks, commercial transactions completed over the Internet and the World Wide Web, now account for large portions of corporate revenue.
While the Internet has transformed and heavily improved the way we do business, this vast network and its associated technologies have opened the door to an increasing huge number of security threats from which corporations should protect them. Although network attacks are very serious when they are influenced upon businesses that store sensitive data, such as personal medical or financial records, the consequences of attacks on any entity range from mildly inconvenient to completely debilitating—important data can be lost, privacy can be violated, and several hours, or even days, of network downtime can ensue. Despite the costly risks of potential security breaches, the Internet could be one of the safest means by which to conduct business. For example, giving credit card information to a telemarketer over the phone or a waiter in a restaurant can be more risky than submitting the information via a Web site, because electronic commerce transactions are generally protected by security technology. The waiters and telemarketers are might not always monitored or trustworthy. Yet the fear of security problems could be just as harmful to businesses as actual security breaches. General fear and suspicion of computers still exists and with that comes a distrust of the Internet. This distrust could limit the business opportunities for organization, especially those that are completely Web based. Thus, companies must have security policies and instate safeguards that not only are effective, but are also perceived as effective. Organizations should be able to adequately communicate how they plan to protect their customers.
In addition to protecting their customer’s information, corporations must protect their employees and partners from security breaches. The effective and fast communication between employees and partners of organizations is enabled by Internet, intranets, and extranet. However, such communication and efficiency could be of course be impeded by the effects of a networking attacks. An attack might be direct because several hours of downtime for employees, and networks should be taken down in order for damage to be repaired or information to be restored. Clearly, loss of valuable time and data could greatly impact employee efficiency and morale. Legislation is another force that drives the need for network security. Governments conducted surveys and identify both the importance of the Internet and the fact that substantial portions of the world’s economic output are dependent on it. However, they also recognize that opening up the world’s economic infrastructure to abuse by attackers could cause major economic damage. National governments are developing laws intended to regulate the vast flow of electronic information. Furthermore, to accommodate the regulations given by governments, the computer industry has developed a portfolio of security standards to help to secure data and to prove that it is secure. A business that does not have demonstrable security policies to protect their data will be in breach of these standards and penalized accordingly.
3.2 System security requirements
Now a day’s security became a challenging task for all top business and IT organizations. Security must be provided to customer and also for confidential data from malicious and inadvertent leaks. Information is the lifeblood of every enterprise, whether it may be custom records or intellectual property. Now a day’s data is available to employees, customers and partners with in fraction of seconds, this is possible only by CIOs who invest lots of amount in technologies to avail data on demand. This data falls in risk due to 3 reasons (i) when the business process breaks down (ii) employee error (iii) gaps in security.

Risk is then from customer and competitive pressures, regulatory and corporate compliance, and the rising cost publicity of data leaks Information one of the most important assets of financial institution’s. Protection of information assets is essential to establish and hold trust between the financial institution and its customers, maintain abidance with the law, and protect the reputation of the institution. Timely and authentic information is necessary to process transactions and affirm financial institution and customer decisions. A financial institution’s profit and capital can be adversely affected if the information becomes known to unauthorized companies. Information security is an important process by which an organization protects and secures its systems, media, and facilities that process and maintain information important to its operations. On a broad standard, the financial institution industry has a chief role in protecting financial services infrastructure of the nation. The security of the industry’s systems and information is important to its soundness and safety and to the secrecy of customer financial information. Individual financial institutions and their service providers must maintain effectual security plans adequate for their operational complexity. These security plans must contain strong board, senior and efficient management level support, integration of security activities and controls throughout the organization’s business processes, and clear accountability for carrying out the responsibilities of security. Counseling to examiners and organizations on assessing the level of security risks to the organization and evaluating the adequacy of the organization’s risk management. At a point in time organizations often inaccurately perceive information security as the state or condition of controls. Security is an ongoing process, whereby in overall security posture the condition of a financial institution’s controls is just one indicator. Other indicators include the power of the institution to continually evaluate its posture and react appropriately in the face of rapidly altering threats, technologies, and business conditions. A financial institution establishes and maintains really effective information security when it continuously integrates processes, people, and technology to extenuate risk in accordance with risk assessment and acceptable risk tolerance levels. Financial institutions secures their information by instituting a security process that recognizes risks, forms a scheme to manage the risks, implements the scheme, tests the implementation, and monitors the environment to control the risks. A financial institution outsources all of their information processing. Examiners use this booklet while evaluating the financial institution’s risk management process, including the obligations, duties, and responsibilities of the service provider for information security and the inadvertence exercised by the financial institution. [3]
3.3 Information security requirements
An information security strategy is a plan to extenuate risks while abiding by with legal, Statutory, internally and contractual developed demands. Typical steps to building a strategy include the definition of control objectives, the assessment and identification of approaches to meet the objectives, the selection of controls, metrics, the establishment of benchmarks and the preparation of implementation and testing plans. The choice of controls is typically depends on cost comparison of different strategic approaches to minimize the risk .The cost comparison typically contrasts the costs of different approaches with the potential gains a financial institution could realize in terms of increased confidentiality, availability, or integrity of systems and data. These gains may include reduced financial losses, improved customer confidence, regulatory abidance and positive audit findings. Any particular approach should consider the following
(a) Policies, procedures and standards
(b) Technology design
(c) Resource dedication
(d) Testing and
(e) Training.
For example, an institution’s management may be assessing the right strategic approach to the security supervising of activities for an Internet environment. There are two potential approaches identified for evaluation. The first approach utilizes a combination of network and host sensors with a staffed supervising center. The second approach consists of every day access log examination. The first alternative is judged much more capable of detecting an attack in time to reduce any damage to the institution and its data, even though at a much more cost. The added cost is totally appropriate when institution processing capabilities and the customer data are exposed to an attack, such as in an Internet banking domain. The second approach may be suitable when the primary risk is reputational damage, such as when the Web site is not connected to other financial institution systems and if the only information is protected is an information-only Web site.
3.4 Conclusion

In this chapter we learned system security requirements on public networks. This chapter is useful to understand the importance of the security requirements of the Destination host machines. We divided this chapter into three parts: Network security requirements, System security requirements and information security requirements and what are problems they are facing with the attackers. In the next chapter we are going to learn what the various threats on data are.
Chapter 4: Threats to Data

As with any type of crime, the threats to the privacy and integrity of data come from a very small minority of peoples. For example, while one car thief can steal only one car at a time, but a single hacker working from a remote computer could generate damage to an enormous number of computer networks that wreaks havoc around the world. Perhaps even more worries are the fact that the threats can come from people whom we know. The most network security experts claim that the most of network attacks are initiated by employees who work inside the corporations where breaches have occurred. The employees or partners, through mischief, malice, or mistake, often manage to damage their own company’s networks and destroy system. Furthermore, with the recent requirements of remote connectivity technologies, businesses are expanding to include larger numbers of telecommuters, branch offices, and business partners. These remote employees and partners pose the same threats as internal employees, as well as the risk of security issues if their remote networking assets are not properly secured and monitored.

4.1 Hacker

The term hacker means a clever programmer in the previous days. Now days, it’s suitable to those who exploit security vulnerabilities to break in to a computer system and enter in to the network. We can say it as an electronic burglary. Hackers always try to break in to both individual computers and large networks. If once they have entered, they might install malicious programs, burgle and destroy confidential data or perhaps use compromised computers to distribute spam.
	4.2 What is vulnerability?
Now day’s computer software is very complex, contains of thousands of lines of code. Since software is written by human beings, it’s surprising that they may contain programming mistakes, known as vulnerabilities. The hackers break in to the system by using these loopholes. By using these vulnerabilities the hackers try to gain an unauthorized access in the network. These are also used by authors of malicious code or intelligent attacker to launch their programs automatically on your computer.

	

4.3 Viruses

Viruses are the most widely known security threats, because they often damage system files, user data or system resources. Viruses are computer programs that are written by intelligent dangerous programmers and are designed to replicate themselves and infect computers when triggered by a specific event. The viruses are called macro viruses attach themselves to files that contain macro instructions and are then activated every time the macro runs. The effects of some viruses are more destructive and cause such problems as deleting files from a hard drive or slowing down a system. A network resource can be infected by a virus only if the virus enters the network through an outside source—most often through an infected CD or floppy disk or a file downloaded from the Internet. When one computer on the network becomes affected, the other computers on the network are highly susceptible to contracting the virus. [8]
4.4 Trojan horse Programs
The Trojan horse programs, or Trojans, are delivery vehicles for destructive code. Trojans appear to be harmless or useful software programs, such as computer games, but they are actually enemies to a computer. The Trojans can delete data, mail copies of themselves to e-mail address lists, and open up computers to more additional attacks. The Trojan programs could be contracted only by copying the Trojan horse program to a system, via a disk, downloading from the Internet, or opening an e-mail attachment. Neither Trojan programs nor viruses could be spread through an e-mail message itself—they are spread only through e-mail attachments.
4.5 Attacks

Different types of network attacks have been identified, and they are commonly classified in three general categories: reconnaissance attacks, access attacks, and denial of service (DoS) attacks.

· The Reconnaissance attacks are basically involved with activities such as gathering information by which hackers collect data that is used to compromise networks later. Generally, software tools, such as sniffers and scanners, are used to map out network IP addresses and resources and exploit potential weaknesses in the targeted networks, hosts, and applications. For example, we have software that is designed to crack the passwords. This software was intended to recover the passwords of employees who have forgotten their passwords and to recover passwords of the employees who leave the company without any notification by network administrators. If that software placed in the wrong hands, however, this software can become a very dangerous weapon.

· Access attacks are used to enter vulnerabilities in such network areas as authentication services and File Transfer Protocol (FTP) functionality in order to get entry to e-mail accounts, databases, and other confidential information.

· DOS attacks gives access to part or all of a computer system. DOS attacks are generally achieved by sending large amounts of jumbled or otherwise unmanageable data to a machine that is connected to a corporate network or the Internet, blocking legitimate traffic from getting through. In Distributed Denial of Service attack (DDoS) the hijacker compromises multiple machines or hosts. [8]
4.6 Conclusion
In this chapter we have seen various threats on data and various attacks from attackers like virus, Trojan horse programs, vulnerabilities etc. in the next chapter we are going to learn security policy requirements.
 Chapter 5: Security Policies
When designing a network, whether it is a local area network (LAN), virtual LAN (VLAN), or wide area network (WAN), it is important to initially set the basic security policies. Security policies are rules and regulations that are electronically programmed and stored within security equipment to control such areas as access privileges and in addition, security policies are also written or verbal regulations by which an organization operates.
5.1 What are the policies?
The policies that are implemented must control who has access to which areas of the network and how unauthorized users are going to be prevented from entering restricted areas. For example, usually only members of the human resources department (HRMD) should have access to employee salary histories. Passwords generally prevent employees from entering restricted areas, but only if the passwords remain private. The Customers or suppliers with access to certain parts of the network must be adequately regulated by the policies as well.

5.2 Firewalls
A firewall is a hardware or software solution implemented within the network infrastructure to provide an organization’s security policies by restricting access to specific network resources. In the physical security issue, a firewall is the equivalent to a door lock on a perimeter door or on a door to a room inside of the building—it permits only authorized users, such as those with a key or access card, to enter. Firewall technology is even available in versions suitable for home use. The firewall creates a secure layer between the network and the outside world. In effect, the firewall restricts the network at the point of entry so that it can receive and transmit authorized data without any delay. However, firewall has built-in filters that could disallow unauthorized or potentially dangerous material from entering the real system. They will also maintain a log file of unauthorized entries and the attempted intrusion and reports these entries back to the network administrators.
5.3 Encryption

Encryption technique ensures that messages could not be read by anyone other than the authorized recipient in the network. Encryption is generally deployed to protect data that is transported over a public network and uses advanced mathematical algorithms to scramble messages and their attachments. There are several types of encryption algorithms available, but some are more secure than others. The Encryption gives the security necessary to sustain the increasingly popular Virtual Private Networking (VPN) technology. Virtual Private Networks are considered as tunnels or private connections over the public networks such as the Internet. They can be used to connect the branch offices, telecommuters, business partners and mobile workers to each other or corporate networks. To provide more efficient security for the data being transported VPN software and hardware devises supports advanced encryption technology.

5.4 Intrusion Detection

Now a day’s many companies deploy firewalls as their central gatekeepers to protect their networks from unauthorized users, thus permitting access to only authorized users. However, network security in many ways equal to physical security as no technology serves all needs—rather; a layered defense provides the best results. The companies are increasingly looking for additional security technologies to counter risk and vulnerability that firewalls alone cannot control. A network-based intrusion detection system (IDS) provides around-the-clock network security. An IDs analyzes input packet data streams within a network, identifying for unauthorized activity, such as attacks by hackers, and enabling users to respond to security breaches before systems are compromised. When an abnormal activity is detected, the IDS can send alarms to a management with details of the activity and can often order other systems, such as routers, to cut off the unauthorized sessions. In the physical system, an IDs equals to a video camera and motion sensor; detecting unauthorized or suspicious activity and working with automated response systems, such as watch guards, to stop the activity. [6]
5.5 Conclusion
In this chapter we have seen security policy requirements to protect from attackers, firewall requirements, encryption importance and Intruder Detection System. In the next chapter we are going learn about overview on BGP protocol.
Chapter 6: Review on BGP Protocol
6.1 BGP Background
Routing can be characterized into 2 activities: finding the route paths and passing the group of packets through an internetwork. Passing packets through the network is easy but route determination is very difficult. A routing protocol can be defined as how routers communicate with each other to transfer data that allows them to select routes between any 2 nodes on a network. Each router has a correct knowledge only if it is directly attached to the network. A routing protocol can shares routing information successively, first among immediate neighbors and then throughout the entire network. In this way routers can get the information of the network topology. Confusion might occur between routing protocols and routed protocols. Routing protocol helps the router on which paths to send traffic, but a routed protocol is a network protocol that gives the information in its network layer address to allow a packet to be forwarded from one computer machine to another computer machine based on the addressing scheme, without knowing the entire path from source to destination.
Border Gateway Protocol (BGP) used to determine path very easily. In Transmission-Control Protocol/Internet Protocol (TCP/IP) networks BGP does inter-domain routing. BGP is an exterior gateway protocol (EGP), it means that it by using the BGP protocol we establish communication between multiple autonomous systems and Different service providers. By using BGP we can reduce the problems with EGP which is more efficient for the internet.

We can define Autonomous Systems as set of common routers under common administration or inter communication establishment between the university systems or the organization systems. In the internet thousands of autonomous systems interacted to deliver the data between the systems. An Autonomous System is a collection of routers and links administered by a single institution, such as an organization, university, or Internet service providers (ISPs). Neighboring ASes use the Border Gateway Protocol (BGP) to exchange routing information. In the BGP protocol every node contains its neighboring information. In BGP protocol we need not to maintain the global routing information. Here we are using the forwarding infrastructures. In BGP protocol just we need to pass out data to the neighbor node that node forwards to its neighbor in this way data reaches to the destination. BGP uses the routing policies to transmit the data in a best root.

Autonomous System (AS) applies local policies to select the feasible route (best route) and to decide whether or not to propagate this route to neighboring ASes, without knowing their policies and internal topology implementation to others. Border Gateway Protocol (BGP) policies show the relationships between neighboring ASes. Autonomous System (AS) pairs typically have a relationship like customer-provider or peer-peer. Customers receive the services provided by the service providers; peers provide connection between their respective customers. By using the local policies only autonomous systems pass to the next hop or next node using a best route. In BGP first it finds the all possible routes after that it finds the best route to transmit the data. [9]
The relationships between autonomous systems (ASes) convert into local rules that determine whether or not an AS exports its feasible routes or best routes to a neighboring Autonomous System. These local policies limit the possible paths between each pair of Internet nodes. Border Gateway Protocol (BGP) does not ensure that every pair of hosts can communicate, even if the underlying topology is connected. The link and router failures might cause an Autonomous System (AS) to withdraw a route, forcing some of the ASes to select alternate paths. However, these alternate paths are typically constructed by the commercial relationships between the Autonomous Systems. So as a result, some Autonomous System (AS) pairs may not have alternate routes in certain failure situations. Therefore, Autonomous Systems are greatly moving beyond traditional customer-provider and peer-peer relationships to form backup relationships to provide connectivity in the event of a network failure. These local policy backup arrangements between Autonomous Systems (ASes) introduce new BGP route advertisements that announce the backup routes. On another way, the declaration of backup routes should improve the robustness of the Internet in the face of link and router failures. However, the backup routes policies have negative shade on the global properties of the Internet routing system.

The backup routes could introduce global Border Gateway Protocol convergence problems that result in protocol divergence,that determines the robustness of the network. Even if the system converges, the use of backup routes increases a global cost in terms of increased convergence delay after the withdrawal of a route.

6.2 BGP Operation

BGP can perform 3 types of routing: inter-autonomous system routing, intra-autonomous system routing, and pass-through autonomous system routing.
· The Interautonomous system routing happens between 2 or more BGP routers in different autonomous systems. The Peer routers in these systems routing use BGP to maintain a consistent view of the internetwork topology. BGP neighbors communicating between ASs should reside on the same physical network. The Internet serves as an example of an entity that uses this type of routing because it is comprised of ASs or common administrative domains. Many of these domains represent various organization, corporations, and entities that make up the Internet. Border Gateway Protocol is frequently used to provide path determination to provide optimal routing within the Internet.
· The Intra-autonomous system routing occurs between 2 or more BGP routers located within the common AS. The Peer routers within the common AS use Border Gateway Protocol to maintain a consistent view of the system topology. The BGP is also used to determine which router can serve as the connection point for specific external ASs. For Interautonomous system routing, the best example is Internet. An organization, such as a university, can make use of BGP protocol to provide optimal routing within its own and common administrative domain or As. Both the intra and inter autonomous system routing services have been provided by the BGP protocol.
· The Pass-through autonomous system routing occurs between 2 or more BGP peer routers that exchange traffic across an autonomous system (AS) that does not run BGP. In a pass-through autonomous system environment, the BGP traffic did not originate within the AS in question and is not destined for a node in the AS. The BGP protocol should interact with whatever intra-autonomous system routing protocol is being used to successfully transport BGP traffic through that autonomous system.
6.3 BGP Routing
As with any routing protocol, BGP maintains routing tables and it doesn’t require global routing information, transmits routing updates, and bases routing decisions on routing metrics. The basic function of a BGP system is to exchange network-reachability information, including information about the list of possible paths, with other BGP systems. This information can be used to construct a graph of AS connectivity from which routing loops can be pruned and with which AS-level policy decisions could be enforced. Each and every BGP router maintains a routing table that lists all possible paths and feasible paths to a particular network. The BGP router does not refresh the routing table, however. Instead of that, the routing information received from peer routers is retained until and unless an incremental update is received. The BGP protocol devices exchange routing information upon initial data exchange and after incremental updates. When a router first connects to the network, BGP routers exchange their full BGP routing tables. Similarly, when the routing table changes occurred, routers send the portion of their routing table that has changed. The Border Gateway Protocol routers do not send regularly scheduled routing updates, and the Border Gateway Protocol routing updates advertise only the optimal path to a network. The BGP uses a single path routing metric to determine the feasible path or best path to a given network. This metric contains of an arbitrary unit number which specifies the degree of preference of a particular link. The BGP metric typically is assigned to each and every link by the network administrator. The value assigned to a link could be based on any number of criteria, including the number of ASs through which the path passes stability, speed, delay, or cost. [9 , 10]
6.4 BGP Message Types

In RFC 1771 we have 4 BGP message types, A Border Gateway Protocol 4 (BGP-4): open message, update message, notification message, and keep-alive message.

· The open message opens a BGP communications session between nodes and is the first message sent by each side after a transport-protocol connection is established. The open messages are confirmed using a keep-alive message sent by the node device and must be confirmed before updates, notifications, and keep-olive’s can be exchanged.
· An update message is used to give routing updates to other BGP nodes, allowing BGP routers to construct a consistent view of the network topology. BGP uses Transmission Control Protocol (TCP) to send the updates and ensures reliable delivery of information. The Update messages can withdraw one or more non feasible routes from the routing table and simultaneously can advertise a route while withdrawing other routes.

· The notification message is sent when an error condition is detected on the route. Notifications are used to close a current session and to inform any connected routers why the session is being closed.

· The keep-alive message notifies BGP nodes that a device is active. Keep-alive is sent often enough to keep the sessions from expiring.
6.5 Conclusion:

In the above topic we have discussed briefly about the BGP protocol its background, how it works and operates in different networks and types of BGP messages available and their functions.

Chapter 7: BGP AND AS INTERCONNECTIONS

Here we discuss some of the key features of the BGP related to this thesis. We design the AS graph in the Internet as an unguided graph G= (V, E). Every node v [image: image3.png]

 V corresponds to an AS, and every edge e (u, v) [image: image4.png]

 E stand for a BGP session among two neighboring ASs u, v [image: image5.png]

 V. In this we assume that there is maximum single edge between a pair of neighboring ASs. Every node consists of one or multiple network prefixes. All nodes interchange BGP route updates, which may be new declarations or withdrawals, to learn of changes in attainability to destination network prefixes. A route declaration consists a list of route attributes that has been connected from the source to destination network prefix. Among these path vector attribute as_path is of particular interest is the arrangement of ASs that this route has been generated over , and the local_pref attribute that explains the degree of local preference involved with the route. We will consider r.as_path, r.local_pref, and r.prefix to identify the destination network prefix, the local_pref, and the as_path of r, respectively.

 Let us consider r.as_path=[image: image6.png]. 1)

. The route was initiated by node v0, which poses the network prefix r.prefix. Before reaching at node vk, the route was forwarded over nodes v1​​, v2; . . . , vk-1 that order. For i = k, k _ 1 . . . , 1, we say that edge e= (vi, vi-1) is on the AS path, that is, e(vi, vi-1) [image: image7.png]

 r.as_ path.

Here both the route r and its AS path r.as_path are exchangeable used. For example we also consider a specific destination AS d. All the route announcements and route withdrawals are precise for the network prefixes owned by d. simply, notation d can also be used to mark the network prefixes owned by the AS d. As a result, a route r which can be used to find the network prefixes owned by destination d may usually be expressed as a route to reach destination d. [5 , 10]
7.1 Policies and Route Selection
Here each node only chooses and generates a single best route or the feasible route to the destination, if any. In BGP protocol both the choosing and the generation of the feasible routes are managed by locally specified routing policies. Typically we employ two routing policies at every node.
1. import policies and

2. Export policies.

The Neighbor-specific import policies are imposed on the obtained from neighbors, where as we apply the neighbor-specific export policies on locally selected feasible routes before they are generated to the neighbors.
The import policies could affect the “profitability” of routes by editing route attributes. Let r be a route (to destination d) received at node v from node u. We can denote it by import(v u) [{r}] the possibly modified route that has been forwarded by the import policies. The forwarded routes are stored in v’s routing table. The set of all such routes is denoted as candidate R (v, d):
Candidate R (v, d)={ r: import (v u) [{r}] = {}

 r.prefix=d, v u[image: image8.png]

N (v)
Here, N (v) is the set of v’s neighbors. Between the set of candidate routes candidate R (v, d), node v selects a single feasible route or best route to reach the destination based on a specified procedure. For complete description, we will specify the outcome of the selection procedure at node v, that is, the best route, as best R (v, d), which gives the best route to destination d at node v. Having selected best R (v, d) from candidate R (v, d), v then exports the route to its neighbors after applying neighbor-specific export policies. [4]
 The export policies determine if a route must be forwarded to a neighbor , and if so, they modify the route attributes according to the policies. We denote by export (v u) [{r}] the route sent to neighbor u by node v after node v applies the export policies on route r.
BGP is a progressive protocol: updates are generated only in response to network events. In the non occurrence of any event, the route updates are neither triggered nor exchanged between the neighbors, and we say that the routing system is in a stable state.

7.2 AS Relationships and Routing Policies

The specific routing policies that an Autonomous System internally employs are largely identified by economics: connections between ASs follow a few commercial relations. A pair of ASs could enter in to one of the following arrangements:

.
Provider to customer:. In this order, a customer AS pays the provider AS to carry its traffic. Usually when the provider is much larger in size than the customer.

Peer to peer:. In a mutual peering agreement, the AS’s concludes to transport traffic from each other (and their customers).All mutual peers do not carry any transit traffic for each other.

Sibling to sibling:. In this order, two AS’s provide mutual transit service to each other. Each sibling AS can be considered as the provider of the other AS. An AS’s association with a neighbor mainly concludes the neighbor-specific import and export routing policies.
Definition 1: (stable routing state): A routing system is supposed to be in a stable state if all the nodes selects a best route to reach other nodes and no route updates are generated (or propagated).

[image: image9.emf]

 TABLE 1 Import Routing Policies at an AS
[image: image10.emf]
 TABLE 2 Export Routing Policies at an AS

We assume that each AS sets its import routing policies and export routing policies according to the rules specified in Tables 1. These rules are usually used by ASs on the current Internet. In Table 1, r1 and r2 denote the routes (to destination d) received by node v from neighbors u1 and u2, respectively. Customer (v), peer (v), provider (v), and sibling (v) denote the set of customers, peers, providers, and siblings of node v, respectively. The import routing policies in Table 1 state that an AS will prefer the paths obtained from customers or siblings over the paths obtained from peers or providers.

In Table 2, the columns marked with r1-r4 specify the export policies employed by an AS to announce routes to providers, customers, peers, and siblings, respectively. For example, export rule r1 informs that an AS will declare routes to its own networks, and routes learned from customers and siblings to a provider, but it will not announce routes learned from other providers and peers to the provider. The net effect of these rules is that they limit the possible paths between each pair of ASs. Combined simultaneously, the import and export policies also guarantee the transmission of valid routes on the Internet. For instance, by combining both the import and export policies, we can guarantee that a provider will propagate a route to a customer to other ASs (customers, providers, peers, and siblings). If an AS does not follow the import policies, for instance, it may nominate an indirect path via a peer in place of a direct route to a customer. In this case, based on export rule r3, the AS will not propagate the route (via a peer) to a customer to a peer, since the best route (to the customer) is learned from a peer. This possession is critical to the construction and correctness of IDPFs. The routing policies in Tables 1 and 2 are unfinished. In few occasions, ASs may implement less restrictive policies. At the moment, we assume that all ASs follow the import and export routing policies stated in Tables 1 and 2 and that each AS receives legitimate paths sent by the neighbors. More general cases will be discussed at the conclusion of the next section. If AS b is a provider of AS a and AS c is a provider of AS b, then we call c an indirect provider of a, and an indirect customer of c. deceptive siblings are specified in a similar fashion. Both the import and export routing policies in Tables 1 and 2 suggest that an AS will deliver the routes to direct or indirect customers/siblings to its peers and providers. If e (u, v) best R (s, d) as_path, we say that u is the best upstream neighbor of node v for traffic from node s to destination d, and we denote u as u=best R(s, d, v). For ease of public exhibition, we enhance the AS graph with the relationships between neighboring ASs. We refer to an edge from a provider to a customer AS as a provider-to-customer edge, an edge from a customer to provider as a customer-to-provider edge, and an edge connecting sibling (peering) ASs as sibling to- sibling (peer-to-peer) edge. Adown hill path is a sequence of edges that are either provider-to-customer or sibling-to-sibling edges, and an uphill path is a sequence of edges that are either customer-to-provider or sibling-to-sibling edges. Gao recognized the subsequent about the candidate routes in a BGP routing table: [4 ,5, 7]
Theorem 1 (see [7]). If all AS’s set their export policies according to r1-r4, a candidate route in a BGP routing table can be any of the following:
1. An uphill path,

2. A downhill path,

3. An uphill path followed by a downhill path,

4. An uphill path followed by a peer-to-peer edge,

5. A peer-to-peer edge followed by a downhill path, or

6. An uphill path is pursue by a peer-to-peer edge, which is followed by a downhill path.
Conclusion
In earlier chapter we spoke about the BGP and here we have discussed the interconnections and the relationships between BGP and Autonomous systems. Policies employed such as import and export policies for route selection. In the next chapter will see the architecture of IDPF.
Chapter 8: IDPF Architecture
In this chapter, we discuss the IDPF architecture and describe how IDPFs are constructed using BGP route updates, and establish the correctness of IDPFs. After that, we discuss the case where ASs has routing policies that are less restrictive than the ones in Tables 1 and 2. We will assume that the routing system is in the stable routing state in this section.
Let M(s , d) denote a packet whose source ip address is s and whose destination ip address is d. A packet filtering scheme describes whether a packet should be forwarded or discard based on certain criteria. One example is the route-based packet filtering [12]:

Definition 2: (route-based packet filtering): Node v accepts packet M (s , d) that is forwarded from node u if and only if e (u , v) є best R(s , d). Otherwise, the source address of the packet is spoofed, and the packet is discarded by v.

In the context of avoiding IP spoofing, a perfect packet filter should get rid of the spoofed packets while permitting legitimate packets to reach the destinations. Even with the complete routing information, the route-based packet filters are not able to recognize all spoofed packets [12], a legitimate packet filter must focus on not dropping any legitimate packets while rendering the ability to limit spoofed packets. Accordingly, we define the correctness of a packet filter as follows:

Definition 3: (correctness of packet filtering): A packet filter is accurate if it does not discard packets with valid source addresses when the routing system is firm.

Obviously, the route-based packet filtering is correct, because valid packets from source s to destination d will only traverse the edges on best R(s , d). Computing route-based packet filters requires the knowledge of best R(s , d) on every node, which is impossible in BGP. IDPF overcomes this problem. [5]
8.1 IDPF Overview

The following concepts will be used in this section. A topological route between nodes s and d is a loop-free path between the two nodes. Topological routes are hinted by the network connectivity. A topological route is a feasible route under BGP if and only if the construction of the route does not violate the routing policies imposed by the commercial relationship between AS’s (Tables 1 and 2). Formally, let feasible R(s , d) denote the set of feasible routes from s to d. Then, feasible R(s , d) can recursively be defined as follows:

Feasible R(s , d) =
 {(s⊕∪ u : feasible R(u , d))},
 import(s ← u)[{r}] ≠ {},
 r.prefix = d, u ∈ N(s)
where ⊕ is the concatenation operation, e.g., {(s ⊕ {(ab), (uv)}} = {(sab), (suv)}. Notice that feasible R(s , d) contains all the routes between the pair that does not violate the export policies r1-r4. Obviously, best R(s , d) ∈ candidate R(s , d) ⊆ feasible R(s , d). Each of the feasible routes can potentially be a candidate route in a BGP routing table. Theorem 1 also applies to feasible routes.
Definition 4: (feasible upstream neighbor): Consider a feasible route r 2 feasible R(s , d). If an edge e(u , v) is on the feasible route, that is, e(u , v) [image: image11.png]

 r:as_ path, we say that node u is a feasible upstream neighbor of node v for packet M(s , d). The set of all such feasible upstream neighbors of v for M(s , d) is denoted as feasible U(s , v). [4,5]
The intuition behind the IDPF framework is the following: First, it is possible for a node v to infer its feasible upstream neighbors by using BGP route updates. The method for concluding feasible upstream neighbors is described in the next section. Since best R(s , d) [image: image12.png]

 candidate R(s , d) ⊆ feasible R(s , d) a node can only allow M(s, d) from its feasible upstream neighbors to pass and discard all other packets. This type of filtering will not discard packets with valid source addresses. Second, despite the fact that network connectivity (topology) may suggest a large number of topological routes between a source and a destination, the commercial association between AS’s and routing policies employed by AS’s act to limit the size of feasible R(s ,d). For instance think about the example in Fig. 8.1.a and Figs 8.1.b and 8.1.c display the topological routes implied by the network connectivity and feasible routes restricted by routing policies between source s and destination d, respectively. In Fig 8.1.c, we assume that nodes a, b, c, and d have mutual peering relationship, and that a and b are providers to s. We see that although there are ten topological paths between source s and destination d, we have two feasible routes that are supported by routing policies. Significantly to IDPF is that even though the network topology may suggest that all neighbors can forward a packet apparently from a source to a node, feasible routes constrained by routing policies help limit the set of such neighbors. As an example,

 [image: image13.png]

 Fig 8.1.a An example network topology
Routes between source s and destination d.
 s a d

 s b d

 s a b d

 s a c d

 s b a d

 s b c d

 s a b c d

 s a c b d

 s b a c d

 s b c a d
 Fig 8.1.b Topological routes inferred by connectivity.
- - - - peering relationship

 Provider-customer relationship

 [image: image14.png]

 Fig 8.1.c feasible routes constrained by routing policies.
8.2 Constructing IDPFs

The following lemma summarizes the technique for identifying the feasible upstream neighbors of node v for packet M(s,d)
Lemma 1. Consider a feasible route r between source s and destination d. Let v [image: image15.png]

r.as_path and let u be the feasible upstream neighbor of node v along r. When the routing system is stable, export(u → v)[{best R(u, s)}] ≠ {},.assuming that all ASs follow the import and export routing policies in Tables 1 and 2 and that each AS accepts legitimate routes exported by neighbors.

Lemma 1 states that if node u is a feasible upstream neighbor of node v for packet M(s,d), node u must have exported to node v its best route to reach the source s. Proof. Because Theorem 1 implements the feasible routes, a feasible route can be one of the six types of paths in Theorem 1. In the following, we assume that the feasible route r is of type 6, that is, an uphill path followed by a peer-to-peer edge, which is followed by a downhill path. Cases where r is of types 1-5 can similarly be proved. To prove the lemma, we consider the possible positions of nodes u and v in the feasible route: [5]
Case 1. Nodes u and v belong to the uphill path. Then, node s must be an (indirect) customer or sibling of node u. From the import routing policies in Table 1 and the export routing policy r1 and the definition of indirect customers/siblings, we know that u will propagate to (provider) node v the reachability information of s.
Case 2. e(u,v) is the peer-to-peer edge. This case can similarly be proved as case 1 (based on the import routing policies in Table 1 and the export routing policy on rule r3).
Case 3. Nodes u and v belong to the downhill path. Let e(x,y) be the peer-to-peer edge along the feasible route r and note that u is an (indirect) customer of y. From the proof of case 2, we know that node y learns the reachability information of s from x. From the export routing policy r2 and the definition of indirect customers, node y will propagate the reachability information of s to node u, which will further export the reachability information of s to (customer) node v.
 Based on Lemma 1, a node can identify the feasible upstream neighbors for packet M (s , d) and conduct IDPF as follows:
Definition 5 (IDPF). Node v will accept packet M(s,d) that is forwarded by a neighbor node u if and only if export(u → v)[{best R(u, s)}] ≠{}. Otherwise, the source address of the packet must have been spoofed, and the packet should be discarded by node v.
8.2.1 Correctness of IDPF
Theorem 2. An IDPF, as defined in Definition 5, is correct.
Proof. Without loss of generality, consider source s,destination d, and a node v ∈ best R(s, d).as path such As a technical detail, the condition should be import(v ← u)[export(u →v) [{best R(u, s)}] _≠ {}. That is, not only is best R(u, s) is exported to v by u, but also accepted by v. However, for clarity of our presentation, we ignore the effects of import policies that v deploys an IDPF filter. In order to prove the correctness of the theorem, we need to establish that v will not discard packet M(s, d) forwarded by the best upstream neighbour u, along best R(s, d). Recall from the best route selection process, the best route between a source and destination is also a feasible route between the two (best R(s, d) ∈ candidate R(s, d) ⊆ feasible R(s, d)). Therefore, u is also a feasible upstream neighbor of node v for packet M(s, d). From Lemma 1, u must have exported to node v its best route to source s. That is export(u → v)[{bestR(u, s)}] _= {}. From Definition 5, packet M(s, d) forwarded by node u will not be discarded by v, and we have established the correctness of the theorem. [4,5]
Notice that the destination address d in a packet M(s,d) does not play a role in an IDPF node’s filtering decision (Definition 5). By constructing filtering tables based on the source address alone (rather than both source and destination addresses), the per-neighbor space complexity for an IDPF node is reduced from O(N2) to O(N), where N = |V | is the number of nodes in the graph (the route-based scheme can achieve the same complexity bound [11]). It is worth noting that IDPFs filter packets based on whether the reachability information of a network prefix is propagated by a neighbor and not on how the BGP updates are propagated. As long as ASs propagate network reachability information according to the rules in Tables 1 and 2, IDPFs work correctly. Moreover, the effectiveness of IDPFs is determined largely by the size of feasible R(s, d), which is a function of the (relatively static) AS relationships. Hence, the BGP updates propagated does not affect both the correctness and the performance of IDPFs. For example, the multiple-path advertisement supported by will not affect IDPFs’ correctness and effectiveness.
8.2.2 Routing policy complications
As discussed earlier, the import routing policies and the export routing policies specified in Tables 1 and 2 are not complete. In particular, multi homed ASs may employ less restrictive routing policies for traffic engineering or other purposes. In this section, we first present two traffic engineering examples that do not follow the import and export routing policies specified in Tables 1 and 2. Then, we discuss how ASs that employs these special traffic engineering practices should control the forwarding of their traffic to ensure the delivery of their traffic in the IDPF framework. In the first example (see Fig8.2.2a), based on ASs a and b are providers of AS s, and s has two prefixes 138.39/16 and 204.70/16. The link between a and s is used as the primary and backup links for 138.39/16 and 204.70/16, respectively, whereas the link between b and s is used in a reverse manner. To achieve this traffic engineering goal, s informs a to assign the direct customer route r1 between a and s a lower local preference over the peering route r2 learned from b to reach the network prefix 204.70/16. That is, r1: local pref < r2: local pref. This local preference assignment at node a does not follow the import routing policies defined in Table 1, which requires that an AS should prefer a direct route over an indirect route (through a peer) to reach a customer. Now, consider the example in Fig. 4. Customers has a primary provider a and a backup provider b. ASs realizes this goal by using a technique called conditional route advertisement. Prefix 138.39/16 is announced to the backup provider b only if the link to the primary provider a fails. This asymmetric advertisement does not follow the export routing policy r1 defined in Table 2, which states that a customer will always export to its providers the routes to its own prefixes. [4, 5]
[image: image16.emf]
 Fig 8.2.2.a. Automatic backup route.
[image: image17.emf]
 Fig.8.2.2.b Conditional route advertisement.
In the examples, the customer controls the route propagation either by manipulating the local preference of the routes in providers (see Fig 8.2.2a) or by conditional route advertisement (sees Fig.8.2.2b). As long as the customer AS does not forward packets through the backup route while the primary route is still available, the IDPF architecture will not discard any valid packets. This requirement is not hard to meet, since the customer controls both the route propagation and traffic delivery. The same observation applies to other cases when the routing policies specified in Tables 1 and 2 are not followed. We have the following restricted traffic forwarding policy for the ASs that does not follow the routing policies specified in Tables 1 and 2.If an AS does not follow the import and export routing policies in Tables 1 and 2, as long as the primary route is available, the AS should not forward traffic along other (backup) routes. If each AS on the Internet follows the import routing policies in Table 1 and the export routing policies in Table 2 or the restricted traffic forwarding policy, we can establish the correctness of IDPFs, as defined in Definition 5, on the Internet. The proof is similar to that of Lemma 1 and Theorem 2, and we omit it here.
8.3 Practical deployment issues of IDPFs
IDPFs can independently be deployed in each AS. IDPFs are deployed at the border routers so that IP packets can be inspected before they enter the network. By deploying IDPFs, an AS constrains the set of packets that a neighbor can forward to the AS: a neighbor can only successfully forward a packet M(s , d) to the AS after it announces the reachability information of s. All other packets are identified to carry spoofed source addresses and are discarded at the border router of the AS. In the worst case, even if only a single AS deploys IDPF and spoofed IP packets can get routed all the way to the AS in question, using an IDPF perimeter makes it likely that spoofed packets will be identified and, hence, blocked at the perimeter. Clearly, if the AS is well connected, launching a DDoS attack upon the perimeter itself takes a lot more effort than targeting individual hosts and services within the AS. In contrast, ASs that do not deploy IDPF offer relatively little protection to the internal hosts and services. Therefore, an AS has direct benefits of deploying IDPFs. In general, by deploying IDPFs, an AS can also protect other ASs to which the AS transports traffic, in particular the customer ASs. It can similarly be understood that an IDPF node limits the set of packets forwarded by a neighbor and destined for a customer of the AS. [4 , 7]
8.4 Conclusion
In this chapter we have seen how the Inter Domain Packet Filters are deployed and implemented in a network to control the IP Spoofing. we have also discussed the routing policy complications and issues in the deployment of the IDPFs.
9. Design and Implementation
9.1 Technologies used

In this project I have used the Java as a programming language and Oracle as a database. In java I used various packages like “javax.swing, java.io, java.net, java.sql and java.awt” and exception handling concepts.

9.1.1 Javax.swing

This package is used to design the rich graphical user interface. This package helps to develop components like push buttons, radio buttons, menus etc. The x in javax represents that it is an ‘extended package’ whose classes are derived from java.awt package.

In this project from javax.swing package I have used the various classes like JTabbedPane, JPanel, JLable, JTextField, JTextArea, JComboBox and JScrollPane.

By using JPanel class I have designed a frame on that to design the two different panes like “message” and “Node A” we need to use JTabbedPane class. JLable class is used to give labels on frame for example: “Select file” and “Destination”. JTextField class used to design text fields. JTextArea class used to display many rows and columns text on frame. JComboBox class used to select the destination node from our frame. JScrollPane class used to scroll the text area on our frame. [12 , 13]

9.1.2 Java.io package

 Java.io package facilitates transporting data from one place to another place. By using this package we can take input from various resources like keyboard or from a file and we can give output to a standard output device or store data on a file. By using various streams we can also send our data from one host to another.

In this project I have used “File Input Stream” class to read data from a file and “File Output Stream” class to write data into a file. “Data Output Stream” class used flush the data to another machine, to receive that data we need to read by using “Data Input Stream” class.

9.1.3 Java.net package

To establish communication between the different connected systems we need to use the Java.net package. In this package we have two important classes they are “Socket” class. This class we need to use at the client system. For this class we need to give inputs like “ip address” of server machine and “port” number of the server side program. The second class is “Server Socket” class; this is used at the server side. This class should contain the “port” number to receive request from client.

9.1.4 Java.sql package

This package is used to establish connection with oracle database it can store data into data base and retrieve data from database by using various classes and interfaces. In our project we are storing the possible paths and feasible paths. “Connection” interface is used to establish connection with database. “Driver Manager” class used to load and maintain the driver. “Statement” class used to insert values into database. “Result Set” class is used retrieve the data from database.

9.1.5 Java.awt Package
In this project we use this package for event handling mechanism. Here we are using two important classes they are “Action Listener and Action Event”. When we click on a button then immediately corresponding action should take place for that purpose we are using this package.
The above discussed packages, classes and interfaces are required to develop this project.

9.2 Tools Used
To develop this application we used user friendly GUI development tool called JFrame Builder. In the following section we learn about JFrame Builder.
9.2.1 JFrame Builder Tool
JFrameBuilder is an easy – to – use visual Java GUI Builder for Java Swing applications. This gives the application GUI explanation for Java developers. The Java GUI designer enables Java developers to produce complicated GUI applications applying drag-and-drop interface without spending a lot of time writing code. [14]
Features

· Simple: learning java is very simple and easier

· Object oriented
· Robust
· Platform independent
· Java source code retrieves GUI design
· The Java code generated doesn’t require any additional library to compile and run..

· JPanel is supported by four kinds of layout manager.

JFrame Builder supports the following components
JFrame, JInternalFrame, JDialog, JSplitPane, JScrollPane, JTabbedPane, JPanel, JSeparator, JProgressBar, JSlider, JSpinner, JTree, JTable, JList, JComboBox, JTextPane, JEditorPane, JTextArea, JPasswordField, JTextField, JLabel, JCheckBox, JRadioButton, JToggleButton, JButton. [12,14]
9.3 Code Snippet

In this section we can find code to give the simulation results on IDPF.
/**/

/* NodeA.java
 */

/* */

/**/

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.event.*;

import java.io.*;

import java.net.*;

import java.sql.*;

/**

 * Summary description for NodeA

 *

 */

public class NodeA extends JFrame

{

// Variables declaration

private JTabbedPane jTabbedPane1;

private JPanel contentPane;

//-----

private JLabel jLabel4;

private JLabel jLabel2;

private JLabel jLabel3;

private JTextField jTextField1;

private JComboBox jComboBox1;

private JTextArea jTextArea1;

private JScrollPane jScrollPane1;

private JButton jButton1;

private JButton jButton2;

private JButton jButton3;

private JButton jButton4;

private JButton jButton5;

private JPanel jPanel1;

private JTextArea jTextArea2;

private JScrollPane jScrollPane2;

//-----

private JPanel jPanel2;

//-----

String msg="";

FileInputStream fis;

ServerSocket ss;

Socket s;

DataInputStream dis;

DataOutputStream dos;

int count=0;

int rowcount=0;

String destination;

Object o;

//String msg;

// End of variables declaration

public NodeA()

{

super();

initializeComponent();

this.setVisible(true);

try

{

ss=new ServerSocket(2222);

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con=DriverManager.getConnection("jdbc:odbc:spoofing","system","manager");

Statement st=con.createStatement();

while(true)

{

String path="A2222";

String As_path="";

s=ss.accept();

dis=new DataInputStream(s.getInputStream());

String req=dis.readUTF();

String destination=dis.readUTF();

if(destination.equalsIgnoreCase("A")&&req.equalsIgnoreCase("path"))

{

rowcount++;

As_path=dis.readUTF();

As_path+=":"+path;

jTextArea1.append(As_path+"\n");

st.executeUpdate("insert into possiblepath values('"+rowcount+"','"+As_path+"','')");

}

else if(req.equalsIgnoreCase("path"))

{

 As_path=dis.readUTF();

 As_path+=":"+path;

jTextArea1.append(As_path+"\n");

ResultSet rs=st.executeQuery("select * from NodeA");

String nexthop="";

int port=0;

while(rs.next())

{

nexthop=rs.getString(1);

System.out.println(nexthop);

String As_paths[]=As_path.split(":");

for(int i=1;i<As_paths.length;i++)

{

if(nexthop.equalsIgnoreCase(As_paths[i]))

{

count=1;

break;

//System.out.println(count);

}

else

{

count=0;

}

}

if(count==0)

{

 port=rs.getInt(3);

 s=new Socket("localhost",port);

 dos=new DataOutputStream(s.getOutputStream());

 dos.writeUTF("path");

 dos.writeUTF(destination);

 dos.writeUTF(As_path);

 //count=0;

}

}

}

/*************************/

else if(destination.equalsIgnoreCase("A")&&req.equalsIgnoreCase("Message"))

{

//rowcount++;

As_path=dis.readUTF();

As_path+=":"+path;

int flag=0;

System.out.println(As_path);

String message=dis.readUTF();

ResultSet rs=st.executeQuery("select * from feasiblepath");

jTextArea2.setFont(new Font("Arial",Font.PLAIN,14));

while (rs.next())

{

String check=rs.getString(1);

if(check.equalsIgnoreCase(As_path))

{

flag=1;

break;

}

}

if (flag==1)

{

JOptionPane.showMessageDialog(null,"Message Received Successfully ");

jTextArea2.append("***************Valid Message*****************\n");

jTextArea2.append(As_path+"\n");

jTextArea2.append(message+"\n");

jTextArea2.append("***\n");

jTextArea2.append("\n");

}

else

{

System.out.println(As_path);

jTextArea2.append("***************Packets came from non-feasible path**************\n");

jTextArea2.append(As_path+"\n");

jTextArea2.append(message+"\n");

jTextArea2.append("***\n");

jTextArea2.append("\n");

flag=0;

//break;

}

path="";

As_path="";

}

else if(req.equalsIgnoreCase("Message"))

{

As_path=dis.readUTF();

As_path+=":"+path;

String message=dis.readUTF();

ResultSet rs=st.executeQuery("select * from NodeA");

String nexthop="";

int port=0;

while(rs.next())

{

nexthop=rs.getString(1);

String As_paths[]=As_path.split(":");

for(int i=1;i<As_paths.length;i++)

{

if(nexthop.equalsIgnoreCase(As_paths[i]))

{

count=1;

break;

//System.out.println(count);

}

else

{

count=0;

}

}

if(count==0)

{

 port=rs.getInt(3);

 s=new Socket("localhost",port);

 dos=new DataOutputStream(s.getOutputStream());

 dos.writeUTF("Message");

 dos.writeUTF(destination);

 dos.writeUTF(As_path);

 dos.writeUTF(message);

 //count=0;

}

}

}

}

}

catch (Exception e)

{

e.printStackTrace();

}

//

// TODO: Add any constructor code after initialize Component call

//

}

/**

 * This method is called from within the constructor to initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is always regenerated

 * by the Windows Form Designer. Otherwise, retrieving design might not work properly.

 * Tip: If you must revise this method, please backup this GUI file for JFrameBuilder

 * to retrieve your design properly in future, before revising this method.

 */

private void initializeComponent()

{

jTabbedPane1 = new JTabbedPane();

contentPane = (JPanel)this.getContentPane();

//-----

jLabel4 = new JLabel();

jLabel2 = new JLabel();

jLabel3 = new JLabel();

jTextField1 = new JTextField();

jTextArea1 = new JTextArea();

jComboBox1 = new JComboBox();

jScrollPane1 = new JScrollPane();

jButton1 = new JButton();

jButton2 = new JButton();

jButton3 = new JButton();

jPanel1 = new JPanel();

jButton4 = new JButton();

jButton5 = new JButton();

//-----

jPanel2 = new JPanel();

jTextArea2 = new JTextArea();

jScrollPane2 = new JScrollPane();

//-----

//

// jTabbedPane1

// jLabel4

//

jLabel4.setFont(new java.awt.Font("Monotype Corsiva", 3, 36));

jLabel4.setText("IP Spoofing");

//

jTabbedPane1.addTab("NodeA", jPanel1);

jTabbedPane1.addTab("Message", jPanel2);

jTabbedPane1.addChangeListener(new ChangeListener() {

public void stateChanged(ChangeEvent e)

{

jTabbedPane1_stateChanged(e);

}

});

//

// contentPane

//

contentPane.setLayout(null);

addComponent(contentPane, jLabel4, 181,5,232,50);

addComponent(contentPane, jTabbedPane1, 44,64,430,387);

//

// jLabel2

//

jLabel2.setFont(new java.awt.Font("Monotype Corsiva", 2, 20));

 //jLabel2.setText("Select file");

jLabel2.setText("Select file");

//

// jLabel3

//

jComboBox1.setModel(new javax.swing.DefaultComboBoxModel(new String[] { "S", "B", "C", "D" }));

jLabel3.setFont(new java.awt.Font("Monotype Corsiva", 2, 20));

jLabel3.setText("Destination");

//

// jTextField1

//

jTextField1.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jTextField1_actionPerformed(e);

}

});

//

// jComboBox1

//

jComboBox1.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jComboBox1_actionPerformed(e);

}

});

//

// jButton1

//

jButton1.setText("Browse");

jButton1.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jButton1_actionPerformed(e);

}

});

//

// jButton2

//

jButton2.setText("Possible path");

jButton2.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jButton2_actionPerformed(e);

}

});

//

// jTextArea1

//

// jScrollPane1

//

jScrollPane1.setViewportView(jTextArea1);

//

//

// jScrollPane2

//

jScrollPane2.setViewportView(jTextArea2);

//

// jButton3

//

jButton3.setText("Feasible path");

jButton3.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jButton3_actionPerformed(e);

}

});

//

// jButton4

//

jButton4.setText("Send");

jButton4.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jButton4_actionPerformed(e);

}

});

//

// jButton5

//

jButton5.setText("Exit");

jButton5.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jButton5_actionPerformed(e);

}

});

// jPanel1

//

jPanel1.setLayout(null);

jPanel1.setOpaque(false);

addComponent(jPanel1, jLabel2, 54,52,151,18);

addComponent(jPanel1, jLabel3, 56,93,120,18);

addComponent(jPanel1, jTextField1, 183,50,124,22);

addComponent(jPanel1, jComboBox1, 183,90,124,22);

//addComponent(jPanel1, jScrollPane1, 169,142,140,144);

addComponent(jPanel1, jScrollPane1, 56,142,250,144);

addComponent(jPanel1, jButton1, 316,47,96,28);

addComponent(jPanel1, jButton2, 321,152,96,28);

addComponent(jPanel1, jButton3, 323,254,96,28);

addComponent(jPanel1, jButton4, 65,305,83,28);

addComponent(jPanel1, jButton5, 200,305,83,28);

addComponent(jPanel2, jScrollPane2, 42,33,345,290);

//

// jPanel2

//

jPanel2.setLayout(null);

jPanel2.setOpaque(false);

//

// NodeA

//

this.setTitle("NodeA - extends JFrame");

this.setLocation(new Point(0, 0));

this.setSize(new Dimension(528, 527));

}

/** Add Component Without a Layout Manager (Absolute Positioning) */

private void addComponent(Container container,Component c,int x,int y,int width,int height)

{

c.setBounds(x,y,width,height);

container.add(c);

}

//

// TODO: Add any appropriate code in the following Event Handling Methods

//

private void jTabbedPane1_stateChanged(ChangeEvent e)

{

System.out.println("\njTabbedPane1_stateChanged(ChangeEvent e) called.");

// TODO: Add any handling code here

}

private void jTextField1_actionPerformed(ActionEvent e)

{

System.out.println("\njTextField1_actionPerformed(ActionEvent e) called.");

// TODO: Add any handling code here

}

private void jComboBox1_actionPerformed(ActionEvent e)

{

System.out.println("\njComboBox1_actionPerformed(ActionEvent e) called.");

 o = jComboBox1.getSelectedItem();

 destination=""+o;

System.out.println(">>" + ((o==null)? "null" : o.toString()) + " is selected.");

// TODO: Add any handling code here for the particular object being selected

}

private void jButton1_actionPerformed(ActionEvent e)

{

try

{

int b;

msg="";

FileDialog fd=new FileDialog(this,"Open",FileDialog.LOAD);

fd.show();

 fis=new FileInputStream(fd.getDirectory()+fd.getFile());

jTextField1.setFont(new Font("Serif", Font.PLAIN, 18));

jTextField1.setText(fd.getDirectory()+fd.getFile());

//jRadioButton1.setEnabled(true);

//jRadioButton2.setEnabled(true);

while((b=fis.read())!=-1)

{

msg+=(char)b;

}

jTextArea1.append("File Loaded.........\n");

jTextArea2.setText("File.........\n"+msg);

 jTextArea1.append("Orgine :Node A\n");

jTextArea1.append("As_path :A2222\n");

}

catch (EOFException ee)

{

System.out.println("the ex is "+ee);

}

catch (Exception ee)

{

System.out.println("the ex is "+ee);

}

System.out.println("\njButton1_actionPerformed(ActionEvent e) called.");

// TODO: Add any handling code here

}

private void jButton2_actionPerformed(ActionEvent e)

{

String path="As_path:A2222";

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con=DriverManager.getConnection("jdbc:odbc:spoofing","system","manager");

Statement st=con.createStatement();

st.executeUpdate("truncate table possiblepath");

ResultSet rs=st.executeQuery("select * from NodeA");

String nexthop="";

int port;

while(rs.next())

{

 nexthop=rs.getString(2);

 port=rs.getInt(3);

 System.out.println(nexthop);

/*}

System.out.println(nexthop);

String nexthops[]=nexthop.split(":");

String ports[]=port.split(":");

//for(int i=0;i<nexthops.length;i++)

//{

//System.out.println(ports[i]+":"+nexthops[1]);

int p=2222;*/

s=new Socket("localhost",port);

dos=new DataOutputStream(s.getOutputStream());

dos.writeUTF("path");

dos.writeUTF(destination);

dos.writeUTF(path);

}

//}

}

catch (Exception ee)

{

ee.printStackTrace();

}

System.out.println("\njButton2_actionPerformed(ActionEvent e) called.");

// TODO: Add any handling code here

}

private void jButton3_actionPerformed(ActionEvent e)

{

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con=DriverManager.getConnection("jdbc:odbc:spoofing","system","manager");

Statement st=con.createStatement();

st.executeUpdate("truncate table feasiblepath");

new feasiblepath();

ResultSet rs=st.executeQuery("select * from feasiblepath");

jTextArea1.append("\n");

jTextArea1.append("Feasible path\n");

jTextArea1.append("---\n");

while(rs.next())

{

String feasible=rs.getString(1);

jTextArea1.append(feasible+"\n");

}

jTextArea1.append("---\n");

System.out.println("\njButton3_actionPerformed(ActionEvent e) called.");

}

catch (Exception eee)

{

eee.printStackTrace();

}

System.out.println("\njButton3_actionPerformed(ActionEvent e) called.");

// TODO: Add any handling code here

}

private void jButton4_actionPerformed(ActionEvent e)

{

String path="As_path:A2222";

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con=DriverManager.getConnection("jdbc:odbc:spoofing","system","manager");

Statement st=con.createStatement();

//st.executeUpdate("truncate table possiblepath");

ResultSet rs=st.executeQuery("select * from NodeA");

String nexthop="";

int port;

if(destination.equalsIgnoreCase("d"))

{

JOptionPane.showMessageDialog(null,"This Is From Node A...Destination is: "+destination);

while(rs.next())

{

 nexthop=rs.getString(2);

 port=rs.getInt(3);

 System.out.println(nexthop);

s=new Socket("localhost",1234);

dos=new DataOutputStream(s.getOutputStream());

//dos.writeUTF("Message");

dos.writeUTF(destination);

dos.writeUTF(path);

dos.writeUTF(msg);

dos.writeUTF("A");

}

}//if

else

{

JOptionPane.showMessageDialog(null,"This Is From Node A...Destination is "+destination);

while(rs.next())

{

 nexthop=rs.getString(2);

 port=rs.getInt(3);

 System.out.println(nexthop);

s=new Socket("localhost",port);

dos=new DataOutputStream(s.getOutputStream());

dos.writeUTF("Message");

dos.writeUTF(destination);

dos.writeUTF(path);

dos.writeUTF(msg);

}

}//else

}//try

catch (Exception ee)

{

ee.printStackTrace();

}

System.out.println("\njButton4_actionPerformed(ActionEvent e) called.");

// TODO: Add any handling code here

}

private void jButton5_actionPerformed(ActionEvent e)

{

System.out.println("\njButton5_actionPerformed(ActionEvent e) called.");

System.exit(0);

// TODO: Add any handling code here

}

//

// TODO: Add any method code to meet your needs in the following area

//

//============================= Testing ================================//

//= =//

//= The following main method is just for testing this class you built.=//

//= After testing,you may simply delete it. =//

//===//

public static void main(String[] args)

{

new NodeA();

}

//= End of Testing =

}
// feasiblepath.java

import java.sql.*;

class feasiblepath

{

public feasiblepath()

{

int pathlength[]=new int[10];

String paths[]=new String[10];

String As_path="";

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con=DriverManager.getConnection("jdbc:odbc:spoofing","system","manager");

Statement st=con.createStatement();

ResultSet rs=st.executeQuery("select * from possiblepath");

int i=0;

while(rs.next())

{

 As_path=rs.getString(2);

//System.out.println(As_path);

String As_paths[]=As_path.split(":");

int length=As_paths.length-1;

pathlength[i]=length;

paths[i]=As_path;

i++;

}

int k=1;

System.out.println(pathlength.length);

for(int j=0;j<pathlength.length;j++)

{

//System.out.println(pathlength[j]+":"+paths[j]);

st.executeUpdate("update possiblepath set Hopcount='"+pathlength[j]+"' where num='"+k+"'");

k++;

}

rs=st.executeQuery("SELECT min(Hopcount) from possiblepath");

String pa="";

int want=0;

 while(rs.next())

{

 want=rs.getInt(1);

 //pa+=want+"&";

 //System.out.println(pa);

}

rs=st.executeQuery("SELECT * from possiblepath where Hopcount='"+want+"'");

//String pa="";

 while(rs.next())

{

String wantt=rs.getString(2);

 pa+=wantt+"&";

 System.out.println(pa);

}

String wants[]=pa.split("&");

for(int wa=0;wa<wants.length;wa++)

{

System.out.println("Feasible path");

System.out.println("--------------");

System.out.println(wants[wa]);

System.out.println("******************************");

st.executeUpdate("insert into feasiblepath values('"+wants[wa]+"')");

}

/*
for(int k=0;k<pathlength.length;k++)

{

for(int l=0;l<pathlength.length;l++)

{

if(pathlength[k])

}

}*/

}

catch (Exception e)

{

e.printStackTrace();

}

}

public static void main(String args[])

{

new feasiblepath();

}

}
9.4 Screen Shots
[image: image18.png]B NodeA - extends JFrame

1@ Spoofing

Select file Browse

Destination

Possible ..

Feasible ...

Fig 9.1 Node A Graphical User Interface

[image: image19.png]8 NodeS - extends JFrame

1@ Spoofing

Select file Browse

Destination

Possible ..

Feasible ...

Fig 9.2 Node S Graphical Usewr Interface

[image: image20.png]Node$ - extends JFrame.

1@ Spoofing

Select file

[E:\JdbcEx. java Browse

0)

Possible ..

Feasible ...

Fig 9.3 Node S uploading a file

[image: image21.png]Node$ - extends JFrame.

1@ Spoofing

Select file \TdbcEx. java Browse

Destination D

s _paih 51111

Possible ..

Feasible path

s _paihi51111:8333305555
s _paifiS1111:42222:05555

Feasible ..

Fig 9.4 selecting destination node and finding feasable path

[image: image22.png]NodeD - extends JErame

1@ Spoofing

Message

Select file

Destination

_paifi51111:8333305555
s_paifiS1111:83333:C4444:D5555
_paihiS1111:42222:83333.D5555

s _paifiS1111:42222:05555
s_paifiS1111:42222:83333:C4444:D55¢
s_paifiS1111:42222:04444 83333 DE5E |
s_paihi1111:83333:42222.D5555

ASMAZICAMADSS5S
Il »

Browse

Possible ..

Feasible ...

send Exit

Fig 9.5 all possible paths at Destination Node

[image: image23.png]NodeD - extends JErame

1@ Spoofing

Message

s i Message™
A5 _path'51111:A2222 D5555

import java.sql*,

class JobeEx

{

public static vaic main(String args[]jth

{

Class forName(*sun jabc odbe.JdbeO
Connection con=DriverManager getC
System out printin(con);

Statement stmt=con createStatement(
Fooolean i=strmt execute(*create table

Fig 9.6 meesage received at Destination Node

Chapter 10: Conclusion and Future work
In this thesis, we have suggested and studied IDPF architecture as an efficient countermeasure for the IP spoofing based DDoS attacks. IDPFs depend on BGP update messages interchanged on the Internet to conclude the validity of source address of a packet send by a neighbor. We have demonstrated that IDPFs can easily be deployed on the present BGP based Internet routing architecture. We learned the conditions under which the IDPF framework can properly work without discarding any legitimate packets. IDPFs in an important manner limit the spoofing capability of attackers. In addition, they also assist to pinpoint the true origin of an attack packet to be within a small number of candidate networks, thus simplifying the reactive IP traceback process.
Chapter 11: References
 [1] Inter networking with TCP/IP Principles, Protocols, and Architectures Volume 1. Fourth

 Edition Douglas E. Comer.
 [2]
 4/104_ip-spoofing.html"
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_10-

 4/104_ip-spoofing.html
 [1]
 [3] http://www.scribd.com/doc/18789232/beggupl
 [4] http://doi.ieeecomputersociety.org/10.1109/TDSC.2007.70224 [7,8]
 [5] Zhenhai Duan ; Xin Yuan ; Chandrasekhar, Dependable and Secure Computing, IEEE

 Transactions volume 5 , Issue 1 , Jan-March 2008
 [6] ICANN SSAC Advisory SAC008 DNS Distributed Denial of Service (DDoS)
 Attacks, Mar. 2006.
 [7] L. Gao, “On Inferring Autonomous System Relationships in the Internet,” IEEE/ACM
 Trans. Networking, vol. 9, no. 6, Dec. 2001.
 [8] P. Ferguson and D. Senie, Network Ingress Filtering: Defeating Denial of Service
 Attacks Which Employ IP Source Address Spoofing, RFC 2267, Jan. 1998.
 [9] Y. Rekhter and T. Li, “A Border Gateway Protocol 4 (BGP-4),” RFC 1771, Mar. 1995.

 [10] J. W. Stewart, BGP4: Inter-Domain Routing in the Internet. Reading, MA: Addison
 -Wesley, 1999.
[11] K. Park and H. Lee. On the effectiveness of route-based packet filtering for distributed DoS

 Attack prevention in power-law internets. In Proc. ACM SIGCOMM, San Diego, CA,

 August 2001.

[12] Java how to program by deitel

[13] Core Java 2, volume II Advanced Cay S.Hortsman.

[14] Herbert Schildt The Complete Reference Java2 3rd Edition Tata McGraw Hill
Page 83

