DESIGN AND ASSESSMENT OF AN ONLINE PASSENGER INFORMATION SYSTEM FOR INTEGRATED MULTIMODE TRIP PLANNING

ABSTRACT
This project introduces the concept of Multimode trip planning. It is difficult for the people to remember each and every travel agency numbers, Train, Bus booking, cinema ticket booking number. Based on this project only one travel agency phone number, which acts as the mediator among all public and private transportation systems is need to passenger , and this agency will maintain the contact details of the public and private sector transportation number. This helps the passenger to Book the tickets and sharing other information with that other private and Government.

In this project we are going use LPC2148 (ARM7) based microcontroller, which the current dominant microcontroller in mobile based products and software development Tool as Keil, flash magic for loading hex file in to the microcontroller. And sharing of the information will be through GSM technology.
SOFTWARE: Embedded ‘C’

TOOLS: Keil, Flash magic

TARGET DEVICE: LPC2148 (ARM7) microcontroller.

APPLICATIONS:Ticket Booking for Buses, Trains, Movie Ticketing etc.

ADVANTAGES: Low cost, automated operation, Low Power consumption, No need remember all public, private transportation contact numbers.

REFERENCE:

1. The 8051 micro controller and embedded systems by Mazidi
2. Datasheets and the user manuals of LPC2148.

Index

1. Introduction to Embedded Systems

2. ARM and Its Architecture

3. LPC2148 Microcontrollers

4. GSM Technology.
5. Working flow of the project Block diagram and Schematic diagram

6. Source code

7. Keil software

8. Conclusion

9. Bibliography

CHAPTER 1

INTRODUCTION TO EMBEDDED SYSTEM

INTRODUCTION TO EMBEDDED SYSTEM

EMBEDDED SYSTEM

An embedded system is a special-purpose computer system designed to perform one or a few dedicated functions, sometimes with real-time computing constraints. It is usually embedded as part of a complete device including hardware and mechanical parts. In contrast, a general-purpose computer, such as a personal computer, can do many different tasks depending on programming. Embedded systems have become very important today as they control many of the common devices we use.

Since the embedded system is dedicated to specific tasks, design engineers can optimize it, reducing the size and cost of the product, or increasing the reliability and performance. Some embedded systems are mass-produced, benefiting from economies of scale.

Physically, embedded systems range from portable devices such as digital watches and MP3 players, to large stationary installations like traffic lights, factory controllers, or the systems controlling nuclear power plants. Complexity varies from low, with a single microcontroller chip, to very high with multiple units, peripherals and networks mounted inside a large chassis or enclosure.

In general, "embedded system" is not an exactly defined term, as many systems have some element of programmability. For example, Handheld computers share some elements with embedded systems — such as the operating systems and microprocessors which power them — but are not truly embedded systems, because they allow different applications to be loaded and peripherals to be connected.

An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is specifically designed for a particular kind of application device. Industrial machines, automobiles, medical equipment, cameras, household appliances, airplanes, vending machines, and toys (as well as the more obvious cellular phone and PDA) are among the myriad possible hosts of an embedded system. Embedded systems that are programmable are provided with a programming interface, and embedded systems programming is a specialized occupation.

Certain operating systems or language platforms are tailored for the embedded market, such as Embedded Java and Windows XP Embedded. However, some low-end consumer products use very inexpensive microprocessors and limited storage, with the application and operating system both part of a single program. The program is written permanently into the system's memory in this case, rather than being loaded into RAM (random access memory), as programs on a personal computer are.

APPLICATIONS OF EMBEDDED SYSTEM

We are living in the Embedded World. You are surrounded with many embedded products and your daily life largely depends on the proper functioning of these gadgets. Television, Radio, CD player of your living room, Washing Machine or Microwave Oven in your kitchen, Card readers, Access Controllers, Palm devices of your work space enable you to do many of your tasks very effectively. Apart from all these, many controllers embedded in your car take care of car operations between the bumpers and most of the times you tend to ignore all these controllers.

In recent days, you are showered with variety of information about these embedded controllers in many places. All kinds of magazines and journals regularly dish out details about latest technologies, new devices; fast applications which make you believe that your basic survival is controlled by these embedded products. Now you can agree to the fact that these embedded products have successfully invaded into our world. You must be wondering about these embedded controllers or systems. What is this Embedded System?

The computer you use to compose your mails, or create a document or analyze the database is known as the standard desktop computer. These desktop computers are manufactured to serve many purposes and applications.

You need to install the relevant software to get the required processing facility. So, these desktop computers can do many things. In contrast, embedded controllers carryout a specific work for which they are designed. Most of the time, engineers design these embedded controllers with a specific goal in mind. So these controllers cannot be used in any other place.

Theoretically, an embedded controller is a combination of a piece of microprocessor based hardware and the suitable software to undertake a specific task.

These days designers have many choices in microprocessors/microcontrollers. Especially, in 8 bit and 32 bit, the available variety really may overwhelm even an experienced designer. Selecting a right microprocessor may turn out as a most difficult first step and it is getting complicated as new devices continue to pop-up very often.

In the 8 bit segment, the most popular and used architecture is Intel's 8031. Market acceptance of this particular family has driven many semiconductor manufacturers to develop something new based on this particular architecture. Even after 25 years of existence, semiconductor manufacturers still come out with some kind of device using this 8031 core.

· Military and aerospace software applications

From in-orbit embedded systems to jumbo jets to vital battlefield networks, designers of mission-critical aerospace and defense systems requiring real-time performance, scalability, and high-availability facilities consistently turn to the LynxOS® RTOS and the LynxOS-178 RTOS for software certification to DO-178B.

Rich in system resources and networking services, LynxOS provides an off-the-shelf software platform with hard real-time response backed by powerful distributed computing (CORBA), high reliability, software certification, and long-term support options.

The LynxOS-178 RTOS for software certification, based on the RTCA DO-178B standard, assists developers in gaining certification for their mission- and safety-critical systems. Real-time systems programmers get a boost with LynuxWorks' DO-178B RTOS training courses.

LynxOS-178 is the first DO-178B and EUROCAE/ED-12B certifiable, POSIX®-compatible RTOS solution.

· Communications applications
"Five-nines" availability, CompactPCI hot swap support, and hard real-time response—LynxOS delivers on these key requirements and more for today's carrier-class systems. Scalable kernel configurations, distributed computing capabilities, integrated communications stacks, and fault-management facilities make LynxOS the ideal choice for companies looking for a single operating system for all embedded telecommunications applications—from complex central controllers to simple line/trunk cards.

LynuxWorks Jumpstart for Communications package enables OEMs to rapidly develop mission-critical communications equipment, with pre-integrated, state-of-the-art, data networking and porting software components—including source code for easy customization.

The Lynx Certifiable Stack (LCS) is a secure TCP/IP protocol stack designed especially for applications where standards certification is required.

· Electronics applications and consumer devices
As the number of powerful embedded processors in consumer devices continues to rise, the BlueCat® Linux® operating system provides a highly reliable and royalty-free option for systems designers.

And as the wireless appliance revolution rolls on, web-enabled navigation systems, radios, personal communication devices, phones and PDAs all benefit from the cost-effective dependability, proven stability and full product life-cycle support opportunities associated with BlueCat embedded Linux. BlueCat has teamed up with industry leaders to make it easier to build Linux mobile phones with Java integration.

For makers of low-cost consumer electronic devices who wish to integrate the LynxOS real-time operating system into their products, we offer special MSRP-based pricing to reduce royalty fees to a negligible portion of the device's MSRP.

· Industrial automation and process control software
Designers of industrial and process control systems know from experience that LynuxWorks operating systems provide the security and reliability that their industrial applications require.

From ISO 9001 certification to fault-tolerance, POSIX conformance, secure partitioning and high availability, we've got it all. Take advantage of our 20 years of experience.

MICROCONTROLLER VERSUS MICROPROCESSOR

What is the difference between a Microprocessor and Microcontroller? By microprocessor is meant the general purpose Microprocessors such as Intel's X86 family (8086, 80286, 80386, 80486, and the Pentium) or Motorola's 680X0 family (68000, 68010, 68020, 68030, 68040, etc). These microprocessors contain no RAM, no ROM, and no I/O ports on the chip itself. For this reason, they are commonly referred to as general-purpose Microprocessors.

A system designer using a general-purpose microprocessor such as the Pentium or the 68040 must add RAM, ROM, I/O ports, and timers externally to make them functional. Although the addition of external RAM, ROM, and I/O ports makes these systems bulkier and much more expensive, they have the advantage of versatility such that the designer can decide on the amount of RAM, ROM and I/O ports needed to fit the task at hand. This is not the case with Microcontrollers.

A Microcontroller has a CPU (a microprocessor) in addition to a fixed amount of RAM, ROM, I/O ports, and a timer all on a single chip. In other words, the processor, the RAM, ROM, I/O ports and the timer are all embedded together on one chip; therefore, the designer cannot add any external memory, I/O ports, or timer to it. The fixed amount of on-chip ROM, RAM, and number of I/O ports in Microcontrollers makes them ideal for many applications in which cost and space are critical.

In many applications, for example a TV remote control, there is no need for the computing power of a 486 or even an 8086 microprocessor. These applications most often require some I/O operations to read signals and turn on and off certain bits.

MICROCONTROLLERS FOR EMBEDDED SYSTEMS

In the Literature discussing microprocessors, we often see the term Embedded System. Microprocessors and Microcontrollers are widely used in embedded system products. An embedded system product uses a microprocessor (or Microcontroller) to do one task only. A printer is an example of embedded system since the processor inside it performs one task only; namely getting the data and printing it. Contrast this with a Pentium based PC. A PC can be used for any number of applications such as word processor, print-server, bank teller terminal, Video game, network server, or Internet terminal. Software for a variety of applications can be loaded and run. Of course the reason a pc can perform myriad tasks is that it has RAM memory and an operating system that loads the application software into RAM memory and lets the CPU run it.

In an Embedded system, there is only one application software that is typically burned into ROM. An x86 PC contains or is connected to various embedded products such as keyboard, printer, modem, disk controller, sound card, CD-ROM drives, mouse, and so on. Each one of these peripherals has a Microcontroller inside it that performs only one task. For example, inside every mouse there is a Microcontroller to perform the task of finding the mouse position and sending it to the PC. Table 1-1 lists some embedded products.

CHAPTER 2
ARM Architecture

ARM Architecture & Programming

· ARM History

· Architecture

· ARM register file & modes of operation

· Instruction Set

ARM History

The ARM (Acorn RISC Machine)architecture is developed at Acron Computer Limited of Cambridge, England between 1983-1985. ARM Limited founded in 1990. ARM became as the Advanced RISC Machine is a 32-bit RISC processor architecture that is widely used in embedded designs. ARM cores licensed to semiconductor partners who fabricate and sell to their customers. ARM does not fabricate silicon itself

Because of their power saving features, ARM CPUs are dominant in the mobile electronics market, where low power consumption is a critical design goal. As of 2007, about 98 percent of the more than a billion mobile phones sold each year use at least one ARM CPU.

Today, the ARM family accounts for approximately 75% of all embedded 32-bit RISC CPUs, making it the most widely used 32-bit architecture. ARM CPUs are found in most corners of consumer electronics, from portable devices (PDAs, mobile phones, iPods and other digital media and music players, handheld gaming units, and calculators) to computer peripherals (hard drives, desktop routers).

ARM does not manufacture the CPU itself, but licenses it to other manufacturers to integrate them into their own system
ARM architecture

RISC:
RISC, or Reduced Instruction Set Computer. is a type of microprocessor architecture that utilizes a small, highly-optimized set of instructions, rather than a more specialized set of instructions often found in other types of architectures.

History :
The first RISC projects came from IBM, Stanford, and UC-Berkeley in the late 70s and early 80s. The IBM 801, Stanford MIPS, and Berkeley RISC 1 and 2 were all designed with a similar philosophy which has become known as RISC. Certain design features have been characteristic of most RISC processors:

· one cycle execution time : RISC processors have a CPI (clock per instruction) of one cycle. This is due to the optimization of each instruction on the CPU and a technique called ;

· pipelining : a techique that allows for simultaneous execution of parts, or stages, of instructions to more efficiently process instructions;

· large number of registers : the RISC design philosophy generally incorporates a larger number of registers to prevent in large amounts of interactions with memory

	CISC
	RISC

	Price/Performance Strategies

	Price: move complexity from software to hardware.

Performance: make tradeoffs in favor of decreased code size, at the expense of a higher CPI.
	Price: move complexity from hardware to software

Performance: make tradeoffs in favor of a lower CPI, at the expense of increased code size.

	Design Decisions

	· Execution of instructions takes many cycles

· Design rules are simple thus core operates at higher clock frequencies

· Memory-to-memory addressing modes.

· A microcode control unit.

· Spend fewer transistors on registers.
	· Simple, single-cycle instructions that perform only basic functions. Assembler instructions correspond to microcode instructions on a CISC machine.

· Design rules are more complex and operates at lower clock frequencies

· Simple addressing modes that allow only LOAD and STORE to access memory. All operations are register-to-register.

· direct execution control unit.

· spend more transistors on multiple banks of registers.

· use pipelined execution to lower CPI.

 Based upon RISC Architecture with enhancements to meet requirements of embedded applications ARM is having

1. A large uniform register file

2. Load-store architecture ,where data processing operations operate on register contents only

3. Uniform and fixed length instructions

4. 32 -bit processor

5. Instructions are 32-bit long

6. Good Speed/Power Consumption Ratio

7. High Code Density

Harvard architecture has separate data and instruction busses, allowing transfers to be performed simultaneously on both busses . Greater amount of instruction parallelism is possible in this architecture. Most DSPs use Harvard architecture for streaming data. The only difference in Harvard architecture to that of Von Neumann architecture is that the program and data memories are separated and use physically separate transmission paths . Enables the machine to transfer instructions and data simultaneously enhances performance. Harvard architecture is more commonly used in specialized microprocessors for real-time and embedded application. However, only the early DSP chips use the Harvard architecture because of the cost. The greatest disadvantage of the Harvard architecture is which needs twice as many address and data pins on the chips

A Von Neumann architecture store program and data in the same memory area with a single bus. So this bus only is used for both data transfers and instruction fetches, and therefore data transfers and instruction fetches must be scheduled - they can not be performed at the same time. Most of the general-purpose microprocessors such as Motorola 68000 and Intel 80x86 use this architecture. It is simple in hardware implementation, but the data and program are required to share a single bus.

ARM Processor Core :

[image: image15.png]
The figure shows the ARM core dataflow model. In which the ARM core as functional units connected by data buses,. And the arrows represent the flow of data, the lines represent the buses, and boxes represent either an operation unit or a storage area. The figure shows not only the flow of data but also the abstract components that make up an ARM core.

 Fig : ARM core dataflow model

In the above figure the Data enters the processor core through the Data bus. The data may be an instruction to execute or a data item. This ARM core represents the Von Neumann implementation of the ARM data items and instructions share the same bus. In contrast, Harvard implementations of the ARM use two different buses.

The instruction decoder translates instructions before they are executed. Each instruction executed belongs to a particular instruction set.

The ARM processor ,like all RISC processors, use a load-store architecture. This means it has two instruction types for transferring data in and out of the processor : load instructions copy data from memory to registers in the core, and conversely the store instructions copy data from registers to memory. There are no data processing instructions that directly manipulate data in memory. Thus, data processing is carried out solely in registers.

Data items are placed in the register file – a storage bank made up of 32-bit registers. Since the ARM core is a 32- bit processor, most instructions treat the registers as holding signed or unsigned 32-bit values.

The sign extend hardware converts signed 8-bit and 16-bit numbers to 32-bit values as they are read from memory and placed in a register.

The ALU (arithmetic logic unit) or MAC (multiply – accumulate unit) takes the register values Rn and Rm from the A and B buses and computes a result. Data processing instructions write the result in Rd directly to the register file. Load and store instructions use the ALU to generate an address to be held in the address register and broadcast on the Address bus.

One important feature of the ARM is that register Rm alternatively can be preprocessed in the barrel shifter before it enters the ALU. Together the barrel shifter and ALU can calculate a wide range of expressions and addresses.

After passing through the functional units, the result in Rd is written back to the register file using the Result bus. For load and store instructions the incrementer updates the address register before the core reads or writes the next register value from or to the next sequential memory location. The processor continues executing instructions until an exception or interrupt changes the normal execution flow.

*ARM Bus Technology :

 Embedded systems use different bus technologies. Most common PC bus technology is the Peripheral Component Interconnect (PCI) bus. Which connects devices such as video card and disk controllers to the X86 processor bus. This type of technology is called External or Off chip bus technology.

Embedded devices use an on-chip bus that is internal to the chip and allows different peripheral devices to be inter connected with an ARM core.

There are two different types of devices connected to the bus

1. Bus Master

2. Bus Slave

1. Bus Master : A logical device capable of initiating a data transfer with another device across the same bus (ARM processor core is a bus Master).

2. Bus Slave : A logical device capable only of responding to a transfer request from a bus master device (Peripherals are bus slaves)

 Generally A Bus has two architecture levels

 Physical lever : Which covers electrical characteristics an bus width (16,32,64 bus).

 Protocol level : which deals with protocol

NOTE :- ARM is primarily a design company . It seldom implements the electrical characteristics of the bus , but it routinely specifies the bus protocol

 AMBA (Advanced Microcontroller Bus Architecture)Bus protocol :

 AMBA Bus was introduced in 1996 and has been widely adopted as the On Chip bus architecture used for ARM processors.

 The first AMBA buses were

1. ARM System Bus (ASB)

2. ARM Peripheral Bus (APB)

Later ARM introduced another bus design called the ARM High performance Bus (AHB)

Using AMBA

i. Peripheral designers can reuse the same design on multiple projects

ii. A Peripheral can simply be bolted on the On Chip bus with out having to redesign an interface for each different processor architecture.

 This plug-and-play interface for hardware developers improves availability and time to market.

AHB provides higher data throughput than ASB because it is based on centralized multiplexed bus scheme rather than the ASB bidirectional bus design. This change allows the AHB bus to run at widths of 64 bits and 128 bits

ARM introduced two variations on the AHB bus

1. Multi-layer AHB

2. AHB-Lite

In contrast to the original AHB , which allows a single bus master to be active on the bus at any time , the Multi-layer AHB bus allows multiple active bus masters.

AHB-Lite is a subset of the AHB bus and it is limited to a single bus master. This bus was developed for designs that do not require the full features of the standard AHB bus.

 AHB and Multiple-layer AHB support the same protocol for master and slave but have different interconnects. The new interconnects in Multi-layer AHB are good for systems with multiple processors. They permit operations to occur in parallel and allow for higher throughput rates.

ARCHITECTURE Revisions :

Every ARM processor implementation executes a specific instruction set architecture (ISA), although an ISA revision may have more than one processor implementation

The ISA has evolved to keep up with the demands of the embedded market. This evolution has been carefully managed by ARM , so that code written to execute on an earlier architecture revision will also execute on a later revision of the architecture.

The nomenclature identifies individual processors and provides basic information about the feature set.

NOMENCLATURE :

ARM uses the nomenclature shown below is to describe the processor implementations.The letters and numbers after the word “ARM” indicate the features a processor may have.

 ARM { x }{ y }{ z }{ T }{ D }{ M }{ I }{ E }{J }{ F }{ -S }

 x → family

 y → memory management / protection unit

 z → cache

 T → Thumb 16 bit decoder

 D → JTAG debug

 M → fast multiplier

 I → EmbeddedICE macrocell

 E → enhanced instruction (assumes TDMI)

 J → Jazelle

 F → vector floating-point unit

 S → synthesizible version

· All ARM cores after the ARM7TDMI include the TDMI features even though they may not include those letters after the “ ARM ” label

· The processor family is a group of processor implementations that share the same hardware characteristics. For example, the ARM7TDMI, ARM740T, and ARM720T all share the same family characteristics and belong to the ARM7 family

· JTAG is described by IEEE 1149.1 standard Test Access Port and boundary scan architecture. It is a serial protocol used by ARM to send and receive debug information between the processor core and test equipment

· EmbeddedICE macrocell is the debug hardware built into the processor that allows breakpoints and watchpoints to be set

· Synthesizable means that the processor core is supplied as source code that can be compiled into a form easily used by EDA tools

Introduction to ARM7TDMI core

The ARM7TDMI core is a 32-bit embedded RISC processor delivered as a hard macrocell optimized to provide the best combination of performance, power and area characteristics. The ARM7TDMI core enables system designers to build embedded devices requiring small size, low power and high performance.

ARM7TDMI Features

· 32/16-bit RISC architecture (ARM v4T)

· 32-bit ARM instruction set for maximum performance and flexibility

· 16-bit Thumb instruction set for increased code density

· Unified bus interface, 32-bit data bus carries both instructions and data

· Three-stage pipeline

· 32-bit ALU

· Very small die size and low power consumption

· Fully static operation

· Coprocessor interface

· Extensive debug facilities (EmbeddedICE debug unit accessible via JTAG interface unit)

Benefits

· Generic layout can be ported to specific process technologies

· Unified memory bus simplifies SoC integration process

· ARM and Thumb instructions sets can be mixed with minimal overhead to support application requirements for speed and code density

· Code written for ARM7TDMI-S is binary-compatible with other members of the ARM7 Family and forwards compatible with ARM9, ARM9E and ARM10 families, thus it's quite easy to port your design to higher level microcontroller or microprocessor

· Static design and lower power consumption are essential for battery -powered devices

· Instruction set can be extended for specific requirements using coprocessors

· EmbeddedICE-RT and optional ETM units enable extensive, real-time debug facilities

 ARM7TDMI Microcontrollers

1. Available ARM7TDMI Microcontrollers

2. Analog Devices ADuC 7xxx

3. Atmel AT91SAM7

4. Freescale MAC7100

5. NXP/Philips LPC2000

6. ST STR710

7.Texas Instruments TMS470

2.3 ARM Register file & modes of operation

Registers : General Purpose registers hold either data or address they are identified with the letter r prefixed to the register number. All registers are of 32 bits.

 ARM has 37 registers in total, all of which are 32-bits long.

1 dedicated program counter

1 dedicated current program status register

5 dedicated saved program status registers

30 general purpose registers

However these are arranged into several banks, with the accessible bank being governed by the processor mode. Each mode can access a particular set of r0-r12 registers, a particular r13 (the stack pointer) and r14 (link register), r15 (the program counter), cpsr (the current program status register)

and privileged modes can also access a particular spsr (saved program status register).

In user mode 16 data registers and 2 status registers are visible. Depending upon context, register r13 and r14 can also be used as General Purpose Registers. In ARM state the registers r0 to r13 are Orthogonal that means - any instruction which use r0 can as well be used with any other General Purpose Register (r1-r13).

 The ARM processor has three registers assigned to a particular task or special function: r13,r14 and r15. They are frequently given different labels to differentiate them from the other registers.

· Register r13 is traditionally used as the stack pointer (sp) and stores the head of the stack in the current processor mode

· Register r14 is called the link register (lr) and is where the core puts the return address whenever it calls a subroutine.

· Register r15 is the program counter (pc) and contains the address of the next instruction to be fetched by the processor

The register file contains all the registers available to a programmer. Which registers are visible to the programmer depend upon the current mode of the processor.

Current program status register :

The ARM core uses the cpsr to monitor and control internal operations. The cpsr is a dedicated 32-bit register and resides in the register file. The following figure shows the generic program status register.

[image: image16.emf]
Fig: Program Status Register

The control bit field contains the processor mode, state , and interrupt mask bits (I,F). Reserved bits are allocated for the future versions purpose.

The N, Z, C and V are condition code flags will be changed as a result of arithmetic and logical operations in the processor

N : Negative. Z : Zero. C : Carry. V : Overflow

The I and F bits are the interrupt disable bits

The M0, M1, M2, M3 and M4 bits are the mode bits

Processor Modes: Processor modes determine which register are active, and access rights to CPSR register itself. Each processor mode is either Privileged or Non-privileged. ARM has seven modes. These 7 modes are divided into two types.

Privileged :- Full read-write access to the CPSR. Under this we are having Abort, Fast interrupt request, Interrupt request, Supervisor,System and Undefined

 Abort (10111) :

when there is a failed attempt to access memory

 Fast interrupt Request (FIQ(10001)) & interrupt request(10010) :

correspond to interrupt levels available on ARM

 Supervisor mode(10011) :

state after reset and generally the mode in which OS kernel executes

 System mode(11111) :

 special version of user mode that allows full read-write access of CPSR

Undefined(11011) :

 when processor encounters an undefined instruction

Non-privileged :- Only read access to the control filed of CPSR but read-write access to the condition flags.

 User(10000): User mode is user for programs and applications. And this the normal mode

Banked Registers :

Register file contains in all 37 registers. 20 registers are hidden from program at different times. These registers are called banked registers. Banked registers are available only when the processor is in a particular mode. Processor modes (other than system mode) have a set of associated banked registers that are subset of 16 register
[image: image17.png]
SPSR:

Each privileged mode (except system mode) has associated with it a Save Program Status Register, or SPSR. This SPSR is used to save the state of CPSR (Current program status Register) when the privileged mode is entered in order that the user state can be fully restored when the user processor is resumed

Mode Changing :

Mode changes by writing directly to CPSR or by hardware when the processor responds to exception or interrupt

To return to user mode a special return instruction is used that instructs the core to restore the original CPSR and banked registers

ARM Instruction Set

 In this chapter we are going to discuss about the most commonly used Instruction Set of ARM. Different ARM architectures revisions support different instructions. However new revisions usually add instructions and remain backwardly compatible. The following shows the type of instructions that ARM support.

I. Data Processing Instructions

II. Branch Instructions

III. Load-store Instructions

IV. Software Interrupt Instruction

V. Program Status Register Instructions

I. Data Processing Instructions :-

 The data processing instructions manipulate data within registers. Most data processing instructions can process one of their operands using the barrel shifter. If we use the S suffix on a data processing instruction, then it updates the flags in the cpsr. Move and logical operations update the carry flag C, negative flag N, and Zero flag Z. The carry flag is set from the result of the barrel shift as the last bit shifted out. The N flag is set to bit 31 of the result. The Z flag is set if the result is zero. The following instructions are Data processing instructions.

 i). Move instructions: This instruction is used to move the content of one register to another register. The below instructions are the Move instructions

 MOV : move a 32-bit value into a register Rd=RS

 MOVN : move the NOT of the 32 bit value into a register Rd= ~RS

 ii). Barrel Shifter :- A unique and powerful feature of ARM processor is ability to shift the 32-bit binary pattern in one of the source registers left or right by a specific number of positions before it enters the ALU. This is done by using the Barrel shifter. This preprocessing or shift occurs within the cycle time of the instruction. The five different shift operations that we can use within the barrel shifter given below.

 LSL : logical shift left

 LSR : logical shift right

 ASR : arithmetic right shift

 ROR : rotate right

 RRX : rotate right extended

 iii. Arithmetic Instructions : The arithmetic instructions implement and subtraction of 32-bit signed and unsigned values. Some of the instructions of Arithmetic instructions are given below.

 ADD :add two 32-bit values.

 ADC :add two 32-bit values and carry

 SUB :subtract two 32-bit values

 SBC : subtract with carry of two 32-bit values

 RSB : reverse subtract of two 32-bit values

 RSC : reverse subtract with carry of two 32-bit values

 iv. Logical Instructions : Performs the logical operations on two source registers

 AND : logical bitwise AND of two 32-bit values

 ORR : logical bitwise OR of two 32-bit values

 EOR : logical exclusive OR of two 32-bit vlaues.

 BIC : Logical bit clear (AND NOT)

 v. Comparison Instructions : The comparison instructions are used to compare or test a register with a 32 bit value. They update the cpsr flag bits (N, Z, C, V) according to the result, but do not affect other registers. After the bits have been set, the information can then be used to change program flow by using conditional execution. We do not need to apply the S suffix for comparison instructions to update the flag. The following instructions are belong Comparison instructions

 CMP (compare) : flags set as a result of R1-R2

 CMN (compare negated) : flags set as a result of R1+R2

 TST (test for equality of two 32-bit values)
: flags set as a result of R1&R2

 TEQ (test for equality of two 32-bit values) : flags set as a result of R1^R2

 vi. Multiply Instructions : The multiply instructions multiply the content of a pair of registers and , depending upon the instruction, accumulate the results in with another register. The long multiplies accumulate onto a pair of registers representing a 64 bit value. The final result is placed in a destination register or a pair of registers.

 MUL : multiply

 MLA : multiply and accumulate

Long Multiply Instructions : (Produce 64 bit values,result will be placed in two 32 bit values)

 SMLAL : signed multiply accumulate long

 SMULL : signed multiply accumulate

 UMLAL : unsigned multiply accumulate long

 UMULL : unsigned multiply long

 II. Branch Instructions :- A branch instruction changes the flow of execution or is used to call a routine. This type of instruction allows programs to have subroutines, if-then-else structures, and loops. The change of execution flow forces the program counter pc to point to new address. The below shown instructions are Branch instructions.

 B : branch

 BL : branch with link

 BX : branch exchange

 BLX : branch exchange with link

III. Load-store Instructions :- Load-store instructions transfer data between memory and processor registers.

 There are three types of load-store instructions :

 i. single register transferring

 ii. Multiple register transfer

 iii. Swap

 Single register transferring :- These instructions are used for moving a single data item in and out of a register. The data types supported are signed and unsigned words(32-bit), halfwords(16-bit), and bytes. The following instructions are various load-store single-register transfer instructions.

 LDR : load word into a register

 STR : save byte or word from a register

 LDRB : load byte into a register

 STRB : save byte from a register

 LDRH : load halfword into a register

 STRH : save halfword into a register

 LDRSB : load signed byte into a register

 LDRSH : load signed halfword into a register

 Multiple register transfer : - Load-store multiple instructions can transfer multiple registers between memory and the processor in a single instruction. The transfer occurs from a base address register Rn pointing into memory. Multiple-register transfer instructions are more efficient from single-register transfers for moving blocks of data around memory and saving and restoring context and stacks. If an interrupt has been raised, then it has no effect until the load-store multiple instruction is complete.

 LDM : load multiple registers

 STM : save multiple registers

 Swap :- The swap instruction is a special case of a load-store instruction. It swaps the contents of memory with the contents of a register. This instruction is an atomic operation- it reads and writes a location in the same bus operation, preventing any other instruction from reading or writing to that location until it completes.

IV. Software Interrupt Instruction :- A software interrupt instruction (SWI) causes a software interrupt exception, which provides a mechanism for applications to call operating system routines. The following instruction comes under software interrupt instruction.

 SWI : software interrupt

V. Program Status Register Instructions :- The ARM instruction set provides two instructions to directly control a program status (psr).

 MRS : This instruction transfers the contents of either the cpsr or spsr into a register

 MSR : This instruction transfers the content of a register into the cpsr or spsr

 Together the above two instructions are used to read and write the cpsr or spsr

CHAPTER 3
LPC2148 MICROCONTROLLER

LPC 2148 MICROCONTROLLER

General description of LPC 2148:

 The LPC2148 microcontrollers is based on a 32-bit ARM7TDMI-S CPU with real-time emulation and embedded trace support, that combine microcontrollers with embedded high-speed flash memory ranging from 32 kB to 512 kB. A 128-bit wide memory interface and unique accelerator architecture enable 32-bit code execution at the maximum clock rate. For critical code size applications, the alternative 16-bit Thumb

mode reduces code by more than 30 % with minimal performance penalty.

 Due to their tiny size and low power consumption, LPC2141/42/44/46/48 are ideal for applications where miniaturization is a key requirement, such as access control and point-of-sale. Serial communications interfaces ranging from a USB 2.0 Full-speed device, multiple UARTs, SPI, SSP to I2C-bus and on-chip SRAM of 8 kB up to 40 kB, make these devices very well suited for communication gateways and protocol converters, soft modems, voice recognition and low end imaging, providing both large buffer size and high processing power. Various 32-bit timers, single or dual 10-bit ADCs, 10-bit DAC, PWM channels and 45 fast GPIO lines with up to nine edge or level sensitive external interrupt pins make these microcontrollers suitable for industrial control and medical systems.

General overview of in system programming (ISP):

In-System Programming (ISP) is a process whereby a blank device mounted to a circuit board can be programmed with the end-user code without the need to remove the device from the circuit board. Also, a previously programmed device can be erased and Re programmed without removal from the circuit board. In order to perform ISP operations the microcontroller is powered up in a special “ISP mode”. ISP mode allows the microcontroller to communicate with an external host device through the serial port, such as a PC or terminal. The microcontroller receives commands and data from the host, erases and reprograms code memory, etc. Once the ISP operations have been completed the device is reconfigured so that it will operate normally the next time it is either reset or power removed and reapplied. All of the Philips microcontrollers shown in Table 1 and Table 2 have a 1 kbyte factory-masked ROM located in the upper 1 kbyte of code memory space from FC00 to FFFF. This 1 kbyte ROM is in addition to the memory blocks shown in Table 1 and Table 2. This ROM is referred to as the “Bootrom”. This Bootrom contains a set of instructions which allows the microcontroller to perform a number of Flash programming and erasing functions. The Bootrom also provides communications through the serial port. The use of the Bootrom is key to the concepts of both ISP and In-Application Programming (IAP). The contents of the bootrom are provided by Philips and masked into every device. When the device is reset or power applied, and the EA/ pin is high or at the VPP voltage, the microcontroller will start executing instructions from either the user code memory space at address 0000h (“normal mode”) or will execute instructions from the Bootrom (ISP mode).

General Overview of IN APPLICATION PROGRAMMING:

Some applications may have a need to be able to erase and program code memory under the control fo the application. For example, an application may have a need to store calibration information or perhaps need to be able to download new code portions. This ability to erase and program code memory in the end-user application is “In-Application Programming” (IAP). The Bootrom routines which perform functions on the Flash memory during ISP mode such as programming, erasing, and reading, are also available to end-user programs. Thus it is possible for an end-user application to perform operations on the Flash memory. A common entry point (FFF0h) to these routines has been provided to simplify interfacing to the end-users application. Functions are performed by setting up specific registers as required by a specific operation and performing a call to the common entry point. Like any other subroutine call, after completion of the function, control will return to the end-user’s code. The Bootrom is shadowed with the user code memory in the address range from FC00h to FFFFh. This shadowing is controlled by the ENBOOT bit (AUXR1.5). When set, accesses to internal code memory in this address range will be from the boot ROM. When cleared, accesses will be from the user’s code memory. It will be NECESSARY for the end-user’s code to set the ENBOOT bit prior to calling the common entry point for IAP operations, even for devices with 16 kbyte, 32 kbyte, and 64 kbyte of internal code memory. (ISP operation is selected by certain hardware conditions and control of the ENBOOT bit is automatic when ISP mode is activated).

FEATURES OF LPC2148(ARM7) ARCHITECTURE

Key features:

· 16-bit/32-bit ARM7TDMI-S microcontroller in a tiny LQFP64 package

· 8 kB to 40 kB of on-chip static RAM and 32 kB to 512 kB of on-chip flash memory; 128-bit wide interface/accelerator enables high-speed 60 MHz operation

· In-System Programming/In-Application Programming (ISP/IAP) via on-chip boot loader software, single flash sector or full chip erase in 400 ms and programming of 256 B in 1 ms.

· Embedded ICE RT and Embedded Trace interfaces offer real-time debugging with the on-chip Real Monitor software and high-speed tracing of instruction execution

 USB 2.0 Full-speed compliant device controller with 2 kB of endpoint RAM

· In addition, the LPC2146/48 provides 8 kB of on-chip RAM accessible to USB by DMA

· One or two (LPC2141/42 vs, LPC2144/46/48) 10-bit ADCs provide a total of 6/14 analog inputs, with conversion times as low as 2.44 ms per channel Single 10-bit DAC provides variable analog output (LPC2142/44/46/48 only)

· Two 32-bit timers/external event counters (with four capture and four compare

channels each), PWM unit (six outputs) and watchdog.

· Low power Real-Time Clock (RTC) with independent power and 32 kHz clock input

· Multiple serial interfaces including two UARTs (16C550), two Fast I2C-bus (400 kbit/s),

 SPI and SSP with buffering and variable data length capabilities

· Vectored Interrupt Controller (VIC) with configurable priorities and vector addresses

· Up to 45 of 5 V tolerant fast general purpose I/O pins in a tiny LQFP64 package

· Up to 21 external interrupt pins available

· 60 MHz maximum CPU clock available from programmable on-chip PLL with settling

 time of 100 ms

· On-chip integrated oscillator operates with an external crystal from 1 MHz to 25 MHz

· Power saving modes include Idle and Power-down

· Individual enable/disable of peripheral functions as well as peripheral clock scaling for additional power optimization

· Processor wake-up from Power-down mode via external interrupt or BOD

· Single power supply chip with POR and BOD circuits:

CPU operating voltage range of 3.0 V to 3.6 V (3.3 V ± 10 %) with 5 V tolerant I/O pads.
BLOCK DIAGRAM:

[image: image1.emf]
PIN CONFIGURATION:

 [image: image2.emf]
Pin Description:

P0.0 to P0.31 I/O Port 0: Port 0 is a 32-bit I/O port with individual direction controls for each bit. Total of 31 pins of the Port 0 can be used as a general purpose bidirectional digital I/Os while P0.31 is output only pin. The operation of port 0 pins depends upon the pin function selected via the pin connect block.

P0.0/TXD0/PWM1:

P0.0 — General purpose input/output digital pin (GPIO)

TXD0 — Transmitter output for UART0

PWM1 — Pulse Width Modulator output 1

P0.1/RXD0/PWM3/EINT0:

 P0.1 — General purpose input/output digital pin (GPIO)

RXD0 — Receiver input for UART0

PWM3 — Pulse Width Modulator output 3

EINT0 — External interrupt 0 input
P0.2/SCL0/ CAP0.0:

P0.2 — General purpose input/output digital pin (GPIO)

SCL0 — I2C0 clock input/output, open-drain output (for I2C-bus compliance)

CAP0.0 — Capture input for Timer 0, channel 0

P0.3/SDA0/ MAT0.0/EINT1:

P0.3 — General purpose input/output digital pin (GPIO)

SDA0 — I2C0 data input/output, open-drain output (for I2C-bus compliance)

MAT0.0 — Match output for Timer 0, channel 0

EINT1 — External interrupt 1 input

P0.4/SCK0/ CAP0.1/AD0.6

P0.4 — General purpose input/output digital pin (GPIO)

SCK0 — Serial clock for SPI0, SPI clock output from master or input to slave

CAP0.1 — Capture input for Timer 0, channel 0

AD0.6 — ADC 0, input 6.

P0.5/MISO0/ MAT0.1/AD0.7

P0.5 — General purpose input/output digital pin (GPIO)
MISO0 — Master In Slave OUT for SPI0, data input to SPI master or data output from

SPI slave.

MAT0.1 — Match output for Timer 0, channel 1

AD0.7 — ADC 0, input 7

P0.6/MOSI0/ CAP0.2/AD1.0

P0.6 — General purpose input/output digital pin (GPIO)

MOSI0 — Master out Slave In for SPI0, data output from SPI master or data

Input to SPI slave

CAP0.2 — Capture input for Timer 0, channel 2

AD1.0 — ADC 1, input 0, available in LPC2144/46/48 only

P0.7/SSEL0/PWM2/EINT2

P0.7 — General purpose input/output digital pin (GPIO)

SSEL0 — Slave Select for SPI0, selects the SPI interface as a slave

PWM2 — Pulse Width Modulator output 2

EINT2 — External interrupt 2 input

P0.8/TXD1/PWM4/AD1.1

P0.8 — General purpose input/output digital pin (GPIO)

TXD1 — Transmitter output for UART1

PWM4 — Pulse Width Modulator output 4

AD1.1 — ADC 1, input 1, available in LPC2144/46/48 only

P0.9/RXD1/ PWM6/EINT3:

P0.9 — General purpose input/output digital pin (GPIO)

RXD1 — Receiver input for UART1

PWM6 — Pulse Width Modulator output 6

EINT3 — External interrupt 3 input

P0.10/RTS1/ CAP1.0/AD1.2:

P0.10 — General purpose input/output digital pin (GPIO)

RTS1 — Request to send output for UART1, LPC2144/46/48 only

CAP1.0 — Capture input for Timer 1, channel 0

AD1.2 — ADC 1, input 2, available in LPC2144/46/48 only

P0.11/CTS1/ CAP1.1/SCL1:

P0.11 — General purpose input/output digital pin (GPIO)

CTS1 — Clear to send input for UART1, available in LPC2144/46/48 only

CAP1.1 — Capture input for Timer 1, channel 1

SCL1 — I2C1 clock input/output, open-drain output (for I2C-bus compliance)

P0.12/DSR1/MAT1.0/AD1.3:

P0.12 — General purpose input/output digital pin (GPIO)

DSR1 — Data Set Ready input for UART1, available in LPC2144/46/48 only

MAT1.0 — Match output for Timer 1, channel 0

AD1.3 — ADC input 3, available in LPC2144/46/48 only

P0.13/DTR1/ MAT1.1/AD1.4:

P0.13 — General purpose input/output digital pin (GPIO)

DTR1 — Data Terminal Ready output for UART1, LPC2144/46/48 only

MAT1.1 — Match output for Timer 1, channel 1

AD1.4 — ADC input 4, available in LPC2144/46/48 only

P0.14/DCD1/EINT1/SDA1:

P0.14 — General purpose input/output digital pin (GPIO)

DCD1 — Data Carrier Detect input for UART1, LPC2144/46/48 only

EINT1 — External interrupt 1 input

SDA1 — I2C1 data input/output, open-drain output (for I2C-bus compliance LOW on this pin while RESET is LOW forces on-chip boot loader to take over control of the part after reset

P0.15/RI1/ EINT2/AD1.5:

P0.15 — General purpose input/output digital pin (GPIO)

RI1 — Ring Indicator input for UART1, available in LPC2144/46/48 only

EINT2 — External interrupt 2 input

AD1.5 — ADC 1, input 5, available in LPC2144/46/48 only

P0.16/EINT0/MAT0.2/CAP0.2:

P0.16 — General purpose input/output digital pin (GPIO)

EINT0 — External interrupt 0 input

MAT0.2 — Match output for Timer 0, channel 2

CAP0.2 — Capture input for Timer 0, channel 2

P0.17/CAP1.2/ SCK1/MAT1.2:

P0.17 — General purpose input/output digital pin (GPIO)

CAP1.2 — Capture input for Timer 1, channel 2

SCK1 — Serial Clock for SSP, clock output from master or input to slave

MAT1.2 — Match output for Timer 1, channel 2

P0.18/CAP1.3/MISO1/MAT1.3:

P0.18 — General purpose input/output digital pin (GPIO)

CAP1.3 — Capture input for Timer 1, channel 3

MISO1 — Master In Slave Out for SSP, data input to SPI master or data output from SSP slave

MAT1.3 — Match output for Timer 1, channel 3

P0.19/MAT1.2/MOSI1/CAP1.2:

P0.19 — General purpose input/output digital pin (GPIO)

MAT1.2 — Match output for Timer 1, channel 2

MOSI1 — Master out Slave In for SSP, data output from SSP master or data Input to SSP slave

CAP1.2 — Capture input for Timer 1, channel 2

P0.20/MAT1.3/SSEL1/EINT3:

P0.20 — General purpose input/output digital pin (GPIO)

MAT1.3 — Match output for Timer 1, channel 3

SSEL1 — Slave Select for SSP, selects the SSP interface as a slave

EINT3 — External interrupt 3 input

P0.21/PWM5/AD1.6/CAP1.3:

P0.21 — General purpose input/output digital pin (GPIO)

PWM5 — Pulse Width Modulator output 5

AD1.6 — ADC 1, input 6, available in LPC2144/46/48 only

CAP1.3 — Capture input for Timer 1, channel 3

P0.22/AD1.7/CAP0.0/MAT0.0:

P0.22 — General purpose input/output digital pin (GPIO)

AD1.7 — ADC 1, input 7, available in LPC2144/46/48 only

CAP0.0 — Capture input for Timer 0, channel 0

MAT0.0 — Match output for Timer 0, channel 0

P0.23/VBUS:

P0.23 — General purpose input/output digital pin (GPIO)

VBUS — Indicates the presence of USB bus power

This signal must be HIGH for USB reset to occur

P0.25/AD0.4/AOUT:

P0.25 — General purpose input/output digital pin (GPIO)

AD0.4 — ADC 0, input 4

AOUT — DAC output, available in LPC2142/44/46/48 only

P0.28/AD0.1/CAP0.2/MAT0.2:

P0.28 — General purpose input/output digital pin (GPIO)

AD0.1 — ADC 0, input 1

CAP0.2 — Capture input for Timer 0, channel 2

MAT0.2 — Match output for Timer 0, channel 2

P0.29/AD0.2/CAP0.3/MAT0.3:

P0.29 — General purpose input/output digital pin (GPIO)

AD0.2 — ADC 0, input 2

CAP0.3 — Capture input for Timer 0, Channel 3

MAT0.3 — Match output for Timer 0, channel 3

P0.30/AD0.3/EINT3/CAP0.0:

P0.30 — General purpose input/output digital pin (GPIO)

AD0.3 — ADC 0, input 3

EINT3 — External interrupt 3 input

CAP0.0 — Capture input for Timer 0, channel 0

P0.31/UP_LED/CONNECT

P0.31 — General purpose output only digital pin (GPO)

UP_LED — USB Good Link LED indicator, it is LOW when device is configured (non-control endpoints enabled), it is HIGH when the device is not configured or during global suspend

CONNECT — Signal used to switch an external 1.5 kohms resistor under the

Software control, used with the Soft Connect USB feature

Important: This is a digital output only pin, this pin MUST NOT be externally pulled LOW when RESET pin is LOW or the JTAG port will be disabled P1.0 to P1.31 I/O Port 1: Port 1 is a 32-bit bidirectional I/O port with individual direction controls for each bit, the operation of port 1 pins depends upon the pin function selected via the pin connect block, pins 0 through 15 of port 1 are not

Available.

P1.16/TRACEPKT0

P1.16 — General purpose input/output digital pin (GPIO)

TRACEPKT0 — Trace Packet, bit 0, standard I/O port with internal pull-up

P1.17/TRACEPKT1

P1.17 — General purpose input/output digital pin (GPIO)

TRACEPKT1 — Trace Packet, bit 1, standard I/O port with internal pull-up

P1.18/TRACEPKT2

P1.18 — General purpose input/output digital pin (GPIO)

TRACEPKT2 — Trace Packet, bit 2, standard I/O port with internal pull-up

P1.19/TRACEPKT3

P1.19 — General purpose input/output digital pin (GPIO)

TRACEPKT3 — Trace Packet, bit 3, standard I/O port with internal pull-up

P1.20/TRACESYNC

P1.20 — General purpose input/output digital pin (GPIO)

TRACESYNC — Trace Synchronization, standard I/O port with internal pull-up

Note: LOW on this pin while RESET is LOW enables pins P1.25:16 to operate as Trace port after reset

P1.21/PIPESTAT0

P1.21 — General purpose input/output digital pin (GPIO)

PIPESTAT0 — Pipeline Status, bit 0, standard I/O port with internal pull-up

P1.22/PIPESTAT1

P1.22 — General purpose input/output digital pin (GPIO)

PIPESTAT1 — Pipeline Status, bit 1, standard I/O port with internal pull-up

P1.23/PIPESTAT2

P1.23 — General purpose input/output digital pin (GPIO)

PIPESTAT2 — Pipeline Status, bit 2, standard I/O port with internal pull-up

P1.24/TRACECLK

P1.24 — General purpose input/output digital pin (GPIO)

TRACECLK — Trace Clock, standard I/O port with internal pull-up

P1.25/EXTIN0

P1.25 — General purpose input/output digital pin (GPIO)

EXTIN0 — External Trigger Input, standard I/O with internal pull-up

P1.26/RTCK

P1.26 — General purpose input/output digital pin (GPIO)

RTCK — Returned Test Clock output, extra signal added to the JTAG port, assists debugger synchronization when processor frequency varies, bidirectional pin with internal pull-up

Note: LOW on RTCK while RESET is LOW enables pins P1.31:26 to operate a Debug port after reset

P1.27/TDO

P1.27 — General purpose input/output digital pin (GPIO)

TDO — Test Data out for JTAG interface

P1.28/TDI

P1.28 — General purpose input/output digital pin (GPIO)

TDI — Test Data in for JTAG interface

P1.29/TCK

 P1.29 — General purpose input/output digital pin (GPIO)

TCK — Test Clock for JTAG interface

P1.30/TMS

P1.30 — General purpose input/output digital pin (GPIO)

TMS — Test Mode Select for JTAG interface

P1.31/TRST

P1.31 — General purpose input/output digital pin (GPIO)

TRST — Test Reset for JTAG interface

D+: USB bidirectional D+ line

D- : USB bidirectional D- line

RESET External reset input: A LOW on this pin resets the device, causing I/O ports and peripherals to take on their default states, and processor execution to begin at address 0, TTL with hysteretic, 5 V tolerant

XTAL1: Input to the oscillator circuit and internal clock generator circuits

XTAL2: Output from the oscillator amplifier

RTCX1: I Input to the RTC oscillator circuit

RTCX2: Output from the RTC oscillator circuit

VSS: 6, 18, 25, 42, 50 pins are for supply voltage.

Ground: 0 V reference.

VSSA Analog ground: 0 V reference, this should nominally be the same voltage as

VSS, but should be isolated to minimize noise and error

VDD 23, 43, 51 I 3.3 V power supply: This is the power supply voltage for the core and I/O ports.

VDDA 7 I Analog 3.3 V power supply: This should be nominally the same voltage as

VDD but should be isolated to minimize noise and error, this voltage is only used to power the on-chip ADC(s) and DAC

VREF ADC reference voltage: This should be nominally less than or equal to the

VDD voltage but should be isolated to minimize noise and error, level on this

Pin is used as a reference for ADC(s) and DAC

VBAT RTC power supply voltage: 3.3 V on this pin supplies the power to the RTC.

Functional Description:

· Architectural Overview:

 The ARM7TDMI-S is a general purpose 32-bit microprocessor, which offers high performance and very low power consumption. The ARM architecture is based on Reduced Instruction Set Computer (RISC) principles, and the instruction set and related decode mechanism are much simpler than those of micro programmed Complex Instruction Set Computers (CISC). This simplicity results in a high instruction throughput

And impressive real-time interrupt response from a small and cost-effective processor core. Pipeline techniques are employed so that all parts of the processing and memory systems can operate continuously. Typically, while one instruction is being executed, its successor is being decoded, and a third instruction is being fetched from memory. The ARM7TDMI-S processor also employs a unique architectural strategy known as Thumb, which makes it ideally suited to high-volume applications with memory restrictions, or applications where code density is an issue. The key idea behind Thumb is that of a super-reduced instruction set.

 Essentially, the ARM7TDMI-S processor has two instruction sets:

• The standard 32-bit ARM set

• A 16-bit Thumb set

The Thumb set’s 16-bit instruction length allows it to approach twice the density of standard ARM code while retaining most of the ARM’s performance advantage over a traditional 16-bit processor using 16-bit registers. This is possible because Thumb code operates on the same 32-bit register set as ARM code. Thumb code is able to provide up to 65 % of the code size of ARM, and 160 % of the performance of an equivalent ARM processor connected to a 16-bit memory system. The particular flash implementation in the LPC2141/42/44/46/48 allows for full speed execution also in ARM mode. It is recommended to program performance critical and short code sections (such as interrupt service routines and DSP algorithms) in ARM mode. The impact on the overall code size will be minimal but the speed can be increased by 30 % over Thumb mode.

· On-Chip Flash Program memory:

 The LPC2141/42/44/46/48 incorporate a 32 kB, 64 kB, 128 kB, 256 kB and 512 kB flash memory system respectively. This memory may be used for both code and data storage. Programming of the flash memory may be accomplished in several ways. It may be programmed In System via the serial port. The application program may also erase and/or program the flash while the application is running, allowing a great degree of flexibility for data storage field firmware upgrades, etc. Due to the architectural solution chosen for an on-chip boot loader, flash memory available for user’s code on LPC2141/42/44/46/48 is 32 kB, 64 kB, 128 kB, 256 kB and 500 kB respectively.

 The LPC2141/42/44/46/48 flash memory provides a minimum of 100000 erase/write cycles and 20 years of data-retention.

· On-Chip Static RAM:

 On-chip static RAM may be used for code and/or data storage. The SRAM may be accessed as 8-bit, 16-bit, and 32-bit. The LPC2141, LPC2142/44 and LPC2146/48 provide 8 kB, 16 kB and 32 kB of static RAM respectively. In case of LPC2146/48 only, an 8 kB SRAM block intended to be utilized mainly by the USB can also be used as a general purpose RAM for data storage and code storage and execution.

· Memory Map
 The LPC2141/42/44/46/48 memory map incorporates several distinct regions, as shown below. [image: image3.emf]
· Interrupt controller:

 The Vectored Interrupt Controller (VIC) accepts all of the interrupt request inputs and categorizes them as Fast Interrupt Request (FIQ), vectored Interrupt Request (IRQ), and non-vectored IRQ as defined by programmable settings. The programmable assignment scheme means that priorities of interrupts from the various peripherals can be dynamically assigned and adjusted.

 Fast interrupt request (FIQ) has the highest priority. If more than one request is assigned to FIQ, the VIC combines the requests to produce the FIQ signal to the ARM processor. The fastest possible FIQ latency is achieved when only one request is classified as FIQ, because then the FIQ service routine does not need to branch into the interrupt service routine but can run from the interrupt vector location. If more than one request is assigned to the FIQ class, the FIQ service routine will read a word from the VIC that identifies which FIQ source(s) is (are) requesting an interrupt.

 Vectored IRQs have the middle priority. Sixteen of the interrupt requests can be assigned to this category. Any of the interrupt requests can be assigned to any of the 16 vectored IRQ slots, among which slot 0 has the highest priority and slot 15 has the lowest. Non-vectored IRQs have the lowest priority.

 The VIC combines the requests from all the vectored and non-vectored IRQs to produce the IRQ signal to the ARM processor. The IRQ service routine can start by reading a register from the VIC and jumping there. If any of the vectored IRQs are pending, the VIC provides the address of the highest-priority requesting IRQs service routine, otherwise it provides the address of a default routine that is shared by all the non-vectored IRQs. The default routine can read another VIC register to see what IRQs are active.

· Interrupt Sources:

 Each peripheral device has one interrupt line connected to the Vectored Interrupt Controller, but may have several internal interrupt flags. Individual interrupt flags may also represent more than one interrupt source.
· Pin Connect Block:

 The pin connect block allows selected pins of the microcontroller to have more than one function. Configuration registers control the multiplexers to allow connection between the pin and the on chip peripherals. Peripherals should be connected to the appropriate pins prior to being activated, and prior to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is not mapped to a related pin should be considered undefined.

 The Pin Control Module with its pin select registers defines the functionality of the microcontroller in a given hardware environment. After reset all pins of Port 0 and Port 1 are configured as input with the following exceptions: If debug is enabled, the JTAG pins will assume their JTAG functionality; if trace is enabled, the Trace pins will assume their trace functionality. The pins associated with the I2C0 and I2C1 interface are open drain.

· Fast General purpose Parallel I/O:

 Device pins that are not connected to a specific peripheral function are controlled by the GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate registers allow the setting or clearing of any number of outputs simultaneously. The value of the output register may be read back, as well as the current state of the port pins. LPC2141/42/44/46/48 introduces accelerated GPIO functions over prior LPC2000 devices:
 • GPIO registers are relocated to the ARM local bus for the fastest possible I/O timing
 • Mask registers allow treating sets of port bits as a group, leaving other bits unchanged

 • All GPIO registers are byte addressable

 • Entire port value can be written in one instruction

• Bit-level set and clear registers allow a single instruction to set or clear any number of bits in one port

 • Direction control of individual bits

 • Separate control of output set and clear

 • All I/O default to inputs after reset

· 10 bit ADC:

 The LPC2141/42 contain one and the LPC2144/46/48 contain two analog to digital converters. These converters are single 10-bit successive approximation analog to digital converters. While ADC0 has six channels, ADC1 has eight channels. Therefore, total number of available ADC inputs for LPC2141/42 is 6 and for LPC2144/46/48 is 14.

· 10 bit DAC:

 The DAC enables the LPC2141/42/44/46/48 to generate a variable analog output. The maximum DAC output voltage is the VREF voltage.

· USB 2.0 Device controller:

 The USB is a 4-wire serial bus that supports communication between a host and a number (127 max) of peripherals. The host controller allocates the USB bandwidth to

Attached devices through a token based protocol. The bus supports hot plugging, unplugging, and dynamic configuration of the devices. All transactions are initiated by the host controller.

 The LPC2141/42/44/46/48 is equipped with a USB device controller that enables 12 Mbit/s data exchange with a USB host controller. It consists of a register interface, serial interface engine, endpoint buffer memory and DMA controller. The serial interface engine decodes the USB data stream and writes data to the appropriate end point buffer memory. The status of a completed USB transfer or error condition is indicated via status registers. An interrupt is also generated if enabled. A DMA controller (available in LPC2146/48 only) can transfer data between an endpoint buffer and the USB RAM.

· UARTS:

 The LPC2141/42/44/46/48 each contains two UARTs. In addition to standard transmit and receive data lines, the LPC2144/46/48 UART1 also provide a full modem control handshake interface. Compared to previous LPC2000 microcontrollers, UARTs in LPC2141/42/44/46/48 introduce a fractional baud rate generator for both UARTs, enabling these microcontrollers to achieve standard baud rates such as 115200 with any crystal frequency above 2 MHz. In addition, auto-CTS/RTS flow-control functions are fully implemented in hardware (UART1 in LPC2144/46/48 only).

· I2C Bus Serial I/O Controller

 The LPC2141/42/44/46/48 each contains two I2C-bus controllers.

The I2C-bus is bidirectional, for inter-IC control using only two wires: a serial clock line (SCL), and a serial data line (SDA). Each device is recognized by a unique address and can operate as either a receiver-only device (e.g., an LCD driver or a transmitter with the capability to both receive and send information (such as memory)). Transmitters and/or receivers can operate in either master or slave mode, depending on whether the chip has to initiate a data transfer or is only addressed. The I2C-bus is a multi-master bus; it can be controlled by more than one bus master connected to it. The I2C-bus implemented in LPC2141/42/44/46/48 supports bit rates up to 400 kbit/s (Fast I2C-bus).
· SPI Serial I/O Controller:

 The LPC2141/42/44/46/48 each contain one SPI controller. The SPI is a full duplex serial interface, designed to handle multiple masters and slaves connected to a given bus. Only a single master and a single slave can communicate on the interface during a given data transfer. During a data transfer the master always sends a byte of data to the slave, and the slave always sends a byte of data to the master.

· SSP Serial I/O Controller

 The LPC2141/42/44/46/48 each contains one SSP. The SSP controller is capable of operation on a SPI, 4-wire SSI, or Micro wire bus. It can interact with multiple masters and slaves on the bus. However, only a single master and a single slave can communicate on the bus during a given data transfer. The SSP supports full duplex transfers, with data frames of 4 bits to 16 bits of data flowing from the master to the slave and from the slave to the master. Often only one of these data flows carries meaningful data.

· General Purpose timers/external event counters

 The Timer/Counter is designed to count cycles of the peripheral clock (PCLK) or an externally supplied clock and optionally generate interrupts or perform other actions at specified timer values, based on four match registers. It also includes four capture inputs to trap the timer value when an input signals transitions, optionally generating an interrupt. Multiple pins can be selected to perform a single capture or match function, providing an application with ‘or’ and ‘and’, as well as ‘broadcast’ functions among them. The LPC2141/42/44/46/48 can count external events on one of the capture inputs if the minimum external pulse is equal or longer than a period of the PCLK. In this configuration, unused capture lines can be selected as regular timer capture inputs, or used as external interrupts.

· Watchdog Timer

 The purpose of the watchdog is to reset the microcontroller within a reasonable amount of time if it enters an erroneous state. When enabled, the watchdog will generate a system reset if the user program fails to ‘feed’ (or reload) the watchdog within a predetermined amount of time.

· Real Time Clock:

 The RTC is designed to provide a set of counters to measure time when normal or idle operating mode is selected. The RTC has been designed to use little power, making it suitable for battery powered systems where the CPU is not running continuously (Idle mode).

· Pulse width modulator

 The PWM is based on the standard timer block and inherits all of its features, although only the PWM function is pinned out on the LPC2141/42/44/46/48. The timer is designed to count cycles of the peripheral clock (PCLK) and optionally generate interrupts or perform other actions when specified timer values occur, based on seven match registers. The PWM function is also based on match register events.

The ability to separately control rising and falling edge locations allows the PWM to be used for more applications. For instance, multi-phase motor control typically requires three non-overlapping PWM outputs with individual control of all three pulse widths and positions.

 Two match registers can be used to provide a single edge controlled PWM output. One match register (MR0) controls the PWM cycle rate, by resetting the count upon match. The other match register controls the PWM edge position. Additional single edge controlled PWM outputs require only one match register each, since the repetition rate is the same for all PWM outputs. Multiple single edge controlled PWM outputs will all have a rising edge at the beginning of each PWM cycle, when an MR0 match occurs.

 Three match registers can be used to provide a PWM output with both edges controlled. Again, the MR0 match register controls the PWM cycle rate. The other match registers control the two PWM edge positions. Additional double edge controlled PWM outputs require only two matches registers each, since the repetition rate is the same for all PWM outputs. With double edge controlled PWM outputs, specific match registers control the rising and falling edge of the output. This allows both positive going PWM pulses (when the rising edge occurs prior to the falling edge), and negative going PWM pulses (when the falling edge occurs prior to the rising edge).

· System Control

1. Crystal Oscillator:

 On-chip integrated oscillator operates with external crystal in range of 1 MHz to 25 MHz. The oscillator output frequency is called fosc and the ARM processor clock frequency is referred to as CCLK for purposes of rate equations, etc. fosc and CCLK are the same value unless the PLL is running and connected.

 2. PLL:

 The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input frequency is multiplied up into the range of 10 MHz to 60 MHz with a Current Controlled Oscillator (CCO). The multiplier can be an integer value from 1 to 32 (in practice, the multiplier value cannot be higher than 6 on this family of microcontrollers due to the upper frequency limit of the CPU). The CCO operates in the range of 156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within its frequency range while the PLL is providing the desired output frequency. The output divider may be set to divide by 2, 4, 8, or 16 to produce the output clock. Since the minimum output divider value is 2, it is insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed following a chip reset and may be enabled by software. The program must configure and activate the PLL, wait for the PLL to Lock, then connect to the PLL as a clock source. The PLL settling time is 100 ms.

 3. Reset and Wake up Timer:

 Reset has two sources on the LPC2141/42/44/46/48: the RESET pin and watchdog reset. The RESET pin is a Schmitt trigger input pin with an additional glitch filter. Assertion of chip reset by any source starts the Wake-up Timer (see Wake-up Timer description below), causing the internal chip reset to remain asserted until the external reset is de-asserted, the oscillator is running, a fixed number of clocks have passed, and the on-chip flash controller has completed its initialization.

 When the internal reset is removed, the processor begins executing at address 0, which is the reset vector. At that point, all of the processor and peripheral registers have been initialized to predetermined values.

 The Wake-up Timer ensures that the oscillator and other analog functions required for chip operation are fully functional before the processor is allowed to execute instructions. This is important at power on, all types of reset, and whenever any of the aforementioned functions are turned off for any reason. Since the oscillator and other functions are turned off during Power-down mode, any wake-up of the processor from Power-down mode makes use of the Wake-up Timer.

 The Wake-up Timer monitors the crystal oscillator as the means of checking whether it is safe to begin code execution. When power is applied to the chip, or some event caused the chip to exit Power-down mode, some time is required for the oscillator to produce a signal of sufficient amplitude to drive the clock logic. The amount of time depends on many factors, including the rate of VDD ramp (in the case of power on), the type of crystal and its electrical characteristics (if a quartz crystal is used), as well as any other external circuitry (e.g. capacitors), and the characteristics of the oscillator itself under the existing ambient conditions.

 4. Brown out Detector

 The LPC2141/42/44/46/48 includes 2-stage monitoring of the voltage on the VDD pins. If this voltage falls below 2.9 V, the BOD asserts an interrupt signal to the VIC. This signal can be enabled for interrupt; if not, software can monitor the signal by reading dedicated register.

 The second stage of low voltage detection asserts reset to inactivate the LPC2141/42/44/46/48 when the voltage on the VDD pins falls below 2.6 V. This reset prevents alteration of the flash as operation of the various elements of the chip would otherwise become unreliable due to low voltage. The BOD circuit maintains this reset down below 1 V, at which point the POR circuitry maintains the overall reset.

Both the 2.9 V and 2.6 V thresholds include some hysteresis. In normal operation, this hysteresis allows the 2.9 V detection to reliably interrupt, or a regularly-executed event loop to sense the condition.

 5. Code Security

 This feature of the LPC2141/42/44/46/48 allows an application to control whether it can be debugged or protected from observation. If after reset on-chip boot loader detects a valid checksum in flash and reads 0x8765 4321 from address 0x1FC in flash, debugging will be disabled and thus the code in flash will be protected from observation. Once debugging is disabled, it can be enabled only by performing a full chip erase using the ISP.

 6. External Interrupt Inputs:

 The LPC2141/42/44/46/48 include up to nine edge or level sensitive External Interrupt Inputs as selectable pin functions. When the pins are combined, external events can be processed as four independent interrupt signals. The External Interrupt Inputs can optionally be used to wake-up the processor from Power-down mode. Additionally capture input pins can also be used as external interrupts without the option to wake the device up from Power-down mode.

 7. Memory Mapping Control

 The Memory Mapping Control alters the mapping of the interrupt vectors that appear beginning at address 0x0000 0000. Vectors may be mapped to the bottom of the on-chip flash memory, or to the on-chip static RAM. This allows code running in different memory spaces to have control of the interrupts.

8. Power Control

 The LPC2141/42/44/46/48 supports two reduced power modes: Idle mode and

Power-down mode.

 In Idle mode, execution of instructions is suspended until either a reset or interrupt occurs. Peripheral functions continue operation during idle mode and may generate interrupts to cause the processor to resume execution. Idle mode eliminates power used by the processor itself, memory systems and related controllers, and internal buses.

 In Power-down mode, the oscillator is shut down and the chip receives no internal clocks. The processor state and registers, peripheral registers, and internal SRAM values are preserved throughout Power-down mode and the logic levels of chip output pins remain static. The Power-down mode can be terminated and normal operation resumed by either a reset or certain specific interrupts that are able to function without clocks. Since all dynamic operation of the chip is suspended, Power-down mode reduces chip power consumption to nearly zero. Selecting an external 32 kHz clock instead of the PCLK as a clock-source for the on-chip RTC will enable the microcontroller to have the RTC active during Power-down mode. Power-down current is increased with RTC active. However, it is significantly lower than in Idle mode. A Power Control for Peripherals feature allows individual peripherals to be turned off if they are not needed in the application, resulting in additional power savings during active and Idle mode.

 9. VPB BUS:
 The VPB divider determines the relationship between the processor clock (CCLK) and the clock used by peripheral devices (PCLK). The VPB divider serves two purposes. The first is to provide peripherals with the desired PCLK via VPB bus so that they can operate at the speed chosen for the ARM processor. In order to achieve this, the VPB bus may be slowed down to 1¤2 to 1¤4 of the processor clock rate. Because the VPB bus must work properly at power-up (and its timing cannot be altered if it does not work since the VPB divider control registers reside on the VPB bus), the default condition at reset is for the VPB bus to run at 1¤4 of the processor clock rate. The second purpose of the VPB divider is to allow power savings when an application does not require any peripherals to run at the full processor rate. Because the VPB divider is connected to the PLL output, the PLL remains active (if it was running) during Idle mode.

 10. Emulation and Debugging:
 The LPC2141/42/44/46/48 support emulation and debugging via a JTAG serial port. A trace port allows tracing program execution. Debugging and trace functions are multiplexed only with GPIOs on Port 1. This means that all communication, timer and interface peripherals residing on Port0 are available during the development and debugging phase as they are when the application is run in the embedded system

 11. Embedded ICE

 Standard ARM Embedded ICE logic provides on-chip debug support. The debugging of the target system requires a host computer running the debugger software and an Embedded ICE protocol converter. Embedded ICE protocol converter converts the remote debug protocol commands to the JTAG data needed to access the ARM core.

 The ARM core has a Debug Communication Channel (DCC) function built-in. The DCC allows a program running on the target to communicate with the host debugger or another separate host without stopping the program flow or even entering the debug state. The DCC is accessed as a co-processor 14 by the program running on the ARM7TDMI-S core. The DCC allows the JTAG port to be used for sending and receiving data without affecting the normal program flow. The DCC data and control registers are mapped in to addresses in the Embedded ICE logic.

12. Embedded Trace:

 Since the LPC2141/42/44/46/48 have significant amounts of on-chip memory, it is not possible to determine how the processor core is operating simply by observing the external pins. The Embedded Trace Macro cell (ETM) provides real-time trace capability for deeply embedded processor cores. It outputs information about processor execution to the trace port. The ETM is connected directly to the ARM core and not to the main AMBA system bus. It compresses the trace information and exports it through a narrow trace port. An external trace port analyzer must capture the trace information under software debugger control. Instruction trace (or PC trace) shows the flow of execution of the processor and provides a list of all the instructions that were executed. Instruction trace is significantly compressed by only broadcasting branch addresses as well as a set of status signals that indicate the pipeline status on a cycle by cycle basis. Trace information generation can be controlled by selecting the trigger resource. Trigger resources include address comparators, counters and sequencers. Since trace information is compressed the software debugger requires a static image of the code being executed. Self-modifying code can not be traced because of this restriction.

 13. Real Monitor:
 Real Monitor is a configurable software module, developed by ARM Inc., which enables real-time debug. It is a lightweight debug monitor that runs in the background while users debug their foreground application. It communicates with the host using the DCC, which is present in the Embedded ICE logic. The LPC2141/42/44/46/48 contains a specific configuration of Real Monitor software programmed into the on-chip flash memory

 CHAPTER 4
GSM Technology
INTRODUCTION

Global System for Mobile communications (GSM: originally from Groupe Spécial Mobile) is the most popular standard for mobile phones in the world. Its promoter, the GSM Association, estimates that 82% of the global mobile market uses the standard GSM is used by over 2 billion people across more than 212 countries and territories. Its ubiquity makes international roaming very common between mobile phone operators, enabling subscribers to use their phones in many parts of the world. GSM differs from its predecessors in that both signaling and speech channels are digital call quality, and thus is considered a second generation (2G) mobile phone system. This has also meant that data communication was built into the system using the 3rd Generation Partnership Project (3GPP).

The ubiquity of the GSM standard has been advantageous to both consumers (who benefit from the ability to roam and switch carriers without switching phones) and also to network operators (who can choose equipment from any of the many vendors implementing GSM. GSM also pioneered a low-cost alternative to voice calls, the Short message service (SMS, also called "text messaging"), which is now supported on other mobile standards as well.

Newer versions of the standard were backward-compatible with the original GSM phones. For example, Release '97 of the standard added packet data capabilities, by means of General Packet Radio Service (GPRS). Release '99 introduced higher speed data transmission using Enhanced Data Rates for GSM Evolution (EDGE)

GSM (Global System for Mobile communication) is a digital mobile telephone system that is widely used in Europe and other parts of the world. GSM uses a variation of Time Division Multiple Access (TDMA) and is the most widely used of the three digital wireless telephone technologies (TDMA, GSM, and CDMA). GSM digitizes and compresses data, then sends it down a channel with two other streams of user data, each in its own time slot. It operates at either the 900 MHz or 1,800 MHz frequency band.

GSM is the de facto wireless telephone standard in Europe. GSM has over one billion users worldwide and is available in 190 countries. Since many GSM network operators have roaming agreements with foreign operators, users can often continue to use their mobile phones when they travel to other countries.

Mobile Frequency RangeRx : 925-960; Tx: 880-915

Multiple Access Method : TDMA/FDM

Duplex Method : FDD

Number of Channels1 : 24 (8 users per channel)

Channel Spacing : 200kHz

Modulation : GMSK (0.3 Gaussian Filter)

 Channel Bit Rate : 270.833Kb

History
In 1982, the European Conference of Postal and Telecommunications Administrations (CEPT) created the Groupe Spécial Mobile (GSM) to develop a standard for a mobile telephone system that could be used across Europe.[5] In 1987, a memorandum of understanding was signed by 13 countries to develop a common cellular telephone system across Europe.[6]

HYPERLINK "http://en.wikipedia.org/wiki/GSM" \l "_note-6"[7]
In 1989, GSM responsibility was transferred to the European Telecommunications Standards Institute (ETSI) and phase I of the GSM specifications were published in 1990. The first GSM network was launched in 1991 by Radiolinja in Finland with joint technical infrastructure maintenance from Ericsson.[8] By the end of 1993, over a million subscribers were using GSM phone networks being operated by 70 carriers across 48 countries.[9]
Technical details
GSM is a cellular network, which means that mobile phones connect to it by searching for cells in the immediate vicinity. GSM networks operate in four different frequency ranges. Most GSM networks operate in the 900 MHz or 1800 MHz bands. Some countries in the Americas (including Canada and the United States) use the 850 MHz and 1900 MHz bands because the 900 and 1800 MHz frequency bands were already allocated.

The rarer 400 and 450 MHz frequency bands are assigned in some countries, notably Scandinavia, where these frequencies were previously used for first-generation systems.

In the 900 MHz band the uplink frequency band is 890–915 MHz, and the downlink frequency band is 935–960 MHz. This 25 MHz bandwidth is subdivided into 124 carrier frequency channels, each spaced 200 kHz apart. Time division multiplexing is used to allow eight full-rate or sixteen half-rate speech channels per radio frequency channel. There are eight radio timeslots (giving eight burst periods) grouped into what is called a TDMA frame. Half rate channels use alternate frames in the same timeslot. The channel data rate is 270.833 kbit/s, and the frame duration is 4.615 ms.

The transmission power in the handset is limited to a maximum of 2 watts in GSM850/900 and 1 watt in GSM1800/1900.

GSM has used a variety of voice codecs to squeeze 3.1 kHz audio into between 5.6 and 13 kbit/s. Originally, two codecs, named after the types of data channel they were allocated, were used, called Half Rate (5.6 kbit/s) and Full Rate (13 kbit/s). These used a system based upon linear predictive coding (LPC). In addition to being efficient with bitrates, these codecs also made it easier to identify more important parts of the audio, allowing the air interface layer to prioritize and better protect these parts of the signal.

GSM was further enhanced in 1997[10] with the Enhanced Full Rate (EFR) codec, a 12.2 kbit/s codec that uses a full rate channel. Finally, with the development of UMTS, EFR was refactored into a variable-rate codec called AMR-Narrowband, which is high quality and robust against interference when used on full rate channels, and less robust but still relatively high quality when used in good radio conditions on half-rate channels.

There are four different cell sizes in a GSM network—macro, micro, pico and umbrella cells. The coverage area of each cell varies according to the implementation environment. Macro cells can be regarded as cells where the base station antenna is installed on a mast or a building above average roof top level. Micro cells are cells whose antenna height is under average roof top level; they are typically used in urban areas. Picocells are small cells whose coverage diameter is a few dozen meters; they are mainly used indoors. Umbrella cells are used to cover shadowed regions of smaller cells and fill in gaps in coverage between those cells.

Cell horizontal radius varies depending on antenna height, antenna gain and propagation conditions from a couple of hundred meters to several tens of kilometers. The longest distance the GSM specification supports in practical use is 35 kilometres (22 mi). There are also several implementations of the concept of an extended cell, where the cell radius could be double or even more, depending on the antenna system, the type of terrain and the timing advance.

Indoor coverage is also supported by GSM and may be achieved by using an indoor picocell base station, or an indoor repeater with distributed indoor antennas fed through power splitters, to deliver the radio signals from an antenna outdoors to the separate indoor distributed antenna system. These are typically deployed when a lot of call capacity is needed indoors, for example in shopping centers or airports. However, this is not a prerequisite, since indoor coverage is also provided by in-building penetration of the radio signals from nearby cells.

The modulation used in GSM is Gaussian minimum-shift keying (GMSK), a kind of continuous-phase frequency shift keying. In GMSK, the signal to be modulated onto the carrier is first smoothed with a Gaussian low-pass filter prior to being fed to a frequency modulator, which greatly reduces the interference to neighboring channels (adjacent channel interference).

Interference with audio devices
This is a form of RFI, and could be mitigated or eliminated by use of additional shielding and/or bypass capacitors in these audio devices.[citation needed] However, the increased cost of doing so is difficult for a designer to justify.

It is a common occurrence for a nearby GSM handset to induce a "dit, dit di-dit, dit di-dit, dit di-dit" output on PAs, wireless microphones, home stereo systems, televisions, computers, cordless phones, and personal music devices. When these audio devices are in the near field of the GSM handset, the radio signal is strong enough that the solid state amplifiers in the audio chain act as a detector. The clicking noise itself represents the power bursts that carry the TDMA signal. These signals have been known to interfere with other electronic devices, such as car stereos and portable audio players. This also depends on the handsets design, and it's conformance to strict rules, and regulations allocated by the FCC in part 15 of FCC rules and regulation pertaining to interference to electronic devices.

Network structure
The network behind the GSM system seen by the customer is large and complicated in order to provide all of the services which are required. It is divided into a number of sections and these are each covered in separate articles. The Base Station Subsystem (the base stations and their controllers).

· The Network and Switching Subsystem (the part of the network most similar to a fixed network). This is sometimes also just called the core network.

· The GPRS Core Network (the optional part which allows packet based Internet connections).

· All of the elements in the system combine to produce many GSM services such as voice calls and SMS.

One of the key features of GSM is the Subscriber Identity Module (SIM), commonly known as a SIM card. The SIM is a detachable smart card containing the user's subscription information and phonebook. This allows the user to retain his or her information after switching handsets. Alternatively, the user can also change operators while retaining the handset simply by changing the SIM. Some operators will block this by allowing the phone to use only a single SIM, or only a SIM issued by them; this practice is known as SIM locking, and is illegal in some countries.

In Australia, Canada, Europe and the United States many operators lock the mobiles they sell. This is done because the price of the mobile phone is typically subsidised with revenue from subscriptions, and operators want to try to avoid subsidising competitor's mobiles. A subscriber can usually contact the provider to remove the lock for a fee, utilize private services to remove the lock, or make use of ample software and websites available on the Internet to unlock the handset themselves. While most web sites offer the unlocking for a fee, some do it for free. The locking applies to the handset, identified by its International Mobile Equipment Identity (IMEI) number, not to the account (which is identified by the SIM card). It is always possible to switch to another (non-locked) handset if such a handset is available.

Some providers will unlock the phone for free if the customer has held an account for a certain time period. Third party unlocking services exist that are often quicker and lower cost than that of the operator. In most countries, removing the lock is legal. United States-based T-Mobile provides free unlocking services to their customers after 3 months of subscription.

In some countries such as Belgium, India, Indonesia, Pakistan, and Malaysia, all phones are sold unlocked. However, in Belgium, it is unlawful for operators there to offer any form of subsidy on the phone's price. This was also the case in Finland until April 1, 2006, when selling subsidized combinations of handsets and accounts became legal, though operators have to unlock phones free of charge after a certain period (at most 24 months).

GSM security
GSM was designed with a moderate level of security. The system was designed to authenticate the subscriber using a pre-shared key and challenge-response. Communications between the subscriber and the base station can be encrypted. The development of UMTS introduces an optional USIM, that uses a longer authentication key to give greater security, as well as mutually authenticating the network and the user - whereas GSM only authenticated the user to the network (and not vice versa). The security model therefore offers confidentiality and authentication, but limited authorization capabilities, and no non-repudiation.

GSM uses several cryptographic algorithms for security. The A5/1 and A5/2 stream ciphers are used for ensuring over-the-air voice privacy. A5/1 was developed first and is a stronger algorithm used within Europe and the United States; A5/2 is weaker and used in other countries. A large security advantage of GSM over earlier systems is that the cryptographic key stored on the SIM card is never sent over the wireless interface. Serious weaknesses have been found in both algorithms, however, and it is possible to break A5/2 in real-time in a ciphertext-only attack. The system supports multiple algorithms so operators may replace that cipher with a stronger one.

The Future of GSM

GSM together with other technologies is part of an evolution of wireless mobile telecommunication that includes High-Speed Circuit-Switched Data (HSCSD), General Packet Radio System (GPRS), Enhanced Data rate for GSM Evolution (EDGE), and Universal Mobile Telecommunications Service (UMTS).

HSCSD (High Speed Circuit Switched Data)

It is a specification for data transfer over GSM networks. HSCSD utilizes up to four 9.6Kb or 14.4Kb time slots, for a total bandwidth of 38.4Kb or 57.6Kb.

14.4Kb time slots are only available on GSM networks that operate at 1,800MHz. 900 MHz GSM networks are limited to 9.6Kb time slots. Therefore, HSCSD is limited to 38.4Kbps on 900 MHz GSM networks. HSCSD can only achieve 57.6Kbps on 1,800 MHz GSM networks.

General Packet Radio System (GPRS)
GPRS (General Packet Radio Service) is a packet based wireless communication service that offers data rates from 9.05 up to 171.2 Kbps and continuous connection to the Internet for mobile phone and computer users. GPRS is based on GSM communications and complements existing services such as circuit switched cellular phone connections and the Short Message Service (SMS).

GPRS represents the bridge between 2G and 3G mobile telecommunications and is commonly referred to as 2.5G.

GPRS implementation requires modification of existing GSM networks, because GSM is a circuit switched technology while GPRS is packet oriented. GPRS enables packet data (the same as is used by an Ethernet LAN, WAN or the Internet) to be sent to and from a mobile station - e.g. mobile phone, PDA or Laptop.

WAP and SMS can also be sent using GPRS and individuals working with GPRS need to learn and understand how the mobile stations, the air interface, network architecture, protocol structures and signaling procedures must be modified.

GPRS offers much higher data rates than GSM and can be combined with 3G technologies such as EDGE (Enhanced Data-Rates for GSM Evolution) to give even higher bit-rates. It offers many benefits for customers and network operators: such as volume (rather then time) dependent billing and more efficient use of network resources.

Due to the worldwide delay in implementing 3G solutions such as CDMA and UMTS the demand for GPRS is still growing.

GPRS Networks:

· Offers detailed information ranging from standards to practical implementation

· Answers 'how' and 'why' rather than just simply re-stating GPRS specifications

· Provides comprehensive coverage in a single volume

Essential reading for all telecommunications project managers, field engineers, technical staff in network operator and manufacturing organizations, GPRS application and service developers,Datacom/ITengineers.

The comprehensive coverage also makes this a superb reference for students of computer science, telecommunications and electrical engineering.

EDGE (Enhanced Data rate for GSM Evolution)

It is a specification for data transfer on GSM networks. EDGE features a packet capability, EGPRS (Enhanced General Packet Radio Service), and a circuit switched capability, ESCD (Enhanced Circuit Switched Data).

EDGE packs up to 69.2Kbps into eight timeslots, for a total theoretical bandwidth of 473.6Kb. GERAN (GSM/EDGE Radio Access Network) is the name given to the 3GPP standards for GSM/EDGE radio access. EDGE is an update to GPRS. In turn, EDGE will eventually be replaced by WCDMA (Wideband Code Division Multiple Access).

GSM AT COMMANDS

Syntax Rules FOR GSM

· A command string should start with "AT" or "at", except for the commands "A/" and "+++". At or aT are invalid.
· Several commands can be given in one command string.
· The commands can be given in upper or lower case.
· A command string should contain less than 40 characters.
· When an error is made during the typing of the command, it can be corrected using the backspace key.
· Commands and command strings must be terminated with an <ENTER>, except +++ and A/
· A telephone number can exist of following characters: 1 2 3 4 5 6 7 8 9 * =, ; # + > . All other characters are ignored (space, underscore). They help formatting the dialstring.
· Commands that use a numerical parameter can be used without a numerical value. In this case the command will be issued with the value zero.
· If the command string contains two consecutive commands without parameter, as discussed above, the modem will respond with an error.
· After the command ATZ has been issued, a pause of two seconds should be respected before entering the next commands
GSM AT COMMANDS

· AT

· AT&D0

· AT+IFC=00

· ATCMGF=1

· AT+CNMI=22000

AT commands features

1 Wavecom line settings

A serial link handler is set with the following default values (factory settings): autobaud, 8 bits data, 1 stop bit, no parity, RTS /CTS flow control.

Please use the +IPR, +IFC and +ICF commands to change these settings.

2 Command line

Commands always start with AT (which means ATtention) and finish with a <CR> character.

3 Information responses and result codes

Responses start and end with <CR><LF>, except for the ATV0 DCE response format) and the ATQ1 (result code suppression) commands.

· If command syntax is incorrect, an ERROR string is returned.

· If command syntax is correct but with some incorrect parameters, the +CME ERROR: <Err> or +CMS ERROR: <SmsErr> strings are returned with different error codes.

· If the command line has been performed successfully, an OK string is returned.

In some cases, such as “AT+CPIN?” or (unsolicited) incoming events, the product does not return the OK string as a response. In the following examples <CR> and <CR><LF> are intentionally omitted.

SIM Insertion, SIM Removal

SIM card Insertion and Removal procedures are supported. There are software functions relying on positive reading of the hardware SIM detect pin. This pin state (open/closed) is permanently monitored.

When the SIM detect pin indicates that a card is present in the SIM connector, the product tries to set up a logical SIM session. The logical SIM session will be set up or not depending on whether the detected card is a SIM Card or not.

The AT+CPIN? command delivers the following responses:

・If the SIM detect pin indicates “absent”, the response to AT+CPIN? Is “+CME ERROR 10” (SIM not inserted).

· If the SIM detect pin indicates “present”, and the inserted Card is a SIM Card, the response to AT+CPIN? is “+CPIN: xxx” depending on SIM PIN state.

· If the SIM detect pin indicates “present”, and the inserted Card is not a SIM Card, the response to AT+CPIN? is CME ERROR 10.

· These last two states are not given immediately due to background initialization. Between the hardware SIM detect pin indicating “present” and the previous results the AT+CPIN? sends “+CME ERROR: 515” (Please wait, init in progress).

 When the SIM detect pin indicates card absence, and if a SIM Card was previously inserted, an IMSI detach procedure is performed, all user data is removed from the product (Phonebooks, SMS etc.). The product then switches to emergency mode mode.

 Background initialization

After entering the PIN (Personal Identification Number), some SIM user datafiles are loaded into the product (Phonebooks, SMS status, etc.). Please be aware that it might take some time to read a large phonebook.

The AT+CPIN? command response comes just after the PIN is checked. After this response user data is loaded (in background). This means that some data may not be available just after PIN entry is confirmed by ’OK’. The reading of

phonebooks will then be refused by “+CME ERROR: 515” or “+CMS ERROR: 515” meaning, “Please wait, service is not available, init in progress”.

This type of answer may be sent by the product at several points:

· when trying to execute another AT command before the previous one is completed (before response),

· when switching from ADN to FDN (or FDN to ADN) and trying to read the relevant phonebook immediately,

· when asking for +CPIN? status immediately after SIM insertion and before the product has determined if the inserted card is a valid SIM Card.

2
AT&D0

Set DTR signal &D
Description

This command controls the Data Terminal Ready (DTR) signal. DTR is a signal indicating that the computer is ready for transmission.
I. To dial the remote MODEM Odem, you need to use the terminal program. You should dial the modem by sending the following command:

II. AT &D0 DT telephone number (Example: AT&D0 DT 1, 2434456666)

III. The ‘&D0’ command tells the modem to not hang up the line when the DTR signal is dropped. Since we will have to exit the terminal program, the communications port is reset and the DTR signal is dropped. If the modem disconnected at this point, we wouldn’t be able to connect to the PLC with Direct Soft. With some modems (US Robotics included) terminal must be configured to not insert a carriage return (CR) automatically after each command. The carriage return cancels out the Dial request. Look under “Terminal Preferences”.

IV. OK, assuming you have used the command above to connect to the remote site, you will have to exit the terminal program COMPLETELY. Let me repeat that. You will have to exit the terminal program completely. Otherwise, Direct Soft will not be able to get control of the communications port and you will not be able to get online.

V. Start DirectSoft like you would normally. Create a new link using the communications port that your modem is connected to.

3. AT + IFC = (0,0)

Description

Command syntax: AT+IFC=<DCE_by_DTE>,<DTE_by_DCE>

This command is used to control the operation of local flow control between the DTE and DCE

The terms DTE and DCE are very common in the data communications market. DTE is short for Data Terminal Equipment and DCE stands for Data Communications Equipment. But what do they really mean? As the full DTE name indicates this is a piece of device that ends a communication line, whereas the DCE provides a path for communication.
4. AT CMGF = 1

 Description:

The message formats supported are text mode and PDU mode.

In PDU mode, a complete SMS Message including all header information is given as a binary string (in hexadecimal format). Therefore, only the following set of characters is allowed: {‘0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’, ‘A’, ‘B’,’C’,’D’,’E’,’F’}. Each pair or characters are converted to a byte (e.g.: ‘41’ is converted to the ASCII character ‘A’, whose ASCII code is 0x41 or 65).

In Text mode, all commands and responses are in ASCII characters. The format selected is stored in EEPROM by the +CSAS command.

[image: image5.png]
5. AT+CNMI = 22000

AT+CNMI: New Message indication to TE
	Command
	Possible response(s)

	+CNMI=[<mode>[,<mt>[,<bm>[,<ds>[,<bfr>]]]]]
	

	+CNMI?
	+CNMI: <mode>,<mt>,<bm>,<ds>,<bfr>

	+CNMI=?
	+CSCB: (list of supported <mode>s,<mt>s,<bm>s,<ds>s,<bfr>s)

<mode>: 0: buffer in TA;
1: discard indication and reject new SMS when TE-TA link is reserved; otherwise forward directly;
2: buffer new Sms when TE-TA link is reserved and flush them to TE after reservation; otherwise forward directly to the TE;
3: forward directly to TE; <mt>: 0: no SMS-DELIVER are routed to TE;
1: +CMTI: <mem>,<index> routed to TE;
2: for all SMS_DELIVERs except class 2: +CMT: routed to TE;class 2 is indicated as in <mt>=1;
3: Class 3: as in <mt>=2;
other classes: As in <mt>=1;
<bm>: same as <mt>, but for CBMs;
<ds>: 0: No SMS-STATUS-REPORT are routed to TE;
1: SMS-STATUS-REPORTs are routed to TE, using +CDS: ...
<bfr>: 0: TA buffer is flushed to TE (if <mode>=1..3);
1: TA buffer is cleared (if <mode>=1..3);
---> Only when <mt> is different from 0, you will get a message that a new SMS has been received.
Steps using AT commands to send and receive SMS using a GSM modem from a computer

1. Setting up a GSM modem

2. Using the HyperTerminal

3.Initial Setup AT commands

4.Sending sms using AT commands

5.Receiving sms using AT commands

6.Using a computer program to send and receive sms

After succesfully sending and receiving SMS using AT commands via the HyperTerminal, developers can 'port' the ASCII instructions over to their programming environment, eg. Visual Basic, C/C++ or Java and also programmically parse ASCII messages from modem.

1. Setting up your GSM modem

Most GSM modems comes with a simple manual and necessary drivers. To setup your T-ModemUSB, download the USB GSM Modem Quick Start (Windows) guide (460kB PDF). You would be able to send SMS from the Windows application and also setup GPRS connectivity. The GSM modem will map itself as a COM serial port on your computer.

[image: image6.png]
Windows based control panel to setup GSM modem, GPRS and send SMS

2.
Using the hyperterminal

Hint :: By developing your AT commands using HyperTerminal, it will be easier for you to develop your actual program codes in VB, C, Java or other platforms.

Go to START\Programs\Accessories\Communications\HyperTerminal (Win 2000) to create a new connection, eg. "My USB GSM Modem". Suggested settings ::

 - COM Port :: As indicated in the T-Modem Control Tool
 - Bits per second :: 230400 (or slower)
 -Data Bits : 8
 - Parity : None
 - Stop Bits : 1
 - Flow Control : Hardware

You are now ready to start working with AT commands. Type in "AT" and you should get a "OK", else you have not setup your HyperTerminal correctly. Check your port settings and also make sure your GSM modem is properly connected and the drivers installed.

3. Initial setup ATcommands

We are ready now to start working with AT commands to setup and check the status of the GSM modem.

	AT
	Returns a "OK" to confirm that modem is working

	AT+CPIN="xxxx"
	To enter the PIN for your SIM (if enabled)

	AT+CREG?
	A "0,1" reply confirms your modem is connected to GSM network

	AT+CSQ
	Indicates the signal strength, 31.99 is maximum.

4. Sending SMS using AT commands

We suggest try sending a few SMS using the Control Tool above to make sure your GSM modem can send SMS before proceeding. Let's look at the AT commands involved ..

	AT+CMGF=1
	To format SMS as a TEXT message

	AT+CSCA="+xxxxx"
	Set your SMS center's number. Check with your provider.

To send a SMS, the AT command to use is AT+CMGS ..

AT+CMGS="+yyyyy" <Enter>
> Your SMS text message here <Ctrl-Z>

The "+yyyyy" is your receipent's mobile number. Next, we will look at receiving SMS via AT commands.

5. Receiving SMS using AT commands

The GSM modem can be configured to response in different ways when it receives a SMS.

a) Immediate - when a SMS is received, the SMS's details are immediately sent to the host computer (DTE) via the +CMT command

	AT+CMGF=1
	To format SMS as a TEXT message

	AT+CNMI=1,2,0,0,0
	Set how the modem will response when a SMS is received

When a new SMS is received by the GSM modem, the DTE will receive the following..

+CMT : "+61xxxxxxxx" , , "04/08/30,23:20:00+40"
This the text SMS message sent to the modem

Your computer (DTE) will have to continuously monitor the COM serial port, read and parse the message.

b) Notification - when a SMS is received, the host computer (DTE) will be notified of the new message. The computer will then have to read the message from the indicated memory location and clear the memory location.

	AT+CMGF=1
	To format SMS as a TEXT message

	AT+CNMI=1,1,0,0,0
	Set how the modem will response when a SMS is received

When a new SMS is received by the GSM modem, the DTE will receive the following ..

	+CMTI: "SM",3
	Notification sent to the computer. Location 3 in SIM memory

	AT+CMGR=3 <Enter>
	AT command to send read the received SMS from modem

The modem will then send to the computer details of the received SMS from the specified memory location (eg. 3) ..

+CMGR: "REC READ","+61xxxxxx",,"04/08/28,22:26:29+40"
This is the new SMS received by the GSM modem

After reading and parsing the new SMS message, the computer (DTE) should send a AT command to clear the memory location in the GSM modem ..

AT+CMGD=3 <Enter> To clear the SMS receive memory location in the GSM modem

If the computer tries to read a empty/cleared memory location, a +CMS ERROR: 321 will be sent to the computer.

6. Using a computer program to send and receive SMS

Once we are able to work the modem using AT commands, we can use high-level programming (eg. VB, C, Java) to send the AT ASCII commands to and read messages from the COM serial port that the GSM modem is attached to.

GSM INTERFACED TO MICROCONTROLLER

[image: image7.png]
GSM MODULE is interfaced to microcontroller via RS232

RS232 (serial port)

RS-232 (Recommended Standard - 232) is a telecommunications standard for binary serial communications between devices. It supplies the roadmap for the way devices speak to each other using serial ports. The devices are commonly referred to as a DTE (data terminal equipment) and DCE (data communications equipment); for example, a computer and modem, respectively.
RS232 is the most known serial port used in transmitting the data in communication and interface. Even though serial port is harder to program than the parallel port, this is the most effective method in which the data transmission requires less wires that yields to the less cost. The RS232 is the communication line which enables the data transmission by only using three wire links. The three links provides ‘transmit’, ‘receive’ and common ground...
 The ‘transmit’ and ‘receive’ line on this connecter send and receive data between the computers. As the name indicates, the data is transmitted serially. The two pins are TXD & RXD. There are other lines on this port as RTS, CTS, DSR, DTR, and RTS, RI. The ‘1’ and ‘0’ are the data which defines a voltage level of 3V to 25V and -3V to -25V respectively.

he electrical characteristics of the serial port as per the EIA (Electronics Industry Association) RS232C Standard specifies a maximum baud rate of 20,000bps, which is slow compared to today’s standard speed. For this reason, we have chosen the new RS-232D Standard, which was recently released.
 The RS-232D has existed in two types. i.e., D-TYPE 25 pin connector and D-TYPE 9 pin connector, which are male connectors on the back of the PC. You need a female connector on your communication from Host to Guest computer. The pin outs of both D-9 & D-25 are show below

	D-Type-9 pin no.
	D-Type-25 pin no.
	Pin outs
	Function

	3
	2
	RD
	Receive Data (Serial data input)

	2
	3
	TD
	Transmit Data (Serial data output)

	7
	4
	RTS
	Request to send (acknowledge to modem that UART is ready to exchange data

	8
	5
	CTS
	Clear to send (i.e.; modem is ready to exchange data)

	6
	6
	DSR
	Data ready state (UART establishes a link)

	5
	7
	SG
	Signal ground

	1
	8
	DCD
	Data Carrier detect (This line is active when modem detects a carrier

	4
	20
	DTR
	Data Terminal Ready.

	9
	22
	RI
	Ring Indicator (Becomes active when modem detects ringing signal from PSTN

Rs232

[image: image8.png] [image: image9.png]
[image: image10.png]
When communicating with various micro processors one needs to convert the RS232 levels down to lower levels, typically 3.3 or 5.0 Volts. Here is a cheap and simple way to do that. Serial RS-232 (V.24) communication works with voltages -15V to +15V for high and low. On the other hand, TTL logic operates between 0V and +5V . Modern low power consumption logic operates in the range of 0V and +3.3V or even lower.

	RS-232
	TTL
	Logic

	-15V … -3V
	+2V … +5V
	High

	+3V … +15V
	0V … +0.8V
	Low

 Thus the RS-232 signal levels are far too high TTL electronics, and the negative RS-232 voltage for high can’t be handled at all by computer logic. To receive serial data from an RS-232 interface the voltage has to be reduced. Also the low and high voltage level has to be inverted. This level converter uses a Max232 and five capacitors. The max232 is quite cheap (less than 5 dollars) or if youre lucky you can get a free sample from Maxim. The MAX232 from Maxim was the first IC which in one package contains the necessary drivers and receivers to adapt the RS-232 signal voltage levels to TTL logic. It became popular, because it just needs one voltage (+5V or +3.3V) and generates the necessary RS-232 voltage levels.[image: image11]
MAX 232 PIN DIAGRAM
 +---\/---+

 1 -|C1+ Vcc|- 16

 2 -|V+ gnd|- 15

 3 -|C1- T1O|- 14

 4 -|C2+ R1I|- 13

 5 -|C2- R1O|- 12

 6 -|V- T1I|- 11

 7 -|T2O T2I|- 10

 8 -|R2I R2O|- 9

RS232 INTERFACED TO MAX 232

 [image: image12.emf]J2

1

2

3

4

5

6

7

8

9

P3.0

5V

C4

0.1uf

C7

0.1uf

TXD

C6

0.1uf

P3.1

T1OUT

C1

1uf

T1OUT

U3

MAX3232

15

16

13

8

10

11

1

3

4

5

2

6

12

9

14

7

GND

VCC

R1IN

R2IN

T2IN

T1IN

C1+

C1-

C2+

C2-

V+

V-

R1OUT

R2OUT

T1OUT

T2OUT

C5

0.1uf

RXD

J2

1

2

3

4

5

6

7

8

9

P3.0

5V

C4

0.1uf

C7

0.1uf

TXD

C6

0.1uf

P3.1

T1OUT

C1

1uf

T1OUT

U3

MAX3232

15

16

13

8

10

11

1

3

4

5

2

6

12

9

14

7

GND

VCC

R1IN

R2IN

T2IN

T1IN

C1+

C1-

C2+

C2-

V+

V-

R1OUT

R2OUT

T1OUT

T2OUT

C5

0.1uf

RXD

Rs232 is 9 pin db connector, only three pins of this are used ie 2,3,5 the transmit pin of rs232 is connected to rx pin of microcontroller

Max232 interfaced to microcontroller

[image: image18.png]
MAX232 is connected to the microcontroller as shown in the figure above 11, 12 pin are connected to the 10 and 11 pin ie transmit and receive pin of microcontroller

CHAPTER 5
WORKING FLOW

BLOCK DIAGRAM

BLOCK DIAGRAM EXPLANATION:

Mainly the block diagram consists of following parts:
· GSM Modem

· GSM Mobile

· LPC2148(ARM7) microcontroller

· Regulated power supply
Working flow of the project:
This project DESIGN AND ASSESMENT OF AN ONLINE PASSENGER INFORMATION SYSTEM FOR INTEGRATED MULTIMODE TRIP PLANNING will be used to book the tickets for private and public transportation system, and also useful to book the movie tickets through this technology .

In this project we are having one central transportation unit which acts as the mediator between the user and the End transportation unit. The user no needs to remember each and every transportation (railway or bus transportation) number. The Central transportation system will consists all the public and private sector transportation mobile number.
The user needs to remember only this central transportation unit mobile number. Whenever the user wants to book the tickets , he need to send an SMS to this transportation unit. Immediately the transportation system GSM modem will ask the details about the transport he want(public or private) through SMS. And it will ask how many tickets and timing details. when the user exchanges the information relates to his journey with central transportation system, that information will be stored in the central transportation side memory and finally this information(Mobile no. of the user, no.of tickets he wants and journey date and time) will be sent to the end transportation system by the central transportation unit . And finally that end transportation people will call to the User and confirms tickets.
Schematic Explanation:-
REGULATED POWER SUPPLY
 A variable regulated power supply, also called a variable bench power supply, is one where you can continuously adjust the output voltage to your requirements. Varying the output of the power supply is the recommended way to test a project after having double checked parts placement against circuit drawings and the parts placement guide.

This type of regulation is ideal for having a simple variable bench power supply. Actually this is quite important because one of the first projects a hobbyist should undertake is the construction of a variable regulated power supply. While a dedicated supply is quite handy ,it's much handier to have a variable supply on hand, especially for testing.

Mainly the ARM controller needs 3.3 volt power supply. To use these parts we need to build a regulated 3.3 volt source. Usually you start with an unregulated power To make a 3.3 volt power supply, we use a LM317 voltage regulator IC (Integrated Circuit). The IC is shown below.

CIRCUIT FEATURES:-

	Vout range
	1.25V - 37V

	Vin - Vout difference
	3V - 40V

	Operation ambient temperature
	0 - 125°C

	Output Imax
	<1.5A

	Minimum Load Currentmax
	10mA

A current-limiting circuit constructed with LM317

[image: image13.png]

Part pinout of LM317 showing its constant voltage reference

LM317 is the standard part number for an integrated three-terminal adjustable linear voltage regulator. LM317 is a positive voltage regulator supporting input voltage of 3V to 40V and output voltage between 1.25V and 37V. A typical current rating is 1.5A although several lower and higher current models are available. Variable output voltage is achieved by using a potentiometer or a variable voltage from another source to apply a control voltage to the control terminal. LM317 also has a built-in current limiter to prevent the output current from exceeding the rated current, and LM317 will automatically reduce its output current if an overheat condition occurs under load. LM317 is manufactured by many companies, including National Semiconductor, Fairchild Semiconductor, and STMicroelectronics.

Although LM317 is an adjustable regulator, it is sometimes preferred for high-precision fixed voltage applications instead of the similar LM78xx devices because the LM317 is designed with superior output tolerances. For a fixed voltage application, the control pin will typically be biased with a fixed resistor network, a Zener diode network, or a fixed control voltage from another source. Manufacturer datasheets provide standard configurations for achieving various design applications, including the use of a pass transistor to achieve regulated output currents in excess of what the LM317 alone can provide.

LM317 is available in a wide range of package forms for different applications including heat sink mounting and surface-mount applications. Common form factors for high-current applications include TO-220 and TO-3. LM317 is capable of dissipating a large amount of heat at medium to high current loads and the use of a heat sink is recommended to maximize the lifespan and power-handling capability.

LM337 is the negative voltage complement to LM317 and the specifications and function are essentially identical, except that the regulator must receive a control voltage and act on an input voltage that are below the ground reference point instead of above it.

BLOCK DIAGRAM

[image: image14.png]
The above block diagram will shows the regulated power supply in this the power supply can be given from 230V AC supply which will be given to the 12v-0-12v step down transformer whose output voltage 12V AC. Again this voltage can be converted into DC voltage by using the Bridge rectifier, but this voltage is a pulsating DC voltage and this can be converting into pure DC by connecting the capacitors, and this pure 12V DC will be given to the 7805 voltage regulators whose output voltage is an 5V DC and this can be given to the microcontroller as a power supply.
WE CAN EVEN USE A USB CONNECTOR FOR THE REQUIRED SUPPLY INSTEAD OF THE ABOVE CIRCUIT
CHAPTER 6
SOURCE CODE

CHAPTER 7
KEIL SOFTWARE

Introduction to Micro vision Keil (IDE)

Keil is a cross compiler. So first we have to understand the concept of compilers and cross compilers. After then we shall learn how to work with keil.

Concept of compiler: -

Compilers are programs used to convert a High Level Language to object code. Desktop compilers produce an output object code for the underlying microprocessor, but not for other microprocessors. I.E the programs written in one of the HLL like ‘C’ will compile the code to run on the system for a particular processor like x86 (underlying microprocessor in the computer). For example compilers for Dos platform is different from the Compilers for Unix platform

So if one wants to define a compiler then compiler is a program that translates source code into object code. The compiler derives its name from the way it works, looking at the entire piece of source code and collecting and reorganizing the instruction. See there is a bit little difference between compiler and an interpreter. Interpreter just interprets whole program at a time while compiler analyzes and execute each line of source code in succession, without looking at the entire program.

The advantage of interpreters is that they can execute a program immediately. Secondly programs produced by compilers run much faster than the same programs executed by an interpreter. However compilers require some time before an executable program emerges. Now as compilers translate source code into object code, which is unique for each type of computer, many compilers are available for the same language.

Concept of cross compiler: -

A cross compiler is similar to the compilers but we write a program for the target processor (like 8051 and its derivatives) on the host processors (like computer of x86)

It means being in one environment you are writing a code for another environment is called cross development. And the compiler used for cross development is called cross compiler

So the definition of cross compiler is a compiler that runs on one computer but produces object code for a different type of computer. Cross compilers are used to generate software that can run on computers with a new architecture or on special-purpose devices that cannot host their own compilers. Cross compilers are very popular for embedded development, where the target probably couldn't run a compiler. Typically an embedded platform has restricted RAM, no hard disk, and limited I/O capability. Code can be edited and compiled on a fast host machine (such as a PC or Unix workstation) and the resulting executable code can then be downloaded to the target to be tested. Cross compilers are beneficial whenever the host machine has more resources (memory, disk, I/O etc) than the target. Keil C Compiler is one such compiler that supports a huge number of host and target combinations. It supports as a target to 8 bit microcontrollers like Atmel and Motorola etc.

Why do we need cross compiler?
There are several advantages of using cross compiler. Some of them are described as follows

• By using this compilers not only can development of complex embedded systems be completed in a fraction of the time, but reliability is improved, and maintenance is easy.

• Knowledge of the processor instruction set is not required.

• A rudimentary knowledge of the 8051’s memory architecture is desirable but not necessary.

• Register allocation and addressing mode details are managed by the compiler.

• The ability to combine variable selection with specific operations improves program readability.

• Keywords and operational functions that more nearly resemble the human thought process can be used.

• Program development and debugging times are dramatically reduced when compared to assembly language programming.

• The library files that are supplied provide many standard routines (such as formatted output, data conversions, and floating-point arithmetic) that may be incorporated into your application.

• Existing routine can be reused in new programs by utilizing the modular programming techniques available with C.

• The C language is very portable and very popular. C compilers are available for almost all target systems. Existing software investments can be quickly and easily converted from or adapted to other processors or environments.

Now after going through the concept of compiler and cross compilers lets we start with Keil C cross compiler.

Keil C cross compiler: -
Keil is a German based Software development company. It provides several development tools like

• IDE (Integrated Development environment)

• Project Manager

• Simulator

• Debugger

• C Cross Compiler, Cross Assembler, Locator/Linker

Keil Software provides you with software development tools for the ARM microcontrollers. With these tools, you can generate embedded applications for the multitude of ARM derivatives. Keil provides following tools for ARM development

1. ARM Optimizing C Cross Compiler,

2. Macro Assembler,

3. ARM Utilities (linker, object file converter, library manager),

4. Source-Level Debugger/Simulator,

5. µVision for Windows Integrated Development Environment.

The keil ARM tool kit includes three main tools, assembler, compiler and linker.

An assembler is used to assemble your ARM assembly program

A compiler is used to compile your C source code into an object file

A linker is used to create an absolute object module suitable for your in-circuit emulator.

ARM project development cycle: -

These are the steps to develop ARM project using keil

1. Create source files in C or assembly.

2. Compile or assemble source files.

3. Correct errors in source files.

4. Link object files from compiler and assembler.

5. Test linked application.

CHAPTER 8
CONCLUSION

CONCLUSSION
The project “Design and Assessment of an online passenger information system for integrated multimode trip planning” has been successfully designed and tested. It has been developed by integrating features of all the hardware components used. Presence of every module has been reasoned out and placed carefully thus contributing to the best working of the unit.

Secondly, using highly advanced IC’s and with the help of growing technology the project has been successfully implemented.
CHAPTER 9
 BIBLIOGRAPHY
BIBLIOGRAPHY
The 8051 Micro controller and Embedded Systems

 -Muhammad Ali Mazidi

 -Janice Gillispie Mazidi

The 8051 Micro controller Architecture, Programming & Applications

 -Kenneth J.Ayala

Fundamentals Of Micro processors and Micro computers

 -B.Ram

Micro processor Architecture, Programming & Applications

 -Ramesh S.Gaonkar

Electronic Components

 -D.V.Prasad

Wireless Communications

 - Theodore S. Rappaport

Mobile Tele Communications

 - William C.Y. Lee
ARM System Developer’s Guide
-Andrew N.SLOSS

-Domenic SYMES

-Chris WRIGHT
References on the Web:

www.national.com
www.nxp.com
www.8052.com
www.microsoftsearch.com
www.geocities.com
www.keil.com

 Indicates that the normal register used by User or System mode has been replaced by an alternative register specific to the exception mode

Register Bank

Transportation Mobile

Number

Regulated Power Supply

User

Mobile

GSM Modem

LPC2148 Microcontroller

119

