1. ABSTRACT

In this system, the hardware consists of Peripheral Interface Controller, power meter, transmission technique (GSM) and an output display, the software consists of programs that is user for the working of the system usually written in embedded C. Our new system is designed to attach with the existing K W meter in our house. This K W meter measures the consumption of electricity and interrupts the microcontroller. The microcontroller counts these interrupts and saves it in a nonvolatile memory and it also displays these counts and units on the LCD. Wireless module is used to communicate with the server. When server sends a request to client through these module. The microcontroller reads this request and sends back the current reading through the same media. When server sends the corresponding bill, it will display on the LCD with alarm.

2 ORGANIZATION PROFILE

3. INTRODUCTION

 The Project entitled ‘Intelligent Power Meter’ refers to as it is a system that it helps to make a proper communication between the electricity board and customers. This system works on the principle of Embedded System.

3.1 EMBEDDED SYSTEM

Embedded system can be divided into two,

 1. HARDWARE

 2. SOFTWARE

In this system, the hardware consists of Peripheral Interface Controller, power meter, transmission technique (GSM) and an output display, the software consists of programs that is user for the working of the system usually written in embedded C

The main advantage of the system is to help the customers by an online contact with the electricity board by getting the correct bill for the corresponding readings from the meter.

Our new system is designed to attach with the existing K W meter in our house. This K W meter measures the consumption of electricity and interrupts the microcontroller. The microcontroller counts these interrupts and saves it in a nonvolatile memory and it also displays these counts and units on the LCD. Wireless module is used to communicate with the server. When server sends a request to client through these module. The microcontroller reads this request and sends back the current reading through the same media. When server sends the corresponding bill, it will display on the LCD with alarm.

On the server side, An application program on java / VB frequently sends the requests to the clients , and whenever it gets the reply ,it calculate s the bill and sends it back to the corresponding user. Here we are using GSM module as the wireless module

4. OBJECTIVE OF THE PROJECT

Our aim is to develop a wireless duplex communication system between the consumer & the Electricity Board at minimum expenditure and maximum efficiency.
 4.1 PROJECT OVERVIEW

‘Intelligent Powered Meter’ is a micro controller based project designed for wireless communication purpose between client and server. This system is used for duplex transmission of data .The data (units used) is accepted as a count by the PIC. The input to the PIC is the pulse received from the Electronic meter. This count and unit is transmitted to a server as when a requested by the server. The server processes this information and sends it back to the consumer. Thus the consumer is updated on his energy usages instantly. The project uses GSM transmission protocol to establish the connection between client and server.

5. SYSTEM SPECIFICATION
5.1 HARDWARE SPECIFICATION
· Power meter
· Lcd display

· PIC 16F877A

· GSM modem

· Circuit board

5.2 SOFTWARE SPECIFICATION

· Operating system- Linux

· Frond end- Java Swing

· Back end- MYSQL, Embedded C

6. SYSTEM DESIGN

The most creative and challenging of the system lifecycle is system design. The term design describes a final system and the process by which it is developed. The design phase focus on the detailed implementation of system recommended in the feasibility study.
6.1 DFD

Data flow diagram is used to define the flow of the system and its resources such as information. Data flow diagram are a way of expressing system requirements in graphical manner. Data flow diagrams represent one of the most ingenious tools used for structured analysis. A data flow diagram is called bubble chart. I t has purpose of clarifying system reqirements and identifying major transformations that will become programs in system design. A DFD consists of a series of bubbles joned by lines. The bubble represent data transformations and lines represent flow in the system. A DFD has 4 major symbols. They are as follows.
· Square- defines source or destination of data.
· Arrow- shows data flow.

· Circle- represents a process that transforms incoming data to outgoing flow.

· Open Rectangle- represents data store.

LEVEL 0

[image: image23.png]
LEVEL 1

[image: image2.png]
LEVEL 2

[image: image3.png]
7. THEORY

The design of this project is divided broadly into 3 sections:

1) Client side (Consumer)

2) Server side (Electricity Board)

3) Transmission protocol (GSM).
7.1 Client side

the Client side consists of the Electronic meter and the embedded system designed by us interfaced with it. The system consists of a PIC16F877A micro controller used as an interface between Meter and the GSM module. GSM module accepts data from PIC and sends it to the system synchronized to it on the server side. The data is then processed here and transmitted back.
[image: image4.png]
7.2 SERVER SIDE

The server side has the GSM reception module interfaced directly to a computer (server). The server is programmed to display all necessary details. After receiving data, the server processes it and sends it back to the client for display at client side. An LCD at the client side facilitates this purpose.

[image: image5.png]
7.3 TRANSMISSION PROTOCOL

The GSM transmission is used to establish connection between client and server. Once the connection is established, the consumer’s energy meter is on real time conversation with the server. Since we have to transmit data over a distance of many kilometers, GSM proves to be very efficient. Reason: no cost incurred for transmitting data; High Baud rate; less chance for data loss.

The block diagram consists of two sections,
Transmitter section

This section transmits the amount of energy consumed in units. For this, we connect the pulses from digital energy meter output as input of the controller. An IC present inside the meter generates pulses that exactly represent the amount energy consumed. The output of IC is connected to the counter input of the controller through an optocoupler. Optocoupler provides the electrical isolation between circuits and it allows signal transfer without coupling wires, capacitors or transformers. Here we use a PIC 16F877A Microcontroller to count the pulses and after a specific preset number of pulses it increments the unit. MAX232 is used as an interface between PIC and the GSM module. This is to ensure that the data is transmitted serially to the GSM. The unit value is transmitted through GSM. An LCD module interfaced with the PIC connected to the meter displays the pulses as count, instantaneous units consumed and the bill.
Receiver section
This section deals with the processing of data received from different consumers. The server sends a request to the module installed at consumer’s end along with the specific address from where unit details have to be transmitted back. When the required information is transmitted back, the server reads and stores it. It then issues appropriate billing function. This bill is then transmitted back to the consumer where the bill details are displayed on an LCD.
POWER SUPPLY- +5V REGULATED OUTPUT
Bridge Rectifier

[image: image6.png]
A bridge rectifier requires four diodes instead of two, but avoids the need for a center-tapped transformer. During the positive half of the secondary voltage diodesD2 and D4 are conducting and diode D3 and D1 are non-conduction. Therefore current flows through the secondary winding, diode D2, load resistor RL and the diode D4. During the negative half cycles of the secondary voltage diode D1 and D3 conduct andD2 and D4 do not conduct. The current therefore flows through the secondary winding diode D1, load resistor RL and diode D3. In both cases, the current passes through the load resistor in the same direction. Therefore, a fluctuating, unidirectional voltage is developed across the load.
Advantages of bridge rectifier

The bridge rectifier is the most widely used Full wave rectifier. It has many advantages over the center-tapped rectifier. It does not require a secondary winding. The peak inverse voltage of each diode is to the peak secondary voltage Vm, whereas the PIV of the non-conducting diode in the center-tapped rectifier is 2Vm. This fact is of vital importance when higher DC voltages are required. Suppose we need a certain DC output voltage (2Vm/#) from a full wave rectifier. If it is a bridge rectifier, the transformer secondary voltage need have a peak value of only Vm. But if it is a center-tapped rectifier, the secondary must have a 2Vm as its peak voltage. This is twice the value needed for a bridge rectifier. It means that for a center-tapped rectifier, the transformer secondary must have the double the number of turns. Such a transformer is costlier. Further more, each of the two diodes in a center tapped rectifier is required to have a PIV rating of only Vm. Hence, the diodes meant for use in a center-tapped rectifier are costlier than those meant for a bridge rectifier. The main disadvantage of a bridge rectifier is that it requires four diodes, two of which conduct on alternate half cycles. This creates when a problem when low DC voltages are required. The secondary voltage is low and the two diode voltage drops becomes significant. Selecting a transformer with slightly higher secondary voltage may compensate these diode voltage drops, but then the voltage regulation becomes poor. For this reason in low voltage applications we prefer the center-tapped rectifier that has only one diode drop (0.7 volt). By using Germanium diodes instead of silicon, the diode drop may further be reduced to 0.3 volt.
FILTER
Capacitor filter is used here. The value of this capacitor is 220 microfarad / 63V. It provides voltage for internal LED optocoupler.
OPTOCOUPLER

[image: image7.png]
 An optocoupler is a solid-state component in which the light emitter, the light path and the light detector are all enclosed within the component and cannot be changed externally. As the optocoupler provides the electrical isolation between circuits, it is called optoisolator. An optocoupler allows signal transfer without coupling wires, capacitors or transformers.

It can couple digital or analog signal. The optocoupler generally consist of an infrared LED and a photo detector such as PIN photodiode for fast switching phototransistor Darlington pair or photo SCR is combined in a single package. Optocouplers transduce input voltage to proportional light intensity by using LEDs. This light is transduced back to output voltage using sensitive devices. GaAs LEDs are used to provide spectral matching with silicon sensors. The wavelength response of each device is made to be as identical as possible to permit the highest measure of coupling possible. There is a transparent insulating gap between each set of elements embedded in the structure (not visible) to permit the passage of light. They are designed in such a way that they can be used to transmit in the MHz range with very small response times.

 The rigid structure of this package permits one-way transfer of electrical signal from the LED to the photo detector, without any electrical connection between the input and the output circuitry . The extend of isolation between the input and out put depends on the kind of material in the light path and on the distance between the light emitter and the light detector. A significant advantage of the optocoupler is its high resolution resistance, of the order of 10 ohms with isolation ranges up to 2500 volts between the input and output signals, and this feature allows it to be used as an interface between high voltage and low voltage systems.

 The VCE voltage affects the resulting collector current very slightly. The switching time of an optocoupler decreases with increased current, while for many devices is exactly the Application for this device includes the interfacing of different types of logic circuits and their use in level and position sensing circuit.

In this optocoupler, the power dissipation of the LED and phototransistor are almost equal and ICEO is measured in nano amperes. The relative out put current is almost constant when the case temperature varies from 25 degree to 75 degree centigrade. It is only 2 microseconds for a collector current of 6mA and a load resistance of 100 ohm.

The optocoupler consist of an internal LED and a phototransistor. When interrupt comes, the rectifier and filter section provides a dc voltage, which triggers the LED of the optocoupler. When the LED glows the light falls on the base of the phototransistor turning it on. The output of the optocoupler is connected to the microcontroller. The optocoupler output will be in logic 1in presence of interrupt again goes to logic 0 in the absence of an interrupt.

8. SOFTWARE

8.1 JAVA SWING

The Swing component set is part of the JFC. It contains a number of GUI components (buttons, textfields, scrollpanes, etc.) that are intended to be direct replacements of the corresponding AWT GUI components. Note, that Swingonly replaces a subsection of the AWT (the GUI components), other aspects of the AWT (e.g. layout managers, etc.) remain unchanged.

Some advantages of Java Swings are

· Extensibility

· Customizable

· Configurable

· Lightweight UI

· Loosely Coupled - MVC Architecture

· Pleasant look and feel

Swing provides a richer set of components than AWT. They are 100% Java-based.

AWT on the other hand was developed with the mind set that if a component or capability of a component wasn't available on one platform, it won't be available on any platform. Something quickly portable from platform x, to y, to z. Due to the peer-based nature of AWT, what might work on one implementation might not work on another, as the peer-integration might not be as robust. Many of the original AWT problems were traceable to differences in peer implementations.

This is not to say that there are less bugs in Swing, though most are out these days. Its just that if a bug exists in Swing, its the same problem on all platforms, which was not the case with AWT.
There are a few other advantages to Swing over AWT:

· Swing provides both additional components and added functionality to AWT-replacement components

· Swing components can change their appearance based on the current "look and feel" library that's being used. You can use the same look and feel as the platform you're on, or use a different look and feel

· Swing components follow the Model-View-Controller paradigm (MVC), and thus can provide a much more flexible UI.

· Swing provides "extras" for components, such as:

· Icons on many components

· Decorative borders for components

· Tooltips for components

· Swing components are lightweight (less resource intensive than AWT)

· Swing provides built-in double buffering

· Swing provides paint debugging support for when you build your own components

Swing also has a few disadvantages:

· It requires Java 2 or a separate JAR file

· If you're not very careful when programming, it can be slower than AWT (all components are drawn)

· Swing components that look like native components might not act exactly like native components

9. MICROCONTROLLER

 The core of the project is a PIC MICROCONTROLLER. In our system we are using a PIC 16F877A Microcontroller. Let us first begin with a preamble of what is microcontroller and why we have preferred it our say a microprocessor and why we chosen PIC and not any microcontroller.

We have all come across computers in our daily life and we all know the value and the use it has in our life. What if we have computer inside a product which we use everyday. Such a computer system hidden inside a product other than a computer is called an Embedded system. Our system is a embedded system as we use a microcontroller which is a small form of mini computer itself. We have used a microcontroller instead of a microprocessor because the former requires external hardware like external RAM, ROM, external peripherals etc. a microprocessor with all the external hardware can be called a microcontroller. Some of the features (disadvantages) of microprocessor are: -

· Used in: 80X86 (PCs), 8051, 68HC11, etc.)

· Only one bus between CPU and memory

· RAM and program memory share the same bus and the same memory, and so must have the same bit width.

· Bottleneck: getting instructions interferes with accessing RAM

· Complex Instructions Set Computer (CISC)

· Used in: 80X86 microprocessors, 8051 microcontrollers, 68HC11,etc.

· Many instructions (usually>100)

· Many addressing modes.

· Usually takes more than 1 internal clock cycle (Tcycle) to execute

Some of the major features of microcontrollers are: -

· Very little external support hardware

· Most RAM, ROM and peripherals on chip

· Computer on chip”, or “system on chip”(SOC)

· Used mostly in RISC CPUs

· Separate program bus and data bus: can be different widths

 For example, PIC use:

· Data memory (RAM): a small number of 8 bit registers

· Program memory (ROM): 12bit, 14bit, or 16 bit wide

· Only a few addressing modes

· Executes 1 instruction in one internal clock cycle

 Some of the advancements happening in this field that attracted us are: -

· Heading towards some mean between RISC and CISC

· Large CPUs are adding microcontroller like options (the 32 bit, 100MHz Strong RAM draws only 70MA)

· Small micro controllers are getting more powerful, now able to do some DSP

· General trend: smaller packages, less power consumption, faster

· Future possibility: “Sea of gates” reconfigurable processor
These are the major disadvantages that a microcontroller possesses over microprocessors. From the above points it can be noted that microcontroller in future. The advantages, which attracted us to the microcontroller, are its size, which is small, power consumption, which is less, and speed. Power consumption is an important factor in our system because it has to work 24 hours a day for 365 days. As the microcontroller consumes very less power it is very useful.

[image: image8.png]
 The micro controller we have used is a PIC16F877A. it is a 40-pin microcontroller. It can be programmed over 10,000 times and it is very easy to program. As mentioned before it uses RISC so it has very simple and user-friendly instruction set. The pin out diagram for the microcontroller is shown below: -

Some of the core features of PIC16F877A are: -

· High performance RISC CPU

· Only 35 single word instructions

· Operating speed of about DC-20MHz clock input

· It has a large interrupting capability-up to 20 sources

· Programmable code protection

· Extended temperature ranges

The points mentioned above are of great importance to us because our system is kept in public and it has to be protected otherwise it can be tampered. This micro controller has programmable code protection or the user can protect it. Since our system has to work for a long period of time and at different weather conditions in different countries extended temperature ranges are important. The PIC has the advantage is that it has industrial as well as commercial temperature ranges.

The characteristics of the PIC16F877A micro controller are: -

· 8K X 14 program memory

· 368 X8 user RAM registers

· 40 bi-directional ports Internal oscillator

· Interrupts

The PIC contains 2 separate memory blocks, which can be accessed simultaneously

1. Program memory

2. Data memory

Program memory

It is a FLASH EEPROM MEMORY where the program from the assembly code is written to .The program memory bus is 14 bit wide. The PC16F877A has 8K X 14 bits of program memory, which is equivalent to memory space of 8,192 words X 14 bits. The addresses are in hexadecimal and the last available address is 1FFF. The data memory has 368 general purpose registers and 33 special function registers
DATA EEPROM AND FLASH PROGRAM MEMORY

The data EEPROM and Flash program memory is readable and writable during normal operation (over the full VDD range). This memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers. There are six SFRs used to read and write this memory:

• EECON1

• EECON2

• EEDATA

• EEDATH

• EEADR

• EEADRH

When interfacing to the data memory block, EEDATA holds the 8-bit data for read/write and EEADR holds the address of the EEPROM location being accessed. These devices have 128 or 256 bytes of data EEPROM (depending on the device), with an address range from 00h to FFh. On devices with 128 bytes, addresses from 80h to FFh are unimplemented and will wraparound to the beginning of data EEPROM memory. When writing to unimplemented locations, the on-chip charge pump will be turned off.

When interfacing the program memory block, the EEDATA and EEDATH registers form a two-byte word that holds the 14-bit data for read/write and the EEADR and EEADRH registers form a two-byte word that holds the 13-bit address of the program memory location being accessed. These devices have 4 or 8K words of program Flash, with an address range from 0000h to 0FFFh for the PIC16F873A/874A and 0000h to 1FFFh for the PIC16F876A/877A. Addresses above the range of the respective device will wraparound to the beginning of program memory.

The EEPROM data memory allows single-byte read and write. The Flash program memory allows single-word reads and four-word block writes. Program memory writes operations automatically perform an erase-before write on blocks of four words. A byte writes in data EEPROM memory automatically erases the location and writes the new data (erase-before-write). An on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device for byte or word operations. When the device is code-protected, the CPU may continue to read and write the data EEPROM memory. Depending on the settings of the write-protect bits, the device may or may not be able to write certain blocks of the program memory; however, reads of the program memory are allowed. When code-protected, the device programmer can no longer access data or program memory; this does NOT inhibit internal reads or writes.
EEADR and EEADRH

The EEADRH: EEADR register pair can address up to a maximum of 256 bytes of data EEPROM or up to a maximum of 8K words of program EEPROM. When selecting a data address value, only the LSByte of the address is written to the EEADR register. When selecting a program address value, the MSByte of the address is written to the EEADRH register and the LSByte is written to the EEADR register. If the device contains less memory than the full address reach of the address register pair, the Most Significant bits of the registers are not implemented. For example, if the device has 128 bytes of data EEPROM, the Most Significant bit of EEADR is not implemented on access to data EEPROM.

EECON1 and EECON2 Registers

EECON1 is the control register for memory accesses. Control bit, EEPGD, determines if the access will be a program or data memory access. When clear, as it is when reset, any subsequent operations will operate on the data memory. When set, any subsequent operations will operate on the program memory. Control bits, RD and WR, initiate read and write or erase, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write or erase operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write (or erase) operation is interrupted by a MCLR or a WDT Time-out Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and rewrite the location. The data and address will be unchanged in the EEDATA and EEADR registers. Interrupt flag bit, EEIF in the PIR2 register, is set when the write is complete. It must be cleared in software. EECON2 is not a physical register. Reading EECON2 will read all ‘0’s. The EECON2 register is used exclusively in the EEPROM write sequence.

Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit (EECON1<7>) and then set control bit RD (EECON1<0>). The data is available in the very next cycle in the EEDATA register; therefore, it can be read in the next instruction (see Example 3-1). EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

The steps to reading the EEPROM data memory are:

 1. Write the address to EEADR. Make sure that the address is not larger than the memory size of the device.

2. Clear the EEPGD bit to point to EEPROM data memory.

3. Set the RD bit to start the read operation.

4. Read the data from the EEDATA register.

Writing to Data EEPROM Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific write sequence to initiate the write for each byte. The write will not initiate if the write sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment (see Example 3-2). Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set. At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

The steps to write to EEPROM data memory are:

1. If step 10 is not implemented, check the WR bit to see if a write is in progress.

 2. Write the address to EEADR. Make sure that the address is not larger than the memory size of the device.

3. Write the 8-bit data value to be programmed in the EEDATA register.

4. Clear the EEPGD bit to point to EEPROM data memory.

5. Set the WREN bit to enable program operations.

6. Disable interrupts (if enabled).

7. Execute the special five-instruction sequence:

• Write 55h to EECON2 in two steps (first to W, then to EECON2)

• Write AAh to EECON2 in two steps (first to W, then to EECON2)

• Set the WR bit

8. Enable interrupts (if using interrupts).

9. Clear the WREN bit to disable program operations.

 10. At the completion of the write cycle, the WR bit is cleared and the EEIF interrupt flag bit is set. (EEIF must be cleared by firmware.) If step 1 is not implemented, then firmware should check for EEIF to be set, or WR to clear, to indicate the end of the program cycle.

I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin. Additional information on I/O ports may be found in the PIC micro™ Mid-Range Reference Manual (DS33023). 4.1 PORTA and the TRISA Register PORTA is a 6-bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, the value is modified and then written to the port data latch. Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open-drain output. All other PORTA pins have TTL input levels and full CMOS output drivers. Other PORTA pins are multiplexed with analog inputs and the analog VREF input for both the A/D converters and the comparators. The operation of each pin is selected by clearing/setting the appropriate control bits in the ADCON1 and/or CMCON registers.

The TRISA register controls the direction of the port pins even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.
SPECIAL FEATURES OF THE CPU

These devices has a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

· OSC selection

· Reset

· Power on reset (POR)

· Power up timer (PWRT)

· Oscillator start up timer (OST)

Brown out reset (BOR) Interrupts are

· Watchdog timer

· Sleep

· Code protection

· ID locations

· In-Circuit serial programming

· Low Voltage In-Circuit Serial Programming

· In-Circuit Debugger

These devices have a watchdog timer, which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. These are two timers that offer necessary delays on power-up. Once is the Oscillator Start-Up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up. Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in reset while the power supply stabilizes. With these two timers on chip, most applications need no external reset circuitry. SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from sleep through external reset, Watchdog timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application.

The RC oscillator option saves system cost while the LP crystal option saves the power. A set of configuration bits is used to select various options.

10. LCD MODULE

[image: image9.wmf]
 Liquid Crystal Displays are materials which combine the properties of both liquids and Crystals. Rather than having a melting point, they having a temperature range within which the molecules are almost as mobile as they would in a liquid, but are grouped together in an ordered form similar to a crystal.

 An LCD consists of two glass panels, with the liquid crystal material sandwiched in between them. The inner surface of the glass plate is coated with transparent electrodes, which define the character, symbols or patterns to be displayed. Polymeric layers present in between the electrodes and the liquid crystal, which makes the crystal molecules o maintain a defined Orientation angle.

 Each polarizer is pasted outside the two glass panels. The polarizers would rotate the light rays passing through them to a definite angle, in particular direction. When the LCD is in the off state, light rays are rotated by two polarizers and the liquid crystal, such that the light rays come out of the LCD without any orientation and hence the LCD appears transparent.

 When sufficient voltage is applied to the electrodes, the liquid crystal molecules would be aligned in specific direction. The light rays passing through the LCD would be rotated by the polarizers, which would result in activating / highlighting the desired characters. The details are given below.

When sufficient lighting is not there, back lighting of the LCD is done for reading the characters or patterns. The widely used back lighting is of the LED array type, wherein the LED`s are connected in an array.

 The absence of any noise /interference, atypical lifetime of 100,000 hours on an average, the low DC drive voltage of 5V and the various color options available makes the LED backlighting the widely used one. Since the sensitivity of eye is maximum at 550nm, the yellow- green backlighting is the more widely used one.

FEATURES

 The built- in controller has the following features

· Correspond to high speed MPU interface(2MHz)

· 80 x 8 bit displays RAM (80 characters max.)

· 9920-bit character generator ROM for a total of 240 character fonts.

· 64 x 8 bit character generator RAM

· Wide range of instruction function

· Display clear, cursor home, display on/ off, cursor on /off, display character blink, cursor Shift and display shift.

· Automatic reset circuit, that initializes the controller / driver ICs after power on
Pin details

	Pin No
	Symbol
	Description

	Pin 1
	VSS
	Ground terminal, 0V

	Pin 2
	VDD
	Supply terminal, 5V

	Pin 3
	VL
	Liquid crystal drive voltage

	Pin 4
	RS
	Register select

	Pin 5
	R/W
	Read/ Write: R/W =1-read, R/W =0-Write

	Pin 6
	E
	Enable: Enables Read/ write

	Pin7 to

Pin 14
	DB0

To

DB7
	Bi-directional data bus: when interface data length is 8-bits, data transfer is done once through DB0-DB7. When the interface data length is 4-bits, data transfer is done twice 5through DB4- DB7.

	Pin 16
	BACKLIGHT
	In case of 15-pin module, pin 15 is the supply voltage (+5) for the LED. In case of 16 pin modules, pin 15 is the supply and pin 16 is the ground for the LED

BLOCK DAIGRAM OF LCD

[image: image10.wmf]
LCD PIN OUT

[image: image11.wmf]
advantages
The LCD’s are lightweight with only a few millimeters thickness. Since the LCD’s consumes less power, they are compatible with low power electronic circuits and can be powered for long durations.

 The LCD’s won’t generate light and so lighted is needed to read the display. By using backlighting, reading is possible in the dark. The LCD’s have long life and a wide operating temperature range. Changing the display size or lay out size is relatively simple which makes the LCD’s more customers friendly.
MAX 232

 The signals produced by the receiver are in the form of TTL. In order to interface the receiver with the personal computer these TTL signals are to be converted to RS 232 signals, as the communication is serial and the serial port of the PC supports only RS232 signals. So the output of the PIC is connected to the Rx D pin of the MAX232 and the serial data output from the MAX232 is fed to the serial port of the PC VIA db9 connector. The main advantage of the MAX 232 is that it uses only 5v to generate nearly about 10v. So the same power supply can be used for he controller operations and the serial data transfer between the receiver and system. The line driver has internal voltage doublers to convert data into serial bits.

The MAX220-MAX249 has two internal charges –pumps that convert +5V to+10V for RS 232 driver operation. The first converter uses capacitor C1to double the +5v input to +10v on C3 at the V+ output. The second converter uses capacitor C2 to invert +10v to -10v on C4 at the V – out. A small amount of power may be drawn from the +10(V+) and -10(V-) outputs to power external circuitry, except on the MAX225 and MAX 245 – MAX247, where these pins are not available. V+ and V- are not regulated, so the output voltage drops with increasing load current. Do not load V+ and V- to a point that violates minimum +5V EIA / TIA -232E driver output voltage when sourcing current from V+ and V- to external circuitry. When using the shutdown feature in the MAX 222, MAX 225, MAX230, MAX 235, MAX 236, MAX 240, MAX 241, and MAX 245- MAX249, avoid using V+ and V- to power external circuitry.

When these parts are shutdown, V- falls to 0V, and V+ falls to +5V. For applications where a +10 V external supply is applied to the V+ pin, (instead of using the internal charge pump to generate +10 V 0, the C1 capacitor must not be installed and the SHDN pin must be tied to VCC. This because V+ is internally connected to VCC in shutdown mode.
11. GSM

 GSM is a wireless transmission protocol method. The GSM RF module is interfaced to a host device through an asynchronous serial port. Through this port, the module can communicate with any logic and voltage compatible UART or through a level translator through a serial device

GSM Modem 81GC

[image: image1.png]

VISIONTEK 81GC is a highly flexible plug-n-play GSM modem for easy integration with RS-232 and audio interface. It is equipped with features of circuit switched data, SMS, fax, voice and GPRS. VISIONTEK 81GC is a perfect solution to use with SMS gateways, access internet while on the move and corporate communications.

Application Areas

· C&F agents
· Corporates with multi-location presence
· Jewelers
· Share brokers
· Transportation
· IT Industry
· Network Solution Providers
· Bulk SMS Solutions
· Point to Point Data Communication
· Point to IP Data Communication
Benefits

· Small foot print

· Table top

· Low power consumption

· Plug and play

Features

· Data, SMS, Fax, Voice and GPRS

· DC input voltage

· Low power consumption

· AT commands

· 1.8V/3V SIM interface

· RS-232 interface

[image: image12.png] [image: image13.png]
SIM Card insertion

Application diagram

GSM 07.10 Multiplexor Protocol

+CMUX-Multiplexing Mode

Parameter command syntax

	Command
	Possible response(s)

	+CMUX=<transparency>[<subset>[<port_speed>

[<N1>[<T1>[<N2>[<T2>[<T3>[<k>]]]]]]]]
	

	+CMUX?
	+CMUX<mode>,[<subset>],<port_speed>,

<N1>,<T1>,<N2>,<T2>,<T3>,[<k>]

	+CMUX=?
	+CMUX(list of supported<mode>s),(list of supported<subset>s), (list of supported<port_speed>s), (list of supported<N1>s), (list of supported<T1>s), (list of supported<N2>s), (list of supported<T2>s), (list of supported<T3>s), (list of supported<k>s)

This command is used to enable/disable the GSM 07.10[19] multiplexing protocol control channel. The AT command sets parameters for the control channel. If the parameters are left out, the default value is used. Read command returns the current mode and settings. Test command returns the supported mode and parameters.

+CMGL- LIST MESSAGES
Action command syntax (If SMS TEXT Mode, +CMGF=1)

	Command
	Possible response(s)

+CMS ERROR;<err>

	+CMGL[=<stat>]
	SMS-SUBMITs and/or SMS DELIVERs

+CMGL: <index>,<stat>,<oa/da>,[<alpha>],[<scts>]

[<tooa/toda>,<length>],<CR><LF><data>[<CR><LF>

+CMGL: : <index>,<stat>,<da/oa>,>,[<alpha>],[<scts>]

[<tooa/toda>,<length>],<CR><LF><data>[….]]

SMS-STATUS-REPORT:

+CMGL: <index>,<stat>,<fo>,<mr>,[<ra>][<tora>],<scts>,<dt>,
<st>[<CR><LF>

+CMGL: <index>,<stat>,<fo>,<mr>,[<ra>][<tora>],<scts>,<dt>,<st>[…]]

SMS-COMMANDS:

+CMGL: <index>,<stat>,<fo>,<ct>[<CR><LF>

+CMGL: <index>,<stat>,<fo>,<ct>[…]]

CBM STORAGE:

+CMGL: <index>,<stat>,<sn>,<md>,<page>,

<pages><CR><LF>

<data>[<CR><LF>

+CMGL: <index>,<stat>,<sn>,<md>,<page>,

<pages><CR><LF>

<data>[…]]

	+CMGL=?
	

+CMGR- READ MESSAGE

Action command syntax (If SMS TEXT Mode, +CMGF=1)

	Command
	Possible response(s)

+CMS ERROR;<err>

	+CMGR=<index>
	SMS-DELIVER:

+CMGR:<stat>,<oa>,[<alpha>],<scts>[,<tooa>,<to>,<pid>,<dcs>,<sca><tosca>,<length>]<CR><LF><data>

SMS-SUBMIT:
+CMGR:

:<stat>,<oa>,[<alpha>][,<toda>,<fo>,<pid><dcs>,[<vp>,<sca>,<tosca><length>]<CR>,<LF>,<data>

SMS-STATUS REPORT

+CMGR:<stat>,<fo>,<mr>,[<ra>],[<tora>],<scts>,<ct>,<st>

SMS-COMMAND:

+CMGR:

<stat>,<fo>,<ct>[,<pid>,[<mn>],[<da>],[<toda>],<length>,
<CR>,<LF><data>]

CBM Storage:

+CMGR:<stat>,<sn>,<mid>,<dcs>,<page>,<pages>,<CR>,<LF>,<data>

	+CMGR=?
	

+CMGS- SEND MESSAGE

Action command syntax (If SMS TEXT Mode, +CMGF=1)

	Command
	Possible response(s)

+CMS ERROR;<err>

	+CMGS=<dat>[,<toda>],<CR>

Text is entered<Ctrl-z/Esc>
	+CMGS:<mr>

	+CMGS=?
	

+CMGC- SEND COMMAND

Action command syntax (If SMS TEXT Mode, +CMGF=1)

	Command
	Possible response(s)

+CMS ERROR;<err>

	+CMGC=<to><ct>[,<pid>[,<mn>[,<da>[,<toda]]]]<CR>

Text is entered<Ctrl-z/Esc>
	+CMGC <mr>[,<scst>] if sending fails:

+CMS ERROR:<err>

	+CMGC=?
	

12. Working

 Most solid-state meters use a current transformer to measure the current. This means that the main current-carrying conductors need not pass through the meter itself and so the meter can be located remotely from the main current-carrying conductors. Through mutual induction, the amount of current consumed (or passing through the coil) is coupled to the secondary of the coil and it is connected to an IC. The output of the IC is in digital form and it is connected to a LED. The power consumed is indicated by the blinking of LED.

 The output of the IC is connected to the input of an optocoupler. The optocoupler generally consist of an infrared LED and a photo detector combined in a single package. The rigid structure of this package permits one-way transfer of electrical signal from the LED to the photodetector, without any electrical connection between the input and the output circuitry. The optocoupler consist of an internal LED and a phototransistor. When interrupt comes, the meter section provides a dc voltage, which glows the LED of the optocoupler. When the LED glows the light falls on the base of the phototransistor turning it on .The optocoupler output will be in logic 1in presence of interrupt again goes to logic 0 in the absence of an interrupt.

The output of the optocoupler is connected to the microcontroller. Here we use a 16F877A micro controller. Each micro controller has a specific address that represents the address of the client. Micro controllers recognize the interrupt and it execute the interrupt service routine. Here the PIC counts the number of interrupts (each interrupt is represented as a count), in normal case 1,000 counts is equal to one unit. For convenience 10 counts has been considered equal to be one unit. When it reaches 10, the unit incremented by one. The LCD at the client side displays units, count and the current status of the bill simultaneously. The PIC calculates the total units and it transmitted this value through GSM. This is achieved by connecting MAX232 as an interface between the controller and the IC. The signals produced by the micro controller are in the form of TTL. In order to interface the receiver with the GSM these TTL signals are to be
converted to RS 232 signals, as the communication is serial and the serial port of the PC supports only RS232 signals. The main advantage of the MAX 232 is that it uses only 5v to generate.

13. PIC PROGRAM

 #include<pic.h>

 #include"lcd.h"

 #include"string.h"

 void lcd_data(unsigned char);

 void lcd_command(unsigned char);

 void lcd_puts(const char *);

 void initial(void);

 void lcd_goto(unsigned char);

 void lcd_clear(void);

 void delay(void);

 void lcd_data1(unsigned char);

 void lcd_command1(unsigned char);

 void lcd_puts1(const char *);

 void initial1(void);

 void lcd_goto1(unsigned char);

 void lcd_clear1(void);

 void delay1(void);

 void transmit(unsigned char);

 void send_string(const char *str);

 char recieve(void);

 void dec_con(unsigned char);

 void dec_con1(unsigned char);

 void eeprom_write1(unsigned char ,unsigned char);

 void eeprom_write(unsigned char ,unsigned char);

 bank1 unsigned char count=0,unit=0,con[4];

 bank1 unsigned char number1[12]="9847423116";

 bank1 unsigned char bill[5]="BILL",sent[10]="AT+CMGR=";

 bank2 unsigned char amount[10]="00000*",flag=0;

 main()

{

 unsigned char j,rec[16],dummy_data,MSG_LOC,del[10]="AT+CMGD=", data[8]="00000*",number[11];

 unsigned char unsigned int i;

 TRISC=0XC0;

 PORTC=0X00;

 TRISD=0X00;

 PORTD=0X00;

 TRISB=0x01;

 RB1=0;

 TXSTA=0X24;

 RCSTA=0X90;

 SPBRG=25;

 initial();

 lcd_puts("POWER METER"); ////// to display POWER METER

 for(i=0;i<10;i++)

 {

 delay();

 }

 lcd_goto(0xc0);

 ///// display on next line

 delay();

 lcd_puts("Done by K V V S");

 for(i=0;i<25;i++)

 {

 delay();

 ///// display waits

 }

 lcd_goto(0xc0);

 delay();

 count=eeprom_read(0x01); ///// reads count from eeprom

 unit=eeprom_read(0x02); ///// reads unit from eeprom

 eeprom_write1(0x0b,'*');

 INTEDG=1;

 INTE=1;

 while(1)

 {

 GIE=1;

 lcd_clear();

 delay();

 lcd_goto(0x80);

 delay();

 dec_con(unit);
 ///// convertion of unit to decimal

 lcd_data(con[3]+0x30);

 lcd_data(con[2]+0x30);

 lcd_data(con[0]+0x30); ///// displays unit on lcd

 delay();

 lcd_data(':');

 delay();

 dec_con(count);

 lcd_data(con[2]+0x30);

 lcd_data(con[0]+0x30);

 delay();

 lcd_goto(0xc0);

 delay();

 lcd_puts(bill);
 ////// displays "bill" on lcd

 delay();

 i=0;

 j=2;

 do

 {

 i++;

 j++;

 data[i]=eeprom_read(j); /////// read bill amount from eeprom

 }

 while(data[i]!='*');

 i=1;

 while(data[i]!='*')
////// display bill on lcd

 {

 lcd_data(data[i]);

 delay();

 i++;

 }

 while(recieve()!='+'); ////msg alert from gsm

 for(i=0;i<12;i++)

 {

 rec[i]=recieve(); /// "+CMTI "SM",1 recieved

 }

 GIE=0;

 MSG_LOC=rec[11];
 //// save msg location

 lcd_command(0x01);

 delay();

 lcd_puts("MSG RECIEVED"); ///// display msg recieved

 delay();

 for(i=0;i<8;i++)

 {

 transmit(sent[i]); //// command AT+CMGR=

 }

 transmit(MSG_LOC); /// msg locaction sending

 transmit(0x0d);

 transmit(0x0a); /// sending enter key

 for(i=0;i<39;i++)

 {

 dummy_data=recieve(); /// leaving 39 bytes of data

 }

 for(i=0;i<10;i++)

 {

 number[i]=recieve(); /////// save sender number

 }

 number[10]='\0';

 for(i=0;i<27;i++)

 {

 dummy_data=recieve(); ///// leaving 27 bytes of data

 }

 j=-1;

 do

 {

 j++;

 data[j]=recieve(); ////// save content of msg

 }

 while(data[j]!='*');

 delay();

 delay();

 delay();

 if(strcmp(number,number1)==0) //// if msg from server

 {

 if(data[0]=='R') ///// if 'R' sent unit

 {

 dec_con(unit);

 lcd_command(0xc0);

 delay();

 lcd_puts("SENDING UNIT");

 delay();

 send_string("AT+CMGS="); ///// send command AT+CMGS=

 send_string(number1); ///// send server number

 transmit(0x0d);

 transmit(0x0a); //// send enter key

 transmit('#');

 transmit(con[2]+0x30); ///// send unit

 transmit(con[0]+0x30);

 transmit('*');

 transmit(0x1a);
 /// send ctrl z key

 while(recieve()!='+');

 }

 }

 if(data[0]=='B')

//////if 'B' display bill

 {

 flag=1;

 lcd_goto(0xc0);

 delay();

 lcd_puts(bill);

 delay();

 i=0;

 j=2;

 do

 {

 i++;

 j++;

 eeprom_write1(j, data[i]);

 lcd_data(data[i]);

 delay();

 }

 while(data[i]!='*');

 }

 for(i=0;i<8;i++) ////msg delete

 {

 transmit(del[i]); ///// send AT+CMGD=

 }

 transmit(MSG_LOC); //// send msg location

 transmit(0x0d);

 transmit(0x0a); /// send enter key

 delay();

 delay();

 delay();

 }

 }

 void transmit(unsigned char data)

 {

 TXREG=data;

 while(!TXIF);

 }

 char recieve(void)

 {

 while(!RCIF);

 RCIF=0;

 if(OERR)

 {

 CREN=0;

 CREN=1;

 }

 return(RCREG);

 }

 void send_string(const char *str)

 {

 char ps;

 ps = *str;

 while(ps)

 {

 transmit(ps);

 str++;

 ps=*str
;

 }

 }

 void lcd_command1(unsigned char e)

 {

 PORTD=e;

 RC0=0;

 RC1=0;

 RC2=1;

 delay1();

 RC2=0;

 }

 void lcd_data1(unsigned char c)

 {

 PORTD=c;

 RC0=1;

 RC1=0;

 RC2=1;

 delay1();

 RC2=0;

 }

 void lcd_goto1(unsigned char s)

 {

 lcd_command1(s);

 }

 void lcd_clear1(void)

 {

 lcd_command1(0x01);

 }

 void delay1(void)

 {

 int j;

 for(j=0;j<2000;j++);

 }

 void initial(void)

 {

 lcd_command(0X38);

 lcd_command(0X01);

 lcd_command(0X06);

 lcd_command(0X0E);

 lcd_command(0X80);

 }

void lcd_command(unsigned char e)

 {

 PORTD=e;

 RC0=0;

 RC1=0;

 RC2=1;

 delay();

 RC2=0;

 }

void lcd_data(unsigned char c)

{

 PORTD=c;

 RC0=1;

 RC1=0;

 RC2=1;

 delay();

 RC2=0;

}

 void interrupt ext(void) ////// interrupt service routine

 {

 GIE=0;

 if(INTF)

 {

 INTF=0;

 count++;

 eeprom_write(0x01,count); ////// write count to eeprom

 if(count==10)

 {

 unit++;

 eeprom_write(0x02,unit); ////// write unit to eeprom

 count=0;

 }

 lcd_goto1(0x80);

 delay1();

 dec_con1(unit); ///// display unit

 lcd_data1(con[3]+0x30);

 lcd_data1(con[2]+0x30);

 lcd_data1(con[0]+0x30);

 delay1();

 lcd_data1(':');

 delay1();

 dec_con1(count);
 ////display count

 lcd_data1(con[2]+0x30);

 lcd_data1(con[0]+0x30);

 GIE=1;

 }

 }

/////// interrupt closed

 void dec_con(unsigned char count)

 {

 con[0]=count%10;

 con[1]=count/10;

 con[2]=con[1]%10;

 con[3]=con[1]/10;

 }

 void dec_con1(unsigned char count)

 {

 con[0]=count%10;

 con[1]=count/10;

 con[2]=con[1]%10;

 con[3]=con[1]/10;

 }

 void eeprom_write(unsigned char adrs,unsigned char data)

 {

 EEADR=adrs;

 EEDATA=data;

 EEPGD=0;

 WREN=1;

 EECON2=0X55;

 EECON2=0xAA;

 WR=1;

 WREN=0;

 While (WR);

 }

 void eeprom_write1(unsigned char adrs,unsigned char data)

 {

 EEADR=adrs;

 EEDATA=data;

 EEPGD=0;

 WREN=1;

 EECON2=0X55;

 EECON2=0xAA;

 WR=1;

 WREN=0;

 while(WR);

 }

 unsigned char eeprom_read(unsigned char adrs)

 {

 EEADR=adrs;

 EEPGD=0;

 RD=1;

 while(RD);

 return(EEDATA);

 }

14. BOARD SPECIFICATION

The type of PCB used is glass epoxy type. Two boards were used - one for transmitter section and other for receiver section. The size of the board at the transmitter section is 7cm x 9.5cm and that of receiver section is 11cm x 7.5cm.

PCB FABRICATION

[image: image14.wmf]
FABRICATION PROCEDURE

Copper clad board was taken. The layout was screen printed on the board, which is then etched. Then the board was dipped in ferric chloride solution and the part exposed to copper was dissolved in the solution. After this, the board was cleaned using thinner and the board is now ready for drilling.
The normal size of the hole is 0.8mm, which slightly varies according to the components. The components are then mounted into the holes and then soldered
 PCB FABRICATION
 A printed circuit board, or PCB, is used to mechanically support and electrically connect electronic components using conductive pathways, or traces, etched from copper sheets laminated onto a non-conductive substrate. Alternative names are printed wiring board (PWB), and etched wiring board. A PCB populated with electronic components is a printed circuit assembly (PCA), also known as a printed circuit board assembly (PCBA).

PCBs are rugged, inexpensive, and can be highly reliable. They require much more layout effort and higher initial cost than either wire-wrapped or point-to-point constructed circuits, but are much cheaper, faster, and consistent in high volume production. Much of the electronics industry's PCB design, assembly, and quality control needs are set by standards that are published by the IPC organization.A few PCBs are made by adding traces to the bare substrate (or a substrate with a very thin layer of copper) usually by a complex process of multiple electroplating steps. There are three common "subtractive" methods (methods that remove copper) used for the production of printed circuit boards:

 Silk screen printing uses etch-resistant inks to protect the copper foil. Subsequent fetching removes the unwanted copper. Alternatively, the ink may be conductive, printed on a blank (non-conductive) board. The latter technique is also used in the manufacture of hybrid circuits.

 Photoengraving uses a photomask and chemical etching to remove the copper foil from the substrate. The photomask is usually prepared with a photoplotter from data produced by a technician using CAM, or computer-aided manufacturing software. Laser-printed transparencies are typically employed for photo tools; however, direct laser imaging techniques are being employed to replace phototools for high-resolution
requirements PCB-milling uses a two or three-axis mechanical milling system to mill away the copper foil from the substrate. A PCB milling machine (referred to as a 'PCB Prototyper') operates in a similar way to a plotter, receiving commands from the host software that control the position of the milling head in the x, y, and (if relevant) z axis.

HISTORY & DESCRIPTION

The software used is MP LAB v 7.4. It is a Windows based Integrated development environment from the Microchip Technology incorporated PIC microcontroller and Digital signal controller families. The various features of this software are

· Capability to work in C programming Environment

· Creates source code using the built in editor.

· Compile and link source code using various tools.

· A compiler, linker and library come with MPLAB IDE.

 BOOT LOADING PROCEDURE

1. The PIC was fixed in PIC programmer

2. The software program written in C is converted to its corresponding hex file.

3. The configuration bits was set which included the following steps

 3.1 Oscillator was configured in high speed

 3.2 Watchdog timer was disabled

 3.3 Brown out was disabled

4.Chip was burned.
15. ALGORITHM

Step 1: START PROGRAM

Step 2: Initialize PORT B to accept the interupt

Step 3: Initialize PORT C And PORT D for LCD

Step 4: ACCEPT OUTPUT FROM METER AS INTERUPT TO PIC

Step 5: IF INTERUPT FLAG INTF IS SET, EXECUTE STEP 6, ELSE GO TO STEP 8

Step 6: INCREMENT COUNTER, DISPLAY COUNT VALUE

Step 7: IF COUNT==10, INCREMENT UNIT & DISPLAY, ELSE GOTO STEP 4

Step 8: IF DATA RECEPTION FLAG RCIF IS SET, CONFIRM ADDRESS, ELSE RETURN TO STEP 4

Step 9: IF ADDRESS TRUE, CHECK WHETHER UNIT REQUEST OR BILL DIPLAY

Step 10: IF UNIT REQUEST, SEND UNIT, GO TO STEP 4

Step 11: IF BILL DISPLAY, DISPLAY BILL ON LCD, GO TO STEP 4

Step 12: IF ADDRESS FALSE, RETURN TO STEP 4

Step 13: GOTO STEP 4

Step 14: END OF ALGORITHM

16. CONCLUSION

From this Project we can conclude that by implementing the Intelligent Power Meter system we get bill from the electricity board through the display device attached with the system. By this the meter can communicate with the electricity board through a wireless module (GSM).

An additional function attached to this system are when there is a power failure, meter complaint or any other faults with the system, it report to the electricity board through the wireless module. In the same way a server system is working in the electricity board. It includes a receiver and transmitter. It always communicates with the power meters attached to all customers.

We hope that with in short future this type is implemented and it would replace the ordinary system.
17. SCREENSHOTS
[image: image15.png]
[image: image16.png]
[image: image17.png]
[image: image18.png]
[image: image19.png]
[image: image20.png]
[image: image21.png]
18. REFERENCES
WEBSITES:

1. www.microchip.com

2. www.multitech.com

3. www.beyondlogic.org

4. www.chiptechnologies.com

5. www.datasheetsarchive .com

6. www.agilent.com/find/tmdir

7. www.google/gsm
8. www.visiontek.co.in

TEXTS:

1. GSM 02.02: “Digital Cellular telecommunications system (Phase 2+); Bearer Services (BS) supported by a GSM Public Land Mobile Network (PLMN)” version 7.0.2 Release 1998.

2. GSM 04.11: “Digital cellular telecommunication system (Phase 2+); Point-to-Point (PP) Short Message Service (SMS) support on mobile radio interface” version 7.0.0 Release 1998

[image: image22.emf]
PAGE
59

