A vehicle to vehicle communication protocol for co-operative collision warning.
ABSTRACT
 Our Project proposes a vehicle-to-vehicle communication protocol for cooperative collision warning. Emerging wireless technologies for vehicle-to-vehicle (V2V) communications are promising to dramatically reduce the number of fatal roadway accidents by providing early warnings. One major technical challenge addressed in this our project is to achieve low-latency in delivering emergency warnings in various road situations. Based on a careful analysis of application requirements, we design an effective protocol, comprising congestion control policies, service differentiation mechanisms and methods for emergency warning dissemination. Simulation results demonstrate that the proposed protocol achieves low latency in delivering emergency warnings and efficient bandwidth usage in stressful road scenarios. The wireless data communication between two vehicles is provided by introducing Zigbee technology. It is designed around low-power consumption allowing batteries to essentially last forever. The distance measurement is provided by Ultrasonic sensors. Ultra sonic sensors are transmitting and receiving ultrasonic signals

TABLE OF CONTENTS

CHAPTER NO.

TITLE

 PAGE

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

1

INTRODUCTION

1
2

BLOCK DIAGRAM

2
3

ULTRASONIC SENSORS

3

3.1 FUNCTION

3.2 DISTANCE MEASUREMENT
4

MICROCONTROLLER 89C51

 4.1 FEATURES

 4.2 DESCRIPTION

 4.3 ARCHITECTURE

 4.4 PIN DIAGRAM

 4.5 PIN DESCRIPTION

 4.6 ABSOLUTE MAXIMUM RATING

5

 ZIGBEE

 5.1 INTRODUCTION

 5.2 WORKING PRINCIPLE

 5.3 TYPES OF ZIGBEE

 5.4 AREAS OF APPLICATION
 6

 BUZZER

6.1 INTRODUCTION

6.2 WORKING PRINCIPLE

7

 SCHEMATIC DIAGRAMS

7.1 ULTRASONIC SENSOR

7.2 ZIGBEE

7.3 MICROCONTROLLER

7.4 MAX3232EPE

7.5 LD1117S33 SOT-233

7.6 TIP122

8

 PROGRAMMING 89C51

9

 DATA SHEETS

9.1 ULTRASONIC SENSOR

9.2 MICROCONTROLLER

9.3 ZIGBEE

9.4 MAX3232EPE

9.5 LD1117S33 SOT-233

9.6 TIP122

10

 REFERENCE

11

 CONCLUSION

 BIBLOGRAPHY

CHAPTER 1
INTRODUcTION

Road accidents account for a severe threat to human lives from both an injury as well as a financial perspective. Given that vehicles are designed to facilitate a smooth means of transportation, manufacturers have long been in the process of designing vehicles based on principles of reliability and safety. However, due to reasons such as human-error, circumstantial error and negligence, accidents occur. Today, special attention is focused on the technologies that can reduce traffic accidents. V2V technologies are simple to implement primarily because of their reliance on wireless communication.
The communication protocol includes Zigbee to communicate the information between two vehicles. The distance measurement between two vehicles is done by Ultrasonic sensor. The microcontroller controls entire process, it is programmed to send a signal to buzzer and zigbee when the distance range is obtained. The main objective of our project is to alert the driver when he closes to the front vehicle. During night times some of the vehicles such as car, bus may break down at the highways. This vehicle now appears to be an obstacle to the vehicle that is coming behind of it. This causes a greater chances of accident, the vehicle coming behind may hit hardly to the back of stationary vehicle and it may lead to the greater damage.
CHAPTER 2

BLOCK DIAGRAM
[image: image1.jpg]
CHAPTER 3

ULTRASONIC SENSOR
3.1 FUNCTION:

They are also known as transducers, they both send and receive the signal. It works on the principle similar to radar or Sonar which evaluate attributes of a target by interpreting the echoes from radio or sound waves respectively. They generate high frequency sound waves and evaluate the echo which is received back by the sensor. Sensors calculate the time interval between sending the signal and receiving the echo to determine the distance to an object.
[image: image2.png]
Whenever a sound wave moving in air hits a solid surface it reflects . We often call this reflected sound as an echo. The same applies to a sound wave moving through water and hitting an obstacle. If we know the speed of sound in the air or water we can calculate the distance. To perform this we must measure the time taken for a pulse of sound to travel to the object and back again. The distance to the object and back is given by (distance=Speed * Time). As this is the total distance that the sound has traveled to the object and back, we must divide by 2 to find the one-way distance. This use of echoes is the basis of SONAR. The pulse of sound that is used should be short and high frequencies are usually used as they travel further without being absorbed. Sounds with a frequency above 20 kHz are called ultrasonic(beyond the range of human hearing). The speed of sound varies from one material to another. Typical speeds are approximately 330 m/s in air, 1500 m/s in water, 5000 m/s in a metal. Here the ultrasonic sensor calculates the distance between the sensor and the obstacle and transmits it to the system. Once an object is detected, a signal is sent to the onboard sense and avoids collision and corrective action is taken by the use of micro-controller.
DISTANCE MEASUREMENT:

Different techniques can be used to measure the distance by using ultrasonic sensors. Among them , continuous-wave and pulse-echo technique are widely known. In continuous-wave methods, the transmitter generates a continuous output, whose echo is detected by a separate receiver. In this case, accuracy depends on the measurement of the phase shift between the transmitted and the reflected wave. Although better performance than with pulse-echo measurements can be obtained, complex hardware is required to measure the phase, and in most cases, different frequencies need to be used to determine the number of integer wavelengths in the phase shift.

Pulse-echo techniques are widely used in commercial systems due to less complexity of hardware. In pulse-echo technique, a short train of pulses is generated, enabling the same transducer to be used both as a transmitter and as a receiver. In the measurement methods, based on pulse-echo, the distance information is retrieved from a time-offlight measurement, i.e., the time an ultrasonic wave needs to travel from the transmitter to the receiver after being reflected by an object. The pulse-echo technique is used in this paper to calculate the distance of the obstacle from the vehicle. The distance between the transmitter and the object is determined using the following equation:

D= (t * c) / 2

Where D- Distance between the source and the obstacle

 c- Ultrasonic wave velocity in air

 t- Time interval between pulse emission and echo detection.

CHAPTER 4

Microcontroller AT89C51
4.1 FEATURES:

1. Compatible with MCS-51™ Products

2. 4K Bytes of In-System Reprogrammable Flash Memory– Endurance: 1,000 Write/Erase Cycles

3. Fully Static Operation: 0 Hz to 24 MHz.

4. Three-level Program Memory Lock

5. 128 x 8-bit Internal RAM

6. 32 Programmable I/O Lines

7. Two 16-bit Timer/Counters

8. Six Interrupt Sources

9. Programmable Serial Channel

10. Low-power Idle and Power-down Modes
4.2 DESCRIPTION:

The AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash programmable and erasable read only memory (PEROM). The device is manufactured using Atmel’s high-density nonvolatile memory technology and is compatible with the industry-standard MCS-51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer.
4.3 ARCHITECTURE:

[image: image3.png]
4.4 PIN DIAGRAM:

[image: image4.jpg]
4.5 PIN DESCRIPTIONS:
VCC-Supply voltage.

GND-Ground.

Port 0-It is an 8-bit open-drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high impedance inputs it may also be configured to be the multiplexed low order address/data bus during accesses to external program and data memory. In this mode P0 has internal pull-ups. Port 0 also receives the code bytes during Flash programming, and outputs the code bytes during program verification. External pull-ups are required during program Verification.
Port 1-It is an 8-bit bi-directional I/O port with internal pull-ups.The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pull-ups. Port 1 also receives the low-order address bytes during Flash programming and verification.

Port 2-It is an 8-bit bi-directional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that uses 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that uses 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.

Port 3-It is an 8-bit bi-directional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL) because of the pull-ups.

Port 3 also serves the functions of various special features of the AT89C51 as listed below:
[image: image5.png]
Port 3 also receives some control signals for Flash programming and verification.

RST-Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.
ALE/PROG-Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming. In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.
PSEN-Program Store Enable is the read strobe to external program memory. When the AT89C51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.

EA/VPP- External Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. This pin also receives the 12-volt programming enable voltage (VPP) during Flash programming, for parts that require 12-volt VPP.
XTAL1- Input to the inverting oscillator amplifier and input to the internal clock operating circuit.
XTAL2- Output from the inverting oscillator amplifier.
4.6 Absolute Maximum Ratings:
	Operating Temperature
	-55oC to +125oC

	Storage Temperature
	-65C to +150C

	Voltage on any Pin with Respect to Ground
	-1.0V to +7.0V

	Maximum Operating Voltage
	6.6V

	DC Output Current
	15.0mA

CHAPTER 5

ZIGBEE
5.1 INTRODUCTION

ZigBee is the name of a specification for a suite of high level communication protocols using small, low-power digital radios based on the IEEE 802.15.4-2006 standard for wireless personal area networks (WPANs), such as wireless headphones connecting with cell phones via short range radio. The technology is intended to be simpler and less expensive than other WPAN’s, such as Bluetooth.
It is suitable for low data rate and low power consumption application with other wireless technologies such as Bluetooth and Wi-Fi. Application includes home and building automation, industrial control, vehicle management systems. The ZigBee module available in the regular 10m range version, and the 30m pro version.
5.2 WORKING PRINCIPLE

ZigBee hardware typically consist of an eight bit Microcontroller combined with a miniature transceiver a small amount (ex. 32 KB) of flash memory and RAM. The XBee module is interconnected with the eight bit microcontroller. The CMOS logic is used between the Microcontrolles amd XBEE module, the following figure explains how the information is transmitted and received using ZigBee.
[image: image6.jpg]
5.3 TYPES OF ZIGBEE
ZigBee Coordinator (ZC)

The most capable device, the coordinator forms the root of the network tree and might bridge to other networks. There is exactly one Zigbee coordinator in each network since it is the device that started the network originally. It is able to store information about the network, acting as the Trust Centre.
ZigBee Router (ZR)

It can act as an intermediate router, passing data from other devices.

ZigBee End Devices (ZED)

Contains just enough functionality to talk to the parent node, it cannot relay data from other devices. This relationship allows the node to be asleep a significant amount of the time thereby giving long battery life. A ZED requires the least amount of memory, and can be less expensive to manufacture than a ZR or ZC.

5.4 AREAS OF APPLICATION

HOME AWARENESS: Water sensors, power sensors, smoke and fire detectors, smart appliances and access sensors.

MOBILE SERVICES: m-payement, m-monitoring and control, m-security and access control.

INDUSTRIAL PLANT: Process control, asset management, environmental management, industrial device control.

CHAPTER 6

BUZZER

6.1 INTRODUCTION

A buzzer is a signaling device, used in automobiles, household appliances such as microwave oven. The piezoelectric sound components operate on an principle utilizing natural oscillation of piezoelectric ceramics. Today, piezoelectric sound components are used in many ways such as home appliances, audio equipment telephones. They are applied widely in alarms, speakers, telephone ringers, receivers, transmitters, beep sounds, etc.
6.2 WORKING PRINCIPLE
Basically, the sound source of a piezoelectric sound component is a piezoelectric diaphragm. It consists of a piezoelectric ceramic plate which has electrodes on both sides and a metal plate. Ceramic plate is attached to a metal plate with adhesives. Applying D.C. voltage between electrodes of a piezoelectric diaphragm causes mechanical distortion due to the piezoelectric effect.
[image: image7.jpg]
Diaphragm operation

For a misshaped piezoelectric element, the distortion of the piezoelectric element expands in a radial direction. The metal plate bonded to the piezoelectric element does not expand. Conversely , when the piezoelectric element shrinks, thus, when A.C. voltage is applied across electrodes, producing sound waves in the air.

CHAPTER 7
SCHEMATIC DIAGRAMS

7.1 ULTRASONIC SENSOR

[image: image8.jpg]7.2 ZIGBEE
[image: image9.jpg]
7.3 MICROCONTROLLER

[image: image10.jpg]
7.4 MAX3232EPE
[image: image11.jpg]
7.4 LD1117S33 SOT-233
[image: image12.jpg]
7.4 TIP122
[image: image13.jpg]
 CHAPTER 8
PROGRAMMING OF AT89C51

$MOD52

; library file

ORG
0000H

LJMP
MAIN

ORG 0100H

; DEFINITIONS

SPDAT

EQU
086H
;SPI Data Register

AUXR

EQU
08EH

SPSR

EQU
0AAH
;SPI Status Register

T2MOD

EQU
0C9H

SPCTL

EQU
0D5H
;SPI Control Register

SPACE

EQU
020H

;BIT MASKS

BIT0

EQU
001H

BIT1

EQU
002H

BIT2

EQU
004H

BIT3

EQU
008H

BIT4

EQU
010H

BIT5

EQU
020H

BIT6

EQU
040H

BIT7

EQU
080H

;SPI Control Register Bit Masks

SPIE

EQU
BIT7

SPE

EQU
BIT6

DORD

EQU
BIT5

MSTR

EQU
BIT4

CPOL

EQU
BIT3

CPHA

EQU
BIT2

SPR1

EQU
BIT1

SPR0

EQU
BIT0

;SPI Status Register Bit Masks

SPIF

EQU
BIT7

SPWCOL

EQU
BIT6

;Assumption: Normally DAC_CS is low, which will permit to write

;data into DAC_LOW and DAC_HIGH latches without affecting DAC output.

;Then, DAC_CS is pulled high and then down to give the digital input

;and DAC and allow further data to be written into DAC_LOW and DAC_HIGH

;latches

DAC_CS

EQU
BIT7

BUZZER1

EQU
BIT0

IR_TX1

EQU
BIT1

IR_TX2

EQU
BIT2

BUZZER2

EQU
BIT3

BUZZER1_ON_MASK

EQU
BIT0

BUZZER1_OFF_MASK
EQU
0FEH

IR_TX1_ON_MASK

EQU
BIT1

IR_TX1_OFF_MASK

EQU
0FDH

IR_TX2_ON_MASK

EQU
BIT2

IR_TX2_OFF_MASK

EQU
0FBH

IR_TX1_TX2_ON_MASK
EQU
006H

IR_TX1_TX2_OFF_MASK
EQU
0F9H

BUZZER2_ON_MASK

EQU
BIT3

BUZZER2_OFF_MASK
EQU
0F7H

IR_RX1_MASK
EQU
BIT2

IR_RX2_MASK
EQU
BIT3

; User defined registers in internal memory

STATUS

EQU
031H

CMD_RCVD
EQU
035H

SECOND_CNT
EQU
036H

DAC_LOW_DATA
EQU
037H

DAC_HIGH_DATA
EQU
038H

LED_REFRESH_CNT
EQU
039H

TEMP

EQU
03AH

TEST_FLAG
EQU
03BH

; Memory mapped I/O Register addresses

;Latches

DAC_LOW_LE
EQU
8000H

DAC_HIGH_LE
EQU
8001H

LCD1_LE

EQU
8000H

OUTPUT_1_LE
EQU
8100H

OUTPUT_2_LE
EQU
8200H

STEPPER1_LE
EQU
8300H

;Buffers

INPUT_1_OE
EQU
4000H

MAIN:

MOV
TMOD, #20H

MOV
TH1, #0FDH ; Baud rate set to 9600 for 11.0592 MHz crystal

MOV
SCON, #50H

MOV
PCON, #80H ; Double baud rate 19200 for 11.0592 MHz crystal

MOV
T2CON, #00H
;Clear TCLK and RCLK in order to use timer1

MOV
TCON, #40H

MOV
AUXR,#01H
;Clearing EXTRAM(bit1) allows the expanded RAM of 768B (00H to 2FFH) to be

;indirectly accessible by MOVX. Setting A0(bit0) allows ALE is active

;only during MOVX and MOVC

MOV
LED_REFRESH_CNT,#00H

MOV
TEST_FLAG,#00H

MOV
A,#00H
;Switch off Buzzer1 & 2, IR Tx1, and IR Tx2

MOV
DAC_HIGH_DATA,A

MOV
DAC_LOW_DATA,#00H

MOV
SPCTL,#053H
;Disable SPI interrupt, Enable SPI, MSB First, Master Mode, SCK active HIGH, shift triggered ;on leading edge, SCK=fosc/128

MOV
SPSR,#000H
;Clear SPIF, SPWCOL bits in the SPI Status Register

MOV
P0,#0FFH
;Write 1s into all port bits in order to make port0 as input

SETB
P3.2

;Write 1 into port3 pin2(IR receiver 1) in order to make it as input port

SETB
P3.3

;Write 1 into port3 pin3(IR receiver 2) in order to make it as input port

LCALL
STEP4

;By default, Gate is open

MOV
STATUS,#000H

LJMP
$

;Stepper Motor

;Clock Wise (CW) Rotation

;Step 1, 2, 3, 4

;CW_ROTATION:

;
LCALL
CW_CYCLE

;
LJMP
CW_ROTATION

;
RET

;Counter Clock Wise (CCW) Rotation

;Step 3, 2, 1, 4

;CCW_ROTATION:

;
LCALL
CCW_CYCLE

;
LJMP
CCW_ROTATION

;
RET

;Generate IR signal with continous 1's

;Pulse Rate: 38 KHz(13 microsecond on, 13 microsecond off), Burst Length = 20 cycles, Gap Length = 40 cycles

;GENERATE_CONTINOUS_IR_BIT_1:

;
LCALL
GENERATE_IR_BIT_1

;
MOV
A,P3

;
ANL
A,#IR_RX1_MASK

;
CJNE
A,#IR_RX1_MASK,IR_RX1_LOW

;IR_RX1_HIGH:

;
MOV
A,DAC_HIGH_DATA

;
ORL
A,#BUZZER1_ON_MASK

;
MOV
DAC_HIGH_DATA,A

;
LCALL
WRITE_DAC_DATA

;
LJMP
TO_GENERATE_IR_GAP1

;IR_RX1_LOW:

;
MOV
A,DAC_HIGH_DATA

;
ANL
A,#BUZZER1_OFF_MASK

;
MOV
DAC_HIGH_DATA,A

;
LCALL
WRITE_DAC_DATA

;TO_GENERATE_IR_GAP1:

;
LCALL
GENERATE_IR_GAP

;
LJMP
GENERATE_CONTINOUS_IR_BIT_1

MOV
STATUS,#000H

MOV
SECOND_CNT,#000H

MOV
CMD_RCVD,#000H

CHECK_SECOND_CNT:

MOV
A,SECOND_CNT

CJNE
A,#000H,RCV_CMD

LJMP
SEND_STATUS

RCV_CMD:

JNB
RI,CHECK_LOOP

MOV
A,SBUF

MOV
CMD_RCVD,A

CLR
RI

LCALL DELAY

LJMP
$

TO_CHECK_LOOP:

LJMP
CHECK_LOOP

INVALID_CMD_RCVD:

LCALL
SEND_QUOTE

LCALL
SEND_I

LCALL
SEND_N

LCALL
SEND_V

LCALL
SEND_A

LCALL
SEND_L

LCALL
SEND_I

LCALL
SEND_D

LCALL
SEND_SPACE

LCALL
SEND_C

LCALL
SEND_O

LCALL
SEND_M

LCALL
SEND_M

LCALL
SEND_A

LCALL
SEND_N

LCALL
SEND_D

LCALL
SEND_SPACE

LCALL
SEND_R

LCALL
SEND_E

LCALL
SEND_C

LCALL
SEND_E

LCALL
SEND_I

LCALL
SEND_V

LCALL
SEND_E

LCALL
SEND_D

LCALL
SEND_QUOTE

LCALL
SEND_NEW_LINE

LCALL
SEND_CARRIAGE_RETURN

LJMP
INCREMENT_SECOND_CNT

CHECK_LOOP:

LJMP
INCREMENT_SECOND_CNT

SEND_STATUS:

LCALL
SEND_QUOTE

LCALL
SEND_STATUS

LCALL
SEND_QUOTE

LCALL
SEND_NEW_LINE

LCALL
SEND_CARRIAGE_RETURN

INCREMENT_SECOND_CNT:

MOV
A,SECOND_CNT

ADD
A,#001H

MOV
SECOND_CNT,A

CJNE
A,#09H,END_INCREMENT_SECOND_CNT

MOV
SECOND_CNT,#000H

END_INCREMENT_SECOND_CNT:

LCALL
ONE_SECOND_DELAY

LJMP
CHECK_SECOND_CNT

GENERATE_IR_BIT_1:

;Generate 20 IR Pulses

MOV
P0,#0FFH

MOV
DPTR,#DAC_HIGH_LE

LCALL
GENERATE_IR_PULSE

LCALL
GENERATE_IR_PULSE

LCALL
GENERATE_IR_PULSE

LCALL
GENERATE_IR_PULSE

LCALL
GENERATE_IR_PULSE

LCALL
GENERATE_IR_PULSE

LCALL
GENERATE_IR_PULSE

LCALL
GENERATE_IR_PULSE

LCALL
GENERATE_IR_PULSE

LCALL
GENERATE_IR_PULSE

LCALL
GENERATE_IR_PULSE

LCALL
GENERATE_IR_PULSE

LCALL
GENERATE_IR_PULSE

LCALL
GENERATE_IR_PULSE

LCALL
GENERATE_IR_PULSE

LCALL
GENERATE_IR_PULSE

LCALL
GENERATE_IR_PULSE

LCALL
GENERATE_IR_PULSE

LCALL
GENERATE_IR_PULSE

LCALL
GENERATE_IR_PULSE

RET

GENERATE_IR_PULSE:

MOV
A,DAC_HIGH_DATA

ORL
A,#IR_TX1_ON_MASK

MOV
DAC_HIGH_DATA,A

MOVX
@DPTR,A

LCALL
THIRTEEN_MICROSECOND_DELAY

MOV
A,DAC_HIGH_DATA

ANL
A,#IR_TX1_OFF_MASK

MOV
DAC_HIGH_DATA,A

MOVX
@DPTR,A

LCALL
THIRTEEN_MICROSECOND_DELAY

RET

GENERATE_IR_GAP:

;Generate 40 IR Pulse Delays

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

LCALL
IR_PULSE_DELAY

RET

;Approximately gives 10 ms delay for 11.0596 MHz crystal

DELAY: MOV
R1, #10

DELAY1:
 MOV
R2, #255

DELAY2: NOP

 NOP

 DJNZ
R2, DELAY2

 DJNZ
R1, DELAY1

 RET

;Approximately gives 13 microsecond delay for 11.0596 MHz crystal

;TOTAL NUMBER OF INSTRUCTION CYCLE REQUIRED FOR 13 MICROSECOND

;DELAY IS 13 * 10-6 / (12 * 10-6 / 11.0596) = 13 * 11.0596 / 12 = 12

;2 CYCLES FOR LCALL, 8 CYCLES FOR NOP, ONE CYCLE FOR RET

;Reduce fOUR NOPs to compensate for fOUR instructions before calling thirteen microsecond delay

THIRTEEN_MICROSECOND_DELAY:

;
NOP

;
NOP

;
NOP

;
NOP

NOP

NOP

NOP

NOP

RET

IR_PULSE_DELAY:

;Added fOUR NOPs to compensate for the removal of fOUR NOPs in thirteen microsecond delay

;
NOP

;
NOP

NOP

NOP

LCALL
THIRTEEN_MICROSECOND_DELAY

;Added fOUR NOPs to compensate for the removal of fOUR NOPs in thirteen microsecond delay

;
NOP

;
NOP

NOP

NOP

LCALL
THIRTEEN_MICROSECOND_DELAY

RET

ONE_TENTH_SECOND_DELAY:

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

RET

QUARTER_SECOND_DELAY:

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

RET

HALF_SECOND_DELAY:

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

LCALL DELAY

RET

ONE_SECOND_DELAY:

LCALL
HALF_SECOND_DELAY

LCALL
HALF_SECOND_DELAY

RET

THREE_SECOND_DELAY:

LCALL
ONE_SECOND_DELAY

LCALL
ONE_SECOND_DELAY

LCALL
ONE_SECOND_DELAY

RET

SEVEN_SECOND_DELAY:

LCALL
ONE_SECOND_DELAY

LCALL
ONE_SECOND_DELAY

LCALL
ONE_SECOND_DELAY

LCALL
ONE_SECOND_DELAY

LCALL
ONE_SECOND_DELAY

LCALL
ONE_SECOND_DELAY

LCALL
ONE_SECOND_DELAY

RET

TEN_SECOND_DELAY:

LCALL
THREE_SECOND_DELAY

LCALL
SEVEN_SECOND_DELAY

RET

THIRTY_SECOND_DELAY:

LCALL
THREE_SECOND_DELAY

LCALL
SEVEN_SECOND_DELAY

LCALL
THREE_SECOND_DELAY

LCALL
SEVEN_SECOND_DELAY

LCALL
THREE_SECOND_DELAY

LCALL
SEVEN_SECOND_DELAY

RET

FORTY_SECOND_DELAY:

LCALL
THREE_SECOND_DELAY

LCALL
SEVEN_SECOND_DELAY

LCALL
THREE_SECOND_DELAY

LCALL
SEVEN_SECOND_DELAY

LCALL
THREE_SECOND_DELAY

LCALL
SEVEN_SECOND_DELAY

LCALL
THREE_SECOND_DELAY

LCALL
SEVEN_SECOND_DELAY

RET

WRITE_DAC_DATA:

MOV
P0,#0FFH

MOV
DPTR,#DAC_HIGH_LE

MOV
A,DAC_HIGH_DATA

;UPPER 4 BITS OF DAC DATA, DAC_CS=0

MOVX
@DPTR,A

MOV
P0,#0FFH

MOV
DPTR,#DAC_LOW_LE

MOV
A,DAC_LOW_DATA

;LOWER 8 BITS OF DAC DATA

MOVX
@DPTR,A

MOV
P0,#0FFH

MOV
DPTR,#DAC_HIGH_LE

MOV
A,DAC_HIGH_DATA

;UPPER 4 BITS OF DAC DATA

ORL
A,#DAC_CS

;DAC_CS=1

MOVX
@DPTR,A

MOV
P0,#0FFH

MOV
DPTR,#DAC_HIGH_LE

MOV
A,DAC_HIGH_DATA

;UPPER 4 BITS OF DAC DATA, DAC_CS=0

MOVX
@DPTR,A

RET

SEND_A:

MOV
A,#'A'

MOV
SBUF,A

SND_A:
JNB
TI,SND_A

CLR
TI

LCALL DELAY

RET

SEND_B:

MOV
A,#'B'

MOV
SBUF,A

SND_B:
JNB
TI,SND_B

CLR
TI

LCALL DELAY

RET

SEND_C:

MOV
A,#'C'

MOV
SBUF,A

SND_C:
JNB
TI,SND_C

CLR
TI

LCALL DELAY

RET

SEND_D:

MOV
A,#'D'

MOV
SBUF,A

SND_D:
JNB
TI,SND_D

CLR
TI

LCALL DELAY

RET

SEND_E:

MOV
A,#'E'

MOV
SBUF,A

SND_E:
JNB
TI,SND_E

CLR
TI

LCALL DELAY

RET

SEND_F:

MOV
A,#'F'

MOV
SBUF,A

SND_F:
JNB
TI,SND_F

CLR
TI

LCALL DELAY

RET

SEND_G:

MOV
A,#'G'

MOV
SBUF,A

SND_G:
JNB
TI,SND_G

CLR
TI

LCALL DELAY

RET

SEND_H:

MOV
A,#'H'

MOV
SBUF,A

SND_H:
JNB
TI,SND_H

CLR
TI

LCALL DELAY

RET

SEND_I:

MOV
A,#'I'

MOV
SBUF,A

SND_I:
JNB
TI,SND_I

CLR
TI

LCALL DELAY

RET

SEND_J:

MOV
A,#'J'

MOV
SBUF,A

SND_J:
JNB
TI,SND_J

CLR
TI

LCALL DELAY

RET

SEND_K:

MOV
A,#'K'

MOV
SBUF,A

SND_K:
JNB
TI,SND_K

CLR
TI

LCALL DELAY

RET

SEND_L:

MOV
A,#'L'

MOV
SBUF,A

SND_L:
JNB
TI,SND_L

CLR
TI

LCALL DELAY

RET

SEND_M:

MOV
A,#'M'

MOV
SBUF,A

SND_M:
JNB
TI,SND_M

CLR
TI

LCALL DELAY

RET

SEND_N:

MOV
A,#'N'

MOV
SBUF,A

SND_N:
JNB
TI,SND_N

CLR
TI

LCALL DELAY

RET

SEND_O:

MOV
A,#'O'

MOV
SBUF,A

SND_O:
JNB
TI,SND_O

CLR
TI

LCALL DELAY

RET

SEND_P:

MOV
A,#'P'

MOV
SBUF,A

SND_P:
JNB
TI,SND_P

CLR
TI

LCALL DELAY

RET

SEND_Q:

MOV
A,#'Q'

MOV
SBUF,A

SND_Q:
JNB
TI,SND_Q

CLR
TI

LCALL DELAY

RET

SEND_R:

MOV
A,#'R'

MOV
SBUF,A

SND_R:
JNB
TI,SND_R

CLR
TI

LCALL DELAY

RET

SEND_S:

MOV
A,#'S'

MOV
SBUF,A

SND_S:
JNB
TI,SND_S

CLR
TI

LCALL DELAY

RET

SEND_T:

MOV
A,#'T'

MOV
SBUF,A

SND_T:
JNB
TI,SND_T

CLR
TI

LCALL DELAY

RET

SEND_U:

MOV
A,#'U'

MOV
SBUF,A

SND_U:
JNB
TI,SND_U

CLR
TI

LCALL DELAY

RET

SEND_V:

MOV
A,#'V'

MOV
SBUF,A

SND_V:
JNB
TI,SND_V

CLR
TI

LCALL DELAY

RET

SEND_W:

MOV
A,#'W'

MOV
SBUF,A

SND_W:
JNB
TI,SND_W

CLR
TI

LCALL DELAY

RET

SEND_X:

MOV
A,#'X'

MOV
SBUF,A

SND_X:
JNB
TI,SND_X

CLR
TI

LCALL DELAY

RET

SEND_Y:

MOV
A,#'Y'

MOV
SBUF,A

SND_Y:
JNB
TI,SND_Y

CLR
TI

LCALL DELAY

RET

SEND_Z:

MOV
A,#'Z'

MOV
SBUF,A

SND_Z:
JNB
TI,SND_Z

CLR
TI

LCALL DELAY

RET

SEND_0:

MOV
A,#'0'

MOV
SBUF,A

SND_0:
JNB
TI,SND_0

CLR
TI

LCALL DELAY

RET

SEND_1:

MOV
A,#'1'

MOV
SBUF,A

SND_1:
JNB
TI,SND_1

CLR
TI

LCALL DELAY

RET

SEND_2:

MOV
A,#'2'

MOV
SBUF,A

SND_2:
JNB
TI,SND_2

CLR
TI

LCALL DELAY

RET

SEND_3:

MOV
A,#'3'

MOV
SBUF,A

SND_3:
JNB
TI,SND_3

CLR
TI

LCALL DELAY

RET

SEND_4:

MOV
A,#'4'

MOV
SBUF,A

SND_4:
JNB
TI,SND_4

CLR
TI

LCALL DELAY

RET

SEND_5:

MOV
A,#'5'

MOV
SBUF,A

SND_5:
JNB
TI,SND_5

CLR
TI

LCALL DELAY

RET

SEND_6:

MOV
A,#'6'

MOV
SBUF,A

SND_6:
JNB
TI,SND_6

CLR
TI

LCALL DELAY

RET

SEND_7:

MOV
A,#'7'

MOV
SBUF,A

SND_7:
JNB
TI,SND_7

CLR
TI

LCALL DELAY

RET

SEND_8:

MOV
A,#'8'

MOV
SBUF,A

SND_8:
JNB
TI,SND_8

CLR
TI

LCALL DELAY

RET

SEND_9:

MOV
A,#'9'

MOV
SBUF,A

SND_9:
JNB
TI,SND_9

CLR
TI

LCALL DELAY

RET

SEND_QUOTE:

MOV
A,#'"'

MOV
SBUF,A

SND_QUOTE:
JNB
TI,SND_QUOTE

CLR
TI

LCALL DELAY

RET

SEND_COMMA:

MOV
A,#','

MOV
SBUF,A

SND_COMMA:
JNB
TI,SND_COMMA

CLR
TI

LCALL DELAY

RET

SEND_COLLON:

MOV
A,#':'

MOV
SBUF,A

SND_COLLON:
JNB
TI,SND_COLLON

CLR
TI

LCALL DELAY

RET

SEND_SPACE:

MOV
A,#' '

MOV
SBUF,A

SND_SPACE:
JNB
TI,SND_SPACE

CLR
TI

LCALL DELAY

RET

SEND_NEW_LINE:

MOV
A,#00BH

MOV
SBUF,A

SND_NEW_LINE:
JNB
TI,SND_NEW_LINE

CLR
TI

LCALL DELAY

RET

SEND_CARRIAGE_RETURN:

MOV
A,#00DH

MOV
SBUF,A

SND_CARRIAGE_RETURN:
JNB
TI,SND_CARRIAGE_RETURN

CLR
TI

LCALL DELAY

RET

CW_CYCLE:

LCALL
ONE_TENTH_SECOND_DELAY

LCALL
STEP1

LCALL
ONE_TENTH_SECOND_DELAY

LCALL
STEP2

LCALL
ONE_TENTH_SECOND_DELAY

LCALL
STEP3

LCALL
ONE_TENTH_SECOND_DELAY

LCALL
STEP4

RET

CCW_CYCLE:

LCALL
ONE_TENTH_SECOND_DELAY

LCALL
STEP3

LCALL
ONE_TENTH_SECOND_DELAY

LCALL
STEP2

LCALL
ONE_TENTH_SECOND_DELAY

LCALL
STEP1

LCALL
ONE_TENTH_SECOND_DELAY

LCALL
STEP4

RET

;Set Step1

STEP1:

MOV
A,#01EH

MOV
DAC_LOW_DATA,A

LCALL
WRITE_DAC_DATA

RET

;Set Step2

STEP2:

MOV
A,#36H

MOV
DAC_LOW_DATA,A

LCALL
WRITE_DAC_DATA

RET

;Set Step3

STEP3:

MOV
A,#33H

MOV
DAC_LOW_DATA,A

LCALL
WRITE_DAC_DATA

RET

;Set Step4

STEP4:

MOV
A,#1BH

MOV
DAC_LOW_DATA,A

LCALL
WRITE_DAC_DATA

RET

END

CHAPTER 9

DATA SHEETS

9.1 ULTRASONIC SENSOR

[image: image14.jpg]
9.2 MICROCONTROLLER
[image: image15.jpg]
[image: image16.jpg]
9.3 ZIGBEE
[image: image17.jpg]
[image: image18.jpg]
[image: image19.jpg]
[image: image20.jpg]
CHAPTER 10
REFERENCES

1. Muhammad Rashid.H, “ Power Electronics circuits, Devices and Application” , Eastern Economy Edition Prentice Hall of India Private Limited.
2. Charulatha Publication, “ Microprocessor And Microcontroller”
Online sources
1. http://www.eaton.com
2. http://www.senscomp.com
