PAGE
[image: image1.emf]XTAL1

1000uf/35V

R8

R7

R6

R5

R4

R1

R2

R3

VCC

10K PULLUP

1

2

3

4

5

6

7

8

9

VCC

SW8

P3.6

VCC

R1

R2

R3

R4

R7

R6

R5

R8

10K PULLUP

9

8

7

6

5

4

3

2

1

SW6

DIN(XBEE)

SW6

VCC = 5V

P0.1

P

P0.4

33pf

VCC

FROM ISP

P1.1

RST

GND

230V,A.C

1

2

S

VCC

P3.1

VCC=3.3V

vcc

DOUT

DIN

CD

RESET

PWM0

NC

NC

DTR

GND

AD4

CTS

SLEEP

VREF

AD5

AD6

AD3

AD2

AD0

AD1

X BEE MODULE

1

2

3

4

5

6

7

8

9

10

20

19

18

17

16

15

14

13

12

11

33 pf

D6(LCD)

11.0592MHz

P1.5

SW7

AT89S52 ISP

-

+

BRIDGE RECTIFIER

1

4

3

2

P1.7

XTAL1

VCC3.3V

GND

1

2

3

4

5

6

7

8

9

10

FROM ISP

GND

VCC

VCC

R1

R2

R3

R4

R7

R6

R5

R8

10K PULLUP

9

8

7

6

5

4

3

2

1

GND

P3.3

P0.7

D4(LCD)

GND

VCC

RESET

AT89S52 CRYSTAL

VCC

SW7

P1.3

RESET

RS(LCD)

SW5

SW1

SW2

XTAL2

GND

P3.4

(9V,1 AMP)

VCC

P1.6

104pf

SW5

LED

SW4

XTAL2

GND

I

AT89S52

20

18

17

29

30

19

32

9

10

11

12

13

14

15

16

40

39

38

37

36

35

34

33

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

31

GND

XTAL2

(RD) P3.7

PSEN

ALE/PROG

XTAL1

P0.7/AD7

RST

(RXD) P3.0

(TXD) P3.1

(INT0) P3.2

(INT1) P3.3

(T0) P3.4

(T1) P3.5

(WR) P3.6

VCC

P0.0/AD0

P0.1/AD1

P0.2/AD2

P0.3/AD3

P0.4/AD4

P0.5/AD5

P0.6/AD6

P2.7/A15

P2.6/A14

P2.5/A13

P2.4/A12

P2.3/A11

P2.2/A10

P2.1/A9

P2.0/A8

(T2) P1.0

(T2 EX) P1.1

P1.2

P1.3

P1.4

(MOSI) P1.5

(MISO) P1.6

(SCK) P1.7

EA/VPP

33 pf

220 ohm

P3.5

SW4

GND

P0.3

D7(LCD)

RESET

POWER SUPPLY(5VDC)

VCC

D5(LCD)

SW1

GND

VCC

VEE

RS

RW

EN

D0

D3

D2

D4

D5

D6

D7

D1

VCC

GND

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

SW3

GND

SW8

P3.7

P0.6

10 uf/63V

R8

R7

R6

R5

R4

R1

R2

R3

VCC

10K PULLUP

1

2

3

4

5

6

7

8

9

IN3(L293D(CAM))

2

EN(LCD)

P1.2

LCD

GND

SW3

7805 REGULATOR

1

3

VIN

VOUT

SWITCH

TRANSFORMER

8.2K

P0.5

GND

4.7K

SW2

FROM ISP

VCC

TRIM POT

5K

GND

IN4(L293D(CAM))

XTAL1

1000uf/35V

R8

R7

R6

R5

R4

R1

R2

R3

VCC

10K PULLUP

1

2

3

4

5

6

7

8

9

VCC

SW8

P3.6

VCC

R1R2R3R4R7R6R5R8

10K PULLUP

987654321

SW6

DIN(XBEE)

SW6

VCC = 5V

P0.1

P

P0.4

33pf

VCC

FROM ISP

P1.1

RST

GND

230V,A.C

1

2

S

VCC

P3.1

VCC=3.3V

vcc

DOUT

DIN

CD

RESET

PWM0

NC

NC

DTR

GNDAD4

CTS

SLEEP

VREF

AD5

AD6

AD3

AD2

AD0

AD1

X BEE MODULE

1

2

3

4

5

6

7

8

9

10

20

19

18

17

16

15

14

13

12

11

33 pf

D6(LCD)

11.0592MHz

P1.5

SW7

AT89S52 ISP

-+

BRIDGE RECTIFIER

1

4

3

2

P1.7

XTAL1

VCC3.3V

GND

12

34

56

78

910

FROM ISP

GND

VCC

VCCR1R2R3R4R7R6R5R8

10K PULLUP

987654321

GND

P3.3

P0.7

D4(LCD)

GND

VCC

RESET

AT89S52 CRYSTAL

VCC

SW7

P1.3

RESET

RS(LCD)

SW5

SW1

SW2

XTAL2

GND

P3.4

(9V,1 AMP)

VCC

P1.6

104pf

SW5

LED

SW4

XTAL2

GND

I

AT89S52

20

18

17

29

30

19

329

10

11

12

13

14

15

16

40

39

38

37

36

35

34

33

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

31

GND

XTAL2

(RD) P3.7

PSEN

ALE/PROG

XTAL1

P0.7/AD7RST

(RXD) P3.0

(TXD) P3.1

(INT0) P3.2

(INT1) P3.3

(T0) P3.4

(T1) P3.5

(WR) P3.6

VCC

P0.0/AD0

P0.1/AD1

P0.2/AD2

P0.3/AD3

P0.4/AD4

P0.5/AD5

P0.6/AD6

P2.7/A15

P2.6/A14

P2.5/A13

P2.4/A12

P2.3/A11

P2.2/A10

P2.1/A9

P2.0/A8

(T2) P1.0

(T2 EX) P1.1

P1.2

P1.3

P1.4

(MOSI) P1.5

(MISO) P1.6

(SCK) P1.7

EA/VPP

33 pf

220 ohm

P3.5

SW4

GND

P0.3

D7(LCD)

RESET

POWER SUPPLY(5VDC)

VCC

D5(LCD)

SW1

GND

VCC

VEE

RS

RW

EN

D0

D3

D2

D4

D5

D6

D7

D1

VCC

GND

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

SW3

GND

SW8

P3.7

P0.6

10 uf/63V

R8R7R6R5R4R1R2R3

VCC

10K PULLUP

123456789

IN3(L293D(CAM))

2

EN(LCD)

P1.2

LCD

GND

SW3

7805 REGULATOR

13

VINVOUT

SWITCH

TRANSFORMER

8.2K

P0.5

GND

4.7K

SW2

FROM ISP

VCC

TRIM POT

5K

GND

IN4(L293D(CAM))

81
81

 CONTENTS

1. ABSTRACT…………………………………………………
2
2. BLOCK DIAGRAM………………………………………...
3
3. SCHEMATIC DIAGRAM…………………………………
5
4. CIRCUIT DISCRIPTION………………………………….
7
5. INTRODUCTION

 5.1. EMBEDDED INTRODUCTION…………………………………...
12
 5.2. MICROCONTROLLER INTRODUCTION………………………..
18
 5.3. INTRODUCTION TO ROBOTICS………………………………..
20
 5.4. INTRODUCTION TO RF…………………………………………..
29
 5.5. INTRODUCTION TO LCD ………………………………………..
35
 5.6. INTRODUCTION TO LED………………………………………..
39
 5.7. KEIL INTRODUCTION …………………………………………...
43
6. COMPONENT DESCRIPTION

 6.1. AT89S52……………………………………………………………
47
 6.2. XBEE MODULE…………………………………………………...
56
 6.3. L293D……………………………………………………………….
66
 6.4. ISP PROGRAMMER……………………………………………….
69
7. CODING
……………………………………………………
76
8. CONCLUSION…………………………………………….88

9. BIBLIOGRAPHY………………………………………….89

1. ABSTRACT
The present condition in Industry is that they are using the crane system to carry the parcels from one place to another, including harbors. Some times the lifting of big weights may cause the breakage of lifting materials and will cause damage to the parcels too. Application of the proposed system is for industries. The robot movement depends on the track. Use of this robot is to transport the materials from one place to another place in the industry.

A robot is a machine designed to execute one or more tasks repeatedly, with speed and precision. There are as many different types of robots as there are tasks for them to perform. A robot can be controlled by a human operator, sometimes from a great distance. In such type of applications wireless communication is more important.

In robotic applications, generally we need a remote device to control. If we use IR remote device, it is just limited to meters distance and also if any obstacle is in between its path then there will be no communication. If we consider, RF modules for remote operations there is no objection whether an obstacle is present in its path. So that it is very helpful to control robot.

RF modules itself can generates its carrier frequency which is around 2.4 GHz. We need to generate serial data using micro controller and fed to the RF transmitting module. On other side RF receiver receives sent data as RF signals and given to another micro controller. Here, RF receiver itself demodulates the data from carrier signal and generate serial data as output.
By using this communication network we can design a remote device for controlling robot. If u send move forward command from RF remote transmitter, then receiver receives that data and perform operation on robot to move in that particular direction. Similarly if u sends turn left command then, robot will take left direction with respect to that command. So by this way we can design remote using RF modules for robotic applications. Apart from this we are placing wireless camera so that user is able to control the robot direction from transmitter.

2. BLOCK DIAGRAM
2.1 TRANSMITTER:[image: image49.jpg]

2.2 RECEIVER:

2.3 REQUIREMENTS:
HARDWARE REQUIREMENTS:
· AT89S52
· L293D

· ROBOT

· 16X2 LCD
· RF MODULES

· WIRELESS CAMERA

SOFTWARE REQUIREMENTS:
· KEIL C COMPILER

· PROGRAMMING IN EMBEDDED C
3. SCHEMATIC DIAGRAM
3.1 TRANSMITTER:
[image: image50.png]
3.2 RECEIVER:
[image: image2.emf]GND

RESET

GND

1

2

3

4

5

6

7

8

9

10

SWITCH

EN(LCD)

VCC

R1

R2

R3

R4

R7

R6

R5

R8

10K PULLUP

9

8

7

6

5

4

3

2

1

GND

GND

VCC

TRANSFORMER

8.2K

1000uf/35V

DC MOTOR

1

2

FROM ISP

XTAL2

GND

GND

GND

GND

VCC

VEE

RS

RW

EN

D0

D3

D2

D4

D5

D6

D7

D1

VCC

GND

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

10uf/35V

LCD

AT89S52

20

18

17

29

30

19

32

9

10

11

12

13

14

15

16

40

39

38

37

36

35

34

33

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

31

GND

XTAL2

(RD) P3.7

PSEN

ALE/PROG

XTAL1

P0.7/AD7

RST

(RXD) P3.0

(TXD) P3.1

(INT0) P3.2

(INT1) P3.3

(T0) P3.4

(T1) P3.5

(WR) P3.6

VCC

P0.0/AD0

P0.1/AD1

P0.2/AD2

P0.3/AD3

P0.4/AD4

P0.5/AD5

P0.6/AD6

P2.7/A15

P2.6/A14

P2.5/A13

P2.4/A12

P2.3/A11

P2.2/A10

P2.1/A9

P2.0/A8

(T2) P1.0

(T2 EX) P1.1

P1.2

P1.3

P1.4

(MOSI) P1.5

(MISO) P1.6

(SCK) P1.7

EA/VPP

P1.7

IN3(L293D)

IN4(L293D(CAM))

AT89S52 CRYSTAL

VCC

GND

10uf/35V

AT89S52 ISP

D7(LCD)

P0.5

DOUT(XBEE)

VCC

D5(LCD)

POWER SUPPLY(5VDC)

VCC3.3V

XTAL1

P0.3

VCC

P3.6

VCC

VCC

33 pf

10 uf/63V

33pf

33 pf

P3.4

RST

VCC

2

GND

10uf/35V

GND

GND

D6(LCD)

EN1

IN1

OUT1

GND

GND

GND

GND

OUT2

IN2

VS

EN2

IN3

OUT3

OUT4

IN4

VSS

L293D

1

2

3

4

5

6

7

8

9

10

14

16

15

13

12

11

XTAL2

IN2(L293D)

IN3(L293D(CAM))

220 ohm

GND

GND

vcc

DOUT

DIN

CD

RESET

PWM0

NC

NC

DTR

GND

AD4

CTS

SLEEP

VREF

AD5

AD6

AD3

AD2

AD0

AD1

X BEE MODULE

1

2

3

4

5

6

7

8

9

10

20

19

18

17

16

15

14

13

12

11

VCC

VCC

LED

FROM ISP

P0.1

P0.5

GND

VCC

R1

R2

R3

R4

R7

R6

R5

R8

10K PULLUP

9

8

7

6

5

4

3

2

1

RS(LCD)

P1.6

P0.4

FROM ISP

(9V,1 AMP)

GND

10uf/35V

104pf

P3.7

EN1

IN1

OUT1

GND

GND

GND

GND

OUT2

IN2

VS

EN2

IN3

OUT3

OUT4

IN4

VSS

L293D(CAM)

1

2

3

4

5

6

7

8

9

10

14

16

15

13

12

11

GND

R8

R7

R6

R5

R4

R1

R2

R3

VCC

10K PULLUP

1

2

3

4

5

6

7

8

9

D4(LCD)

VCC=3.3V

P

VCC

R8

R7

R6

R5

R4

R1

R2

R3

VCC

10K PULLUP

1

2

3

4

5

6

7

8

9

I

VCC = 5V

GND

P1.5

IN1(L293D)

P0.6

VCC

DC MOTOR

1

2

GND

VCC

4.7K

TRIM POT

5K

P3.5

IN4(L293D)

P0.1

-

+

BRIDGE RECTIFIER

1

4

3

2

RESET

GND

230V,A.C

1

2

11.0592MHz

S

VCC

DC MOTOR

1

2

XTAL1

P0.7

P3.0

7805 REGULATOR

1

3

VIN

VOUT

RESET

GND

RESET

GND

12

34

56

78

910

SWITCH

EN(LCD)

VCCR1R2R3R4R7R6R5R8

10K PULLUP

987654321

GND

GND

VCC

TRANSFORMER

8.2K

1000uf/35V

DC MOTOR

1

2

FROM ISP

XTAL2

GND

GND

GND

GND

VCC

VEE

RS

RW

EN

D0

D3

D2

D4

D5

D6

D7

D1

VCC

GND

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

10uf/35V

LCD

AT89S52

20

18

17

29

30

19

329

10

11

12

13

14

15

16

40

39

38

37

36

35

34

33

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

31

GND

XTAL2

(RD) P3.7

PSEN

ALE/PROG

XTAL1

P0.7/AD7RST

(RXD) P3.0

(TXD) P3.1

(INT0) P3.2

(INT1) P3.3

(T0) P3.4

(T1) P3.5

(WR) P3.6

VCC

P0.0/AD0

P0.1/AD1

P0.2/AD2

P0.3/AD3

P0.4/AD4

P0.5/AD5

P0.6/AD6

P2.7/A15

P2.6/A14

P2.5/A13

P2.4/A12

P2.3/A11

P2.2/A10

P2.1/A9

P2.0/A8

(T2) P1.0

(T2 EX) P1.1

P1.2

P1.3

P1.4

(MOSI) P1.5

(MISO) P1.6

(SCK) P1.7

EA/VPP

P1.7

IN3(L293D)

IN4(L293D(CAM))

AT89S52 CRYSTAL

VCC

GND

10uf/35V

AT89S52 ISP

D7(LCD)

P0.5DOUT(XBEE)

VCC

D5(LCD)

POWER SUPPLY(5VDC)

VCC3.3V

XTAL1

P0.3

VCC

P3.6

VCC

VCC

33 pf

10 uf/63V

33pf

33 pf

P3.4

RST

VCC

2

GND

10uf/35V

GND

GND

D6(LCD)

EN1

IN1

OUT1

GND

GNDGND

GND

OUT2

IN2

VSEN2

IN3

OUT3

OUT4

IN4

VSS

L293D

1

2

3

4

5

6

7

89

10

14

16

15

13

12

11

XTAL2

IN2(L293D)

IN3(L293D(CAM))

220 ohm

GND

GND

vcc

DOUT

DIN

CD

RESET

PWM0

NC

NC

DTR

GNDAD4

CTS

SLEEP

VREF

AD5

AD6

AD3

AD2

AD0

AD1

X BEE MODULE

1

2

3

4

5

6

7

8

9

10

20

19

18

17

16

15

14

13

12

11

VCC

VCC

LED

FROM ISP

P0.1

P0.5

GND

VCC

R1R2R3R4R7R6R5R8

10K PULLUP

987654321

RS(LCD)

P1.6

P0.4

FROM ISP

(9V,1 AMP)

GND

10uf/35V

104pf

P3.7

EN1

IN1

OUT1

GND

GNDGND

GND

OUT2

IN2

VSEN2

IN3

OUT3

OUT4

IN4

VSS

L293D(CAM)

1

2

3

4

5

6

7

89

10

14

16

15

13

12

11

GND

R8R7R6R5R4R1R2R3

VCC

10K PULLUP

123456789

D4(LCD)

VCC=3.3V

P

VCC

R8

R7

R6

R5

R4

R1

R2

R3

VCC

10K PULLUP

1

2

3

4

5

6

7

8

9

I

VCC = 5V

GND

P1.5

IN1(L293D)

P0.6

VCC

DC MOTOR

1

2

GND

VCC

4.7K

TRIM POT

5K

P3.5

IN4(L293D)

P0.1

-+

BRIDGE RECTIFIER

1

4

3

2

RESET

GND

230V,A.C

1

2

11.0592MHz

S

VCC

DC MOTOR

1

2

XTAL1

P0.7

P3.0

7805 REGULATOR

13

VINVOUT

RESET

4. CIRCUIT DESCRIPTION
4.1 DESIGNING:

Since the main intension of this project is to design a ROBOT with wireless camera. In order to fulfill this application there are few steps that has been performed i.e.

1) Designing the power supply for the entire circuitry.

2) Selection of microcontroller that suits our application.

3) Selection of Robot.
4) Selection of RF.

5) Selection of LCD.

6) Selection of DRIVER IC.

7) Selection of wireless camera

Complete studies of all the above points are useful to develop this project.

4.2 POWER SUPPLY SECTION:

In-order to work with any components basic requirement is power supply. In this section there is a requirement of two different voltage levels.

Those are

1) 5V DC power supply.

2) 3.3V DC power supply.

Now the aim is to design the power supply section which converts 230V AC in to 5V DC. Since 230V AC is too high to reduce it to directly 5V DC, therefore we need a step-down transformer that reduces the line voltage to certain voltage that will help us to convert it in to a 5V DC. Considering the efficiency factor of the bridge rectifier, we came to a conclusion to choose a transformer, whose secondary voltage is 3 to 4 V higher than the required voltage i.e. 5V. For this application 0-9V transformers is used, since it is easily available in the market.

The output of the transformer is 9V AC; it feed to rectifier that converts AC to pulsating DC. As we all know that there are 3 kind of rectifiers that is

1) half wave

2) Full wave and

3) Bridge rectifier

Here we short listed to use Bridge rectifier, because half wave rectifier has we less in efficiency. Even though the efficiency of full wave and bridge rectifier are the same, since there is no requirement for any negative voltage for our application, we gone with bridge rectifier.

Since the output voltage of the rectifier is pulsating DC, in order to convert it into pure DC we use a high value (1000UF/1500UF) of capacitor in parallel that acts as a filter. The most easy way to regulate this voltage is by using a 7805 voltage regulator, whose output voltage is constant 5V DC irrespective of any fluctuation in line voltage.

In this project 3.3V power supply is used to operate the Xbee module. To get 3.3V we are using LM1117 voltage regulator which is 3.3V regulator.

4.3 SELECTION OF MICROCONTROLLER:

As we know that there so many types of micro controller families that are available in the market.

Those are

1) 8051 Family

2) AVR microcontroller Family

3) PIC microcontroller Family

4) ARM Family

Basic 8051 family is enough for our application; hence we are not concentrating on higher end controller families.

In order to fulfill our application basic that is AT89C51 controller is enough. But still we selected AT89S52 controller because of inbuilt ISP (in system programmer) option.

There are minimum six requirements for proper operation of microcontroller.

Those are:

1) power supply section

2) pull-ups for ports (it is must for PORT0)

3) Reset circuit

4) Crystal circuit

5) ISP circuit (for program dumping)

6) EA/VPP pin is connected to Vcc.

PORT0 is open collector that’s why we are using pull-up resistor which makes PORT0 as an I/O port. Reset circuit is used to reset the microcontroller. Crystal circuit is used for the microcontroller for timing pluses. In this project we are not using external memory that’s why EA/VPP pin in the microcontroller is connected to Vcc that indicates internal memory is used for this application.

 4.4 SELECTION OF ROBOT:

Here in this project I designed one robot which has three gear motors. Two gear motors are connected to two wheels and another motor is connected to wireless camera for rotating the webcam. And we are placing one flexible wheel in the front side of the robot.
4.5 SELECTION OF LCD:

A liquid crystal display (LCD) is an electronically-modulated optical device shaped into a thin, flat panel made up of any number of color or monochrome pixels filled with liquid crystals and arrayed in front of a light source (backlight) or reflector. In this project we are using LCD, to display the direction of the robot.

4.6 SELECTION OF RF:

The aim of this project is to control the robot direction from remote areas, so wireless communication is required to fulfill our application. There are different wirelesses communications exist. For this application we prefer XBee modules as RF.

As per RF communication basic RF modules works on 434MHz frequency. Based on this frequency we are not able to transmit the data from transmitter to receiver with proper synchronization. To overcome this problem we are using XBee modules as a RF. The XBee module works on 2.4GHz frequency, which is more than the basic RF module frequency. By using these XBee modules we can transmit data for long distances as compared to basic RF modules. This XBee module works as a transceiver i.e. it is connected at both transmitter as well as receiver. For this application we are using the XBee modules either transmitter or receiver.

4.7 SELECTION OF DRIVER:

When the motors of robot is rotating they will produce back EMF. Due to that back EMF high current is produced. If we connect these motors directly to the microcontroller the microcontroller may damage because of that current that’s why we are selected L293d driver IC.
4.8 CIRCUIT OPERATION:

The main aim of this project is to control the robot with wireless technology. For this purpose we designed two separate boards .One is transmitter and another is receiver which is placed on the robot. Here we are using Xbee modules as RF (wireless communication). In the transmitter, if we press the buttons according to that some predefined data will be transferred through Xbee and the receiver will receive the data. According to the command, the robot will do the specific task i.e. FORWARD, BACKWARD, LEFT and RIGHT. And when we press the switches related to webcam, the receiver receive that information. After receiving robot will stop and the webcam will rotate till we send the command to stop. After that the robot will move in the same direction in which previously the robot is moving. For this purpose we designed two programs in embedded C and dumped in to the ICs using ISP programmer.

5.1 INTRODUCTION TO EMBEDDED SYSTEMS

Embedded systems are electronic devices that incorporate microprocessors with in their implementations. The main purposes of the microprocessors are to simplify the system design and provide flexibility. Having a microprocessor in the device helps in removing the bugs, making modifications, or adding new features are only matter of rewriting the software that controls the device. Or in other words embedded computer systems are electronic systems that include a microcomputer to perform a specific dedicated application. The computer is hidden inside these products. Embedded systems are ubiquitous. Every week millions of tiny computer chips come pouring out of factories finding their way into our everyday products.

Embedded systems are self-contained programs that are embedded within a piece of hardware. Whereas a regular computer has many different applications and software that can be applied to various tasks, embedded systems are usually set to a specific task that cannot be altered without physically manipulating the circuitry. Another way to think of an embedded system is as a computer system that is created with optimal efficiency, thereby allowing it to complete specific functions as quickly as possible.

Embedded systems designers usually have a significant grasp of hardware technologies. They use specific programming languages and software to develop embedded systems and manipulate the equipment. When searching online, companies offer embedded systems development kits and other embedded systems tools for use by engineers and businesses.

Embedded systems technologies are usually fairly expensive due to the necessary development time and built in efficiencies, but they are also highly valued in specific industries. Smaller businesses may wish to hire a consultant to determine what sort of embedded systems will add value to their organization.

5.1.1 CHARACTERISTICS:

Two major areas of differences are cost and power consumption. Since many embedded systems are produced in tens of thousands to millions of units range, reducing cost is a major concern. Embedded systems often use a (relatively) slow processor and small memory size to minimize costs.

The slowness is not just clock speed. The whole architecture of the computer is often intentionally simplified to lower costs. For example, embedded systems often use peripherals controlled by synchronous serial interfaces, which are ten to hundreds of times slower than comparable peripherals used in PCs. Programs on an embedded system often run with real-time constraints with limited hardware resources: often there is no disk drive, operating system, keyboard or screen. A flash drive may replace rotating media, and a small keypad and LCD screen may be used instead of a PC's keyboard and screen.

Firmware is the name for software that is embedded in hardware devices, e.g. in one or more ROM/Flash memory IC chips. Embedded systems are routinely expected to maintain 100% reliability while running continuously for long periods, sometimes measured in years. Firmware is usually developed and tested too much harsher requirements than is general-purpose software, which can usually be easily restarted if a problem occurs.

5.1.2 PLATFORM:

There are many different CPU architectures used in embedded designs. This in contrast to the desktop computer market which is limited to just a few competing architectures mainly the Intel/AMD x86 and the Apple/Motorola/IBM Power PC’s which are used in the Apple Macintosh. One common configuration for embedded systems is the system on a chip, an application-specific integrated circuit, for which the CPU was purchased as intellectual property to add to the IC's design.

5.1.3 TOOLS:

Like a typical computer programmer, embedded system designers use compilers, assemblers and debuggers to develop an embedded system. Those software tools can come from several sources:

Software companies that specialize in the embedded market Ported from the GNU software development tools. Sometimes, development tools for a personal computer can be used if the embedded processor is a close relative to a common PC processor. Embedded system designers also use a few software tools rarely used by typical computer programmers. Some designers keep a utility program to turn data files into code, so that they can include any kind of data in a program. Most designers also have utility programs to add a checksum or CRC to a program, so it can check its program data before executing it.

5.1.4 OPERATING SYSTEM:

They often have no operating system, or a specialized embedded operating system (often a real-time operating system), or the programmer is assigned to port one of these to the new system.

DEBUGGING:

Debugging is usually performed with an in-circuit emulator, or some type of debugger that can interrupt the micro controller’s internal microcode. The microcode interrupt lets the debugger operate in hardware in which only the CPU works. The CPU-based debugger can be used to test and debug the electronics of the computer from the viewpoint of the CPU.

Developers should insist on debugging which shows the high-level language, with breakpoints and single stepping, because these features are widely available. Also, developers should write and use simple logging facilities to debug sequences of real-time events. PC or mainframe programmers first encountering this sort of programming often become confused about design priorities and acceptable methods. Mentoring, code-reviews and ego less programming are recommended.

5.1.5 DESIGN OF EMBEDDED SYSTEMS:

The electronics usually uses either a microprocessor or a microcontroller. Some large or old systems use general-purpose mainframes computers or minicomputers.

START-UP:

All embedded systems have start-up code. Usually it disables interrupts, sets up the electronics, tests the computer (RAM, CPU and software), and then starts the application code. Many embedded systems recover from short-term power failures by restarting (without recent self-tests). Restart times under a tenth of a second are common.

Many designers have found one of more hardware plus software-controlled LED’s useful to indicate errors during development (and in some instances, after product release, to produce troubleshooting diagnostics). A common scheme is to have the electronics turn off the LED(s) at reset, whereupon the software turns it on at the first opportunity, to prove that the hardware and start-up software have performed their job so far. After that, the software blinks the LED(s) or sets up light patterns during normal operation, to indicate program execution progress and/or errors. This serves to reassure most technicians/engineers and some users.

THE CONTROL LOOP:

In this design, the software has a loop. The loop calls subroutines. Each subroutine manages a part of the hardware or software. Interrupts generally set flags, or update counters that are read by the rest of the software. A simple API disables and enables interrupts. Done right, it handles nested calls in nested subroutines, and restores the preceding interrupt state in the outermost enable. This is one of the simplest methods of creating an exocrine.

Typically, there's some sort of subroutine in the loop to manage a list of software timers, using a periodic real time interrupt. When a timer expires, an associated subroutine is run, or flag is set. Any expected hardware event should be backed-up with a software timer. Hardware events fail about once in a trillion times.

State machines may be implemented with a function-pointer per state-machine (in C++, C or assembly, anyway). A change of state stores a different function into the pointer. The function pointer is executed every time the loop runs.

Many designers recommend reading each IO device once per loop, and storing the result so the logic acts on consistent values. Many designers prefer to design their state machines to check only one or two things per state. Usually this is a hardware event, and a software timer. Designers recommend that hierarchical state machines should run the lower-level state machines before the higher, so the higher run with accurate information.

Complex functions like internal combustion controls are often handled with multi-dimensional tables. Instead of complex calculations, the code looks up the values. The software can interpolate between entries, to keep the tables small and cheap.

One major disadvantage of this system is that it does not guarantee a time to respond to any particular hardware event. Careful coding can easily assure that nothing disables interrupts for long. Thus interrupt code can run at very precise timings. Another major weakness of this system is that it can become complex to add new features. Algorithms that take a long time to run must be carefully broken down so only a little piece gets done each time through the main loop.

This system's strength is its simplicity, and on small pieces of software the loop is usually so fast that nobody cares that it is not predictable. Another advantage is that this system guarantees that the software will run. There is no mysterious operating system to blame for bad behavior.

5.1.6 USER INTERFACES:

Interface designers at PARC, Apple Computer, Boeing and HP minimize the number of types of user actions. For example, use two buttons (the absolute minimum) to control a menu system (just to be clear, one button should be "next menu entry" the other button should be "select this menu entry"). A touch-screen or screen-edge buttons also minimize the types of user actions.

Another basic trick is to minimize and simplify the type of output. Designs should consider using a status light for each interface plug, or failure condition, to tell what failed. A cheap variation is to have two light bars with a printed matrix of errors that they select- the user can glue on the labels for the language that she speaks.

For example, Boeing's standard test interface is a button and some lights. When you press the button, all the lights turn on. When you release the button, the lights with failures stay on. The labels are in Basic English.

Designers use colors. Red defines the users can get hurt- think of blood. Yellow defines something might be wrong. Green defines everything's OK.

Another essential trick is to make any modes absolutely clear on the user's display. If an interface has modes, they must be reversible in an obvious way. Most designers prefer the display to respond to the user. The display should change immediately after a user action. If the machine is going to do anything, it should start within 7 seconds, or give progress reports.

One of the most successful general-purpose screen-based interfaces is the two menu buttons and a line of text in the user's native language. It's used in pagers, medium-priced printers, network switches, and other medium-priced situations that require complex behavior from users. When there's text, there are languages. The default language should be the one most widely understood.

5.2 INTRODUCTION TO MICROCONTROLLER

Microcontrollers as the name suggests are small controllers. They are like single chip computers that are often embedded into other systems to function as processing/controlling unit. For example the remote control you are using probably has microcontrollers inside that do decoding and other controlling functions. They are also used in automobiles, washing machines, microwave ovens, toys ... etc, where automation is needed.

Micro-controllers are useful to the extent that they communicate with other devices, such as sensors, motors, switches, keypads, displays, memory and even other micro-controllers. Many interface methods have been developed over the years to solve the complex problem of balancing circuit design criteria such as features, cost, size, weight, power consumption, reliability, availability, manufacturability. Many microcontroller designs typically mix multiple interfacing methods. In a very simplistic form, a micro-controller system can be viewed as a system that reads from (monitors) inputs, performs processing and writes to (controls) outputs.

Embedded system means the processor is embedded into the required application. An embedded product uses a microprocessor or microcontroller to do one task only. In an embedded system, there is only one application software that is typically burned into ROM. Example: printer, keyboard, video game player

Microprocessor - A single chip that contains the CPU or most of the computer

Microcontroller - A single chip used to control other devices

Microcontroller differs from a microprocessor in many ways. First and the most important is its functionality. In order for a microprocessor to be used, other components such as memory, or components for receiving and sending data must be added to it. In short that means that microprocessor is the very heart of the computer. On the other hand, microcontroller is designed to be all of that in one. No other external components are needed for its application because all necessary peripherals are already built into it. Thus, we save the time and space needed to construct devices.

5.2.1 MICROPROCESSOR VS MICROCONTROLLER:
Microprocessor:

· CPU is stand-alone, RAM, ROM, I/O, timer are separate

· Designer can decide on the amount of ROM, RAM and I/O ports.

· expensive

· versatility general-purpose
Microcontroller:

· CPU, RAM, ROM, I/O and timer are all on a single chip

· fix amount of on-chip ROM, RAM, I/O ports

· for applications in which cost, power and space are critical

· single-purpose

5.3 INTRODUCTION TO ROBOTICS

A robot is a virtual or mechanical artificial agent in practice, it is usually an electro-mechanical machine which is guided by computer or electronic programming, and is thus able to do tasks on its own. Another common characteristic is that by its appearance or movements, a robot often conveys a sense that it has intent or agency of its own.

 [image: image3.png] [image: image4.jpg]

The Robotic Industries Association defines robot as follows: "A robot is a reprogrammable, multifunctional manipulator designed to move material, parts, tools or specialized devices through variable programmed motions for the performance of a variety of tasks." Recently, however, the industry's current working definition of a robot has come to be understood as any piece of equipment that has three or more degrees of movement or freedom.

Robotics is an increasingly visible and important component of modern business, especially in certain industries. Robotics-oriented production processes are most obvious in factories and manufacturing facilities; in fact, approximately 90 percent of all robots in operation today can be found in such facilities. These robots, termed "industrial robots," were found almost exclusively in automobile manufacturing plants as little as 15 to 20 years ago. But industrial robots are now being used in laboratories, research and development facilities, warehouses, hospitals, energy-oriented industries (petroleum, nuclear power, etc.), and other areas.

Today's robotics systems operate by way of hydraulic, pneumatic, and electrical power. Electric motors have become progressively smaller, with high power-to-weight ratios, enabling them to become the dominant means by which robots are powered.

Robots are programmed either by guiding or by off-line programming. Most industrial robots are programmed by the former method. This involves manually guiding a robot from point to point through the phases of an operation, with each point stored in the robotic control system. With off-line programming, the points of an operation are defined through computer commands. This is referred to as manipulator level off-line programming. An important area of research is the development of off-line programming that makes use of higher-level languages, in which robotic actions are defined by tasks or objectives.

[image: image5.jpg]

An industrial robot is officially defined by ISO as an automatically controlled, reprogrammable, multipurpose manipulator programmable in three or more axes. The field of robotics may be more practically defined as the study, design and use of robot systems for manufacturing (a top-level definition relying on the prior definition of robot).

Robots may be programmed to move through a specified continuous path instead of from point to point. Continuous path control is necessary for operations such as spray painting or arc welding a curved joint. Programming also requires that a robot be synchronized with the automated machine tools or other robots with which it is working. Thus robot control systems are generally interfaced with a more centralized control system.

Robots are moving out of the realm of science fiction and into real-life applications, with the usage of robots in industry, food service and health care. Robots have long been used in assembling machines, but reliability was a problem as was the need to design products so that robots could assemble them. Now with better controls and sensors, and the use of complex programming, robots are being used in areas dangerous to humans, such as nuclear power plants. While robots have not proved successful in food service several home robots will carry dishes and other small loads from room to room. A friend, recovering from hip surgery, used his cye to carry food from the kitchen to the living room, and the dirty dishes back into the kitchen again. Since he was on crutches, this was a real lifesaver. Future robots could carry water in a storage container, and use this to water plants, or even fill a pets bowl.

The use of industrial robots is becoming more widespread. They are primarily used for the automation of mass production in factories. Industrial robots have the ability to perform the same tasks repeatedly without stopping. An industrial robot is used for applications such as welding, painting, assembly, palletizing, cutting, and material handling. Robot supports a variety of robotic applications such as arc welding, spot welding, machine loading, and palletizing, which utilize robotic grippers, and robotic tooling.

Typical applications of robots include welding, painting, assembly, pick and place, packaging and palletizing, product inspection, and testing, all accomplished with high endurance, speed, and precision.

5.3.1 SELECTING A ROBOT:

A large range of robots with different components, techniques, and means of operation have already been designed and manufactured. These are selected according to their utility and financial considerations. A futuristic robot, with modern sensors and appropriate software, can perform tasks efficiently, accurately, and quickly, but will be expensive. Thus, all the relevant factors must be considered while selecting robots for industrial applications, including the initial expenditure and the benefits to be achieved in using the robot.
5.3.2 ADVANTAGES OF ROBOTICS:

Robotics is very advantageous in several ways to man kind. For example, humans work in many unsuitable places and conditions like chemical plants, or pharmaceuticals and exposure to some chemicals constantly may not be good for the humans. However, if these responsibilities are automated using robots, then human beings need not face work based injuries and diseases. When it comes to handling hazardous materials robots are better suited. There are similar advantageous applications for a robot in several other industries.

Today, robots are also used to launch satellites and travel to a different planet altogether. Robots are being launched on Mars to explore the planet and are being designed with intelligence at par with humans.

Robotic systems have the capability of impressively meliorating the quality of work. They don't make any mistakes and errors as humans do. This saves a lot of important output and production time. They provide optimum output in regards to quality as well as quantity. In the medical field, they are used to carry out complicated surgeries which are very difficult for doctors and surgeons to perform.

The use of robotic systems in the industrial sector is a necessity nowadays, as more and more products are to be manufactured in a very less time, and that too with high-quality and accuracy. Big industrial manufacturing giants have robotic systems that work 24/7. Such systems can even do the work of approximately 100 or more human workers at a time.

Future robotics systems may come up with benefits that we can't even imagine of. In many films, the robotic hand has been showed; who knows it may become a reality in the near future. The advantages of robotics are certainly predicted to grow in several other fields over time.
5.3.3 DISADVANTAGES OF ROBOTS:
· Robots can not respond properly at the times of emergency and danger

· They are expensive

· They have limited duties

· They can only do what they have been ordered to do
· High initial cost of robotic systems and robots

· Possible need for extra space, and new technology, to accommodate robotic systems and robots

· Importance of using highly skilled and technical engineers, programmers and others to set up robotic systems and robots to prevent unnecessary future problems and mishaps

5.3.4 APPLICATIONS OF ROBOTICS:

Robotics has been of interest to mankind for over one hundred years. A robots characteristics change depending on the environment it operates in. Some of these are:

· OUTER SPACE

Manipulative arms that are controlled by a human are used to unload the docking bay of space shuttles to launch satellites or to construct a space station.

· THE INTELLIGENT HOME

Automated systems can now monitor home security, environmental conditions and energy usage. Door and windows can be opened automatically and appliances such as lighting and air conditioning can be pre programmed to activate. This assists occupants irrespective of their state of mobility.
· EXPLORATION

Robots can visit environments that are harmful to humans. An example is monitoring the environment inside a volcano or exploring our deepest oceans. NASA has used robotic probes for planetary exploration since the early sixties.
· MILITARY ROBOTS

Airborne robot drones are used for surveillance in today's modern army. In the future automated aircraft and vehicles could be used to carry fuel and ammunition or clear mine fields.

· FARMS

Automated harvesters can cut and gather crops. Robotic dairies are available allowing operators to feed and milk their cows remotely.
· THE CAR INDUSTRY

Robotic arms that are able to perform multiple tasks are used in the car manufacturing process. They perform tasks such as welding, cutting, lifting, sorting and bending. Similar applications but on a smaller scale are now being planned for the food processing industry in particular the trimming, cutting and processing of various meats such as fish, lamb, beef.
· HOSPITALS

Under development is a robotic suit that will enable nurses to lift patients without damaging their backs. Scientists in Japan have developed a power-assisted suit which will give nurses the extra muscle they need to lift their patients - and avoid back injuries.

The suit was designed by Keijiro Yamamoto, a professor in the welfare-systems engineering department at Kanagawa Institute of Technology outside Tokyo. It will allow caregivers to easily lift bed-ridden patients on and off beds.

In its current state the suit has an aluminum exoskeleton and a tangle of wires and compressed-air lines trailing from it. Its advantage lies in the huge impact it could have for nurses. In Japan, the population aged 14 and under has declined 7% over the past five years to 18.3 million this year. Providing care for a growing elderly generation poses a major challenge to the government.

Robotics may be the solution. Research institutions and companies in Japan have been trying to create robotic nurses to substitute for humans. Yamamoto has taken another approach and has decided to create a device designed to help human nurses.

In tests, a nurse weighing 64 kilograms was able to lift and carry a patient weighing 70 kilograms. The suit is attached to the wearer's back with straps and belts. Sensors are placed on the wearer's muscles to measure strength. These send the data back to a microcomputer, which calculates how much more power is needed to complete the lift effortlessly.

The computer, in turn, powers a chain of actuators - or inflatable cuffs - that are attached to the suit and worn under the elbows, lower back and knees. As the wearer lifts a patient, compressed air is pushed into the cuffs, applying extra force to the arms, back and legs. The degree of air pressure is automatically adjusted according to how much the muscles are flexed. A distinct advantage of this system is that it assists the wearer’s knees, being only one of its kinds to do so.

A number of hurdles are still faced by Yamamoto. The suit is unwieldy, the wearer can't climb stairs and turning is awkward. The design weight of the suit should be less than 10 kilograms for comfortable use. The latest prototype weighs 15 kilograms. Making it lighter is technically possible by using smaller and lighter actuators. The prototype has cost less than ¥1 million ($8,400) to develop. But earlier versions developed by Yamamoto over the past 10 years cost upwards of ¥20 million in government development grants.
· DISASTER AREAS

Surveillance robots fitted with advanced sensing and imaging equipment can operate in hazardous environments such as urban setting damaged by earthquakes by scanning walls, floor sand ceilings for structural integrity.
· ENTERTAINMENT
 Interactive robots that exhibit behaviors and learning ability. SONY has one such robot which moves freely, plays with a ball and can respond to verbal instructions.
5.4 INTRODUCTION TO RF

Radio frequency (RF) radiation is a subset of electromagnetic radiation with a wavelength of 100km to 1mm, which is a frequency of 3 KHz to 300 GHz, respectively. This range of electromagnetic radiation constitutes the radio spectrum and corresponds to the frequency of alternating current electrical signals used to produce and detect radio waves. RF can refer to electromagnetic oscillations in either electrical circuits or radiation through air and space. Like other subsets of electromagnetic radiation, RF travels at the speed of light.

The rising use of cellular phones has regenerated interest in an area of technology that has not evolved greatly since the early days of AM Radio. Today, fiber optics, signal processing, and microwave go hand-in hand in support of RF Communication.

We offer a modular RF Communications program that covers Amplitude Modulation, Frequency Modulation, Citizen Band, Single Sideband, and Narrowband FM radio.

The Radio Communications course is ideal preparation for entry into the wireless communications job market. The course teaches the operation, troubleshooting, and repair of common AM- FM standard broadcast band receiver and CB transceiver circuits. The latter part of the course includes typical Narrowband FM transceiver circuits.

RF communication works by creating electromagnetic waves at a source and being able to pick up those electromagnetic waves at a particular destination. These electromagnetic waves travel through the air at near the speed of light. The wavelength of an electromagnetic signal is inversely proportional to the frequency; the higher the frequency, the shorter the wavelength.

Frequency is measured in Hertz (cycles per second) and radio frequencies are measured in kilohertz (KHz or thousands of cycles per second), megahertz (MHz or millions of cycles per second) and gigahertz (GHz or billions of cycles per second). Higher frequencies result in shorter wavelengths. The wavelength for a 900 MHz device is longer than that of a 2.4 GHz device.

In general, signals with longer wavelengths travel a greater distance and penetrate through, and around objects better than signals with shorter wavelengths.

5.4.1 RF COMMUNICATION WORKING:

Imagine an RF transmitter wiggling an electron in one location. This wiggling electron causes a ripple effect, somewhat akin to dropping a pebble in a pond. The effect is an electromagnetic (EM) wave that travels out from the initial location resulting in electrons wiggling in remote locations. An RF receiver can detect this remote electron wiggling.

The RF communication system then utilizes this phenomenon by wiggling electrons in a specific pattern to represent information. The receiver can make this same information available at a remote location; communicating with no wires.

In most wireless systems, a designer has two overriding constraints: it must operate over a certain distance (range) and transfer a certain amount of information within a time frame (data rate). Then the economics of the system must work out (price) along with acquiring government agency approvals (regulations and licensing).
5.4.2 RANGE DETERMINATION:

In order to accurately compute range – it is essential to understand a few terms
DB – DECIBELS:

Decibels are logarithmic units that are often used to represent RF power. To convert from watts to dB: Power in dB = 10* (log x) where x is the power in watts.

Another unit of measure that is encountered often is dBm (dB milli-watts). The conversion formula for it is Power in dBm = 10* (log x) where x is the power in milli-watts.

LINE-OF-SITE (LOS):

Line-of-site when speaking of RF means more than just being able to see the receiving antenna from the transmitting antenna. In, order to have true line-of-site no objects (including trees, houses or the ground) can be in the Fresnel zone. The Fresnel zone is the area around the visual line-of-sight that radio waves spread out into after they leave the antenna. This area must be clear or else signal strength will weaken.

There are essentially two parameters to look at when trying to determine range.

TRANSMIT POWER:

Transmit power refers to the amount of RF power that comes out of the antenna part of the radio. Transmit power is usually measured in Watts, milli-watts or dBm. (Conversion between watts and dB see below)

RECEIVER SENSITIVITY:

Receiver sensitivity refers to the minimum level signal the radio can demodulate. It is convenient to use an example with sound waves; Transmit power is how loud someone is yelling and receive sensitivity would be how soft a voice someone can hear. Transmit power and receive sensitivity together constitute what is know as “link budget”. The link budget is the total amount of signal attenuation you can have between the transmitter and receiver and still have communication occur.

EXAMPLE:
Max stream 9XStream TX Power

-20dBm

Max stream 9XStream RX Sensitivity
-10dBm
Total Link budget

 -130dBm.

For line-of-site situations, a mathematical formula can be used to figure out the approximate range for a given link budget. For non line-of-site applications range calculations are more complex because of the various ways the signal can be attenuated.

RF COMMUNICATIONS AND DATA RATE:

Data rates are usually dictated by the system - how much data must be transferred and how often does the transfer need to take place. Lower data rates, allow the radio module to have better receive sensitivity and thus more range. In the XStream modules the 9600 baud module has 3dB more sensitivity than the 19200 baud module. This means about 30% more distance in line-of-sight conditions. Higher data rates allow the communication to take place in less time, potentially using less power to transmit.
5.4.3 DIFFERENCE BETWEEN IR AND RF:

IR COMMUNICATIONS:

· Used in IrDA, and Remote controls

· Short Range

· Requires two devices to be in line of sight.

· There should be no Opaque Obstacle in between the devices.

· Easy and low cost to implement

RF COMMUNICATION:
· Widely used, including Bluetooth, Radios, Cell phones, Satellite etc

· Wide range, from few meters to millions of kilometers (Can be Used to control Robots in Mars)

· Does not require two devices to be in line of sight.

· Can cross many obstacles

· Circuits can be complicated and costly

Radio frequency (RF) is a term that refers to alternating current (AC) having characteristics such that, if the current is input to an antenna, an electromagnetic (EM) field is generated suitable for wireless broadcasting and/or communications. These frequencies cover a significant portion of the electromagnetic radiation spectrum, extending from nine kilohertz (9 kHz),the lowest allocated wireless communications frequency (it's within the range of human hearing), to thousands of gigahertz(GHz).

When an RF current is supplied to an antenna, it gives rise to an electro magnetic field that propagates through space. This field is sometimes called an RF field; in less technical jargon it is a "radio wave." Any RF field has a wavelength that is inversely proportional to the frequency.

The frequency of an RF signal is inversely proportional to the wave length of the EM field to which it corresponds. At 9 kHz, the free-space wavelength is approximately 33 kilometers (km). At the highest radio frequencies, the EM wavelengths measure approximately one millimeter (1 mm). As the frequency is increased beyond that of the RF spectrum, EM energy takes the form of infrared (IR), visible, ultraviolet (UV), X rays, and gamma rays.

Many types of wireless devices make use of RF fields. Cordless and cellular telephone, radio and television broadcast stations, satellite communications systems, and two-way radio services all operate in the RF spectrum. Some wireless devices operate at IR or visible-light frequencies, whose electromagnetic wavelengths are shorter than those of RF fields. Examples include most television-set remote-control boxes, some cordless computer keyboards and mice, and a few wireless hi-fi stereo headsets.

The RF spectrum is divided into several ranges or bands. With the exception of the lowest-frequency segment, each band represents an increase of frequency corresponding to an order of magnitude (power of 10). The table depicts the eight bands in the RF spectrum, showing frequency and bandwidth ranges. The SHF and EHF bands are often referred to as the microwave spectrum.
FREQUENCIES:
	Name
	Symbol
	Frequency
	Wavelength
	Applications

	Extremely low frequency
	ELF
	3–30 Hz
	10,000–100,000 km
	Directly audible when converted to sound, communication with submarines

	Super low frequency
	SLF
	30–300 Hz
	1,000–10,000 km
	Directly audible when converted to sound, AC power grids (50–60 Hz)

	Ultra low frequency
	ULF
	300–3000 Hz
	100–1,000 km
	Directly audible when converted to sound, communication with mines

	Very low frequency
	VLF
	3–30 kHz
	10–100 km
	Directly audible when converted to sound (below ca. 20 kHz; or ultrasound otherwise)

	Low frequency
	LF
	30–300 kHz
	1–10 km
	AM broadcasting, navigational beacons, low FER

	Medium frequency
	MF
	300–3000 kHz
	100–1000 m
	Navigational beacons, AM broadcasting, maritime and aviation communication

	High frequency
	HF
	3–30 MHz
	10–100 m
	Shortwave, amateur radio, citizens' band radio

	Very high frequency
	VHF
	30–300 MHz
	1–10 m
	FM broadcasting, amateur radio, broadcast television, aviation, GPR

	Ultra high frequency
	UHF
	300–3000 MHz
	10–100 cm
	Broadcast television, amateur radio, mobile telephones, cordless telephones, wireless networking, remote keyless entry for automobiles, microwave ovens, GPR

	Super high frequency
	SHF
	3–30 GHz
	1–10 cm
	Wireless networking, satellite links, microwave links, satellite television, door openers

	Extremely high frequency
	EHF
	30–300 GHz
	1–10 mm
	Microwave data links, radio astronomy, remote sensing, advanced weapons systems, advanced security scanning

5.5 INTRODUCTION TO LIQUID CRYSTAL DISPLAY

A liquid crystal display (LCD) is a thin, flat panel used for electronically displaying information such as text, images, and moving pictures. Its uses include monitors for computers, televisions, instrument panels, and other devices ranging from aircraft cockpit displays, to every-day consumer devices such as video players, gaming devices, clocks, watches, calculators, and telephones. Among its major features are its lightweight construction, its portability, and its ability to be produced in much larger screen sizes than are practical for the construction of cathode ray tube (CRT) display technology. Its low electrical power consumption enables it to be used in battery-powered electronic equipment. It is an electronically-modulated optical device made up of any number of pixels filled with liquid crystals and arrayed in front of a light source (backlight) or reflector to produce images in color or monochrome. The earliest discovery leading to the development of LCD technology, the discovery of liquid crystals, dates from 1888. By 2008, worldwide sales of televisions with LCD screens had surpassed the sale of CRT units.

5.5.1 PIN DESCRIPTION:
[image: image6.png]
PIN DESCRIPTION:

	PIN
	SYMBOL
	I/O
	DESCRIPTION

	1
	VSS
	--
	Ground

	2
	VCC
	--
	+5V power supply

	3
	VEE
	--
	Power supply to control contrast

	4
	RS
	I
	RS=0 to select command register

RS=1 to select data register

	5
	R/W
	I
	R/W=0 for write

R/W=1 for read

	6
	EN
	I/O
	Enable

	7
	DB0
	I/O
	The 8-bit data bus

	8
	DB1
	I/O
	The 8-bit data bus

	9
	DB2
	I/O
	The 8-bit data bus

	10
	DB3
	I/O
	The 8-bit data bus

	11
	DB4
	I/O
	The 8-bit data bus

	12
	DB5
	I/O
	The 8-bit data bus

	13
	DB6
	I/O
	The 8-bit data bus

	14
	DB7
	I/O
	The 8-bit data bus

VCC, VSS and VEE:

 While VCC and VSS provide +5V and ground respectively, VEE is used for controlling LCD contrast.
RS (REGISTER SELECT):

There are two important registers inside the LCD. When RS is low (0), the data is to be treated as a command or special instruction (such as clear screen, position cursor, etc.). When RS is high (1), the data that is sent is a text data which should be displayed on the screen. For example, to display the letter "T" on the screen you would set RS high.
RW (READ/WRITE):

The RW line is the "Read/Write" control line. When RW is low (0), the information on the data bus is being written to the LCD. When RW is high (1), the program is effectively querying (or reading) the LCD. Only one instruction ("Get LCD status") is a read command. All others are write commands, so RW will almost be low.
EN (ENABLE):

The EN line is called "Enable". This control line is used to tell the LCD that you are sending it data. To send data to the LCD, your program should first set this line high (1) and then set the other two control lines and/or put data on the data bus. When the other lines are completely ready, bring EN low (0) again. The 1-0 transition tells the 44780 to take the data currently found on the other control lines and on the data bus and to treat it as a command.

D0-D7 (DATA LINES):

The 8-bit data pins, D0-D7 are used to send information to the LCD or read the content of the LCD’s internal registers.

To display letters and numbers, we send ASCII codes for the letters A-Z, a-z and numbers 0-9 to these pins while making RS=1.

There are also instruction command codes that can be sent to the LCD to clear the display or force the cursor to the home position or blink the cursor.

We also use RS=0 to check the busy flag bit to see if the LCD is ready to receive the information. The busy flag is D7 and can be read when R/W = 1 and RS=0, as follows: if R/W = 1, RS = 0. When D7=1 (busy flag = 1), the LCD is busy taking care of internal operations and will not accept any new information. When D7 = 0, the LCD is ready to receive new information.

Note: it is recommended to check the flag before writing any data to LCD.

LCD COMMAND CODES:

	CODE (HEX)
	COMMAND TO LCD INSTRUCTION REGISTER

	1
	CLEAR DISPLAY SCREEN

	2
	RETURN HOME

	4
	DECREMENT CURSOR(SHIFT CURSOR TO LEFT)

	6
	INCREMENT CURSOR(SHIFT CURSOR TO RIGHT)

	5
	SHIFT DISPLAY RIGHT

	7
	SHIFT DISPLAY LEFT

	8
	DISPLAY OFF,CURSOR OFF

	A
	DISPLAY OFF,CURSOR ON

	C
	DISPLAY ON,CURSOR OFF

	E
	DISPLAY ON CURSOR BLINKING

	F
	DISPLAY ON CURSOR BLINKING

	10
	SHIFT CURSOR POSITION TO LEFT

	14
	SHIFT CURSOR POSITION TO RIGHT

	18
	SHIFT THE ENTIRE DISPLAY TO THE LEFT

	1C
	SHIFT THE ENTIRE DISPLAY TO THE RIGHT

	80
	FORCE CURSOR TO BEGINNING OF 1ST LINE

	C0
	FORCE CURSOR TO BEGINNING OF 2ND LINE

	38
	2 LINES AND 5x7 MATRIX

ADVANTAGES:

 LCD interfacing with 8051 is a real-world application. In recent years the LCD is finding widespread use replacing LED’s (seven segment LED’s or other multi segment LED’s).

This is due to following reasons:

· The declining prices of LCD’s.
· The ability to display numbers, characters and graphics. This is in contrast to LED’s, which are limited to numbers and a few characters. An intelligent LCD displays two lines, 20 characters per line, which is interfaced to the 8051.
· Incorporation of a refreshing controller into the LCD, thereby relieving the CPU to keep displaying the data.
· Ease of programming for characters and graphics.
5.6 INTRODUCTION TO LIGHT EMITTING DIODE

A light-emitting diode (LED) is a semiconductor diode that emits incoherent narrow spectrum light when electrically biased in the forward direction of the pn-junction, as in the common LED circuit. This effect is a form of electroluminescence.
[image: image7.png]
[image: image8.jpg]
Like a normal diode, the LED consists of a chip of semi-conducting material impregnated, or doped, with impurities to create a p-n junction. As in other diodes, current flows easily from the p-side, or anode, to the n-side, or cathode, but not in the reverse direction. Charge-carriers—electrons and holes—flow into the junction from electrodes with different voltages. When an electron meets a hole, it falls into a lower energy level, and releases energy in the form of a photon.
[image: image9.png]

The wavelength of the light emitted, and therefore its color, depends on the band gap energy of the materials forming the p-n junction. In silicon or germanium diodes, the electrons and holes recombine by a non-radiative transition which produces no optical emission, because these are indirect band gap materials. The materials used for the LED have a direct band gap with energies corresponding to near-infrared, visible or near-ultraviolet light.

LED development began with infrared and red devices made with gallium arsenide. Advances in materials science have made possible the production of devices with ever-shorter wavelengths, producing light in a variety of colors.

LEDs are usually built on an n-type substrate, with an electrode attached to the p-type layer deposited on its surface. P-type substrates, while less common, occur as well. Many commercial LEDs, especially GaN/InGaN, also use sapphire substrate.

Most materials used for LED production have very high refractive indices. This means that much light will be reflected back in to the material at the material/air surface interface. Therefore Light extraction in LEDs is an important aspect of LED production, subject to much research and development.

Solid state devices such as LEDs are subject to very limited wear and tear if operated at low currents and at low temperatures. Many of the LEDs produced in the 1970s and 1980s are still in service today. Typical lifetimes quoted are 25,000 to 100,000 hours but heat and current settings can extend or shorten this time significantly.

Conventional LEDs are made from a variety of inorganic semiconductor materials; the following table shows the available colors with wavelength range and voltage drop.

	Color
	Wavelength (nm)
	Voltage (V)

	Infrared
	λ > 760
	ΔV < 1.9

	Red
	610 < λ < 760
	1.63 < ΔV < 2.03

	Orange
	590 < λ < 610
	2.03 < ΔV < 2.10

	Yellow
	570 < λ < 590
	2.10 < ΔV < 2.18

	Green
	500 < λ < 570
	1.9 < ΔV < 4.0

	Blue
	450 < λ < 500
	2.48 < ΔV < 3.7

	Violet
	400 < λ < 450
	2.76 < ΔV < 4.0

	Purple
	multiple types
	2.48 < ΔV < 3.7

	Ultraviolet
	λ < 400
	3.1 < ΔV < 4.4

	White
	Broad spectrum
	ΔV = 3.5

5.6.1 ADVANTAGES OF LEDS:

· LED’s have many advantages over other technologies like lasers. As compared to laser diodes or IR sources

· LED’s are conventional incandescent lamps. For one thing, they don't have a filament that will burn out, so they last much longer. Additionally, their small plastic bulb makes them a lot more durable. They also fit more easily into modern electronic circuits.

· The main advantage is efficiency. In conventional incandescent bulbs, the light-production process involves generating a lot of heat (the filament must be warmed). Unless you're using the lamp as a heater, because a huge portion of the available electricity isn't going toward producing visible light.

· LED’s generate very little heat. A much higher percentage of the electrical power is going directly for generating light, which cuts down the electricity demands considerably.

· LED’s offer advantages such as low cost and long service life. Moreover LED’s have very low power consumption and are easy to maintain.

5.6.2 Disadvantages of LEDs:
· LED’s performance largely depends on the ambient temperature of the operating environment.
· LED’s must be supplied with the correct current.
· LED’s do not approximate a "point source" of light, so cannot be used in applications needing a highly collimated beam.
But the disadvantages are quite negligible as the negative properties of LED’s do not apply and the advantages far exceed the limitations.
5.7 INTRODUCTION TO KIEL SOFTWARE

Many companies provide the 8051 assembler, some of them provide shareware version of their product on the Web, Kiel is one of them. We can download them from their Websites. However, the size of code for these shareware versions is limited and we have to consider which assembler is suitable for our application.

5.7.1 KIEL U VISION2:

This is an IDE (Integrated Development Environment) that helps you write, compile, and debug embedded programs. It encapsulates the following components:

· A project manager

· A make facility

· Tool configuration

· Editor

· A powerful debugger

 To get start here are some several example programs

5.7.2 BUILDING AN APPLICATION IN UVISION2:

To build (compile, assemble, and link) an application in uVision2, you must:

· Select Project–Open Project

(For example, \C166\EXAMPLES\HELLO\HELLO.UV2)

· Select Project - Rebuild all target files or Build target. UVision2 compiles, assembles, and links the files in your project.

5.7.3 CREATING YOUR OWN APPLICATION IN UVISION2:

To create a new project in uVision2, you must:

· Select Project - New Project.

· Select a directory and enter the name of the project file.

· Select Project - Select Device and select an 8051, 251, or C16x/ST10 device from the Device

· Database

· Create source files to add to the project.

· Select Project - Targets, Groups, and Files. Add/Files, select Source Group1, and add the source files to the project.

· Select Project - Options and set the tool options. Note when you select the target device from the Device Database all-special options are set automatically. You only need to configure the memory map of your target hardware. Default memory model settings are optimal for most.
[image: image10.png]
5.7.4 APPLICATIONS:

· Select Project - Rebuild all target files or Build target.

5.7.5 DEBUGGING AN APPLICATION IN UVISION2:

To debug an application created using uVision2, you must:

· Select Debug - Start/Stop Debug Session.

· Use the Step toolbar buttons to single-step through your program. You may enter G, main in the Output Window to execute to the main C function.

· Open the Serial Window using the Serial #1 button on the toolbar.

· Debug your program using standard options like Step, Go, Break, and so on.

5.7.6 LIMITATIONS OF EVALUATION SOFTWARE:

The following limitations apply to the evaluation versions of the C51, C251, or C166 tool chains. C51 Evaluation Software Limitations:

· The compiler, assembler, linker, and debugger are limited to 2 Kbytes of object code but source Code may be any size. Programs that generate more than 2 Kbytes of object code will not compile, assemble, or link the startup code generated includes LJMP's and cannot be used in single-chip devices supporting Less than 2 Kbytes of program space like the Philips 750/751/752.

· The debugger supports files that are 2 Kbytes and smaller.

· Programs begin at offset 0x0800 and cannot be programmed into single-chip devices.

· No hardware support is available for multiple DPTR registers.

· No support is available for user libraries or floating-point arithmetic.

5.7.7 EVALUATION SOFTWARE:

· Code-Banking Linker/Locator

· Library Manager.

· RTX-51 Tiny Real-Time Operating System

5.7.8 PERIPHERAL SIMULATION:

The u vision2 debugger provides complete simulation for the CPU and on chip peripherals of most embedded devices. To discover which peripherals of a device are supported, in u vision2. Select the Simulated Peripherals item from the Help menu. You may also use the web-based device database. We are constantly adding new devices and simulation support for on-chip peripherals so be sure to check Device Database often.
6.1 MICROCONTROLLER 89S52

6.1.1 FEATURES:

· 8K Bytes of In-System Reprogrammable Flash Memory

· Endurance: 1,000 Write/Erase Cycles

· Fully Static Operation: 0 Hz to 24 MHz

· 256 x 8-bit Internal RAM

· 32 Programmable I/O Lines

· Three 16-bit Timer/Counters

· Eight Interrupt Sources

· Programmable Serial Channel

· Low-power Idle and Power-down Modes

6.1.2 DESCRIPTION:

The AT89C52 is a low-power, high-performance CMOS 8-bit microcomputer with 8Kbytes of Flash programmable and erasable read only memory (PEROM). The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C52 is a powerful microcomputer, which provides a highly flexible and cost-effective solution to many embedded control applications.

6.1.3 PIN DIAGRAM - AT89S52:

[image: image11.png]
Pin diagram of 89S52.

6.1.4 PIN DESCRIPTION:

VCC - Supply voltage.

GND - Ground.

PORT 0:

Port 0 is an 8-bit open drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs. Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode, P0 has internal pull-ups. Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. External pull-ups are required during program verification.

PORT 1:

Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pull-ups. In addition, P1.0 and P1.1 can be configured to be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively.
6.1.5 PORT PIN ALTERNATE FUNCTIONS:

P1.0 T2 (external count input to Timer/Counter 2), clock-out

P1.1 T2EX (Timer/Counter 2 capture/reload trigger and direction control
PORT 2:

Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I IL) because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that uses 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memory that uses 8-bit addresses (MOVX @ RI); Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.

PORT 3:

Port 3 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I IL) because of the pull-ups. Port 3 also serves the functions of various special features of the AT89C51. Port 3 also receives some control signals for Flash programming and verification.
6.1.6 PORT PIN ALTERNATE FUNCTIONS:

P3.0 RXD (serial input port)

P3.1 TXD (serial output port)

P3.2 INT0 (external interrupt 0)

P3.3 INT1 (external interrupt 1)

P3.4 T0 (timer 0 external input)

P3.5 T1 (timer 1 external input)

P3.6 WR (external data memory write strobe)

P3.7 RD (external data memory read strobe).

RST:

Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.

ALE/PROG:

Address Latch Enable is an output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during flash programming. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. However, that one ALE pulse is skipped during each access to external data memory. If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

PSEN:

Program Store Enable is the read strobe to external program memory. When the AT89C52 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.
EA/VPP:

External Access Enable (EA) must be strapped to GND in order to enable the device to fetch code from external pro-gram memory locations starting at 0000H up to FFFFH. However, if lock bit 1 is programmed, EA will be internally latched on reset. EA should be strapped to VCC for internal program executions. This pin also receives the 12V programming enable voltage (VPP) during Flash programming when 12V programming is selected.

XTAL1:

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2:

It is an output from the inverting oscillator amplifier.

6.1.7 BLOCK DIAGRAM OF 89S52:

[image: image12]
6.1.8 ARCHITECHTURE OF 8052 MICROCONTROLLER:
[image: image13.png]
Architecture of 89S52

6.1.9 OSCILLATOR CHARACTERISTICS:

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier, which can be configured for use as an on-chip oscillator. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low-time specifications must be observed.

IDLE MODE:

In idle mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset. It should be noted that when idle is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

OSCILLATOR CONNECTIONS:

[image: image14.png]
 OSCILLATOR CONNECTIONS:
Note: C1, C2 = 30 pF ± 10 pF for Crystals

 = 40 pF ± 10 pF for Ceramic Resonators

[image: image15.png]
External Clock drives Configuration.

6.2 XBEE MODULE

The Xbee and Xbee-PRO OEM RF Modules were engineered to meet IEEE 802.15.4 standards and support the unique needs of low-cost, low-power wireless sensor networks. The modules require minimal power and provide reliable delivery of data between devices. The modules operate within the ISM 2.4 GHz frequency band and are pin-for-pin compatible with each other and these modules are embedded solutions providing wireless end-point connectivity to devices. These modules use the IEEE 802.15.4 networking protocol for fast point-to-multipoint or peer-to-peer networking. They are designed for high-throughput applications requiring low latency and predictable communication timing.”

In easy terms, Xbee is a radio device working on a very powerful IEEE protocol 802.15.4. Low-Power requirement and standardized protocol make Xbee the most favorite radio for digital communication. Among its long list of features, following are most favorites;

· Built-in 10-Bit ADCs and Digital IOs

· PWM and UART Output for ADCs

· Flexible Mesh Networking Protocol

· Self-healing and Discovery for Network Stability

· Low-Power Consumption

· Small Form Factor

· Industrial Temperature Rating

6.2.1 APPLICATIONS:

The direct interfacing of analog sensors and digital I/O makes Xbee widely acceptable in variety of areas. The typical application areas are
· Home Entertainment and Control — Smart lighting, advanced temperature control, safety and security, movies and music

· Home Awareness — Water sensors, power sensors, smoke and fire detectors, smart appliances and access sensors

· Mobile Services — m-payment, m-monitoring and control, m-security and access control, m-healthcare and tele-assist

· Commercial Building — Energy monitoring, HVAC, lighting, access control

· Industrial Plant — Process control, asset management, environmental management, energy management, industrial device control
6.2.2 SPECIFICATIONS:

There are many modules categorized by output power and data rate, among them the maximum specification are as

Range : 24 kilometers

Data rate : 250 kbps

Max. Output Power : 100mW

Radio Frequency : 2.45 GHz and 900 MHz

Analog Inputs : 6 Inputs – 10-Bit ADC

Digital IOs : 8 IOs

ADC Scan Rate : 1 KHz

Antenna Types : Chip, Wire and RPSMA

6.2.3 FEATURES:

· Price-to-Performance Value

· Low Power Consumption

· Receiver Sensitivity

· Industrial Temperature Rating

· Worldwide Acceptance
· Small Form Factor
· High Performance, Low Cost
· Indoor/Urban: up to 300’ (100 m)
· Outdoor line-of-sight: up to 1 mile (1.6 km)
· Transmit Power Output: 100 mW (20 dBm) EIRP
· Receiver Sensitivity: -102 dBm
· RF Data Rate: 250,000 bps
6.2.4 ADVANCED NETWORKING & SECURITY:

Retries and Acknowledgements DSSS (Direct Sequence Spread Spectrum) each direct sequence channel has over 65,000 unique network addresses available Point-to-point, point-to-multipoint and peer-to-peer topologies supported Self-routing, self-healing and fault-tolerant mesh networking

Networking Low Power Xbee-PRO
•TX Current: 295 mA (@3.3 V)
•RX Current: 45 mA (@3.3 V)
•Power-down Current: < 1 μA @ 25oC Easy-to-Use No configuration necessary for out-of box RF communications AT and API Command Modes for configuring module parameters Small form factor Extensive command set Free X-CTU Software (Testing and configuration software) Free & Unlimited Technical Support.
6.2.5 PERFORMANCE: X BEE

· Power output:

· 2mW (+3 dBm) boost mode

· 1.25 mW (+1 dBm) normal mode

· Indoor/Urban range: Up to 133 ft (40 m)

· Outdoor/RF line-of-sight range: Up to 400 ft (120 m)

· RF data rate: 250 Kbps

· Interface data rate: Up to 1 Mbps software selectable

· Operating frequency: 2.4 GHz

· Receiver sensitivity:

· -96 dBm boost mode

· -95 dBm normal mode

6.2.6 PERFORMANCE: X BEE-PRO

· Power output:

· 50 mW (+17 dBm) North American version

· 10 mW (+10 dBm) International version

· Indoor/Urban range: Up to 400 ft (120 m)

· Outdoor/RF line-of-sight range: Up to 1 mile (1.6 km) RF LOS

· RF data rate: 250 Kbps

· Interface data rate: Up to 1 Mbps software selectable

· Operating frequency: 2.4 GHz

· Receiver sensitivity: -102 dBm (all variants)

6.2.7 NETWORKING:
· Spread Spectrum type: DSSS (Direct Sequence Spread Spectrum)

· Networking topology: Mesh, point-to-point & point-to-multipoint

· Error handling: Retries & acknowledgements

· Filtration options: PAN ID, Channel, and 64-bit addresses

· Channel capacity:

· X Bee: 16 Channels

· X Bee-PRO: 13 Channels

· Addressing: 65,000 network addresses available for each channel

6.2.8 POWER:
· Supply voltage:

· X Bee: 2.1 - 3.6 VDC

· X Bee-PRO: 3.0 - 3.4 VDC

· X Bee Footprint Recommendation: 3.0 - 3.4 VDC

· Transmit current:

· X Bee: 40 mA (@ 3.3 V) boost mode 35 mA (@ 3.3 V) normal mode

· X Bee-PRO: 295 mA (@ 3.3 V)

· Receive current:

· X Bee: 40 mA (@ 3.3 V)

· X Bee-PRO: 45 mA (@ 3.3 V)

· Power-down sleep current:

· X Bee: <1 µA at 25° C

· X Bee-PRO: 10 µA at 25° C

6.2.9 GENERAL:
· Frequency band: 2.4000 - 2.4835 GHz

· Interface options: 3V CMOS UART, (4) 10-bit ADC inputs, (10) remote-settable Digital I/O

6.2.10 PHYSICAL PROPERTIES:
· Size:

· X Bee: 0.960 in x 1.087 in (2.438 cm x 2.761 cm)

· X Bee-PRO: 0.960 in x 1.297 in (2.438 cm x 3.294 cm)

· Weight: 0.10 oz (3g)

· Antenna options: U.FL, Reverse Polarity SMA (RPSMA), chip antenna or wired whip antenna

· Operating temperature: -40° C to 85° C (industrial)

PIN DESCRIPTION:
	Pin#
	Name
	Direction
	Description

	1
	VCC
	-
	POWER SUPPLY

	2
	DOUT
	Output
	UART Data Out

	3
	DIN/CONFIG BAR
	Input
	UART Data In

	4
	CD/DOUT_EN/DO8
	Output
	Carrier Detect, TX_enable or Digital Output 8

	5
	RESET BAR
	Input
	Module Reset

	6
	PWM0/RSSI
	Output
	PWM Output 0 or RX Signal Strength Indicator

	7
	[reserved]
	-
	Do not connect

	8
	[reserved]
	-
	Do not connect

	9
	DTR/SLEEP_RQ/D18
	Input
	Pin Sleep Control Line or Digital Input 8

	10
	GND
	-
	Ground

	11
	AD4 / DIO4
	Either
	Analog Input 4 or Digital I/O 4

	12
	CTS BAR / DIO7
	Either
	Clear-to-Send Flow Control or Digital I/O 7

	13
	ON / SLEEP BAR
	Output
	Module Status Indicator

	14
	VREF
	Input
	Voltage Reference for A/D Inputs

	15
	Associate / AD5 / DIO5
	Either
	Associated Indicator, Analog Input 5 or Digital I/O 5

	16
	RTS BAR / AD6 / DIO6
	Either
	Request-to-Send Flow Control, Analog Input 6 or Digital I/O 6

	17
	AD3 / DIO3
	Either
	Analog Input 3 or Digital I/O 3

	18
	AD2 / DIO2
	Either
	Analog Input 2 or Digital I/O 2

	19
	AD1 / DIO1
	Either
	Analog Input 1 or Digital I/O 1

	20
	AD0 / DIO0
	Either
	Analog Input 0 or Digital I/O 0

· Minimum connections are: VCC, GND, DOUT and DIN.

· Signal Direction is specified with respect to the module

· Functions listed in descriptions are software selectable and may not all be available at time of release.

· Module includes a 50k pull‐up resistor attached to [image: image16.emf]
· Unused inputs should be tied to GND / unused outputs should be left disconnected.
6.2.11 RF (XBEE) MODULE OPERATION:
SERIAL COMMUNICATIONS:

The Xbee RF Modules interface to a host device through a logic-level asynchronous serial port. Through its serial port, the module can communicate with any logic and voltage compatible UART; or through a level translator to any serial device
(For example: Through a Digi pro-prietary RS-232 or USB interface board).
UART DATA FLOW:

Devices that have a UART interface can connect directly to the pins of the RF module as shown in the figure below.

6.2.12 SYSTEM DATA FLOW DIAGRAM IN A UART‐INTERFACED ENVIRONMENT:

(Low‐asserted signals distinguished with horizontal line over signal name.)
[image: image17.emf]
6.2.13 SERIAL DATA:

Data enters the module UART through the DI pin (pin 3) as an asynchronous serial signal. The signal should idle high when no data is being transmitted. Each data byte consists of a start bit (low), 8 data bits (least significant bit first) and a stop bit (high). The following figure illustrates the serial bit pattern of data passing through the module.

6.2.14 UART DATA PACKET 0X1F (DECIMAL NUMBER “31”) AS TRANSMITTED THROUGH THE RF MODULE:

Example Data Format is 8-N-1 (bits-parity -# of stop bits)
[image: image18.emf]

Serial communications depend on the two UARTs (the microcontroller's and the RF module's) to be configured with compatible settings (baud rate, parity, start bits, stop bits, data bits). The UART baud rate and parity settings on the Xbee module can be configured with the BD and SB commands, respectively.

6.2.15 TRANSPARENT OPERATION:

By default, Xbee® RF Modules operate in Transparent Mode. When operating in this mode, the modules act as a serial line replacement - all UART data received through the DI pin is queued up for RF transmission. When RF data is received, the data is sent out the DO pin.

6.2.16 SERIAL-TO-RF PACKETIZATION:

Data is buffered in the DI buffer until one of the following causes the data to be packetized and transmitted:

1. No serial characters are received for the amount of time determined by the RO (Packetization Timeout) parameter. If RO = 0, Packetization begins when a character is received.
2. The maximum number of characters that will fit in an RF packet (100) is received.
3. The Command Mode Sequence (GT + CC + GT) is received. Any character buffered in the DI buffer before the sequence is transmitted.

If the module cannot immediately transmit (for instance, if it is already receiving RF data), the serial data is stored in the DI Buffer. The data is packetized and sent at any RO timeout or when 100 bytes (maximum packet size) are received.

If the DI buffer becomes full, hardware or software flow control must be implemented in order to prevent overflow (loss of data between the host and module).
6.2.17 API OPERATION:

API (Application Programming Interface) Operation is an alternative to the default Transparent Operation. The frame-based API extends the level to which a host application can interact with the networking capabilities of the module.
When in API mode, all data entering and leaving the module is contained in frames that define operations or events within the module.
Transmit Data Frames (received through the DI pin (pin 3)) include:
· RF Transmit Data Frame
· Command Frame (equivalent to AT commands)
Receive Data Frames (sent out the DO pin (pin 2)) include:
· RF-received data frame
· Command response
· Event notifications such as reset, associate, disassociate, etc.

The API provides alternative means of configuring modules and routing data at the host application layer. A host application can send data frames to the module that contain address and payload information instead of using command mode to modify addresses. The module will send data frames to the application containing status packets; as well as source, RSSI and payload information from received data packets.
The API operation option facilitates many operations such as the examples cited below:
· Transmitting data to multiple destinations without entering Command Mode

· Receive success/failure status of each transmitted RF packet
· Identify the source address of each received packet
6.2.18 FLOW CONTROL:

[image: image19.emf]
6.3 L293D

The Device is a monolithic integrated high voltage, high current four channel driver designed to accept standard DTL or TTL logic levels and drive inductive loads (such as relays solenoids, DC and stepping motors) and switching power transistors. To simplify use as two bridges each pair of channels is equipped with an enable input. A separate supply input is provided for the logic, allowing operation at a lower voltage and internal clamp diodes are included. This device is suitable for use in switching applications at frequencies up to 5 kHz.
6.3.1 FEATURES:

· Wide Supply Voltage from 4.5 V to 36 V

· Separate Input-Logic Supply

· Internal ESD Protection

· Thermal Shutdown

· High-Noise-Immunity Inputs

· Functional Replacements for SGS L293 and SGS L293D

· Output Current 1 A per Channel (600 MA for L293D)

· Peak Output Current 2 A per Channel (1.2 A for L293D)

· Output Clamp Diodes for Inductive Transient Suppression (L293D)

6.3.2 PIN DIAGRAM:

[image: image20.emf]
6.3.3 DESCRIPTION:

The L293D is quadruple high-current half-H driver. It designed to provide bidirectional drive currents of up to 1 A at voltages from 4.5 V to 36 V and to drive inductive loads such as relays, solenoids, dc and bipolar stepping motors, as well as other high-current/high-voltage loads in positive-supply applications. All inputs are TTL compatible. Each output is a complete totem-pole drive circuit, with a Darlington transistor sink and a pseudo-Darlington source. Drivers are enabled in pairs, with drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4 enabled by 3,4EN. When an enable input is high the associated drivers are enabled and their outputs are active in phase with their inputs. When the enable input is low, those drivers are disabled and their outputs are off and in the high-impedance state. With the proper data inputs, each pair of drivers forms a full-H (or bridge) reversible drive suitable for solenoid or motor applications. On the L293D, external high-speed output clamp diodes should be used for inductive transient suppression. A VCC1 terminal, separate from VCC2, is provided for the logic inputs to minimize device power dissipation. The L293D is characterized for operation from 0°C to 70°C.

6.3.4 ELECTRICAL CHARACTERISTICS:

[image: image21.emf]
6.3.5 BLOCK DIAGRAM:

[image: image22.emf]
6.3.6 FUNCTION TABLE:

[image: image23.emf]
6.3.7 LOGIC DIAGRAM:

[image: image24.emf]
 6.4 ISP PROGRAMMER

In-System Programming (abbreviated ISP) is the ability of some programmable logic devices, microcontrollers, and other programmable electronic chips to be programmed while installed in a complete system, rather than requiring the chip to be programmed prior to installing it into the system. Otherwise, In-system programming means that the program and/or data memory can be modified without disassembling the embedded system to physically replace memory.

 The primary advantage of this feature is that it allows manufacturers of electronic devices to integrate programming and testing into a single production phase, rather than requiring a separate programming stage prior to assembling the system. This may allow manufacturers to program the chips in their own system's production line instead of buying preprogrammed chips from a manufacturer or distributor, making it feasible to apply code or design changes in the middle of a production run.

 ISP (In System Programming) will provide a simple and affordable home made solution to program and debug your microcontroller based project.

 Normally, the flash memory of an ATMEL microcontroller is programmed using a parallel interface, which consists of sending the data byte by byte (using 8 independent lines for the data, and another bunch of lines for the address, the control word and clock input).
 Many members of the Maxim 8051-based microcontroller family support in-system programming via a commonly available RS-232 serial interface. The serial interface consists of pins SCK, MOSI (input) and MISO (output) and the RST pin, which is normally used to reset the device.

 ISP is performed using only 4 lines, and literally, data is transferred through 2 lines only, as in a I2C interface, where data is shifted in bit by bit though MOSI line, with a clock cycle between each bit and the next (on the SCK line). MISO line is used for reading and for code verification; it is only used to output the code from the FLASH memory of the microcontroller.

 The RST pin is also used to enable the 3 pins (MOSI, MISO and SCK) to be used for ISP simply by setting RST to HIGH (5V), otherwise if RST is low (0V), program start running and those three pins, are used normally as P1.5, P1.6 and P1.7. After RST is set high, the Programming Enable instruction needs to be executed first before other operations can be executed. Before a reprogramming sequence can occur, a Chip Erase operation is required. The Chip Erase operation turns the content of every memory location in the Code array into FFH.

Either an external system clock can be supplied at pin XTAL1 or a crystal needs to be connected across pins XTAL1 and XTAL2. The maximum serial clock (SCK) frequency should be less than 1/16 of the crystal frequency. With a 33 MHz oscillator clock, the maximum SCK frequency is 2 MHz.
In the below figure we can see the ISP programmer connections using 74ls244

6.4.1 DB-25 Male pin description:

[image: image25.png]
	Pin no

	Name
	Direction
	Pin Description

	1

2
	GND

TXD
	
[image: image26]
	Shield Ground

Transmit Data

	3
	RXD
	
[image: image27]
	Receive Data

	4
	RTS
	
[image: image28]
	Request to Send

	5
	CTS
	
[image: image29]
	Clear to Send

	6
	DSR
	
[image: image30]
	Data Set Ready

	7
	GND
	
	System Ground

	8
	CD
	
	Carrier Detect

	9

	Reserved

	10

	Reserved

	11
	STF
	
[image: image31]
	Select Transmit Channel

	12
	S.CD
	
	Secondary Carrier Detect

	13
	S.CTS
	
[image: image32]
	Secondary Clear to Send

	14
	S.TXD
	
[image: image33]
	Secondary Transmit Data

	15
	TCK
	
[image: image34]
	Transmission Signal Element Timing

	16
	S.RXD
	
[image: image35]
	Secondary Receive Data

	17
	RCK
	
[image: image36]
	Receiver Signal Element Timing

	18
	LL
	
[image: image37]
	Local Loop Control

	19
	S.RTS
	
[image: image38]
	Secondary Request to Send

	20
	DTR
	
[image: image39]
	Data terminal Ready

	21
	RL
	
[image: image40]
	Remote Loop Control

	22
	RI
	
[image: image41]
	Ring Indicator

	23
	DSR
	
[image: image42]
	Data Signal Rate Selector

	24
	XCK
	
[image: image43]
	Transmit Signal Element Timing

	25
	TI
	
[image: image44]
	Test Indicator

6.4.2 74LS244:

The 74LS244 is used to work between PRINT ports to the chips AT89S52. We cannot observe 74LS244 on the PCB which is AT89S52 located. It hid in the joint between PC and 6 transmission lines. The 74LS244 pin configuration, logic diagram, connection and function table is on the below.
[image: image45.png]
6.4.3 CONNECTING THE PROGRAMMER TO AN AT89S52:
[image: image46.png]
 AT89S8252 microcontroller features an SPI port, through which on-chip Flash memory and EEPROM may be programmed. To program the microcontroller, RST is held high while commands, addresses and data are applied to the SPI port.
6.4.4 ATMEL ISP FLASH PROGRAMMER:
 This is the software that will take the HEX file generated by whatever compiler you are using, and send it - with respect to the very specific ISP transfer protocol - to the microcontroller.
 This programmer was designed in view of to be flexible, economical and easy to built, the programmer hardware uses the standard TTL series parts and no special components are used. The programmer is interfaced with the PC parallel port and there is no special requirement for the PC parallel port, so the older computers can also be used with this programmer.

6.4.5 SUPPORTED DEVICES:
The programmer software presently supports the following devices

AT89C51
AT89S51
AT89C1051
UD87C51
AT89C52
AT89S52 AT89C2051
D87C52
AT89C55
AT89S53
AT89C4051
AT89C55WD AT89S8252
AT89C51RC
Note: For 20 pin devices a simple interface adapter is required.

The ISP-3v0.zip file contains the main program and the I/O port driver for

Windows 2000 & XP. Place all files in the same folder, for win-95/98 use the "ISP-Pgm3v0.exe"File, for win-2000 & XP use the "ISP-XP.bat" file. The main screen view of the program is shown in fig below.

[image: image47.emf]
Following are the main features of this software:
· Read and write the Intel Hex file

· Read signature, lock and fuse bits

· Clear and Fill memory buffer

· Verify with memory buffer

· Reload current Hex file

· Display buffer checksum

· Program selected lock bits & fuses

· Auto detection of hardware

 The memory buffer contains both the code data and the EEPROM data for the devices which have EEPROM memory. The EEPROM memory address in buffer is started after the code memory, so it is necessary the hex file should contains the EEPROM start address after the end of code memory last address.

i.e., for 90S2313 the start address for EEPROM memory is 0 x 800.

 The software does not provide the erase command because this function is performed automatically during device programming. If you are required to erase the controller, first use the clear buffer command then program the controller, this will erase the controller and also set the device→ to default setting.
6.4.6 ISP PROGRAMMER PICTURE:
[image: image48.jpg]
7. CODING
/******* TRANSMITTER CODE FOR ROBOT WITH WIRELESS CAMERA ***********/

// CONTROLLER : AT89S52

// DATE : 09-09-2011
/***/

/*HEADER FILE */

#include<reg51.h>

//LCD CONNECTIONS

#define lcd P0

sbit rs=P0^1;

sbit en=P0^3;

//SWITCH CONNECTIONS

sbit sw1=P1^3;
//FORWARD

sbit sw2=P3^3;
//LEFT

sbit sw3=P3^4;
//BACKWARD

sbit sw4=P3^5;
//RIGHT

sbit sw5=P3^6;

//CAMERA LEFT

sbit sw6=P3^7;
 //CAMERA RIGHT

sbit sw7=P1^1;

//ROBOT STOP

sbit sw8=P1^2;

//CAMERA STOP

/*LCD INITIALIZATION */

void lcdinit();

void lcdcmd(unsigned char);

void lcddata(unsigned char);

void str(char *);

void delay();

void delaysec();

/*SERIAL COMMUNICATION INITIALIZATION*/

void Init_serial();

void Tx(char);

main()

{

lcdinit();

str(" ROBOT WITH ");

lcdcmd(0xc0);

str("WIRELESS CAMERA");

delaysec();

lcdcmd(0x01);

str("**WAITING FOR***");

lcdcmd(0xc0);

str("COMMAND.........");

Init_serial();

while(1)

{

if(sw1==0)

//FORWARD

{

lcdcmd(0x01);

str("FORWARD");

Tx('F');

}

if(sw2==0)

//LEFT

{

lcdcmd(0x01);

str("LEFT");

Tx('L');

}

if(sw3==0)

//BACKWARD

{

lcdcmd(0x01);

str("BACKWARD");

Tx('B');

}

if(sw4==0)

//RIGHT

{

lcdcmd(0x01);

str("RIGHT");

Tx('R');

}

if(sw5==0)

//CAMERA ON-LEFT

{

lcdcmd(0x01);

str("CAMERA ON");

lcdcmd(0xc0);

str("LEFT");

Tx('C');

}

if(sw6==0)

//CAMERA ON-RIGHT

{

lcdcmd(0x01);

str("CAMERA ON");

lcdcmd(0xc0);

str("RIGHT");

Tx('c');

}

if(sw7==0)

//ROBOT STOP

{

lcdcmd(0x01);

str("ROBOT STOP");

Tx('S');

delaysec();

lcdcmd(0x01);

 str("**WAITING FOR***");

 lcdcmd(0xc0);

str("COMMAND.........");

}

if(sw8==0)

//CAMERA STOP

{

lcdcmd(0x01);

str("CAMERA STOP");

Tx('s');

}

}

}

void lcdinit()

//LCD INITILIZATION FUNCTION

{

lcdcmd(0x28);

lcdcmd(0x0E);

lcdcmd(0x06);

lcdcmd(0x01);

lcdcmd(0x80);

}

void lcdcmd(unsigned char c)
//LCD COMMAND FUNCTION

{

lcd=(c&0xF0);

rs=0;

en=1;

delay();

en=0;

delay();

lcd=(c<<4);

rs=0;

en=1;

delay();

en=0;

delay();

}

void lcddata(unsigned char c)
//LCD DATA FUNCTION

{

lcd=(c&0xF0);

rs=1;

en=1;

delay();

en=0;

delay();

lcd=(c<<4);

rs=1;

en=1;

delay();

en=0;

delay();

}

void str(char *p)

//LCD STRING FUNCTION

{

while(*p)

lcddata(*p++);

}

void delay()

//DELAY FUNCTION

{

unsigned int i;

for(i=0;i<1000;i++) ;

}

void delaysec()

//DELAY FOR 1SEC

{

unsigned char i;

TMOD|=0x01;

TH0=TL0=0;

TR0=1;

for(i=0;i<16;i++)

{

while(TF0==0);

TF0=0;

}

TR0=0;

}

void Init_serial()

//SERIAL INITIALIZATION FUNCTION

{

SCON=0x50;

TMOD=0x20;

TH1=TL1=-3;

TR1=1;

}

void Tx(char c)

//SERIAL TRANSMISSION FUNCTION

{

SBUF=c;

while(!TI);

 TI=0;

}

/********RECEIVER CODE FOR ROBOT WITH WIRELESS CAMERA *********/

// CONTROLLER : AT89S52

// DATE : 09-09-2011
/***/

/*HEADER FILE*/

#include<reg51.h>

/*LCD CONNECTIONS*/

#define lcd P0

sbit rs=P0^1;

sbit en=P0^3;

/*ROBOT CONNECTIONS*/

sbit M1=P3^4;

sbit M2=P3^5;

sbit M3=P3^6;

sbit M4=P3^7;

/*CAMERA CONNECTIONS*/

sbit CM1=P1^0;

sbit CM2=P1^5;

/*LCD INITIALIZATION*/

void lcdinit();

void lcdcmd(unsigned char);

void lcddata(unsigned char);

void str(char *);

void delay();

void delaysec();

/*SERIAL COMMUNICATION INITIALIZATION*/

void Init_serial();

char Rx(void);

/*ROBOT START FUNCTION AFTER CAMERA STOP*/

void fun(char);

main()

{

char x,y;

lcdinit();

str(" ROBOT WITH ");

lcdcmd(0xc0);

str("WIRELESS CAMERA");

delaysec();

lcdcmd(0x01);

str("**WAITING FOR***");

lcdcmd(0xc0);

str("COMMAND.........");

Init_serial();

while(1)

{

x=Rx();

if(x=='F')

//FORWARD

{

y=x;

lcdcmd(0x01);

str("FORWARD");

M1=0;

M2=1;

M3=0;

M4=1;

}

if(x=='L')

//LEFT

{

y=x;

lcdcmd(0x01);

str("LEFT");

M1=0;

M2=1;

M3=0;

M4=0;

}

if(x=='B')

//BACKWARD

{

y=x;

lcdcmd(0x01);

str("BACKWARD");

M1=1;

M2=0;

M3=1;

M4=0;

}

if(x=='R')

//RIGHT

{

y=x;

lcdcmd(0x01);

str("RIGHT");

M1=0;

M2=0;

M3=0;

M4=1;

}

if(x=='S')

//ROBOT STOP

{

y=x;

lcdcmd(0x01);

str(" ROBOT STOP");

M1=0;

M2=0;

M3=0;

M4=0;

delaysec();

lcdcmd(0x01);

 str("**WAITING FOR***");

 lcdcmd(0xc0);

str("COMMAND.........");

}

if(x=='s')

//CAMERA STOP

{

lcdcmd(0x01);

str(" CAMERA STOP");

CM1=0;

CM2=0;

fun(y);

}

if(x=='C')

//CAMERA ON-LEFT

{

lcdcmd(0x01);

str("CAMERA ON");

lcdcmd(0xc0);

str("LEFT");

M1=0;

M2=0;

M3=0;

M4=0;

CM1=1;

CM2=0;

}

if(x=='c')

//CAMERA ON-RIGHT

{

 lcdcmd(0x01);

str("CAMERA ON");

lcdcmd(0xc0);

str("RIGHT");

M1=0;

M2=0;

M3=0;

M4=0;

CM1=0;

CM2=1;

}

}

}

void lcdinit()

//LCD INITIALIZATION FUNCTION

{

lcdcmd(0x28);

lcdcmd(0x0E);

lcdcmd(0x06);

lcdcmd(0x01);

lcdcmd(0x80);

}

void lcdcmd(unsigned char c)
//LCD COMMAND FUNCTION

{

lcd=(c&0xF0);

rs=0;

en=1;

delay();

en=0;

delay();

lcd=(c<<4);

rs=0;

en=1;

delay();

en=0;

delay();

}

void lcddata(unsigned char c)
//LCD DATA FUNCTION

{

lcd=(c&0xF0);

rs=1;

en=1;

delay();

en=0;

delay();

lcd=(c<<4);

rs=1;

en=1;

delay();

en=0;

delay();

}

void str(char *p)

//LCD STRING FUNCTION

{

while(*p)

lcddata(*p++);

}

void delay()

//DELAY FUNCTION

{

unsigned int i;

for(i=0;i<1000;i++) ;

}

void delaysec()

//DELAY FOR 1SEC

{

unsigned char i;

TMOD|=0x01;

TH0=TL0=0;

TR0=1;

for(i=0;i<16;i++)

{

while(TF0==0);

TF0=0;

}

TR0=0;

}

void Init_serial()

//SERIAL INITIALIZATION FUNCTION

{

SCON=0x50;

TMOD=0x20;

TH1=TL1=-3;

TR1=1;

}

char Rx(void)

//SERIAL RECEIVE FUNCTION

{

while(!RI);

RI=0;

return SBUF;

}

void fun(char y)

//FUNCTION FOR ROBOT AFTER CAMERA IS OFF

{

if(y=='F')

//FORWARD

{

lcdcmd(0x01);

str("FORWARD");

M1=0;

M2=1;

M3=0;

M4=1;

}

if(y=='L')

//LEFT

{

lcdcmd(0x01);

str("LEFT");

M1=0;

M2=1;

M3=0;

M4=0;

}

if(y=='B')

//BACKWARD

{

lcdcmd(0x01);

str("BACKWARD");

M1=1;

M2=0;

M3=1;

M4=0;

}

if(y=='R')

//RIGHT

{

lcdcmd(0x01);

str("RIGHT");

M1=0;

M2=0;

M3=0;

M4=1;

}

if(y=='S')

//ROBOT STOP

{

lcdcmd(0x01);

str(" ROBOT STOP");

M1=0;

M2=0;

M3=0;

M4=0;

}

}

8. CONCLUSION
Robot with wireless camera project provides many applications in spy. This project helps us to track or detect a person in the building without the presence of us. We can see the video of the current state of the building on the T.V. Thus this project provides security.
9. BIBLIOGRAPHY
TEXT BOOKS REFERED:

1.
“The 8051 Microcontroller and Embedded Systems” by Muhammad Ali Mazidi and Janice Gillispie Mazidi, Pearson Education.
2.
8051 Microcontroller Architecture, programming and application by KENNETH JAYALA

3.
ATMEL 89s52 Data sheets

 4.
Hand book for Digital IC’s from Analogic Devices

WEBSITES VIEWED:

· www.atmel.com
· www.beyondlogic.org

· www.dallassemiconductors.com
· www.maxim-ic.com
· www.alldatasheets.com
· www.howstuffworks.com
· www.digi.com
· www.wikipedia.com

LCD

AT89S52

TV

KEYS

RF TX

 MOTOR

LCD

AT89S52

WIRELESS

CAMERA

L293D

 MOTOR

RF RX

 MOTOR

 L293D

INTERRUPT CONTROL

ON-CHIP ROM FOR PROGRAM CODE

ON-CHIP RAM

TIMER/COUNTER

TIMER 1

TIMER 0

OSC

BUS CONTROL

4 I/O PORTS

SERIAL PORT

CPU

EXTERNAL INTERRUPTS

COUNTER INPUTS

P0 P1 P2 P3

Tx Rx

_1231240906

