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Abstract: 
Modern VLSI manufacturing technology has kept shrinking down to the nanoscale level with a very fast trend.
Integration with the advanced nano-technology now makes it possible to realize advanced parallel iterative algorithms directly which was almost impossible 10 years ago. In this paper,
we want to discuss the influences of evolving VLSI technologies for iterative algorithms and present design strategies
from an algorithmic and architectural point of view. Implementing an iterative algorithm on a multiprocessor array,there is a trade-off between the performance/complexity of processors and the load/throughput of interconnects. This is due to the behavior of iterative algorithms. For example, we could simplify the parallel implementation of the iterative algorithm(i.e., processor elements of the multiprocessor array) in any way as long as the convergence is guaranteed. However, the modification of the algorithm (processors) usually increases the number of required iterations which also means that the switch activity of interconnects is increasing. As an example we show that a 25×25 full Jacobi EVD array could
be realized into one single FPGA device with the simplified μ-rotation CORDIC architecture.
1 Introduction
Modern VLSI manufacturing technology has kept shrinking down to Deep Sub-Micron (DSM) with a very fast trend
and Moore’s law is expected to hold for the next 10 years (Gelsinger, 2008). Now, since the DSM  nano-technology allows the integration of an ever-increasing number of IP macro-cells on a single silicon die, parallel multiprocessor platforms have received great attention and have been realized into several state-of-the-art applications (e.g., Dual-Core CPU, MPSoC and Parallel Computing) (Vangal et al., 2007; Wolf, 2004; Vitullo et al., 2008). 10 years ago, for 0.35μm technology, design engineers were focusing on reducing the area size. Later, when it came Correspondence to: C. C. Sun(chichia.sun@tu-dortmund.de) to 0.13μm technology they paid huge efforts to improve the signal delay and reduce the power consumption. As the VLSI
manufacturing technology keeps shrinking down into 65 nm,the design methodology for nano-circuits poses new challenges: area requirements of the wire interconnections are increasing explosively in relation to the area of processor elements, bus transmission bottleneck in the million transistors SoC designs, and leakage current is now dominating the
power consumption (Sainarayanan et al., 2007; Stine et al.,2007). These changes bring us to analyze the impacts on parallel iterative algorithms as VLSI technology keeps evolving. As long as the convergence properties of the iterative algorithms are guaranteed, it is possible to modify/simplify the architecture during the iteration steps and reduce the computational complexity significantly with regard to the implementation.
However, this simplification will usually cause an increased number of iterations for convergence. Therefore, it actually becomes a trade-off problem between the performance/ complexity of the hardware, the load/throughput of interconnects and the overall energy/power consumption due
to the behavior of parallel iterative algorithms.Computing the Eigenvalue Decomposition (EVD) with the parallel Jacobi method is used as an example since the convergence of this methodology is very robust to modification of the processor elements. Finally, a VLSI design concept for parallel iterative algorithms is presented which takes into account the influence of the modifications on area, timing delay and power consumption.The paper is organized as follows: in Sect. 2 we will first describe the design concepts for parallel iterative algorithms. After that, we will further clarify the definition of the serial and parallel Jacobi method, respectively, in Sect. 3. Then,in Sect. 4 the design issues of the Jacobi EVD array and
their suitability for different hardware implementations are discussed, which lead to the simplified μ-rotation CORDIC
processor. Section 5 shows the experimental and syntheses results. Section 6 concludes this paper.Published by Copernicus Publications on behalf of the URSI Landesausschuss in der Bundesrepublik Deutschland e.V. 96 C. C. Sun and J. G¨otze: A VLSI design concept for parallel iterative algorithms
2 Design concept and implementation issues
A design concept for parallel iterative algorithms, is presented taking into consideration the influences of different
VLSI technologies in terms of area, power and timing delay.Implementing an iterative algorithm on a multiprocessor array, there is a trade-off between the complexity of an iteration step (assuming that the convergence of the algorithm is retained) and the number of required iteration steps. For example,suppose we have a hardware platform, which requires an iteration step of the iterative algorithm to be executed K times in order to obtain the convergence.The iteration step is executed in parallel on the platform. If we simplify the processors in order to improve the logical utilization of the platform, the number of required iterations usually increase from K to K+L. It also means that the switch activity of interconnects between these processor elements is increasing due to the behavior of iterative algorithm. How to find a superior solution to balance the design criteria is the major
issue of this paper, especially for low-power or limited-area devices. In this paper, we selected the Jacobi EVD method as a typical iterative algorithm since the convergence of this methodology is very robust to modification of the processor elements (Brent and Luk, 1985; Gotze et al., 1993; Goetze and Hekstra, 1995; Klauke and Goetze, 2001). We have investigated the influences in DSM design with different sizes of multiprocessor
arrays (i.e., 4×4, 16×16 and 25×25). After that, several modifications of the algorithm/processor were studied
and their impacts on different FPGA devices were investigated (e.g., Xilinx Virtex series in 0.22μm, 0.15μm and
65 nm). According to these analyses, we present an efficient strategy to comply with the design criteria, especially in balancing the number of iterations and the computational complexity.
3 Eigenvalue decomposition
An Eigenvalue decomposition of a real symmertric n×n matrix A is obtained by factorizing A into three matrices
A=Q ^ QT , where Q is an orthogonal matrix (QQT=I ) and ^ is a diagonal matrix which contains the eigenvalues of
A.
3.1 Jacobi method
The cyclic-by-row Jacobi method computes the EVD of a n×n symmetric matrix iteratively by applying a sequence of orthonormal rotations to the left and the right of the matrix A, as shown in the following: Ak+1 = QkAkQT
k , with k = 0, 1, 2, . . . , (1)
where Qk is an orthonormal rotation by the angle _ in the (i, j ) plane:
Qk = col i col j
# #
2
66666666664
3
77777777775
1 0 · · · 0
0
. . .
cos _k sin _k   rowi
...
. . .
...
−sin _k cos _k   rowj
. . . 0
0 · · · 1
.
(2) The order of sequential plan rotations {Qk} is called cyclicby- row manner, if (i, j ) is chosen as follows:
(i, j ) = (1, 2)(1, 3) . . . (1, n)(2, 3) . . . (2, n) . . . (n − 1, n) .
(3) The execution of all N=n(n−1)/2 index pairs (i, j ) is called a sweep. After several sweeps are applied, the matrix A will
converge into a diagonal matrix ^, which contains the eigenvalues:
lim k!1
Ak = diag[_1, _2, . . . , _n] = 2
66664
_1 0 · · · 0
0 _2
...
...
. . . 0
0 · · · 0 _n
3
77775
. (4)
In practice we can observe the Frobenius norm of the offdiagonal elements until it is close to zero or perform a predefined
number of sweeps which depends on the size of matrix A. We have to choose the rotation angle in order to annihilate the off-diagonal elements of Matrix A by solving a 2×2 symmetric EVD subproblem as shown in the following:
_
a0
ii a0
ij
a0
j i a0
jj
_
=
_
cos _ −sin _
sin _ cos _
_ _
aii aij
aj i ajj
_ _
cos _ −sin _
sin _ cos _
_T
.
(5)
We can solve the subproblem and cause the maximal reduction {ai,j , aj,i}=0 by applying an optimal angle of rotation
_opt:
_opt =12
arctan(_ ) , (6)
where _= 2aij
ajj−aii
, and the range of _opt is limited to |_opt|__
4 .
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Fig. 1. A 4×4 EVD array, n=8.
3.2 Parallel Jacobi EVD array
The parallel array presented by Brent and Luk consists of n2×n2 Processor Elements (PEs) and each PE contains a 2×2
sub-block of the matrix to be decomposed (Brent and Luk, 1985). Figure 1 shows a typical 4×4 EVD array with 16 PEs. This systolic Jacobi array can perform n2
subproblem in parallel and each sweep requires n−1 steps. Initially each
PE holds a 2×2 sub-matrix of A:
PEpq = _ a2p−1,2q−1 a2p−1,2q
a2p,2q−1 a2p,2q _,
where p and q = 1, 2, · · · , n2.
(7) The optimal angel _opt, which is able to annihilate the off-diagonal elements (a2p−1,2q and a2p,2q−1), is computed
by diagonal PEs (i.e., PE11, PE22, PE33 and PE44) using Eq. (6). After these rotation angles are computed, they will
be sent to the off-diagonal PEs. This transmission is indicated by the dashed lines in Fig. 1. All PEs will perform a
two-sided rotation with the corresponding row (_r ) and column(_c) rotation angles.
PE 0 pq = Q(_r) · PEpq · Q(_c)T,
where Q(_) = _ cos _ −sin _sin _ cos _
_.
(8) One sweep needs to perform n−1 parallel rotation steps. After these rotations are applied, the local matrices are interchanged between processors as indicated by the solid lines in Fig. 1 for execution of the next sweep. We can use the CORDIC processor to realize the BLV EVD array (Walther, 1971; Volder, 1959; Parhi and Nishitani, 1999). It should be
noticed that since we selected the CORDIC processor to approximate the rotation, we can transmit the tan _opt directly instead of the angles (see Sect. 4). In this way, we can improve efficiency of the communication bus and make this systolic array more suitable for VLSI implementation.
4 Architecture considerations
In this section we will show the reasons why it is necessary to simplify the CORDIC architecture and how to achieve this goal. As the evaluation of the VLSI technology keeps shrinking down to the nanoscale, it is possible to implement a full Jacobi EVD array into one single FPGA device (Ahmedsaid et al., 2003). However if we still use the original full CORDIC processor which is generated by the Xilinx IPCORE library (www.xilinx.com), only moderateparallelism can be obtained due to the limited FPGA configuration resources. For example, we could only realize a 6×6 multicore array at most in the biggest Xilinx FPGA device as shown in
Table 2. Therefore, we must simplify the CORDIC architecture in order to fit the design criteria. At first we have slightly modified a simplified scaling free μ-rotation CORDIC which was presented in Goetze and Hekstra (1995) as shown in Fig. 2. It is able to perform the single inner iteration efficiently. This simplified PE has 2 adders, 2 shifters and 4 multiplexers, and it reduces the number of inner iterations from 16 or 32 times for a full CORDIC
with word length 16 and 32 bits, respectively, to only one or 6 inner iterations with the CORDIC circular rotation mode. However, decreasing the inner iterations will cause an increased
number of outer sweeps because of the imprecise inner iterations. Therefore, the simplified CORDIC architecture can reduce the size of area but requires more sweeps. On the other hand, the full CORDIC architecture needs fewer
sweeps but requires more area. Table 1 gives a set A approximated rotation angles for a simplified 32-bits scaling free μ-rotation CORDIC PE. For www.adv-radio-sci.net/7/95/2009/ Adv. Radio Sci., 7, 95–100, 2009 98 C. C. Sun and J. G¨otze: A VLSI design concept for parallel iterative algorithm Controller REG add add ya y
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Fig. 2. The block diagram of a simplified CORDIC PE, including 2 adders, 2 shifters and 4 multiplexers. a given accuracy nm, this look-up table is constructed using the aforementioned four approximation methods in Goetze and Hekstra (1995). These orthonormal μ-rotations are chosen
such that they satisfy a predefined accuracy condition in order to approximate the original rotation angles and are constructed by the cheapest possible method. It should be noticed that we have slightly modified the look-up table. First,
since we only need the tan _ for searching the optimal angle in Eq. (6), we can store 2×tan _ instead of performing arctan
operation to reverse the rotation angle in the look-up table. Second, we look into the critical path in Table 1. For angle index k=−1, it requires six cycles per iteration. In fact, the global clock in synchronous circuit is usually determined by the critical path, which also means that the maximum timing delay per iteration is 6 cycles. Therefore, in order to improve the computational balance, we repeat the inner iteration stepsof the angles until they are close to the critical one. For example,
when an optimal rotation angle index k=−8, it will repeat three times from the index −8 to the index −10. In this way, we can balance the overall computing overhead and improve the computational efficiency. Figure 3 shows a block diagram of a 4×4 full Jacobi EVD array including one controller and 16 PEs. The shaded diagonal processors will first search the optimal rotation angle and then forward these angles to the off-diagonal PEs.
5 Experimental results
In this work, we have simulated four different cases of the cyclic–by–row parallel Jacobi EVD method in Matlab and
on Xilinx FPGA respectively:
Table 1. The set A of μ-rotations for 32-bit accuracy, showing the method used, the tan _ angle and the cost of rotation and scaling. Angle index method angle cost
(shift-add operations) cycle repeat
k 2×tan _k rot. scl. count
−1 IV 1.49070 4 8 6 1
−2 IV 0.54296 4 6 5 1
−3 IV 0.25501 4 6 5 1
−4 IV 0.12561 4 4 4 1
−5 III 6.25841×10−2 6 0 3 2
−6 III 3.12606×10−2 6 0 3 2
−7 III 1.56263×10−2 6 0 3 2
−8 II 7.81266×10−3 4 0 2 3
−9 II 3.90627×10−3 4 0 2 3
−10 II 1.95313×10−3 4 0 2 3
−11 II 9.76563×10−4 4 0 2 3
−12 II 4.88281×10−4 4 0 2 3
−13 II 2.44141×10−4 4 0 2 3
−14 II 1.22070×10−4 4 0 2 4
−15 II 6.10352×10−5 4 0 2 5
−16 I 3.05176×10−5 2 0 1 6
−17 I 1.52588×10−5 2 0 1 6
−18 I 7.62939×10−6 2 0 1 6
−19 I 3.81470×10−6 2 0 1 6
−20 I 1.90735×10−6 2 0 1 6
−21 I 9.53674×10−7 2 0 1 6
−22 I 4.76837×10−7 2 0 1 6
−23 I 2.38419×10−7 2 0 1 6
−24 I 1.19209×10−7 2 0 1 6
−25 I 5.96046×10−8 2 0 1 6
−26 I 2.98023×10−8 2 0 1 6
−27 I 1.49012×10−8 2 0 1 6
−28 I 7.45058×10−9 2 0 1 5
−29 I 3.72529×10−9 2 0 1 4
−30 I 1.86265×10−9 2 0 1 3
−31 I 9.31323×10−10 2 0 1 2
−32 I 4.65661×10−10 2 0 1 1
1. Full rotation CORDIC with 32 iteration steps.
2. Half rotation CORDIC with 16 iteration steps.
3. Simplified μ-rotation CORDIC with one single inner iteration
step (μ-CORDIC).
4. Simplified μ-rotation CORDIC with 6 inner iteration
steps (6-CORDIC).
5.1 Matlab simulation
At present we have tested with numerous random symmetric matrices A of size 4×4 to 50×50. Figure 4 shows the average number of Shift-Add operations needed to compute the eigenvalues for each size of EVD array. Apparently, both Full and Half CORDIC require much more effort than the simplified CORDIC. The 6-CORDIC requires a little more than the μ-CORDIC in average. On the other hand, we have
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Fig. 3. The block diagram of a 4×4 Jacobi EVD array with 16μ- rotation elements for FPGA implementation. also simulated the number of the sweeps as shown in Fig. 5.
Here, when the Jacobi EVD array’s size is 20×20, the μ- CORDIC requires 13 sweeps which is almost twice than the Full CORDIC. Although the simplified μ-rotation CORDIC PE can improve the computational efficiency, it also increases
the timing delay. The simplified 6-CORDIC not only requires less sweeps than the μ-CORDIC but also reduces
the timing delay. Therefore, the simplified 6-CORDIC is actually a good compromise between the timing delay and the
computational effort. Consequently, from an algorithmic point of view, there
is no doubt that we would rather realize the Jacobi method by utilizing the orthonormal simplified μ-rotation CORDIC method. However, when it comes to the VLSI circuit design (i.e., here we use VHDL for RTL design), things become totally different.
5.2 FPGA implementation
We have modeled a μ-rotation CORDIC PE in VHDL and compared with a full-pipeline CORDIC which is generated
by the Xilinx Coregen automatically. Later, we synthesized these two CORDIC processors by Xilinx ISE into three different FPGA devices. It should be noticed that the word-length is 32 bits. Table 2 shows the syntheses results for Area, Timing Delay and the size of
EVD array for each FPGA device (e.g., XCV1000-6FG680 0.22μm, XC2V8000-5FF1517 0.15μm and XC5VL330-
2FF1760 65 nm). There are some important points that can be observed.
0 5 10 15 20 25
0
1 2 3 4 5 6 7 x 106
Size of Jacobi EVD Array
Number of Shitf and Add operations
Full CORDIC 16−rotations
One step CORDIC−6
Fig. 4. Number of Shift-Add operations vs. Jacobi EVD array sizes
for different CORDIC solutions.
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CORDIC−6
Fig. 5. The required number of sweeps vs. Jacobi EVD array sizes for different CORDIC solutions. First of all, for the XCV1000-6FG680 0.22μm, we are
not able to implement a full EVD array directly because of the FPGA device could not provide enough configuration resources for implementation. Second, when the VLSI technology came to 0.15μm, the FPGA device still can not provide enough hardware resources for regular CORDIC implementation.
However, it is possible to implement a 14×14 EVD array with the presented μ-rotation CORDIC architecture.
Although it needs more sweeps than the regular one, it enables significantly increased parallelism compared to the
full CORDIC method. Finally, when the VLSI design keeps shrinking down into 65nm we are able to realize a 25×25
EVD array for solving the Eigenvalue problem of a 50×50 symmetric matrix A with the simplified μ-rotation CORDIC
PE. Using the 6-CORDIC method allows three times the www.adv-radio-sci.net/7/95/2009/ Adv. Radio Sci., 7, 95–100, 2009 100 C. C. Sun and J. G¨otze: A VLSI design concept for parallel iterative algorithms Table 2. Area, Delay and the maximal size of EVD array of different Xilinx FPGA devices (i.e., XCV1000-6FG680, XC2V8000-5FF1517
and XC5VL330-2FF1760). XCV1000, 0.22μm XC2V8000, 0.15μm XC5VL330, 65 nm 6-CORDIC×3 Area 454/24.576 LUTs 464/93.184 LUTs 332/207.360 LUTs Delay 12.506 ns (79.9 MHz) 8.802 ns (113.6 MHz) 3.934 ns (254.2 MHz)
EVD 7×7 14×14 25×25 Matrix 14×14 28×28 50×50 Full CORDIC Area 5.938/24.576 LUTs 5.938/93.184 LUTs 5.938/207.360 LUTs Delay 14.977 ns (66.8 MHz) 7.295 ns (137.1 MHz) 3.52 ns (284 MHz) EVD 2×2 4×4 6×6
Matrix 4×4 8×8 12×12 matrix size of the full CORDIC. Therefore, utilizing the Full
CORDIC would cause a partition problem and the processor array would require handling the partition sequentially. This
requires an external memory and a more complicated control routine.
6 Conclusions In this paper, we presented a design concept for parallel iterative algorithms when the VLSI design keeps evolving into nanoscale. For iterative algorithms we are able to simplify/ modify the PEs as long as the convergence is guaranteed, such that the parallelism of the implementation can be increased. This is paid for by an increased number of iterations. Computing the EVD by the parallel Jacobi algorithm was used as an example. We have synthesized it into
three different Xilinx FPGA devices. The experimental results show that we can realize a 25×25 full Jacobi EVD array
into Xilinx XC5VL330 65nm FPGA device. In future work we will investigate the influences of the interconnects,
i.e., with advancing VLSI technology the simplified PEs become smaller and smaller in comparison with the interconnection
structure of the processor array. This fact requires that the varying importance of interconnects must be incorporated
into the design concept.
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