 A

PROJECT REPORT

ON

RFID BASED SCHOOL OR COLLEGE MANAGEMENT SYSTEM

mini project work submitted to jntu in partial fulfillment of the
Requirement for the award of degree of
bachelor of technology

in

electronics and communication engineering

by

 t.v.siva karthik 08R61A04A7

sai sarath 08R61A0470
sai chiranjeevi 07R61A0466
k.surendra 08R61A0496
UNDER THE GUIDANCE OF

SURESH

DEPT of ECE

[image: image15.png]
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINERING

PRIYADARSHINI COLLEGE OF ENGINEERING & TECHNOLOGY

(AFFILIATED TO JNTU,ANANTAPUR)

NELLORE-524004.

priyadarshini college of engineering and

technology

(affiliated to jntu, anantapur)

nellore-524004

[image: image2.jpg]
certificate
 this is to certify that mini project report entitled “rfid basedschool/college management system” work done by t.v.sivakarthik,sai sarath,sai chiranjeevi, k.surendra in the partial fulfillment for the award of degree of bachelor of technology in department of electronics and communication engineering during the year 2008-2012.
project guide head of the dept
suresh prof.n.ramamurthy

dept. of ece pcet,nellore.

pcet, nellore.

examiner:

 1)
 2)
acknowledgement
 we wish to express our profound sense of gratitude to our project guide suresh babu, assoc. prof. of ece, priyadarshini college of engineering & technology, nellore for his valuable guidance and innovative throughout this project.
 we wish to express our profound sense of gratitude to our department prof.n. ramamurthy, priyadarshini college of eNGINEERING & technology, nellore for giving us permission to do this project.
 We express our heartfelt thanks to dr. o . mahesh, principal, priyadarshini college of engineering and technology, nellore for inspiring and providing an excellent environment for doing the project work.
 we are grateful to thank, dr. i. gopal reddy our director & advisor, priyadarshini college of engineering and technology, nellore for his inspiring environment and providing us necessary infrastructure for doing the project.
 And we also express our sincere thanks to our department both teaching and non-teaching staff members, for their guidance and involvement for the completion of project.
 project associates
 T.V.SIVA KARTHIK 08R61A04A7
 SAI SARATH 08R61A0470
 SAI CHIRANJEEVI 07R61A0466

 K.SURENDRA 08R61A0496
RFID BASED SCHOOL/COLLEGE
MANAGEMENT SYSTEM
ABSTRACT

Monitoring Boarding school student movement using the old fashioned study system is inefficient and brings difficulty to the hostel management to check attendance manually.

By using RFID technology, student movement is quick and easy. This project is to develop an embedded system, which will record the attendance of the student using RFID card based system and the data should be stored in the personal computer. The RFID tags enable school management to track the student’s movements in and out of the hostel or school.

DESCRIPTION:

 In this system we are using the radio frequency identification reader (RFID reader) and tags should be given to each student. And the RFID reader should be connected to our personal computer. Whenever student put his RFID tag near to the RFID reader then the student Id is read by the microcontroller through the RFID reader then the microcontroller compares whether the card is authorized or not.

 In this project we also develop a small front end application using visual basic. Whenever the reader reads the id then the id and time in and time out should be displayed on the PC. And the data should be recorded on the personal computer itself.
 This project cannot control the punctuation of student but it can ease the workload of school management and save time.
SOFTWARE: Embedded ‘C’

TOOLS: Keil, Flash magic .

TARGET DEVICE:8051 microcontroller.

APPLICATIONS: For schools and offices

ADVANTAGES: Low cost, Low Power consumption.

TABLE OF CONTENTS

	s no.
	CHAPTER NAME
	PAGE NO.

	1.
	INTRODUCTION TO EMBEEDED SYSTEMS
	

	2.
	8051 ARCHITECTURE
	

	3.
	RFID
	

	4.
	WOKING FLOW OF BLOCK DIAGRAM
	

	5.
	SOURCE CODING
	

	6.
	KEIL SOFTWARE
	

	7.
	BIBILOGRAPHY
	

LIST OF FIGURES
	S NO.
	 FIGURE NAME
	FIGURE NO.
	PAGE NO.

	1.
	BLOCK DIAGRAM OF 8051
	1.0
	

	2.
	PIN DIAGRAM OF MICROCONTROLLER
	1.1
	

	3.
	BLOCK DIAGRAM OF MICROPROCESSOR
	1.2
	

	4.
	FUNCTIONAL BLOCKS OF MICROCONTROLLER
	1.3
	

	5.
	DB9 CONNECTOR
	1.4
	

	6.
	INTERFACING OF RS232C WITH MAX 232C
	1.5
	

	7.
	INTERFACING OF RS232C WITH MICROCONTROLLER
	1.6
	

	8.
	BLOCK DIAGRAM OF RFID
	1.7
	

	9.
	THREE TERMINAL VOLTAGE REGULATOR
	1.8
	

	10.
	BRIDGE WAVE RECTIFIER
	1.9
	

LIST OF TABLES

	S NO.
	NAME OF THE TABLE
	TABLE NO.
	PAGE NO.

	1.
	PINS OF DB9 AND DB25 CONNECTOR
	2.0
	

	2.
	LOGIC LEVELS
	2.1
	

CHAPTER 1
INTRODUCTION TO EMBEDDED SYSTEM
INTRODUCTION TO EMBEDDED SYSTEM
EMBEDDED SYSTEM:
 An embedded system is a special-purpose computer system designed to perform one or a few dedicated functions, sometimes with real-time computing constraints. It is usually embedded as part of a complete device including hardware and mechanical parts. In contrast, a general-purpose computer, such as a personal computer, can do many different tasks depending on programming. Embedded systems have become very important today as they control many of the common devices we use.

Since the embedded system is dedicated to specific tasks, design engineers can optimize it, reducing the size and cost of the product, or increasing the reliability and performance. Some embedded systems are mass-produced, benefiting from economies of scale.

Physically, embedded systems range from portable devices such as digital watches and MP3 players, to large stationary installations like traffic lights, factory controllers, or the systems controlling nuclear power plants. Complexity varies from low, with a single microcontroller chip, to very high with multiple units, peripherals and networks mounted inside a large chassis or enclosure.

In general, "embedded system" is not an exactly defined term, as many systems have some element of programmability. For example, Handheld computers share some elements with embedded systems — such as the operating systems and microprocessors which power them — but are not truly embedded systems, because they allow different applications to be loaded and peripherals to be connected.

An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is specifically designed for a particular kind of application device. Industrial machines, automobiles, medical equipment, cameras, household appliances, airplanes, vending machines, and toys (as well as the more obvious cellular phone and PDA) are among the myriad possible hosts of an embedded system. Embedded systems that are programmable are provided with a programming interface, and embedded systems programming is a specialized occupation.

Certain operating systems or language platforms are tailored for the embedded market, such as Embedded Java and Windows XP Embedded. However, some low-end consumer products use very inexpensive microprocessors and limited storage, with the application and operating system both part of a single program. The program is written permanently into the system's memory in this case, rather than being loaded into RAM (random access memory), as programs on a personal computer are.

APPLICATIONS OF EMBEDDED SYSTEM

We are living in the Embedded World. You are surrounded with many embedded products and your daily life largely depends on the proper functioning of these gadgets. Television, Radio, CD player of your living room, Washing Machine or Microwave Oven in your kitchen, Card readers, Access Controllers, Palm devices of your work space enable you to do many of your tasks very effectively. Apart from all these, many controllers embedded in your car take care of car operations between the bumpers and most of the times you tend to ignore all these controllers.

In recent days, you are showered with variety of information about these embedded controllers in many places. All kinds of magazines and journals regularly dish out details about latest technologies, new devices; fast applications which make you believe that your basic survival is controlled by these embedded products. Now you can agree to the fact that these embedded products have successfully invaded into our world. You must be wondering about these embedded controllers or systems. What is this Embedded System?

 The computer you use to compose your mails, or create a document or analyze the database is known as the standard desktop computer. These desktop computers are manufactured to serve many purposes and applications.

You need to install the relevant software to get the required processing facility. So, these desktop computers can do many things. In contrast, embedded controllers carryout a specific work for which they are designed. Most of the time, engineers design these embedded controllers with a specific goal in mind. So these controllers cannot be used in any other place.

Theoretically, an embedded controller is a combination of a piece of microprocessor based hardware and the suitable software to undertake a specific task.

These days designers have many choices in microprocessors/microcontrollers. Especially, in 8 bit and 32 bit, the available variety really may overwhelm even an experienced designer. Selecting a right microprocessor may turn out as a most difficult first step and it is getting complicated as new devices continue to pop-up very often.
 In the 8 bit segment, the most popular and used architecture is Intel's 8031. Market acceptance of this particular family has driven many semiconductor manufacturers to develop something new based on this particular architecture. Even after 25 years of existence, semiconductor manufacturers still come out with some kind of device using this 8031 core.

1) Military and aerospace software applications
 From in-orbit embedded systems to jumbo jets to vital battlefield networks, designers of mission-critical aerospace and defense systems requiring real-time performance, scalability, and high-availability facilities consistently turn to the LynxOS® RTOS and the Lynx OS-178 RTOS for software certification to DO-178B.

Rich in system resources and networking services, LynxOS provides an off-the-shelf software platform with hard real-time response backed by powerful distributed computing (CORBA), high reliability, software certification, and long-term support options.
The LynxOS-178 RTOS for software certification, based on the RTCA DO-178B standard, assists developers in gaining certification for their mission- and safety-critical systems. Real-time systems programmers get a boost with LynuxWorks' DO-178B RTOS training courses.

LynxOS-178 is the first DO-178B and EUROCAE/ED-12B certifiable, POSIX®-compatible RTOS solution.
2)Communications applications
"Five-nines" availability, CompactPCI hot swap support, and hard real-time response—LynxOS delivers on these key requirements and more for today's carrier-class systems. Scalable kernel configurations, distributed computing capabilities, integrated communications stacks, and fault-management facilities make LynxOS the ideal choice for companies looking for a single operating system for all embedded telecommunications applications—from complex central controllers to simple line/trunk cards.

LynuxWorks Jumpstart for Communications package enables OEMs to rapidly develop mission-critical communications equipment, with pre-integrated, state-of-the-art, data networking and porting software components—including source code for easy customization.

The Lynx Certifiable Stack (LCS) is a secure TCP/IP protocol stack designed especially for applications where standards certification is required.
3)Electronics applications and consumer devices
 As the number of powerful embedded processors in consumer devices continues to rise, the BlueCat® Linux® operating system provides a highly reliable and royalty-free option for systems designers.

And as the wireless appliance revolution rolls on, web-enabled navigation systems, radios, personal communication devices, phones and PDAs all benefit from the cost-effective dependability, proven stability and full product life-cycle support opportunities associated with BlueCat embedded Linux. BlueCat has teamed up with industry leaders to make it easier to build Linux mobile phones with Java integration.

.For makers of low-cost consumer electronic devices who wish to integrate the LynxOS real-time operating system into their products, we offer special MSRP-based pricing to reduce royalty fees to a negligible portion of the device's MSRP.

3)Industrial automation and process control software
 Designers of industrial and process control systems know from experience that LynuxWorks operating systems provide the security and reliability that their industrial applications require.

From ISO 9001 certification to fault-tolerance, POSIX conformance, secure partitioning and high availability, we've got it all. Take advantage of our 20 years of experience.

MICROCONTROLLER VERSUS MICROPROCESSOR

What is the difference between a Microprocessor and Microcontroller? By microprocessor is meant the general purpose Microprocessors such as Intel's X86 family (8086, 80286, 80386, 80486, and the Pentium) or Motorola's 680X0 family (68000, 68010, 68020, 68030, 68040, etc). These microprocessors contain no RAM, no ROM, and no I/O ports on the chip itself. For this reason, they are commonly referred to as general-purpose Microprocessors.

 A system designer using a general-purpose microprocessor such as the Pentium or the 68040 must add RAM, ROM, I/O ports, and timers externally to make them functional. Although the addition of external RAM, ROM, and I/O ports makes these systems bulkier and much more expensive, they have the advantage of versatility such that the designer can decide on the amount of RAM, ROM and I/O ports needed to fit the task at hand. This is not the case with Microcontrollers.

 A Microcontroller has a CPU (a microprocessor) in addition to a fixed amount of RAM, ROM, I/O ports, and a timer all on a single chip. In other words, the processor, the RAM, ROM, I/O ports and the timer are all embedded together on one chip; therefore, the designer cannot add any external memory, I/O ports, or timer to it. The fixed amount of on-chip ROM, RAM, and number of I/O ports in Microcontrollers makes them ideal for many applications in which cost and space are critical.
 In many applications, for example a TV remote control, there is no need for the computing power of a 486 or even an 8086 microprocessor. These applications most often require some I/O operations to read signals and turn on and off certain bits.

MICROCONTROLLERS FOR EMBEDDED SYSTEMS

 In the Literature discussing microprocessors, we often see the term Embedded System. Microprocessors and Microcontrollers are widely used in embedded system products. An embedded system product uses a microprocessor (or Microcontroller) to do one task only. A printer is an example of embedded system since the processor inside it performs one task only; namely getting the data and printing it. Contrast this with a Pentium based PC. A PC can be used for any number of applications such as word processor, print-server, bank teller terminal, Video game, network server, or Internet terminal. Software for a variety of applications can be loaded and run. Of course the reason a pc can perform myriad tasks is that it has RAM memory and an operating system that loads the application software into RAM memory and lets the CPU run it.

 In an Embedded system, there is only one application software that is typically burned into ROM. An x86 PC contains or is connected to various embedded products such as keyboard, printer, modem, disk controller, sound card, CD-ROM drives, mouse, and so on. Each one of these peripherals has a Microcontroller inside it that performs only one task. For example, inside every mouse there is a Microcontroller to perform the task of finding the mouse position and sending it to the PC. Table 1-1 lists some embedded products.

CHAPTER 2

8051 Architecture & Programming

8051 ARCHITECTURE

The generic 8051 architecture supports a Harvard architecture, which contains two separate buses for both program and data. So, it has two distinctive memory spaces of 64K X 8 size for both programmed and data. It is based on an 8 bit central processing unit with an 8 bit Accumulator and another 8 bit B register as main processing blocks. Other portions of the architecture include few 8 bit and 16 bit registers and 8 bit memory locations.

 Each 8051 device has some amount of data RAM built in the device for internal processing. This area is used for stack operations and temporary storage of data.

 This bus architecture is supported with on-chip peripheral functions like I/O ports, timers/counters, versatile serial communication port. So it is clear that this 8051 architecture was designed to cater many real time embedded needs.

FEATURES OF 8051 ARCHITECTURE
1) Optimized 8 bit CPU for control applications and extensive Boolean processing . capabilities.
2) 64K Program Memory address space.
3) 64K Data Memory address space.
4) 128 bytes of on chip Data Memory.

5) 32 Bi-directional and individually addressable I/O lines.

6) Two 16 bit timer/counters.

7) Full Duplex UART.

8) 6-source / 5-vector interrupt structure with priority levels.

9) On chip clock oscillator.

Now we may be wondering about the non-mentioning of memory space meant for the program storage, the most important part of any embedded controller. Originally this 8051 architecture was introduced with on-chip, ‘one time programmable’ version of Program Memory of size 4K X 8. Intel delivered all these microcontrollers (8051) with user’s program fused inside the device. The memory portion was mapped at the lower end of the Program Memory area. But, after getting devices, customers couldn’t change any thing in their program code, which was already made available inside during device fabrication.
BLOCK DIAGRAM OF 8051

[image: image3.emf]
 Figure 1.0 - Block Diagram of the 8051
So, very soon Intel introduced the 8051 devices with re-programmable type of Program Memory using built-in EPROM of size 4K X 8. Like a regular EPROM, this memory can be re-programmed many times. Later on Intel started manufacturing these 8031 devices without any on chip Program Memory.
MICROCONTROLLER LOGIC SYMBOL
[image: image4.jpg]
 Figure 1.1-PIN DIAGRAM OF MICROCONTROLLER

ALE/PROG: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. ALE is emitted at a constant rate of 1/6 of the oscillator frequency, for external timing or clocking purposes, even when there are no accesses to external memory. (However, one ALE pulse is skipped during each access to external Data Memory.) This pin is also the program pulse input (PROG) during EPROM programming.
PSEN : Program Store Enable is the read strobe to external Program Memory. When the device is executing out of external Program Memory, PSEN is activated twice each machine cycle (except that two PSEN activations are skipped during accesses to external Data Memory). PSEN is not activated when the device is executing out of internal Program Memory.

EA/VPP: When EA is held high the CPU executes out of internal Program Memory (unless the Program Counter exceeds 0FFFH in the 80C51). Holding EA low forces the CPU to execute out of external memory regardless of the Program Counter value. In the 80C31, EA must be externally wired low. In the EPROM devices, this pin also receives the programming supply voltage (VPP) during EPROM programming.
XTAL1: Input to the inverting oscillator amplifier.

XTAL2: Output from the inverting oscillator amplifier.

 The 8051’s I/O port structure is extremely versatile and flexible. The device has 32 I/O pins configured as four eight bit parallel ports (P0, P1, P2 and P3). Each pin can be used as an input or as an output under the software control. These I/O pins can be accessed directly by memory instructions during program execution to get required flexibility.

 These port lines can be operated in different modes and all the pins can be made to do many different tasks apart from their regular I/O function executions. Instructions, which access external memory, use port P0 as a multiplexed address/data bus. At the beginning of an external memory cycle, low order 8 bits of the address bus are output on P0. The same pins transfer data byte at the later stage of the instruction execution.

Also, any instruction that accesses external Program Memory will output the higher order byte on P2 during read cycle. Remaining ports, P1 and P3 are available for standard I/O functions. But all the 8 lines of P3 support special functions: Two external interrupt lines, two counter inputs, serial port’s two data lines and two timing control strobe lines are designed to use P3 port lines. When you don’t use these special functions, you can use corresponding port lines as a standard I/O. Even within a single port, I/O operations may be combined in many ways. Different pins can be configured as input or outputs independent of each other or the same pin can be used as an input or as output at different times. You can comfortably combine I/O operations and special operations for Port 3 lines.

All the Port 3 pins are multifunctional. They are not only port pins, but also serve the functions of various special features as listed below:

1) Port Pin Alternate Function

2) P3.0 RxD (serial input port)

3) P3.1 TxD (serial output port)

MEMORY ORGANISATION
 The alternate functions can only be activated if the corresponding bit latch in the port SFR contains a 1. Otherwise the port pin remains at 0.All 80C51 devices have separate address spaces for program and data memory, as shown in Figures 1 and 2. The logical separation of program and data memory allows the data memory to be accessed by 8-bit addresses, which can be quickly stored and manipulated by an 8-bit CPU. Nevertheless, 16-bit data memory addresses can also be generated through the DPTR register.
 Program memory (ROM, EPROM) can only be read, not written to. There can be up to 64k bytes of program memory. In the 80C51, the lowest 4k bytes of program are on-chip. In the ROM less versions, all program memory is external. The read strobe for external program memory is the PSEN (program store enable). Data Memory (RAM) occupies a separate address space from Program Memory. In the 80C51, the lowest 128 bytes of data memory are on-chip. Up to 64k bytes of external RAM can be addressed in the external Data Memory space. In the ROM less version, the lowest 128 bytes are on-chip. The CPU generates read and write signals, RD and WR, as needed during external Data Memory accesses.

 External Program Memory and external Data Memory may be combined if desired by applying the RD and PSEN signals to the inputs of an AND gate and using the output of the gate as the read strobe to the external Program/Data memory.

BASIC REGISTERS

A number of 8052 registers can be considered "basic." Very little can be done without them and a detailed explanation of each one is warranted to make sure the reader understands these registers before getting into more complicated areas of development.

The Accumulator: If you've worked with any other assembly language you will be familiar with the concept of an accumulator register.
The Accumulator, as its name suggests, is used as a general register to accumulate the results of a large number of instructions. It can hold an 8-bit (1-byte) value and is the most versatile register the 8052 has due to the sheer number of instructions that make use of the accumulator. More than half of the 8052's 255 instructions manipulate or use the Accumulator in some way. For example, if you want to add the number 10 and 20, the resulting 30 will be stored in the Accumulator. Once you have a value in the Accumulator you may continue processing the value or you may store it in another register or in memory.

The "R" Registers:
 The "R" registers are sets of eight registers that are named R0, R1, through R7. These registers are used as auxiliary registers in many operations. To continue with the above example, perhaps you are adding 10 and 20. The original number 10 may be stored in the Accumulator whereas the value 20 may be stored in, say, register R4. To process the addition you would execute the command:

 ADD A, R4

 After executing this instruction the Accumulator will contain the value 30. You may think of the "R" registers as very important auxiliary, or "helper", registers. The Accumulator alone would not be very useful if it were not for these "R" registers.

 The "R" registers are also used to store values temporarily. For example, let’s say you want to add the values in R1 and R2 together and then subtract the values of R3 and R4. One way to do this would be:

 MOV A, R3 ; Move the value of R3 to accumulator

 ADD A, R4 ; add the value of R4

 MOV R5, A ; Store the result in R5

 MOV A, R1 ; Move the value of R1 to Acc

 ADD A, R2 ; add the value of R2 with A

 SUBB A, R5 ; Subtract the R5 (which has R3+R4)

As you can see, we used R5 to temporarily hold the sum of R3 and R4. Of course, this isn't the most efficient way to calculate (R1+R2) - (R3 +R4) but it does illustrate the use of the "R" registers as a way to store values temporarily.

As mentioned earlier, there are four sets of "R" registers-register bank 0, 1, 2, and 3. When the 8052 is first powered up, register bank 0 (addresses 00h through 07h) is used by default. In this case, for example, R4 is the same as Internal RAM address 04h. However, your program may instruct the 8052 to use one of the alternate register banks; i.e., register banks 1, 2, or 3. In this case, R4 will no longer be the same as Internal RAM address 04h. For example, if your program instructs the 8052 to use register bank 1, register R4 will now be synonymous with Internal RAM address 0Ch. If you select register bank 2, R4 is synonymous with 14h, and if you select register bank 3 it is synonymous with address 1Ch.

The concept of register banks adds a great level of flexibility to the 8052, especially when dealing with interrupts (we'll talk about interrupts later). However, always remember that the register banks really reside in the first 32 bytes of Internal RAM.

The B Register
 The "B" register is very similar to the Accumulator in the sense that it may hold an 8-bit (1-byte) value. The "B" register is only used implicitly by two 8052 instructions: MUL AB and DIV AB. Thus, if you want to quickly and easily multiply or divide A by another number, you may store the other number in "B" and make use of these two instructions.

Aside from the MUL and DIV instructions, the "B" register are often used as yet another temporary storage register much like a ninth "R" register.

The Program Counter
 The Program Counter (PC) is a 2-byte address that tells the 8052 where the next instruction to execute is found in memory. When the 8052 is initialized PC always starts at 0000h and is incremented each time an instruction is executed. It is important to note that PC isn't always incremented by one. Since some instructions are 2 or 3 bytes in length the PC will be incremented by 2 or 3 in these cases.
The Program Counter is special in that there is no way to directly modify its value. That is to say, you can't do something like PC=2430h. On the other hand, if you execute LJMP 2430h you've effectively accomplished the same thing.

It is also interesting to note that while you may change the value of PC (by executing a jump instruction, etc.) there is no way to read the value of PC. That is to say, there is no way to ask the 8052 "What address are you about to execute?" As it turns out, this is not completely true: There is one trick that may be used to determine the current value of PC. This trick will be covered in a later chapter.

The Data Pointer:
 The Data Pointer (DPTR) is the 8052ís only user-accessible 16-bit (2-byte) register. The Accumulator, "R" registers, and "B" register are all 1-byte values. The PC just described is a 16-bit value but isn't directly user-accessible as a working register.
DPTR, as the name suggests, is used to point to data. It is used by a number of commands that allow the 8052 to access external memory. When the 8052 accesses external memory it accesses the memory at the address indicated by DPTR.

While DPTR is most often used to point to data in external memory or code memory, many developers take advantage of the fact that it's the only true 16-bit register available. It is often used to store 2-byte values that have nothing to do with memory locations.
The Stack Pointer: The Stack Pointer, like all registers except DPTR and PC, may hold an 8-bit (1-byte) value. The Stack Pointer is used to indicate where the next value to be removed from the stack should be taken from.
When you push a value onto the stack, the 8052 first increments the value of SP and then stores the value at the resulting memory location. When you pop a value off the stack, the 8052 returns the value from the memory location indicated by SP and then decrements the value of SP.

This order of operation is important. When the 8052 is initialized SP will be initialized to 07h. If you immediately push a value onto the stack, the value will be stored in Internal RAM address 08h. This makes sense taking into account what was mentioned two paragraphs above: First the 8051 will increment the value of SP (from 07h to 08h) and then will store the pushed value at that memory address (08h).

ADDRESSING MODES

The addressing modes in the 80C51 instruction set are as follows:

Direct Addressing: In direct addressing the operand is specified by an 8-bit address field in the instruction. Only internal Data RAM and SFRs can be directly addressed.

Indirect Addressing: In indirect addressing the instruction specifies a register which contains the address of the operand. Both internal and external RAM can be indirectly addressed. The address register for 8-bit addresses can be R0 or R1 of the selected bank, or the Stack Pointer. The address register for 16-bit addresses can only be the 16-bit “data pointer” register, DPTR.

Register Instructions : The register banks, containing registers R0 through R7, can be accessed by certain instructions which carry a 3-bit register specification within the opcode of the instruction. Instructions that access the registers this way are code efficient, since this mode eliminates an address byte. When the instruction is executed, one of the eight registers in the selected bank is accessed. One of four banks is selected at execution time by the two bank select bits in the PSW.

 Register-Specific Instructions : Some instructions are specific to a certain register. For example, some instructions always operate on the Accumulator, or Data Pointer, etc., so no address byte is needed to point to it. The opcode itself does that. Instructions that refer to the Accumulator as A assemble as accumulator specific opcodes.

Immediate Constants

The value of a constant can follow the opcode in Program Memory. For example,
 MOV A, #100
loads the Accumulator with the decimal number 100. The same number could be specified in hex digits as 64H.

Indexed Addressing

Only program Memory can be accessed with indexed addressing, and it can only be read. This addressing mode is intended for reading look-up tables in Program Memory A 16-bit base register (either DPTR or the Program Counter) points to the base of the table, and the Accumulator is set up with the table entry number. The address of the table entry in Program Memory is formed by adding the Accumulator data to the base pointer. Another type of indexed addressing is used in the “case jump” instruction. In this case the destination address of a jump instruction is computed as the sum of the base pointer and the Accumulator data.

CENTRAL PROCESSING UNIT

 The CPU is the brain of the microcontrollers reading user’s programs and executing the expected task as per instructions stored there in. Its primary elements are an 8 bit Arithmetic Logic Unit (ALU) , Accumulator (Acc) , few more 8 bit registers , B register, Stack Pointer (SP) , Program Status Word (PSW) and 16 bit registers, Program Counter (PC) and Data Pointer Register (DPTR).

The ALU (Acc) performs arithmetic and logic functions on 8 bit input variables. Arithmetic operations include basic addition, subtraction, and multiplication and division. Logical operations are AND, OR, Exclusive OR as well as rotate, clear, complement and etc. Apart from all the above, ALU is responsible in conditional branching decisions, and provides a temporary place in data transfer operations within the device.
B-register It is mainly used in multiply and divides operations. During execution, B register either keeps one of the two inputs or then retains a portion of the result. For other instructions, it can be used as another general purpose register.

Program Status Word (PSW) : It keeps the current status of the ALU in different bits. Stack Pointer (SP) is an 8 bit register. This pointer keeps track of memory space where the important register information is stored when the program flow gets into executing a subroutine. The stack portion may be placed in any where in the on-chip RAM. But normally SP is initialized to 07H after a device reset and grows up from the location 08H. The Stack Pointer is automatically incremented or decremented for all PUSH or POP instructions and for all subroutine calls and returns.

Program Counter (PC) : It is the 16 bit register giving address of next instruction to be executed during program execution and it always points to the Program Memory space. Data Pointer (DPTR) is another 16 bit addressing register that can be used to fetch any 8 bit data from the data memory space. When it is not being used for this purpose, it can be used as two eight bit registers.

TIMERS/COUNTERS

 8051 has two 16 bit Timers/Counters capable of working in different modes. Each consists of a ‘High’ byte and a ‘Low’ byte which can be accessed under software. There is a mode control register and a control register to configure these timers/counters in number of ways.

 These timers can be used to measure time intervals, determine pulse widths or initiate events with one microsecond resolution up to a maximum of 65 millisecond (corresponding to 65, 536 counts). Use software to get longer delays. Working as counter, they can accumulate occurrences of external events (from DC to 500 KHz) with 16 bit precision.

SERIAL PORTS

 Each 8051 microcomputer contains a high speed full duplex (means you can simultaneously use the same port for both transmitting and receiving purposes) serial port which is software configurable in 4 basic modes: 8 bit UART; 9 bit UART; inter processor Communications link or as shift register I/O expander.

 For the standard serial communication facility, 8051 can be programmed for UART operations and can be connected with regular personal computers, teletype writers, modem at data rates between 122 bauds and 31 kilo bauds. Getting this facility is made very simple using simple routines with option to elect even or odd parity. You can also establish a kind of Inter processor communication facility among many microcomputers in a distributed environment with automatic recognition of address/data. Apart from all above, you can also get super fast I/O lines using low cost simple TTL or CMOS shift registers.

 MICROPROCESSOR

 A microprocessor as a term has come to be known is a general-purpose digital computer central processing unit. Although popularly known as a computer on a chip.

 The microprocessor contains arithmetic and logic unit, program counter, Stack pointer, some working registers, clock timing circuit and interrupt circuits.

 To make a complete computer one must add memory usually RAM & ROM, memory decoders, an oscillator and number of I/O devices such as parallel and serial data ports in addition special purpose devices such as interrupt handlers and counters.

 The key term in describing the design of the microprocessor is “general purpose”. The hardware design of a microprocessor CPU is arranged so that a small or very large system can be configured around the CPU as the application demands.
The prime use of microprocessor is to read data, perform extensive calculations on that data and store those calculations in a mass storage device. The programs used by the microprocessor are stored in the mass storage device and loaded in the RAM as the user directs. A few microprocessor programs are stored in the ROM. The ROM based programs are primarily are small fixed programs that operate on peripherals and other fixed device that are connected to the system

BLOCK DIAGRAM OF MICROPROCESSOR

[image: image5.png]
Figure 1.2-BLOCK DIAGRAM OF MICROPROCESSOR

MICROCONTROLLER

 Micro controller is a true computer on a chip the design incorporates all of the features found in a microprocessor CPU: arithmetic and logic unit, stack pointer, program counter and registers. It has also had added additional features like RAM, ROM, serial I/O, counters and clock circuit.
 Like the microprocessor, a microcontroller is a general purpose device, but one that is meant to read data, perform limited calculations on that data and control it’s environment based on those calculations. The prime use of a microcontroller is to control the operation of a machine using a fixed program that is stored in ROM and that does not change over the lifetime of the system.

 The design approach of a microcontroller uses a more limited set of single byte and double byte instructions that are used to move code and data from internal memory to ALU. Many instructions are coupled with pins on the IC package; the pins are capable of having several different functions depending on the wishes of the programmer.

 The microcontroller is concerned with getting the data from and on to its own pins; the architecture and instruction set are optimized to handle data in bit and byte size.
[image: image6.emf]
 Figure 1.3- FUNCTIONAL BLOCKS OF A MICROCONTROLLER
CRITERIA FOR CHOOSING A MICROCONTROLLER

1) The first and foremost criterion for choosing a microcontroller is that it must meet task at hands efficiently and cost effectively. In analyzing the needs of a microcontroller based project we must first see whether it is an 8-bit, 16-bit or 32-bit microcontroller and how best it can handle the computing needs of the task most effectively. The other considerations in this category are:

 (a) Speed: The highest speed that the microcontroller supports

 (b) Packaging: Is it 40-pin DIP or QPF or some other packaging format?

 This is important in terms of space, assembling and prototyping the End product.
 (c) Power Consumption: This is especially critical for battery-powered

 Products.

 (d) The amount of RAM and ROM on chip
 (e) The number of I/O pins and timers on the chip.

 (f) Cost per unit: This is important in terms of final product in which a microcontroller is used.
2) The second criteria in choosing a microcontroller are how easy it is to develop products around it. Key considerations include the availability of an assembler, debugger, a code efficient ‘C’ language compiler, emulator, technical support and both in house and outside expertise. In many cases third party vendor support for chip is required.

3) The third criteria in choosing a microcontroller is it readily available in needed quantities both now and in future. For some designers this is even more important than first two criteria’s. Currently, of leading 8–bit microcontrollers, the 89C51 family has the largest number of diversified (multiple source) suppliers. By suppliers meant a producer besides the originator of microcontroller in the case of the 89C51, which was originated by Intel, several companies are also currently producing the 89C51. Viz: INTEL, PHILIPS, These companies include PHILIPS, SIEMENS, and DALLAS-SEMICONDUCTOR. It should be noted that Motorola, Zilog and Microchip Technologies have all dedicated massive resource as to ensure wide and timely availability of their product since their product is stable, mature and single sourced. In recent years they also have begun to sell the ASIC library cell of the microcontroller.

CHAPTER 3
RFID

RFID

 RFID (Radio Frequency Identification) technology has been around for many years. Prior to the year 2000, common uses for RF-ID in the USA included tollway passes, access ID cards and the tiny ID chips that are inserted in animals for identification. The recent introduction of RFID in the supply chain as well as several mandates has added to the awareness and value of this technology.

 RFID tags operate at several different frequencies. The majority of RFID tags operate at either 13 MHZ or 900 MHZ. Think of these two frequencies as the AM and FM bands on your radio. Each one has its advantages. For example, one works better when surrounded by metal while the other will work better over long distances.

13 MHZ (HF) tags are generally better at penetrating liquids and are usually used for access control such as in security cards and wristbands. The read range at this frequency is about 3 feet or 1 meter.

 900 MHZ (UHF) tags operate better when reading multiple tags simultaneously, and thus are generally the tag type of choice for inventory purposes. The read range at this frequency is about 3-10 feet or more depending on what type of reader, interrogator or access point is used.

 Most RFID tags do not contain any data in them after they are manufactured; they are similar to a blank label waiting for information to be printed on them. To place information in the tag, an encoder must be used. One of the most popular methods of encoding is with an RFID Capable Label Printer that has a built-in encoder and RFID Capable Barcode Label Software.
 There are basically three types (called classes) of tags:

Class 0 - these tags are like a license plate in that they are read only and are encoded with data when they are manufactured.

Class 1 - these tags allow you to write the data in the tag and are usually one time programmable (OTP). These are available in either HF or UHF versions and are known as GEN1.

Class 1 GEN2 EPC (GEN2) - these tags are the latest type of UHF tag and are the types of tags most referred to in this document. They are also the tags required for mandates by various suppliers such as Wal-Mart and the US Department of Defense (DOD). In the industry, we refer to these tags simply as GEN2. These tags are 96 bits or larger and contain advanced features such as lock after write and CRC read verification.

The following components are required to write data (encode) to class 1 tags:

Software Application à Encoder Software à Tag Encoder à RFID Tag

The following components are required to read data from the tag:

RFID Tag, Reader, Interrogator or Access Point à Decoding Software à Software Application

IDAutomation.com provides some components of this system including Software Applications, Encoder Software and Tag Writers.

RFID vs Barcodes

 Barcoding is a mature technology that has been around for many years, unlike RFID which is still in its infancy. Additionally, the components used to read and write bar codes have come down in price because of this maturity and sales volume. There are many additional issues to consider with RFID, such as those listed below in the Disadvantages of RFID section. However, all things considered, RFID has many advantages over barcoding. In some cases, these advantages outweigh the disadvantages and high cost of the components. Decision makers must carefully consider whether RFID really provides an advantage over barcoding in their business model. Advantages and Disadvantages of RFID

Advantages:

 Inventory efficiency - Because line of sight is not required to read RFID tags, inventory can be performed in a highly efficient method. For example, pallets in a warehouse can be read, inventoried, and their location can be determined no matter where the tag is placed on the pallet. This is because the radio waves from the reader are strong enough for the tag to respond regardless of location.

Return on investment - Though the cost may be high at first, the total cost of ownership should go down over the years and provide a return on investment (ROI), if the implementation provides a significant method to improve business processes.

Vulnerability to damage minimized - barcodes can be damaged in many ways. Although, 2D barcode types such as Data Matrix can be read even when up to 40% of the barcode is damaged.

Disadvantages:

 Dead areas and orientation problems - RFID works similar to the way a cell phone or wireless network does. Just like these technologies, there may be certain areas that have weaker signals or interference. In addition, poor read rates are sometimes a problem when the tag is rotated into an orientation that does not align well with the reader. These issues can usually be minimized by properly implementing multiple readers and using tags with multiple axis antennas.

Security concerns - Because RFID is not a line of sight technology like barcoding, new security problems could develop. For example, a competitor could set up a high gain directional antenna to scan tags in trucks going to a warehouse. From the data received, this competitor could determine flow rates of various products. Additionally, when RFID is used for high security operations such as payment methods, fraud is always a possibility.

 Ghost tags - In rare cases, if multiple tags are read at the same time the reader will sometimes read a tag that does not exist. Therefore, some type of read verification, such as a CRC, should be implemented in either the tag, the reader or the data read from the tag.

Proximity issues - Tags cannot be read well when placed on metal or liquid objects or when these objects are between the reader and the tag. Nearly any object that is between the reader and the tag reduces the distance the tag can be read from.

High cost - Because this technology is new, the components and tags are expensive compared to barcodes. In addition, software and support personnel that are needed to install and operate the RFID reading systems (in a warehouse for example) may be more costly to employ.

Unread tags - When reading multiple tags at the same time, it is possible that some tags will not be read and there is no sure method of determining this when the objects are not in sight. This problem does not occur with barcodes, because when the barcode is scanned, it is instantly verified when read by a beep from the scanner and the data can then be entered manually if it does not scan.
Vulnerable to damage - Water, static discharge or high power magnetic surges (such as from a close lightning strike) may damage the tags.
 { RFID MODULE is interfaced to microcontroller via RS232}
RS232 (serial port).
 RS-232 (Recommended Standard - 232) is a telecommunications standard for binary serial communications between devices. It supplies the roadmap for the way devices speak to each other using serial ports. The devices are commonly referred to as a DTE (data terminal equipment) and DCE (data communications equipment); for example, a computer and modem, respectively.
 RS232 is the most known serial port used in transmitting the data in communication and interface. Even though serial port is harder to program than the parallel port, this is the most effective method in which the data transmission requires less wires that yields to the less cost. The RS232 is the communication line which enables the data transmission by only using three wire links. The three links provides ‘transmit’, ‘receive’ and common ground...
 The ‘transmit’ and ‘receive’ line on this connecter send and receive data between the computers. As the name indicates, the data is transmitted serially. The two pins are TXD & RXD. There are other lines on this port as RTS, CTS, DSR, DTR, and RTS, RI. The ‘1’ and ‘0’ are the data which defines a voltage level of 3V to 25V and -3V to -25V respectively.
 The electrical characteristics of the serial port as per the EIA (Electronics Industry Association) RS232C Standard specifies a maximum baud rate of 20,000bps, which is slow compared to today’s standard speed. For this reason, we have chosen the new RS-232D Standard, which was recently released.

 The RS-232D has existed in two types. i.e., D-TYPE 25 pin connector and D-TYPE 9 pin connector, which are male connectors on the back of the PC. You need a female connector on your communication from Host to Guest computer. The pin outs of both D-9 & D-25 are show below

	D-Type-9 pin no.
	D-Type-25 pin no.
	Pin outs
	Function

	3
	2
	RD
	Receive Data (Serial data input)

	2
	3
	TD
	Transmit Data (Serial data output)

	7
	4
	RTS
	Request to send (acknowledge to modem that UART is ready to exchange data

	8
	5
	CTS
	Clear to send (i.e.; modem is ready to exchange data)

	6
	6
	DSR
	Data ready state (UART establishes a link)

	5
	7
	SG
	Signal ground

	1
	8
	DCD
	Data Carrier detect (This line is active when modem detects a carrier

	4
	20
	DTR
	Data Terminal Ready.

	9
	22
	RI
	Ring Indicator (Becomes active when modem detects ringing signal from PSTN

 Table 2.0-pins of DB9 and DB25 connector
Rs232

[image: image7.png] [image: image8.png]
[image: image9.png]
 Figure 1.4-DB9 CONNECTOR
When communicating with various micro processors one needs to convert the RS232 levels down to lower levels, typically 3.3 or 5.0 Volts. Here is a cheap and simple way to do that. Serial RS-232 (V.24) communication works with voltages -15V to +15V for high and low. On the other hand, TTL logic operates between 0V and +5V . Modern low power consumption logic operates in the range of 0V and +3.3V or even lower.

	RS-232
	TTL
	Logic

	-15V … -3V
	+2V … +5V
	High

	+3V … +15V
	0V … +0.8V
	Low

Table 2.1-LOGIC LEVELS
 Thus the RS-232 signal levels are far too high TTL electronics, and the negative RS-232 voltage for high can’t be handled at all by computer logic. To receive serial data from an RS-232 interface the voltage has to be reduced. Also the low and high voltage level has to be inverted. This level converter uses a Max232 and five capacitors. The max232 is quite cheap (less than 5 dollars) or if youre lucky you can get a free sample from Maxim. The MAX232 from Maxim was the first IC which in one package contains the necessary drivers and receivers to adapt the RS-232 signal voltage levels to TTL logic. It became popular, because it just needs one voltage (+5V or +3.3V) and generates the necessary
RS-232 voltage levels.[image: image10]
MAX 232 PIN DIAGRAM
 +---\/---+
 1 -|C1+ Vcc|- 16

 2 -|V+ gnd|- 15

 3 -|C1- T1O|- 14

 4 -|C2+ R1I|- 13

 5 -|C2- R1O|- 12

 6 -|V- T1I|- 11

 7 -|T2O T2I|- 10

 8 -|R2I R2O|- 9

 +--------+
RS232 INTERFACED TO MAX 232

 [image: image11.emf]J2

1

2

3

4

5

6

7

8

9

P3.0

5V

C4

0.1uf

C7

0.1uf

TXD

C6

0.1uf

P3.1

T1OUT

C1

1uf

T1OUT

U3

MAX3232

15

16

13

8

10

11

1

3

4

5

2

6

12

9

14

7

GND

VCC

R1IN

R2IN

T2IN

T1IN

C1+

C1-

C2+

C2-

V+

V-

R1OUT

R2OUT

T1OUT

T2OUT

C5

0.1uf

RXD

J2

1

2

3

4

5

6

7

8

9

P3.0

5V

C4

0.1uf

C7

0.1uf

TXD

C6

0.1uf

P3.1

T1OUT

C1

1uf

T1OUT

U3

MAX3232

15

16

13

8

10

11

1

3

4

5

2

6

12

9

14

7

GND

VCC

R1IN

R2IN

T2IN

T1IN

C1+

C1-

C2+

C2-

V+

V-

R1OUT

R2OUT

T1OUT

T2OUT

C5

0.1uf

RXD

 Figure 1.5-INTERFACING OF RS232 TO MAX 232

Rs232 is 9 pin db connector, only three pins of this are used ie 2,3,5 the transmit pin of rs232 is connected to RX pin of microcontroller.
Max232 interfaced to microcontroller

[image: image1.jpg]
Figure 1.6-INTERFACING OF MAX 232 WITH MICROCONTROLLER

 MAX232 is connected to the microcontroller as shown in the figure above 11, 12 pin are connected to the 10 and 11 pin ie transmit and receive pin of microcontroller

CHAPTER 5

WORKING FLOW

BLOCK DIAGRAM:

 Figure 1.7-BLOCK DIAGRAM
BLOCK DAIGRAM EXPLANATI ON:

 Mainly the block diagram consists of following parts:

· Power supply circuit

· 8051 controller

· RFID

· Voltage Level converter

· LCD
 Generally we get 230v of power supply but we need only 5v to generate the micro controller so before giving the power supply directly to it we will use transformer, capacitive filters , generators to convert 230v of power supply to the required amount to provide required supply to the micro controller. Here we are the adjusting the output voltage to our required amount. Here we are using 8051micro controller so it requires only 5v so we use another module to get 5v supply to the 8051.

 Here we are using graphical LCD as the output to display the data. The graphical LCD is used to display the images so we are using graphical LCD here. To connect the LCD to the 8051 it contains four data pins for getting data from the micro controller and to display data on LCD. We connect four data pins to port0 as shown below which is used to transfer the data and to display it on the LCD.

 When the RFID card of a person is placed on the RFID reader the reader reads the tag number from the RFID card by energizing the coil present inside the RFID card and then it generates electromagnetic waves inside the card and then it reads tag number present in the memory card through RF waves. This tag number is compared with the already stored data and checks whether the RFID TAG of a person is valid or not.
 The students must place their RFID card at the RFID reader after reading the TAG number it checks with the data present in the data base whether it is valid card or not and then it internally takes attendance of the student and updates his data with in the database. And total data can be viewed on the LCD connected to it. The GSM modem is used to inform their parents when they are absent to the school. Message will be send to their parents directly.
Schematic Diagram & Hardware :
REGULATED POWER SUPPLY

A variable regulated power supply, also called a variable bench power supply, is one where you can continuously adjust the output voltage to your requirements. Varying the output of the power supply is the recommended way to test a project after having double checked parts placement against circuit drawings and the parts placement guide.

 This type of regulation is ideal for having a simple variable bench power supply. Actually this is quite important because one of the first projects a hobbyist should undertake is the construction of a variable regulated power supply. While a dedicated supply is quite handy e.g. 5V or 12V, it's much handier to have a variable supply on hand, especially for testing.

 Most digital logic circuits and processors need a 5 volt power supply. To use these parts we need to build a regulated 5 volt source. Usually you start with an unregulated power To make a 5 volt power supply, we use a LM7805 voltage regulator IC (Integrated Circuit). The IC is shown below.

[image: image12.jpg]
 Figure 1.8 – THREE TERMINAL VOLTAGE REGULATOR
 The LM7805 is simple to use. You simply connect the positive lead of your unregulated DC power supply (anything from 9VDC to 24VDC) to the Input pin, connect the negative lead to the Common pin and then when you turn on the power, you get a 5 volt supply from the Output pin.

 CIRCUIT FEATURES

Brief description of operation: Gives out well regulated +5V output, output current capability of 100 mA

Circuit protection: Built-in overheating protection shuts down output when regulator IC gets too hot

Circuit complexity: Very simple and easy to build

Circuit performance: Very stable +5V output voltage, reliable operation

Availability of components: Easy to get, uses only very common basic components

Design testing: Based on datasheet example circuit, I have used this circuit succesfully as part of many electronics projects

Applications: Part of electronics devices, small laboratory power supply

Power supply voltage: Unreglated DC 8-18V power supply

Power supply current: Needed output current + 5 mA

Component costs: Few dollars for the electronics components + the input transformer cost
BLOCK DIAGRAM :
[image: image13.png]
 Figure 1.9 – BRIGDE WAVE RECTIFIER
EXAMPLE CIRCUIT DIAGRAM:
[image: image14.png]
WE CAN EVEN USE A USB CONNECTOR FOR THE REQUIRED SUPPLY INSTEAD OF THE ABOVE CIRCUIT

CHAPTER 6

SOURCE CODE

include <8052.h>

include "LcdV2.h"

void SendSms(unsigned char *ucpStr,unsigned char ucLen);

define NO_OF_CARDS
5

define RX_BUF_SIZE 20

define RFID_CODE_SIZE 10

void SerialPutc(unsigned char ucCh);

unsigned char gucAccessCards[NO_OF_CARDS][10] = { {'4','2','0','0','6','B','4','1','B','B'},

 {'3','E','0','0','D','8','E','8','A','D'},

 {'2','6','0','0','7','0','B','9','2','1'},

 {'3','8','2','5','0','0','1','C','0','F'} ,

 {'0','F','0','0','A','1','E','B','8','E'},

 };

unsigned char gucCardNumber[10], cnt;

unsigned char gucRxBuf[RX_BUF_SIZE];

unsigned char gucRxCount = 0;

unsigned char gucReadFlag = 0;

void DisplayVersion();

void SerialInit(void);

void ReadCard(void);

unsigned char CheckCard(void);

void serial0() interrupt 4

{

gucRxBuf[gucRxCount] = SBUF;

gucRxCount++;

if(gucRxCount >= (RFID_CODE_SIZE))

{

gucRxCount = 0;

gucReadFlag = 1;

}

}

void main(void)

{

unsigned int i = 0;

unsigned int j = 0;

unsigned char ch;

SerialInit();

DisplayVersion();

for(j = 0; j < 15; j++)

for(i = 0; i < 40000; i++);

while(1)

{

LcdInit();

LcdPuts("Show ur Card: ");

LcdCmd(NEW_LINE);

ReadCard();

ch = CheckCard();

if(ch == 5)

{

LcdInit();

LcdPuts(" INVALID CARD . ");

LcdCmd(NEW_LINE);

LcdPuts(" ");

for(j = 0; j < 8; j++)

for(i = 0; i < 40000; i++);

}

else

{

if(ch == 2)

{

LcdInit();

LcdPuts("STD_NM :KISHORE ");

LcdCmd(NEW_LINE);

LcdPuts("STD_ID :SI0143 ");

for(j = 0; j < 10; j++)

for(i = 0; i < 40000; i++);

SendSms("STUDENT : KISHORE , ID : SI0143",32);

LcdInit();

LcdPuts("SENT TO SERVER..... ");

}

if(ch == 1)

{

LcdInit();

LcdPuts("STD_NM :LAXMAN ");

LcdCmd(NEW_LINE);

LcdPuts("STD_ID :SI0260 ");

for(j = 0; j < 10; j++)

for(i = 0; i < 40000; i++);

SendSms("STUDENT : LAXMAN , ID : SI0260",32);

LcdInit();

LcdPuts("SENT TO SERVER..... ");

}

}

for(j = 0; j < 8; j++)

for(i = 0; i < 40000; i++);

}

}

void DisplayVersion()

{

LcdInit();

LcdPuts("RFID BASD SCHOOL ");

LcdCmd(NEW_LINE);

LcdPuts(" MGMT SYSTEM ");

}

void SerialInit(void)

{

TMOD = 0x20;

TH1 = 0xfd;

SCON = 0x50;

TR1 = 1;

}

void ReadCard(void)

{

unsigned char l = 0;

unsigned char m = 0;

unsigned char i = 0;

while(gucReadFlag == 0);

for(i = 0; i < RFID_CODE_SIZE; i++)

{

gucCardNumber[i] = gucRxBuf[i];

}

gucReadFlag = 0;

}

unsigned char CheckCard(void)

{

unsigned char i = 0;

unsigned char j = 0;

for(i = 0; i < NO_OF_CARDS; i++)

{

for(j = 0; j < RFID_CODE_SIZE; j++)

{

if(gucCardNumber[j] != gucAccessCards[j][i])

break;

if(j == RFID_CODE_SIZE-1)

return i;

}

}

return 5;

}

void SerialPutc(unsigned char ucCh)

{

unsigned int i = 0;

unsigned int j = 0;

TI = 0;

SBUF = ucCh;

while(TI == 0);

TI = 0;

for(i = 0; i < 20000; i++);

}

void SendSms(unsigned char *ucpStr,unsigned char ucLen)

{

unsigned int ucIndex

= 0,

 i

= 0,

 j

= 0;

gucRxCount = 0;

for(i = 0; i < ucLen; i++)

SerialPutc(*(ucpStr+i));

SerialPutc(0x0D);

SerialPutc(0x0A);

for(i = 0; i < 10; i++)

for(j = 0; j < 40000; j++);

}

CHAPTER 7

KEIL SOFTWARE

Introduction to Micro vision Keil (IDE) :
 Keil is a cross compiler. So first we have to understand the concept of compilers and cross compilers. After then we shall learn how to work with keil.
Concept of compiler: -
 Compilers are programs used to convert a High Level Language to object code. Desktop compilers produce an output object code for the underlying microprocessor, but not for other microprocessors. I.E the programs written in one of the HLL like ‘C’ will compile the code to run on the system for a particular processor like x86 (underlying microprocessor in the computer). For example compilers for Dos platform is different from the Compilers for Unix platform.
 So if one wants to define a compiler then compiler is a program that translates source code into object code. The compiler derives its name from the way it works, looking at the entire piece of source code and collecting and reorganizing the instruction. See there is a bit little difference between compiler and an interpreter. Interpreter just interprets whole program at a time while compiler analyzes and execute each line of source code in succession, without looking at the entire program.

 The advantage of interpreters is that they can execute a program immediately. Secondly programs produced by compilers run much faster than the same programs executed by an interpreter. However compilers require some time before an executable program emerges. Now as compilers translate source code into object code, which is unique for each type of computer, many compilers are available for the same language.

Concept of cross compiler: -

 A cross compiler is similar to the compilers but we write a program for the target processor (like 8051 and its derivatives) on the host processors (like computer of x86)

 It means being in one environment you are writing a code for another environment is called cross development. And the compiler used for cross development is called cross compiler

 So the definition of cross compiler is a compiler that runs on one computer but produces object code for a different type of computer. Cross compilers are used to generate software that can run on computers with a new architecture or on special-purpose devices that cannot host their own compilers. Cross compilers are very popular for embedded development, where the target probably couldn't run a compiler. Typically an embedded platform has restricted RAM, no hard disk, and limited I/O capability. Code can be edited and compiled on a fast host machine (such as a PC or Unix workstation) and the resulting executable code can then be downloaded to the target to be tested. Cross compilers are beneficial whenever the host machine has more resources (memory, disk, I/O etc) than the target. Keil C Compiler is one such compiler that supports a huge number of host and target combinations. It supports as a target to 8 bit microcontrollers like Atmel and Motorola etc.

Why do we need cross compiler?
There are several advantages of using cross compiler. Some of them are described as follows

 a) By using this compilers not only can development of complex embedded systems be completed in a fraction of the time, but reliability is improved, and maintenance is easy.

 b) Knowledge of the processor instruction set is not required.

 c) A rudimentary knowledge of the 8051’s memory architecture is desirable but not necessary.

 d) Register allocation and addressing mode details are managed by the compiler.

 e) The ability to combine variable selection with specific operations improves program readability.

 f) Keywords and operational functions that more nearly resemble the human thought process can be used.

 g) Program development and debugging times are dramatically reduced when compared to assembly language programming.

 h) The library files that are supplied provide many standard routines (such as formatted output, data conversions, and floating-point arithmetic) that may be incorporated into your application.

 i) Existing routine can be reused in new programs by utilizing the modular programming techniques available with C.

 j) The C language is very portable and very popular. C compilers are available for almost all target systems. Existing software investments can be quickly and easily converted from or adapted to other processors or environments.

Now after going through the concept of compiler and cross compilers lets we start with Keil C cross compiler.

Keil C cross compiler: -
 Keil is a German based Software development company. It provides several development tools like

1) IDE (Integrated Development environment)

2) Project Manager

3) Simulator

4) Debugger

5) C Cross Compiler, Cross Assembler, Locator/Linker

 Keil Software provides you with software development tools for the 8051 microcontrollers. With these tools, you can generate embedded applications for the multitude of 8051 derivatives. Keil provides following tools for 8051 development :
1. 8051 Optimizing C Cross Compiler,

2. Macro Assembler,

3. 8051 Utilities (linker, object file converter, library manager),

4. Source-Level Debugger/Simulator,

5. µVision for Windows Integrated Development Environment.

The keil 8051 tool kit includes three main tools, assembler, compiler and linker.

An assembler is used to assemble your 8051 assembly program

A compiler is used to compile your C source code into an object file

A linker is used to create an absolute object module suitable for your in-circuit emulator.

8051 project development cycle: -
 These are the steps to develop 8051 project using keil

1. Create source files in C or assembly.

2. Compile or assemble source files.

3. Correct errors in source files.

4. Link object files from compiler and assembler.

5. Test linked application.

CHAPTER

CONCLUSION

CONCLUSION :
The project “RFID BASED SCHOOL/COLLEGE MANAGEMENT SYSTEM.” has been successfully designed and tested. It has been developed by integrating features of all the hardware components used. Presence of every module has been reasoned out and placed carefully thus contributing to the best working of the unit.

 Secondly, using highly advanced IC’s and with the help of growing technology the project has been successfully implemented.
]

CHAPTER 9
BIBLIOGRAPHY
BIBLIOGRAPHY

The 8051 Micro controller and Embedded Systems

 -Muhammad Ali Mazidi

 -Janice Gillispie Mazidi

The 8051 Micro controller Architecture, Programming & Applications

 -Kenneth J.Ayala

Fundamentals Of Micro processors and Micro computers

 -B.Ram

Micro processor Architecture, Programming & Applications

 -Ramesh S.Gaonkar

Electronic Components

 -D.V.Prasad

Wireless Communications

 - Theodore S. Rappaport

Mobile Tele Communications

 - William C.Y. Lee

8051 System Developer’s Guide

 -Andrew N.SLOSS

 -Domenic Symes

 -Chris Wright
References on the Web:

www.national.com
www.nxp.com
www.8052.com
www.microsoftsearch.com
www.geocities.com

(8051) MICROCONTROLLER

 RFID READER

 Indicates that the normal register used by User or System mode has been replaced by an alternative register specific to the exception mode

Register Bank

 POWER SUPPLY

PERSONAL

COMPUTER

LCD

RFID TAG

