[image: image10.emf]

Remote Monitoring and Control

By

Mahavirsinh Vaghela (00CP236)

Sarfaraz Shaikh (00CP228)

Project Guides

Prof. Prashant Swadas Prof. Darshak Thakor Prof. Narendra Patel

Birla Vishwakarma Mahavidyalaya Engg. College

(Computer Engineering Department)

Certificate

This is to certify that

 Mahavirsinh Vaghela (00CP236)

 Sarfrash Sheikh (00Cp228)

 have satisfactory completed their Final Year Computer Engineering Project in the subject CP-421 (Elective) entitled “Remote Monitoring and Control”, towards partial fulfillment of the requirement for the award of BE COMPUTER ENGINEERING during the academic year 2003 – 04 at the Birla Vishwakarma Mahavidyalaya Engineering College.

Project Guides:

Head of the Department
 (Dr B.R.Parekh Sir)

Prof. Prashant Swadas

Prof. Darshak Thakore

Prof. Narendra Patel

Date: 29/06/04
Acknowledgement
 We are extremely thankful to Prof. Prashant Swadas Sir, Prof. Darshak Thakor Sir and Prof. Narendra Patel Sir for their right guidance and the helpline they have provide us though out our completion of the project we have undertaken as our final year project. They were always there to lend a helping hand & directed us towards proper attitude to develop a computer project. They have always welcomes our queries and doubts regarding the project work or also in the subjects they have taken with a great interest to teach us. Without their help and right guidance the completion of the project would have been very difficult.

 The level of knowledge they posses has cover entire aspects of the computer expertise in different fields particularly in UNIX, java and Microsoft related languages. We are also thankful to our college BVM Engineering College for offering us such a great elective subject that binds all the knowledge we have gain trough this Degree Program. And last but not the list I would like to thank all my friends who have represented their thoughts about our project during development and for the further enhancement.

Thank you,

 Mahavir Vaghela,

 Sarfrash Shaikh

ABSTRACT

Remote Computer allows us to monitor computer activity from anywhere if we have Internet access. There are times, as a Windows network administrator, you would like to control certain aspects of machines sitting remotely. This enables you to view, practically in real-time, the activities that are happening on the client computer. You will see reports on such things as: What web pages they visit, who they talk to, what they say, and more. Various control such as access resources, file transfer, shut down the m/c, end certain processes and other are also possible.

 The main objective of this project is to design two application softwares that work simultaneously on the Server and Client machines. The Server application runs in the hide mode on one machine that captures the screen of its own desktop and then sends the captured screen to the Client machine. The Client machine then control various events of Serve machine by using the screen displayed in its own window. Its network based application that supports TCP protocol of the network layers.

 Network Programming between the two machines is achieved bye using the SOCKET class of the Visual C++ language using either MFC (Microsoft Foundation Classes) or using WINAPI (Windows applications) called Socket Programming. The same class in MFC is used as a CSocket class derived from CAsyncSocket class which in turn is derived from CDC class. VC++ provides great GUI as its window based application software.
 Features of the software Application:

· Select a m/c over the LAN by providing IP Address and Administrator password

· Capture and control the screen of the client m/c

· Allows to access the resources of the client m/c

· Execute an application on client m/c

· End an application on client m/c

· Shut down or reboot the client m/c

· Allows file transfer

· Programmable Refresh Rate

· Save the captured screen

· Allows multiple client to be connected

 If the machine is right now executing the Server Application the Client machine can connect it using its IP ADDRESS and Authorization process.

CONTENTS

 1 Introduction to the Socket Programming…………………..1

 1.1 Introduction to Remote Monitoring and Control
 1.1.1 Server Functions

 1.1.2 Client Functions
 1.2 What are Sockets?
 1.3 Uses of Sockets

 1.4 Windows Sockets 2 DLLs
 1.5 Socket Interface

 1.6 Socket Vs Names Pipes

 1.7 Remote Interface Diagram
 1.8 Socket Creation
 1.8.1 Server Socket Functions
 1.8.2 Client Socket Functions
 2 Data Transferring………………………………………….16
 2.1 Data transmitting
 2.2 Data receiving

 3 Capturing the screen………………………………………20
 3.1 Device Context

 3.1.1 Device Context Functions

 3.2 Using Bitmaps
 3.2.1 Bitmap Classification

 3.2.2 Creating Bitmaps

 3.2.3 Bitmap Functions
 3.3 Capturing an Image
 4 Controlling the events…………………………………….25
 4.1 Mouse Events

 4.2 Keyboard Events
 4.3 Mouse_Event () function
 4.4 Keybd_Event () function

 5 Graphical User Interface………………………………......15

 5.1 Authentication through Dialog Boxes
 5.2 Server Window
 5.3 Client Window

 5.4 Capturing Image of the same desktop
 6 Conclusions…………………………………………………32
 7 Future Enhancements………………………………….......33
 8 Bibliography………………………………………………..34

 9 Index………………………………………………………...35

CHAPTER 1

Introduction to the Socket Programming

1.1 Introduction to the Remote Monitoring and Control

 This project is divided into various activities that create small modules amongst Client and Server Application.

1.1.1 Server Functions:
(1) Create a Socket using WinSock 2 protocols, bind it to the port and IP address of the Server Machine and run the socket in the listening mode waiting for some other sockets to connect on that socket. (Socket Programming)

(2) Capture the screen at regular intervals according to the refresh ret in terms of the seconds and on request from client machines send the screen from server machine to the client machine. (Screen Capturing and Transfer)

(3) Handle various messages from client like keyboard, mouse and region related and execute various routines to handle that messages that will change the server machine processes remotely. (Events handling)

1.1.2 Client Functions:
(1) Authenticate the user who is going to handle the server machine remotely through the pair of User Name and Password (Authentication)

(2) Create a Client Socket using Winsock 2 protocols, establish appropriate server structure that includes sever port no, IP address etc and connect on that socket. (Socket Programming)

(3) Create a Timer that counts for the time when it’s required to have a screen from the server machine. (Screen Capturing Constraint)

(4) Compose various messages according to the screen request and various events that have been generated in the client window on the screen of the server window. (Event detection and Transfer messages to the server)
 Hence from the above overview of the functions it’s clear that most essential part of the application is the socket programming that enables communication between the server and client machines and allows transfer of the information between them. The application provides great flexibilities in terms of the GUI part of the project so that it’s very easy to handle server machine from the client machine that creates the environment such that it seems that you are handling your own desktop.

1.2 What Are Sockets?

 A socket is a communication endpoint — an object through which a Windows Sockets application sends or receives packets of data across a network. A socket has a type and is associated with a running process, and it may have a name. Currently, sockets generally exchange data only with other sockets in the same “communication domain,” which uses the Internet Protocol Suite.

 Both kinds of sockets are bi-directional: they are data flows that can be communicated in both directions simultaneously (full-duplex).

Two socket types are available:

· Stream sockets

Stream sockets provide for a data flow without record boundaries — a stream of bytes. Streams are guaranteed to be delivered and to be correctly sequenced and unduplicated.

· Datagram sockets

Datagram sockets support a record-oriented data flow that is not guaranteed to be delivered and may not be sequenced as sent or unduplicated

 There are two ways to look at sockets: (1) as a mechanism for transferring data between remote or local processes (similar to named pipes); or (2) as a mechanism for making the transmission control protocol/Internet protocol (TCP/IP) suite available to user applications. Initially, sockets were designed as local interprocess communications (IPC) mechanisms. Later, they turned out to be useful for providing applications with access to TCP/IP-based communications. Eventually, the sockets application programming interface (API) proved itself to be both abstract enough to provide communication objects without explicitly addressing TCP/IP and flexible enough to be implemented on non-TCP/IP protocols.

1.3 Uses of Sockets

 Sockets are highly useful in at least three communications contexts:

· Client/Server models

· Peer-to-peer scenarios, such as chat applications

· Making remote procedure calls (RPC) by having the receiving application interpret a message as a function call

1.4 Windows Sockets 2 DLLs

 In order to use the socket protocols to create client and server modules we have to include WS2_32DLL file which has following structure and provide following functionality as shown in below figure.

 Windows

 Sockets 2 API

 Windows Windows Sockets 2

 Socket 2 Name Space SPI

 Transport SPI

(Figure 1.1)
 Windows Sockets network services follow the WOSA model, meaning that there exists a Windows Sockets Application Programming Interface (API), which is the application programmer's access to network services, Windows Sockets Service Provider Interfaces (SPIs) which are implemented by transport service providers and name resolution service provider vendors, and Ws2_32.dll. The SPI is intended to be used within all 32-bit implementations and versions of Microsoft® Windows® including Windows® NT® and Windows® 95®.

1.5 Socket Interface
 The figure below shows how the different protocols interact

 [image: image1.png]
(Figure 1.2)

 A socket is similar to a named pipe — it is an abstraction that allows applications to view a network communication almost as they would an I/O stream. The "core" set of API calls that are used to access sockets appears quite similar to the named pipe API (these calls comply with the Berkeley Software Distribution [BSD] socket specification), and a set of additional calls allows sockets to work with the message-driven Microsoft Windows® API. These two API sets constitute what is known as Windows Sockets.

 One of the most important advantages of sockets is that they provide a network-independent, yet network-configurable interprocess communication mechanism. This means that you don't have to redesign an application when you port it, say, from a TCP/IP-based socket implementation to an IPX-based implementation, but you can still take into account the different addressing schemes that TCP/IP and IPX employ.

1.6 Sockets vs. Named Pipes

 I mentioned earlier that sockets and named pipes are fairly similar in that both provide a way to view a network connection through open/close/read/write functions, like any other I/O stream. Thus, it makes sense to look at the similarities and differences between the two approaches.

Let us first look at the similarities between named pipes and sockets:

1. Both named pipes and sockets can be used to transfer data transparently between two processes on the same machine, or between processes on remote machines.

2. Both named pipes and sockets operate on the open/read/write/close paradigm. In Windows NT, both pipes and sockets are internally implemented as file-type objects; that is, you can transfer data over pipes or sockets using the ReadFile and WriteFile functions, and you can use a pipe or a socket as the destination or source for redirecting input from and output to console applications.

3. Both named pipes and sockets hide the underlying network architecture and protocol from the communication (although sockets allow a higher degree of control over the network protocol employed for a particular communication, as we will see later on).

4. Connections with both named pipes and sockets define a "server" end and a "client" end. In either case, the same server can service multiple clients.

The differences between named pipes and sockets are as follows:

1. By definition, sockets are bidirectional, whereas named pipes can be opened either bidirectionally or unidirectionally.

2. Sockets give you a much greater degree of control over details of the communication. In particular, named pipes don't have the flexibility to dynamically select a particular transport protocol; the operating system does this automatically through an arbitration phase at connect time.

3. Sockets were originally designed for use with the TCP/IP protocol, which addresses remote machines across network boundaries. Thus, it is possible to use sockets on top of TCP/IP to establish and maintain communications between machines that are not hooked up to the same physical LAN but can communicate via an internet. (I use the phrase "an internet" as opposed to "the Internet" to mean any assembly of networks connected with one another.)

However, you can also use sockets with non-TCP/IP network protocols that may not be able to address machines across network boundaries.

4. When a named pipe is created or opened, it is automatically bound to a location on the network, whereas a socket must be explicitly bound to an endpoint. (Don't worry; we will clarify these terms later on.)

5. Both named pipe and socket handles are shareable between processes. However, some socket properties are kept on a per-process basis so that different processes can open the same handle in different modes, whereas a named pipe will always behave the same for all processes that decide to share it.

6. A socket server application requires two calls to accept connection attempts from a server—one to indicate that the server is ready to accept a connection (listen), and one to establish the connection (accept)—whereas named pipes require a single call (ConnectNamedPipe).

7. Named pipes come with built-in security under Windows NT.

1.7 Remote Interface Diagram

 Accept the Client Connection

 Events Generated on the screen window

(Figure 1.3)
 When the client tries to connect to the Server, the Server detects it using accept function call and return the socket no of the client and also other important information related with the IP address of the client. On successful detection of the client, server creates a ClientThread which in turn then handles interfacing to the client in terms of the bitmap and response to various events. To connect to the Server machine, the IP address of the server machine must be known to us and the remote machine must be executing the Server Application. The detailed diagram related with interfacing is given in the Figure 1.4.

 Client machine starts a timer that calls the server machine for the screen whenever it’s time quantum expires. The remote machine then obtains its desktop screen by getting the Device Context of the entire screen using CreateDC () function. The entire regional display is the converted into the compatible Bitmap which in turn is copied in to the memory using memory context and using the function BitBlt (). Then the server machine allocates memory to hold actual bitmap that is required to be transferred to the client machine.

 1.7 Socket Creation
 [image: image2.png]
 [image: image3.png]
 The bitmap is then copied into the allocated memory using the GetBitmapBits () function. On the client, client receives first the size of the bitmap and then actual bitmap which is the displayed into the client window. When ever administrator or authorized user moves mouse or generate any event on the client window in which the server screen is right now displayed then the corresponding event with necessary event identifier and parameters like coordinates of the screen etc are then combined to create a message, which will be transferred to the server machine. The server machines then identify the type of event from message package and perform the same event on the desktop of server with the specified coordinates after scaling it.

 In order to create sockets we have to follow sequence of operations that defines particular function calls for both Server and Client which are listed below.

1.7.1 Server Socket Creation Functions

· WSASocket

 The Windows Sockets WSASocket function creates a socket that is bound to a specific transport-service provider. The format of the function with the parameters is given below.

 SOCKET WSASocket (

 int af,
 int type,
 int protocol,
 LPWSAPROTOCOL_INFO lpProtocolInfo,
 GROUP g,
 DWORD dwFlags
);
Parameters

af

[in] Address family specification.

type

[in] Type specification for the new socket.

Protocol

[in] Protocol to be used with the socket that is specific to the indicated address family.

lpProtocolInfo

[in] Pointer to a WSAPROTOCOL_INFO structure that defines the characteristics of the socket to be created.

g

[in] Reserved.

dwFlags

[in] Flag that specifies the socket attribute.

Return Values

 If no error occurs, WSASocket returns a descriptor referencing the new socket. Otherwise, a value of INVALID_SOCKET is returned, and a specific error code can be retrieved by calling WSAGetLastError.

· Bind
 The Windows Sockets bind function associates a local address with a socket.

 Int bind (

 SOCKET s,
 const struct sockaddr FAR * name,
 int namelen
);

Parameters

s

[In] Descriptor identifying an unbound socket.

name

[In] Address to assign to the socket from the SOCKADDR structure.

namelen
[in] Length of the value in the name parameter.

Return Values

 If no error occurs, bind returns zero. Otherwise, it returns SOCKET_ERROR, and a specific error code can be retrieved by calling WSAGetLastError.

 In the Internet address family, the SOCKADDR_IN structure is used by Windows Sockets to specify a local or remote endpoint address to which to connect a socket. This is the form of the SOCKADDR structure specific to the Internet address family and can be cast to SOCKADDR.

 struct sockaddr_in {
 short sin_family;
 unsigned short sin_port;

 struct in_addr sin_addr;
 char sin_zero [8];
 };

Members

sin_family

Address family (must be AF_INET).

sin_port

IP port.

sin_addr

IP address.

sin_zero

Padding to make structure the same size as SOCKADDR.

· Setsockopt

 The Windows Sockets setsockopt function sets a socket option.

 int setsockopt(

 SOCKET s,
 int level,
 int optname,
 const char FAR * optval,
 int optlen
);
Parameters

s

[in] Descriptor identifying a socket.

level

[in] Level at which the option is defined; the supported levels include SOL_SOCKET and IPPROTO_TCP. See the Windows Sockets 2 Protocol-Specific Annex (a separate document included with the Platform SDK) for more information on protocol-specific levels.

optname

[in] Socket option for which the value is to be set.

optval

[in] Pointer to the buffer in which the value for the requested option is supplied.

optlen

[in] Size of the optval buffer.

Return Values

If no error occurs, setsockopt returns zero. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code can be retrieved by calling WSAGetLastError.

· Listen

 The Windows Sockets listen function places a socket a state where it is listening for an incoming connection.

 int listen(

 SOCKET s,
 int backlog
);

Parameters

s

[in] Descriptor identifying a bound, unconnected socket.

backlog

[in] Maximum length of the queue of pending connections. If set to SOMAXCONN, the underlying service provider responsible for socket s will set the backlog to a maximum reasonable value. There is no standard provision to obtain the actual backlog value.

Return Values

If no error occurs, listen returns zero. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code can be retrieved by calling WSAGetLastError.

· Accept

 The Windows Sockets accept function permits an incoming connection attempt on a socket.

 SOCKET accept (

 SOCKET s,
 struct sockaddr FAR * addr,
 int FAR *addrlen
);

Parameters

s

[in] Descriptor identifying a socket that has been placed in a listening state with the listen function. The connection is actually made with the socket that is returned by accept.

addr

[out] Optional pointer to a buffer that receives the address of the connecting entity, as known to the communications layer. The exact format of the addr parameter is determined by the address family that was established when the socket was created.

addrlen

[out] Optional pointer to an integer that contains the length of addr.

Return Values

If no error occurs, accept returns a value of type SOCKET that is a descriptor for the new socket. This returned value is a handle for the socket on which the actual connection is made.

Otherwise, a value of INVALID_SOCKET is returned, and a specific error code can be retrieved by calling WSAGetLastError.

The integer referred to by addrlen initially contains the amount of space pointed to by addr. On return it will contain the actual length in bytes of the address returned. How ever the addr structure points to the address space of the client so we can obtain the IP address of the client by using the function inet_ntoa (addr.sin_addr) which has following structure.

· Inet_ntoa

 The Windows Sockets inet_ntoa function converts an (Ipv4) Internet network address into a string in Internet standard dotted format.

 char FAR * inet_ntoa (

 struct in_addr in
);
Parameters

in

[in] Structure that represents an Internet host address.

Return Values

 If no error occurs, inet_ntoa returns a character pointer to a static buffer containing the text address in standard ".'' notation. Otherwise, it returns NULL.

 On successful acceptance of any client the server machine creates thread for that client for the rest of the handling of the interface which includes screen transferring and other events related interface. The format to create the thread is as given below,

· AfxBeginThread

 This function creates a new thread. The first form of AfxBeginThread creates a worker thread. The second form creates a user-interface thread.

 AfxBeginThread creates a new CWinThread object, calls its CreateThread function to start executing the thread, and returns a pointer to the thread. Checks are made throughout the procedure to make sure all objects are deallocated properly should any part of the creation fail.

 To end the thread, call AfxEndThread from within the thread, or return from the controlling function of the worker thread.

 CWinThread * AfxBeginThread (
 AFX_THREADPROC pfnThreadProc,

 LPVOID pParam,

 int nPriority = THREAD_PRIORITY_NORMAL,

 UINT nStackSize = 0,

 DWORD dwCreateFlags = 0,

 LPSECURITY_ATTRIBUTES lpSecurityAttrs = NULL

);
Parameters

pfnThreadProc

Points to the controlling function for the worker thread. Cannot be NULL. This function must be declared as follows:

UINT MyControllingFunction(LPVOID pParam);

pThreadClass

The RUNTIME_CLASS of an object derived from CWinThread.

pParam

Parameter to be passed to the controlling function as shown in the parameter to the function declaration in pfnThreadProc.

nPriority

The desired priority of the thread. If 0, the same priority as the creating thread will be used. For a full list and description of the available priorities, see SetThreadPriority.

nStackSize

Specifies the size in bytes of the stack for the new thread. If 0, the stack size defaults to the same size stack as the creating thread.

dwCreateFlags

Specifies an additional flag that controls the creation of the thread. This flag can contain one of two values:

· CREATE_SUSPENDED Start the thread with a suspend count of one. Use CREATE_SUSPENDED if you want to initialize any member data of the CWinThread object, such as m_bAutoDelete or any members of your derived class, before the thread starts running. Once your initialization is complete, use the CWinThread::ResumeThread to start the thread running. The thread will not execute until CWinThread::ResumeThread is called.

· 0 Start the thread immediately after creation.

lpSecurityAttrs

Points to a SECURITY_ATTRIBUTES structure that specifies the security attributes for the thread. If NULL, the same security attributes as the creating thread will be used. For more information on this structure, see the Platform SDK.

Return Value

Pointer to the newly created thread object.

· Select

 The Windows Sockets select function determines the status of one or more sockets, waiting if necessary, to perform synchronous I/O.

 int select(

 int nfds,
 fd_set FAR *readfds,
 fd_set FAR *writefds,
 fd_set FAR *exceptfds,
 const struct timeval FAR * timeout
);
Parameters

nfds

[in] Ignored. The nfds parameter is included only for compatibility with Berkeley sockets.

readfds

[in, out] Optional pointer to a set of sockets to be checked for readability.

writefds

[in, out] Optional pointer to a set of sockets to be checked for writability

exceptfds

[in, out] Optional pointer to a set of sockets to be checked for errors.

timeout

[in] Maximum time for select to wait, provided in the form of a TIMEVAL structure. Set the timeout parameter to NULL for blocking operation.

Return Values

The select function returns the total number of socket handles that are ready and contained in the fd_set structures, zero if the time limit expired, or SOCKET_ERROR if an error occurred. If the return value is SOCKET_ERROR, WSAGetLastError can be used to retrieve a specific error code.

1.7.1 Client Socket Creation Functions
 Client socket procedure is same as that of the Server Socket creation procedure except that the Client will not use the Bind, Accept, Select and Listen functions instead it will use the Connect function to connect to the Server after using the WSASocket function.

· Connect

 The Windows Sockets connect function establishes a connection to a specified socket.

 int connect(

 SOCKET s,
 const struct sockaddr FAR * name,
 int namelen
);
Parameters

s

[in] Descriptor identifying an unconnected socket.

name

[in] Name of the socket to which the connection should be established.

 The structure contains information related with the Server Socket

namelen

[in] Length of name.

Return Values

 If no error occurs, connect returns zero. Otherwise, it returns SOCKET_ERROR, and a specific error code can be retrieved by calling WSAGetLastError. On a blocking socket, the return value indicates success or failure of the connection attempt. With a nonblocking socket, the connection attempt cannot be completed immediately. In this case, connect will return SOCKET_ERROR, and WSAGetLastError will return WSAEWOULDBLOCK.
 After successful connection to the Server the client machine first send the request to obtain dimension of the Server which is inform of height and width but in character format so the client machine converts all the character massages that if they contains integer, float or long information by using the atoi (), atof () and atol () respectively which has following function format,

 int atoi (const char * string);
 double atof (const char * string);
 long atol (const char * string);

2.1 Data Transmitting Functions
· Send

 The Windows Sockets send function sends data on a connected socket.

 int send(

 SOCKET s,
 const char FAR *buf,
 int len,
 int flags
);

Parameters

s

[in] Descriptor identifying a connected socket.

buf

[in] Buffer containing the data to be transmitted.

len

[in] Length of the data in buf.

flags

[in] Indicator specifying the way in which the call is made.

Return Values

If no error occurs, send returns the total number of bytes sent, which can be less than the number indicated by len for nonblocking sockets. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code can be retrieved by calling WSAGetLastError.

· WSASend

 The Windows Sockets WSASend function sends data on a connected socket.

 int WSASend(

 SOCKET s,
 LPWSABUF lpBuffers,
 DWORD dwBufferCount,
 LPDWORD lpNumberOfBytesSent,
 DWORD dwFlags,
 LPWSAOVERLAPPED lpOverlapped,
 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine
);

Parameters

s

[in] Descriptor identifying a connected socket.

lpBuffers

[in] Pointer to an array of WSABUF structures. Each WSABUF structure contains a pointer to a buffer and the length of the buffer. This array must remain valid for the duration of the send operation.

dwBufferCount

[in] Number of WSABUF structures in the lpBuffers array.

lpNumberOfBytesSent

[out] Pointer to the number of bytes sent by this call if the I/O operation completes immediately.

dwFlags

[in] Flags used to modify the behavior of the WSASend function call. See Using dwFlags in the Remarks section for more information.

lpOverlapped

[in] Pointer to a WSAOVERLAPPED structure. This parameter is ignored for nonoverlapped sockets.

lpCompletionRoutine

[in] Pointer to the completion routine called when the send operation has been completed. This parameter is ignored for nonoverlapped sockets.

Return Values

 If no error occurs and the send operation has completed immediately, WSASend returns zero. In this case, the completion routine will have already been scheduled to be called once the calling thread is in the alertable state. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code can be retrieved by calling WSAGetLastError. The error code WSA_IO_PENDING indicates that the overlapped operation has been successfully initiated and that completion will be indicated at a later time. Any other error code indicates that the overlapped operation was not successfully initiated and no completion indication will occur.

 When a socket is created, by default it is a blocking socket. You can use the FIONBIO command in the ioctlsocket API call, WSAEventSelect, or WSAAysncSelect to change the socket mode from blocking to non-blocking. If a Winsock call cannot complete immediately, the call fails and WSAGetLastError returns a WSAEWOULDBLOCK error if it's a non-blocking socket or the call blocks until the operation completes if it's a blocking socket.

 The socket overlapped I/O attribute is different from the socket's blocking or non-blocking mode. Although the current Winsock implementation requires overlapped I/O attribute for non-blocking socket mode, they are conceptually independent and their programming model is different too. To create a socket with the overlapped I/O attribute, you can either use the socket API or the WSASocket API with the WSA_FLAG_OVERLAPPED flag set. If an overlapped I/O operation can not complete immediately, the call fails and WSAGetLastError or GetLastError return WSA_IO_PENDING or ERROR_IO_PENDING, which is actually the same define as WSA_IO_PENDING.

2.2 Data receiving Functions
· Recv

 The Windows Sockets recv function receives data from a connected socket.

 int recv(

 SOCKET s,
 char FAR * buf,
 int len,
 int flags
);

Parameters

s

[in] Descriptor identifying a connected socket.

buf

[out] Buffer for the incoming data.

len

[in] Length of buf.

flags

[in] Flag specifying the way in which the call is made.

Return Values

If no error occurs, recv returns the number of bytes received. If the connection has been gracefully closed, the return value is zero. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code can be retrieved by calling WSAGetLastError.

· WSARecv

 The Windows Sockets WSARecv function receives data from a connected socket.

 int WSARecv(

 SOCKET s,
 LPWSABUF lpBuffers,
 DWORD dwBufferCount,
 LPDWORD lpNumberOfBytesRecvd,
 LPDWORD lpFlags,
 LPWSAOVERLAPPED lpOverlapped,
 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine
);

Parameters

s

[in] Descriptor identifying a connected socket.

lpBuffers

[in, out] Pointer to an array of WSABUF structures. Each WSABUF structure contains a pointer to a buffer and the length of the buffer.

dwBufferCount

[in] Number of WSABUF structures in the lpBuffers array.

lpNumberOfBytesRecvd

[out] Pointer to the number of bytes received by this call if the receive operation completes immediately.

lpFlags

[in, out] Pointer to flags.

lpOverlapped

[in] Pointer to a WSAOVERLAPPED structure (ignored for nonoverlapped sockets).

lpCompletionRoutine

[in] Pointer to the completion routine called when the receive operation has been completed (ignored for nonoverlapped sockets).

Return Values

If no error occurs and the receive operation has completed immediately, WSARecv returns zero. In this case, the completion routine will have already been scheduled to be called once the calling thread is in the alertable state. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code can be retrieved by calling WSAGetLastError. The error code WSA_IO_PENDING indicates that the overlapped operation has been successfully initiated and that completion will be indicated at a later time. Any other error code indicates that the overlapped operation was not successfully initiated and no completion indication will occur.

3.1 Device Context
 A device context is a Windows data structure containing information about the drawing attributes of a device such as a display or a printer. All drawing calls are made through a device-context object, which encapsulates the Windows APIs for drawing lines, shapes, and text. Device contexts allow device-independent drawing in Windows. Device contexts can be used to draw to the screen, to the printer, or to a metafile. An application requires a display device context handle (hdc) before it can begin drawing in the client area of a window. Similarly, a print device requires a special printer hdc before it can begin sending output to a printer. A printer hdc is an internal data structure that defines a set of graphic objects and their associated attributes, and specifies the graphic modes that affect output. The graphic objects include a pen (for line drawing),a brush (for painting and filling), and a font (for text output).

 For a display device, the GetDC, GetDCEx, and GetWindowDC functions can be used to return an hdc, because those device contexts are owned by the windows management component. Unlike a display device context, printer device contexts are not owned by the windows management component, and cannot be obtained by calls to the GetDC, GetDCEx, or GetWindowDC functions. Instead, to obtain a handle to a printer device context, an application must call either the CreateDC or the PrintDlg function.
3.1.1 Device Context Functions

The following functions are used with device contexts.

	Function
	Description

	CreateCompatibleDC
	Creates a memory device context compatible with the specified device.

	CreateDC
	Creates a device context for a device using the specified name.

	DeleteDC
	Deletes the specified device context.

	DeleteObject
	Deletes a logical pen, brush, font, bitmap, region, or palette, freeing all system resources associated with the object.

	GetDC
	Retrieves a handle to a display device context for the client area of a specified window or for the entire screen.

	GetDeviceCaps
	Retrieves device-specific information for the specified device.

	GetObject
	Retrieves information for the specified graphics object.

	GetObjectType
	Retrieves the type of the specified object.

	GetStockObject
	Retrieves a handle to one of the stock pens, brushes, fonts, or palettes.

	ReleaseDC
	Releases a device context, freeing it for use by other applications.

	SelectObject
	Selects an object into the specified device context.

3.2 Using Bitmaps

 A bitmap is an array of bits that creates an image when it is mapped to a rectangular pixel array on an output device. Windows CE supports device-independent bitmaps (DIBs). A DIB has its own color table and can be displayed on a variety of devices. Most graphics information is stored in DIB format. The data needed to draw a DIB is stored in a BITMAPINFO structure, which consists of a BITMAPINFOHEADER structure and an array of two or more GBQUAD structures. BITMAPINFOHEADER contains information about the dimensions and color format of the DIB. Each RGBQUAD structure defines one of the colors used by the bitmap. The array of RGBQUAD structures is called a color table.

 Windows CE supports bitmaps with pixel depths of 1, 4, 8, 16, 24, or 32 bits per pixel (bpp). It does not support compressed bitmap formats, such as run-length encoded bitmaps. Bitmaps of 1, 4, and 8 bpp are palettized, and BITMAPINFO includes a color table of the length implied by the biBitCount member of BITMAPINFOHEADER. For non-palettized images of 16 or 32 bpp, the color table contains three entries that specify the red, green, and blue intensities. The 24-bpp bitmaps do not use a color table; each image pixel is in RGB format.

3.2.1 Bitmap Classification

There are two classes of bitmaps:

· Device-independent bitmaps (DIB). The DIB file format was designed to ensure that bitmapped graphics created using one application can be loaded and displayed in another application, retaining the same appearance as the original.

· Device-dependent bitmaps (DDB). Also known as GDI bitmaps were the only bitmaps available in early versions of 16-bit Microsoft® Windows® (prior to version 3.0). However, as display technology improved and as the variety of available display devices increased, certain inherent problems surfaced which could only be solved using DIBs. For example, there was no method of storing (or retrieving) the resolution of the display type on which a bitmap was created, so a drawing application could not quickly determine whether a bitmap was suitable for the type of video display device on which the application was running.

3.2.2 Creating Bitmaps

· To create a device-dependent bitmap

1. Call CreateCompatibleDC to create a memory device context.

This function creates a device context compatible with the specified device. The device context contains a single-bit array that serves as a placeholder for a bitmap.

2. Call CreateBitmap or CreateCompatibleBitmap to create the bitmap. If calling CreateCompatibleBitmap, be sure that you specify a screen device context rather than a memory device context; otherwise, you will get a device context to a 1-bpp device.

3. Call SelectObject to select the bitmap into the device context.
· To create a device-independent bitmap

1. Call the CreateDIBSection function.

CreateDIBSection creates a DIBSection, which contains all the information necessary for displaying the DIB.

2. Call the SelectObject function to select the DIBSection into the device context.

3. Select the DIBSection again and call DeleteObject to delete the DIBSection when finished.

 The BITMAPINFO structure defines the dimensions and color information for a DIB. This structure consists of a BITMAPINFOHEADER structure and an array of two or more RGBQUAD structures. The BITMAPINFOHEADER structure contains information about the dimensions and color format of a DIB. Each RGBQUAD structure defines one bitmap color.The BITMAPINFO structure must include a color table if the images are palettized with formats of 1, 2, 4, or 8 bits per pixel (bpp). For a 16 bpp or 32 bpp non-palettized image, the color table must be three entries long; the entries must specify the value of the red, green, and blue (RGB) bitmasks. Because GDI ignores the color table for 24-bpp bitmaps, you should store the image pixels in RGB format.

3.2.3 Bitmap Functions

	Function
	Description

	BitBlt
	Performs a bit-block transfer.

	CreateBitmap
	Creates a bitmap.

	CreateBitmapIndirect
	Creates a bitmap.

	CreateCompatibleBitmap
	Creates a bitmap compatible with a device.

	CreateDIBitmap
	Creates a device-dependent bitmap (DDB) from a DIB.

	CreateDIBSection
	Creates a DIB that applications can write to directly.

	GetDIBColorTable
	Retrieves RGB color values from a DIB section bitmap.

	GetDIBits
	Copies a bitmap into a buffer.

	GetPixel
	Gets the RGB color value of the pixel at a given

coordinate.

	LoadBitmap
	Loads a bitmap from a module's executable file.

	SetPixel
	Sets the color for a pixel.

	StretchBlt
	Copies a bitmap and stretches or compresses it.

	StretchDIBits
	Copies the color data in a DIB.

3.3 Capturing an Image

 You can use a bitmap to capture an image, and you can store the captured image in memory, display it at a different location in your application's window, or display it in another window. In some cases, you may want your application to capture images and store them only temporarily. For example, when you scale or zoom a picture created in a drawing application, the application must temporarily save the normal view of the image and display the zoomed view. Later, when the user selects the normal view, the application must replace the zoomed image with a copy of the normal view that it temporarily saved.

 To store an image temporarily, your application must call CreateCompatibleDC to create a DC that is compatible with the current window DC. After you create a compatible DC, you create a bitmap with the appropriate dimensions by calling the CreateCompatibleBitmap function and then select it into this device context by calling the SelectObject function. After the compatible device context is created and the appropriate bitmap has been selected into it, you can capture the image. The BitBlt function captures images. This function performs a bit block transfer — that is, it copies data from a source bitmap into a destination bitmap. However, the two arguments to this function are not bitmap handles. Instead, BitBlt receives handles that identify two device contexts and copies the bitmap data from a bitmap selected into the source DC into a bitmap selected into the target DC. In this case, the target DC is the compatible DC, so when BitBlt completes the transfer, the image has been stored in memory. To redisplay the image, call BitBlt a second time, specifying the compatible DC as the source DC and a window (or printer) DC as the target DC.

· BitBlt

 The BitBlt function performs a bit-block transfer of the color data corresponding to a rectangle of pixels from the specified source device context into a destination device context.

 BOOL BitBlt (

 HDC hdcDest, // handle to destination DC

 int nXDest, // x-coord of destination upper-left corner

 int nYDest, // y-coord of destination upper-left corner

 int nWidth, // width of destination rectangle

 int nHeight, // height of destination rectangle

 HDC hdcSrc, // handle to source DC

 int nXSrc, // x-coordinate of source upper-left corner

 int nYSrc, // y-coordinate of source upper-left corner

 DWORD dwRop // raster operation code

);

Parameters

hdcDest

[in] Handle to the destination device context.
nXDest

[in] Specifies the logical x-coordinate of the upper-left corner of the destination rectangle.

nYDest

[in] Specifies the logical y-coordinate of the upper-left corner of the destination rectangle.

nWidth

[in] Specifies the logical width of the source and destination rectangles.

nHeight

[in] Specifies the logical height of the source and the destination rectangles.

hdcSrc

[in] Handle to the source device context.

nXSrc

[in] Specifies the logical x-coordinate of the upper-left corner of the source rectangle.

nYSrc

[in] Specifies the logical y-coordinate of the upper-left corner of the source rectangle.

dwRop

[in] Specifies a raster-operation code. These codes define how the color data for the source rectangle is to be combined with the color data for the destination rectangle to achieve the final color.

Return Values

 If the function succeeds, the return value is nonzero otherwise its zero.

 After establishing the Socket connection between the client machine and the sever machine now its time to control the server machine using mouse and keyboard. Up till now we are concerned with the windows functions that performs required task now the controlling part is totally manipulated using MFC (Microsoft Foundation Classes) also called API (Application program interface).

4.1 Mouse Events

 On the client side the various mouse events like,

1. Mouse move

2. Mouse left button down

3. Mouse right button down

4. Mouse left button double click

5. Mouse right button double click

6. Mouse wheel

 The various mouse events are detected by the message map in the API and are then handled by the corresponding function defined to handle that event with the following format,

 ON_WM_LBUTTONDOWN ()
and the routine that executes the event is named as,

 Afx_msg void CMainWin :: OnLButtonDown (UINT flags, CPoint loc)
Where CMainWin is the class derived from the CFrameWnd and contains the above function as its member function. The various other mouse event and their handlers are given in the below table.
	Mouse event
	Event handler

	Mouse move
	afx_msg void OnMouseMove (

UINT nFlags, CPoint point);

	Mouse left button up
	afx_msg void OnLButtonUp (

UINT nFlags, CPoint point);

	Mouse left button down
	afx_msg void OnLButtonDown(

UINT nFlags, CPoint point);

	Mouse left button double clicked
	afx_msg void OnLButtonDblClk(

UINT nFlags, CPoint point);

	Mouse right button up
	afx_msg void OnRButtonUp (

UINT nFlags, CPoint point);

	Mouse right button down
	afx_msg void OnRButtonDown(

UINT nFlags, CPoint point);

	Mouse right button double clicked
	afx_msg void OnRButtonDblClk(

UINT nFlags, CPoint point);

	Mouse Middle button up
	afx_msg void OnMButtonUp (

UINT nFlags, CPoint point);

	Mouse Middle button down
	afx_msg void OnMButtonDown(

UINT nFlags, CPoint point);

	Mouse Middle button double clicked
	afx_msg void OnMButtonDblClk(

UINT nFlags, CPoint point);

Parameters

nFlags

Indicates whether various virtual keys are down. This parameter can be any combination of the following values:

· MK_CONTROL Set if the CTRL key is down.

· MK_LBUTTON Set if the left mouse button is down.

· MK_MBUTTON Set if the middle mouse button is down.

· MK_RBUTTON Set if the right mouse button is down.

· MK_SHIFT Set if the SHIFT key is down.

point

Specifies the x- and y-coordinate of the cursor. These coordinates are always relative to the upper-left corner of the window.
4.2 Keyboard Events
 Various keyboard events includes,

	Keyboard event
	Event handler

	Key down
	afx_msg void OnKeyDown(

 UINT nChar,

 UINT nRepCnt,

 UINT nFlags);

	Key
	afx_msg void OnKeyDown(

 UINT nChar,

 UINT nRepCnt,

 UINT nFlags);

Parameters

nChar

Specifies the virtual key code of the given key. For a list of standard virtual key codes, see Winuser.h

nRepCnt

Specifies the repeat count, that is, the number of times the keystroke is repeated as a result of the user holding down the key.

nFlags

Specifies the scan code, key-transition code, previous key state, and context code, as shown in the following next table.

	Value
	Description

	0–7
	Scan code (OEM-dependent value).

	8
	Extended key, such as a function key or a key on the numeric keypad (1 if it is an extended key).

	9–10
	Not used.

	11–12
	Used internally by Windows.

	13
	Context code (1 if the ALT key is held down while the key is pressed; otherwise, it is 0).

	14
	Previous key state (1 if the key is down before the call, 0 if the key is up).

	15
	Transition state (1 if the key is being released, 0 if the key is being pressed).

 On the client side any of the event stated above can be generated which is converted in to the message with appropriate heading like for the mouse left button down event the message heading would be,

WM_LBD; 230; 450; Flags; \0

 Now on the server side these messages are interpreted and stored in the data structure designed as shown below,
[image: image4.png]
 The messages regarding appropriate events are generated by the functions for the mouse and the keyboard on the remote machine,

· mouse_event

 The mouse_event function synthesizes mouse motion and button clicks.

 VOID mouse_event(

 DWORD dwFlags, // motion and click options

 DWORD dx, // horizontal position or change

 DWORD dy, // vertical position or change

 DWORD dwData, // wheel movement

 ULONG_PTR dwExtraInfo // application-defined information

);

· keybd_event

 The keybd_event function synthesizes a keystroke. The system can use such a synthesized keystroke to generate a WM_KEYUP or WM_KEYDOWN message. The keyboard driver's interrupt handler calls the keybd_event function.

 VOID keybd_event (

 BYTE bVk, // virtual-key code

 BYTE bScan, // hardware scan code

 DWORD dwFlags, // function options

 ULONG_PTR dwExtraInfo // additional keystroke data

);

Parameters

bVk
[in] Specifies a virtual-key code. The code must be a value in the range 1 to 254. For a complete list, see Virtual-Key Codes.

bScan
This parameter is not used.

dwFlags
[in] Specifies various aspects of function operation. This parameter can be one or more of the following values.

	Value
	Meaning

	KEYEVENTF_EXTENDEDKEY
	If specified, the scan code was preceded by a prefix byte having the value 0xE0 (224).

	KEYEVENTF_KEYUP
	If specified, the key is being released. If not specified, the key is being depressed.

dwExtraInfo
[in] Specifies an additional value associated with the key stroke.

Return Values

This function has no return value.

 Visual c++ provides excellent designing of the windows with ease. We can easily design window for the application and can also various tools in the window like Menu, ToolBar, Dialog Box, Bitmaps etc. The GUI of our application is very simple and is divided in the stages.

· Authentication Dialogs

· Server Window

· Client Window

5.1 Authentication Dialogs
 5.1.1 Administrator Login Dialog Box
 [image: image5.png]
 5.1.2 Server Machine Connection through IP address

 [image: image6.png]

5.2 Server Window
 [image: image7.png]
5.2 Client Window
 [image: image8.png]

5.4 Captured image of the same desktop
[image: image9.png]

Conclusions

· It was very nice experience to take the project on the networking side and to implement it successfully using the strong and hard programming of Visual C++ particularly using WINAPI and MFC.
· It’s always better to first design the software first with all the necessaries like input, output, data structure, various constraints, essential requirements in general we have to follow the principles of Software Engineering.
· To use there application our team stoutly recommends to use the REM Booster software along with these on two different machines so that if any of the application tries to occupy entire memory the REM Booster software can optimize it so that no applications will hang on that machine.
· During the programming of the application software you have to consider allocation and freeing of the memory that holds the Bitmap in form of char *. If you do not take care then it may happen that the server or client application will hang.
· We also provide the facility to set the refresh ret manually and we also recommend setting it to 500 milliseconds or 1 second for the better results and on starting of the application you have to initially optimize memory.
· We also provide facility of Snap Shots and save to the .bmp format file with the file name provided.

Future Enhancements
· The server application sends the screen of desktop at refresh rate entered by user. If application runs at very high refresh rate (say in milliseconds) then the network will be quite busy. The Hardware solution is to have very high speed link. Some of the software solutions that can be added are:

· Compress the bitmap at server side and then decompress them on the client side. This reduces the memory overhead and thence link is not highly occupied. Various compression algorithms that can be used are Huffman Compression, Run Length Encoding, etc.
· On server side, compare the previous bitmap with the current one and send the bitmap only if modified. Bitmap comparison takes time and would require coding at machine level, which increases complexity.

· Divide the screen into grids. Compare the new grids with the old one and send only modified grids to the client application. This reduces the data to be send drastically, but in turn increases the overhead burden on programmer. Data structures need to be designed to maintain all the grids. Linked list may be used for this.

· One more solution is to send the difference between the old bitmap and new bitmap. Client application must be programmed to regenerate the bitmap. But this could cause memory overhead, as previous bitmap must not be freed.

· The client application should be such that it would detect the Machines that are executing the server application, so we can connect to the server with out fear of the failure of the connection. To implement this Database of IPs must be maintained. When Client runs it pick up IP address from database and make a routine checkup of the machines executing server application.

· The application allows FTP remotely but only in the remote machine and not between client and server. The application can be modified, so that it allows the FTP between two machines.

· Chat service can be added. Just use Socket programming.

Bibliography
· BOOKS

· MFC Programming from the GROUND UP

 (Second Edition) By

 Herbert Schildt for designing
· Programming Windows

(Fifth Edition) By

 Charles Petzold

· MSDN Library January 2001 or later

· Visual C++

 BY

 Yashwant Kanitkar

· Related Web Sites
· www.microsoft.com/msdnonline

INDEX

 Accept (), 11 Listen (), 10

 AfxBeginThread (), 12
 AfxEndThread (), 13

 Authentication Dialogs, 29

 Mouse Events, 25
 Mouse_Event (), 27

Bind, 9

BitBlt function, 23

Bitmaps, 21

Blocking socket, 17

 Recv (), 18

Capturing Image, 23

Captured same machine, 31

Client Functions, 1 Socket Interface, 4

Client Socket Functions, 14 Socket Creation, 7

Client Window, 30 Socket Vs Named Pipes, 5

Connect (), 15 Send (), 16

 Server Socket functions, 8

 SetSockOpt (), 10

 Server Window, 30
Datagram Sockets, 1

Data receiving functions, 18

Data x’ mitting functions, 16

DDB, 21 What are Sockets?, 2

Device Context, 20 WSARecv (), 18

Device Context Functions, 20 WSASend (), 16

DIB, 21 WSASocket (), 8

Events, 25

Keyboard Events, 26

Kb_Event (), 28

�

Sr. No Title Page No

Sr. No Title Page No

CHAPTER 2

 Data Transferring

CHAPTER 3

 Screen Capturing

CHAPTER 4

 Controlling Events

CHAPTER 5

 Graphical User Interface

1 Remote Monitoring and Control

2 Remote Monitoring and Control

3 Remote Monitoring and Control

Windows

Sockets 2

Application

Windows

Sockets 2

Application

Transport Name Space

Functions Functions

WS2_32.DLL

Name Space

Service

Provider

Name Space

Service Provider

Transport

Service

Provider

Transport

Service

Provider

4 Remote Monitoring and Control

5 Remote Monitoring and Control

6 Remote Monitoring and Control

Connection Establishment using Socket Programming

Request of screen

Socket

Socket

Server Machine

Client Machine

Screen in form of Bitmap

Terminate Socket Connection

7 Remote Monitoring and Control

8 Remote Monitoring and Control

9 Remote Monitoring and Control

10 Remote Monitoring and Control

11 Remote Monitoring and Control

12 Remote Monitoring and Control

13 Remote Monitoring and Control

14 Remote Monitoring and Control

15 Remote Monitoring and Control

16 Remote Monitoring and Control

17 Remote Monitoring and Control

18 Remote Monitoring and Control

19 Remote Monitoring and Control

20 Remote Monitoring and Control

21 Remote Monitoring and Control

22 Remote Monitoring and Control

23 Remote Monitoring and Control

24 Remote Monitoring and Control

25 Remote Monitoring and Control

26 Remote Monitoring and Control

27 Remote Monitoring and Control

28 Remote Monitoring and Control

29 Remote Monitoring and Control

30 Remote Monitoring and Control

31 Remote Monitoring and Control

32 Remote Monitoring and Control

33 Remote Monitoring and Control

34 Remote Monitoring and Control

35 Remote Monitoring and Control

L

A

M

B

R

C

S

D

W

E

K

