INDEX
	Serial No.
	Topic
	Date
	Signature

	1.
	To study the microprocessor INTEL 8086 kit.
	
	

	2.
	Write a program to add two 32-bit BCD numbers the result should be in BCD.
	
	

	3.
	Write a program to add ten 16-bit numbers.
	
	

	4.
	Write a program to find out whether a given byte is in the string or not. If it is in the string then find out the address of the byte.
	
	

	5.
	Write a program to convert a decimal number to a binary number.
	
	

	6.
	Write a program to find number of even, odd, negative and positive numbers in series of twenty 16-bit numbers.
	
	

	7.
	Write a program to find the factorial of a number.
	
	

	8.
	Write a program to find the largest number from a given unordered array.
	
	

	9.
	Write a program to multiply two 32-bit.
	
	

	10.
	Write a program to sort an unordered array of 10 elements in ascending order.
	
	

	11.
	Write a program to find the parity of a 32-Bit number.
	
	

EXPERIMENT NO. 1

AIM: To study the microprocessor INTEL 8086 kit.
APPARATUS: INTEL 8086, microprocessor kit
THEORY:
EVOLUTION OF THE MICROPROCESSORS

	MICROPROCESSOR
	BIT SIZE
	YEAR OF EVOLUTION

	4004
	4
	1971

	8008
	8
	1972

	8080
	8
	1972

	8085
	8
	1975

	8086
	16
	1978

REGISTER ORGANIZATION OF 8086

8086 has a powerful set of registers containing general purpose registers and special purpose registers. All registers of 8086 are 16 bit registers. The general purpose registers can be used as either 8 bit register or 16 bit registers. The general purpose registers are either used for holding data, variables and intermediate results temporarily or for the purposes like a counter or for storing offset address for some particular addressing modes etc. The special purpose registers, pointers, index registers or as offset storage registers for particular addressing modes.

GENERAL PURPOSE REGISTERS

The register AX is the general purpose 16 bit accumulator, with the lower order 8-bits of AX designated as AL and higher as AH. AL can be used as an 8-bit accumulator for 8-bit operations. This is the most important general purpose register having multiple functions. The register BX is used as an offset storage for forming physical addresses in case of certain addressing modes. The register CX is used as a default counter in case of string and loop instructions. The register DX is a general purpose register which may be used as implicit operand or destination in case of a few instructions.

SEGMENT REGISTERS
Unlike the 8085, the 8086 addresses the segmented memory. The complete one mega byte memory, which the 8086 is able to address, is divided into 16 logical segments. Each segment thus contains 64kb of memory. There are four segment registers, viz. code
	SP

	BP

	SI

	DI

	IP

	CS

	SS

	DS

	ES

	AH
	AL

	 BH
	BL

	CH
	CL

	DH
	DL

 GENERAL PURPOSE REGISTER
 POINTERS AND
 SEGEMENT

 INDEX REGISTER REGISTER

segment register (CS), Data segment register (DS), stack segment register (SS) and Extra segment (ES). The code segment register (CS) is used for addressing a memory location in the code segment of the memory, where the executable program is stored. The data segment register (DS) is used for addressing a memory location in the data segment, where data is stored. Similarly, the extra segment register (ES) is also used for addressing a memory location containing data. The stack segment is used for addressing the stack segment of the memory. The stack segment is that segmented of memory which is used to store stack data. The CPU uses stack for temporarily storing important data. While addressing any location in the memory bank, the physical address is calculated from two parts, the first is segment addresses, related to different segments. The advantage of this scheme is that instead of maintaining a 20-bit register for a physical address, the processor just maintains two 16-bit registers which are within the word length capacity of the machine. Thus the CS, DS, SS, ES segment registers contain the segment addresses for the code, data, stack and extra segments of the memory. All these segments are the logical segments. They may or may not be physically separated.

POINTERS AND INDEX REGISTERS

The pointer contains offset within the particular segment. The pointers IP, BP & SP, usually contain offsets within the code (IP) and stack (BP & SP) segments. The index registers are used as general purpose registers as well as for the offset storage in case of indexed, base indexed and relative based index addressing mode. The register SI is generally used to store the offset of source data or extra segment while the register DI is used to store the offset of destination in data or extra segment. The index registers are particularly useful for string manipulation.

FLAG REGISTER

The 8086 flag register contents indicate the results of computation in the ALU. It also contains some flag bits to control the CPU operation. 8086 has a 16-bit flag register. Details of the flag register are:

Overflow Flag (OF) - Set if the result is too large positive number, or is too small negative number to fit into destination operand. It is also set when there is a carry/borrow into the MSB but no carry/borrow is generated out of the MSB.
Direction Flag (DF) - If set then string manipulation instructions will auto-decrement index registers. If cleared then the index registers will be auto-incremented.

Interrupt-enable Flag (IF) – If set then it allows interruption of a program by interrupts. If cleared then it masks the interrupts.

Trap Flag (TF) - If set then single-step interrupt will occur after the next instruction.

Sign Flag (SF) - Set if the most significant bit of the result is set.

Zero Flag (ZF) - Set if the result is zero.

Auxiliary carry Flag (AF) - Set if there was a carry from or borrow to bits3 to bit4 in the AL register.

Parity Flag (PF) - Set if parity (the number of "1" bits) in the low-order byte of the result is even.

Carry Flag (CF) - Set if there was a carry from or borrow to the most significant bit during last result calculation.

ADDRESSING MODES

The different ways in which a processor can access data are referred to as its addressing modes. Depending upon the data types being used in the instruction and the memory addressing modes, any instruction may belong to one or more addressing modes. The various addressing modes of 8086 are:
1. Immediate: In this type of addressing, immediate data is a part of the instruction, and appears in the form of the successive byte or bytes. E.g. MOV AX, 0005H.

2. Direct: In this addressing mode, a 16-bit memory address (offset) is directly specified in the instruction as a part of it. E.g. MOV AX, [5000H]

3. Register: The data is stored in a register and it is referred using the particular register. All the registers, except IP, may be used in this mode.

Example MOV BX, AX.

4. Register Indirect: Here, the offset of data is either in BX or SI or DI registers. The default segment is either DS or ES. The data is supposed to be available at the address pointed to by the content of any of the above registers in default data segment.
E.g. MOV AX, [BX]
5. Indexed: In this addressing mode, the offset of the operand is stored in one of the index registers. DS is the default segments for index register SI. In case of string instructions, DS and ES are default segments for SI and DI respectively.
E.g. MOV AX,[SI]
6. Register Relative: In this addressing mode, the data is available at an effective address formed by adding an 8-bit or 16-bit displacement with the content of any of registers BX, BP, SI and DI in the default (either DS or ES segment) . E.g. MOV AX, 50H[BX]
7. Based Indexed: Here, the effective address of data is formed by adding content of a base register (BX or BP) to the content of an index register (SI or DI). The default segment register may be ES or DS. E.g. MOV AX,[BX][SI]

8. Relative Based Indexed: The effective address is formed by adding an 8 bit or 16-bit displacement with the sum of contents of any of the base registers (BX or BP) and any one of the index registers, in a default segment. E.g. MOV Ax, 50 H [BX][SI]
9. Intrasegment direct mode: In this mode, the address in which the control is to be transferred lies in the same segment in which the control transfer instruction lies and appears directly in the instruction as an immediate displacement value. The effective address to which the control will be transferred is given by the sum of 8-bit or 16-bit displacement an current control of IP. E.g. JMP NEAR PTR LABEL
10. Intrasegment Indirect Mode: In this mode, the displacement to which the control is to be transferred lies in the same segment in which the control transfer instruction lies but it is passed to the instruction indirectly. E.g. JMP [BX+5000H]
11. Intersegment Direct: In this mode, the address to which the control is to be transferred is in a different segment. This addressing mode provides a means of branching from one code segment to another. Here the CS and IP of the destination address are specified directly in the instruction. E.g. JMP 5000H:2000H
12. Intersegment Indirect: In this mode, the address to which the control is to be transferred lies in a different segment and is passed to the instruction indirectly, i.e. contents of a memory block containing four bytes, i.e. IP (LSB), IP (MSB), CS (LSB), CS (MSB) sequentially. E.g. JMP [2000H]
INSTRUCTION SET OF 8086/8088

Data Copy Transfer Instruction: This type of the instruction is used to transfer the data from source operand to the destination operand. All these store, move, load, exchange, input and output instructions belong to this category.

Arithmetic and Logical Instructions: All the instructions performing arithmetic and logical, increment and decrement, compare and scan instructions belong to this category.

Branch Instruction: These instructions transfer the control of execution to the specified address. All the call, jump, interrupt and the return instructions belong to this class.

Loop Instructions: If the instructions have REP prefix with CX used as a count register, they can be used to implement the conditional and unconditional loop. The LOOP, LOOPNZ, LOOPZ instruction belong to this category.

Machine Control Instruction: These instructions control the machine status. NOP, HLT, WAIT and LOCK instructions belong to this class.

Flag Manipulations Instruction: All the instructions which directly affect the flag registers, come under this group of instructions. Instructions like CLD, STD, CLI, STI, etc.
This kit is a single board microprocessor training kit configured around INTEL 16 bit, 8086. In this kit, the 8086 IC is replaceable by other processors like 8088 also.

Operating Modes: This kit is designed to operate in max mode (pin 33:-0=max mode, 1=min).

Minimum mode- when we need just one processor chip.

Maximum mode- for complex operations, we need to attach more processors.

8086 KEYBOARD DESCRIPTION

	
[image: image1]

	
[image: image2]
	
[image: image3]
	
[image: image4]
	
	
	
[image: image5]

	 SHAPE * MERGEFORMAT

[image: image6]

	
	
	 SHAPE * MERGEFORMAT

[image: image7]

	 SHAPE * MERGEFORMAT

[image: image8]

	 SHAPE * MERGEFORMAT

[image: image9]

	 SHAPE * MERGEFORMAT

[image: image10]

	
	 SHAPE * MERGEFORMAT

[image: image11]

	
	 SHAPE * MERGEFORMAT

[image: image12]

	 SHAPE * MERGEFORMAT

[image: image13]

	
	 SHAPE * MERGEFORMAT

[image: image14]

	
	 SHAPE * MERGEFORMAT

[image: image15]

	 SHAPE * MERGEFORMAT

[image: image16]

	 SHAPE * MERGEFORMAT

[image: image17]

	 SHAPE * MERGEFORMAT

[image: image18]

	 SHAPE * MERGEFORMAT

[image: image19]

	

	FUNCTION KEYS
	OPERATION

	RESET

VCT INTR

INS

 +

DEL

 -

REG

CRT

NEXT

TTY

FILL

PRV

F1

F2

F3
	The system reset key allows you to terminate any present activity and to turn your VMC-8603 to an initialized state. When pressed, the 8086 sign-on message appears the display and the monitor is ready for command entry

The INTR (interrupt) key is used to generate an immediate, non-maskable TYPE 2 interrupt (NMI). The NMI vector is initialized on power up or system rest to point to a routine with in the monitor which causes 8086’s registers to be saved. Control is returned to the monitor for subsequent command entry

INSERT key allows insertion of one or more bytes in the users program. The + (plus) key allows to add 2 hexadecimal values. This function simplifies relative addressing by allowing you to readily calculate an address location relative to base address.

DELETE key allows the deletion of one or more bytes from the user program. The – (minus) key allows subtracting one hexadecimal value from another.

The REG (register) key allows you to use the contents of any of the 8086’s registers and an address or data entry.

CRT key is used for entering into CRT mode.

NEXT key is used to separate keypad entries and to increment the address filed to next consecutive memory locations.

TTY key is used for entering TTY interface. The (period) key is the command terminator. When pressed, the current command is executed. Note that when using the GO command, 8086 begins the program execution at the address specified with ‘0’ key is pressed.

FILL key allows you to fill any block of RAM area with a constant.

PRV (previous) key is used to decrement the address field to previous memory location.

User definable key.

User definable key.

User definable key.

EXPERIMENT NO. 2
AIM: Write a program to add two 32-bit BCD numbers the result

 should be in BCD.

APPARATUS: Intel 8086 Microprocessor kit and 8086 emulator.

PROGRAM:

	ADDRESS
	CODE
	LABEL
	MNEMONICS
	 COMMENTS

	0100
	B9

00

50
	
	MOV AX,5000H
	Copy immediate data to AX

	0103
	8E

D8
	
	MOV DS,AX
	Copy contents of AX to DS

	0105
	F8
	
	CLC
	Clear carry flag

	0106
	B9

04

00
	
	MOV CX,04
	 Initialize Counter

	0109
	BE

00

05
	
	MOV SI,0500H
	Address the data(source)

	010C
	BF

00

07
	
	MOV DI,0700H
	Address the data(source)

	010F
	BB

00

09
	
	MOV BX,0900H
	Address the data(result)

	0112
	8A

04
	L1
	MOV AL,[SI]
	Get data in AL pointed by SI

	0114
	12

05
	
	ADC AL,[DI]
	Add with carry data in AL and pointed by DI

	0116
	88

07
	
	MOV [BX],AL
	Copy contents of AL to memory location pointed by BX

	0118
	46
	
	INC SI
	Increment contents of SI by 1

	0119
	47
	
	INC DI
	Increment contents of DI by 1

	ADDRESS
	CODE
	LABEL
	MNEMONICS
	 COMMENTS

	011A
	43
	
	INC BX
	Increment contents of BX by 1

	011B
	E2

F5
	
	LOOP L1
	Get back to L1 till CX not zero

	011D
	80

D2

00
	
	ADC DL,00H
	Add with carry data in DL with immediate data

	0120
	88

17
	
	MOV [BX],DL
	Copy contents of DL to memory location pointed by BX

	0122
	F4
	
	HLT
	End of program

DATA:
	ADDRESS
	DATA

	0500
	28H

	0501
	37H

	0502
	34H

	0503
	58H

	0700
	31H

	0701
	94H

	0702
	30H

	0703
	72H

PROCEDURE:

A.) For intel-8086 kit:

1. Press the RESET key and you will see MPU 8086 display board.

2. Press Ex MEM and then filled the starting address where the hex code has to be entered.

3. Fill the hex codes by pressing NEXT key.

4. Save the program by pressing FILL/TTY key after filling all hex codes.

5. Execute program using following keys/steps in order:

RESET (GOTO (Fill the starting address (FILL/TTL to end execution.

6. Check the results.

B.) For MPU EMU-8086 EMULATOR:
1. First open 8086 EMULATOR software.

2. Open a new .com file by clicking new file in File menu.

3. Write the program in mnemonics.

4. Save the program and assign some name.

5. Click the emulate icon in toolbar.

6. A new window will open and click on RUN icon.

7. Check the results.

RESULT:
	ADDRESS
	DATA
	COMMENTS

	0700
	 59H
	Result of 28H+31H

	0701
	 CBH
	Result of 37H+94H

	0702
	 64H
	Result of 34H+30H

	0703
	 CAH
	Result of 58H+72H

PRECAUTIONS:
1. Power supply should be switch on after making Vcc to 5V and GND connections carefully.

2. Before doing anything see mpu86 display board.

3. Don’t touch any component on the kit.

EXPERIMENT NO. 3
AIM: Write a program to add ten 16-bit numbers.

APPARATUS: Intel 8086 Microprocessor kit and 8086 emulator.

PROGRAM:

	Data 1024h,8754h,2437h,2A87h,49FBh,7349h,1943h,3BACh,7584h,3497h

	ADDRESS
	CODE
	LABEL
	MNEMONICS
	 COMMENTS

	0500
	B9

00

00
	
	MOV AX,0000H
	Copy base address to AX

	0503
	8E

D8
	
	MOV DS,AX
	Copy contents of AX to DS

	0505
	BB
00

00
	
	MOV BX,00H
	Copy immediate data to BL

	0506
	B9

09

00
	
	MOV CX,09H
	Initialize counter

	0509
	BE

00

01
	
	MOV SI,0100H
	Address the data(source)

	050C
	8B

04
	
	MOV AX,[SI]
	Get data in AX pointed by SI

	050F
	03

44

22
	 L2
	ADD AX,[SI+2]
	Add the contents of memory location pointed by SI with AX

	0512
	73

01
	
	JNC L1
	Jump if no carry to L1

	0515
	43
	
	INC BX
	Increment BX

	0518
	46
	 L1
	INC SI
	Increment SI

	051A
	46
	
	INC SI
	Increment SI

	ADDRESS
	CODE
	LABEL
	MNEMONICS
	 COMMENTS

	051C
	E2

F6
	
	LOOP L2
	Get back to L2 till CX not zero

	051D
	A3

21

01
	
	MOV [121H],AX
	Copy contents of AX to memory

	051F
	89

1E

23

01
	
	MOV [123H],BX
	Copy contents of BX to memory

	0520
	F4
	
	HLT
	

DATA:

	ADDRESS
	DATA

	0100H
	24H

	0101H
	10H

	0102H
	54H

	0103H
	87H

	0104H
	37H

	0105H
	24H

	0106H
	87H

	0107H
	2AH

	0108H
	FBH

	0109H
	49H

	010AH
	49H

	010BH
	73H

	010CH
	43H

	010DH
	19H

	010EH
	ACH

	010FH
	3BH

	0110H
	84H

	0111H
	75H

	0112H
	97H

	0113H
	34H

PROCEDURE:

C.) For intel-8086 kit:

7. Press the RESET key and you will see MPU 8086 display board.

8. Press Ex MEM and then filled the starting address where the hex code has to be entered.

9. Fill the hex codes by pressing NEXT key.

10. Save the program by pressing FILL/TTY key after filling all hex codes.

11. Execute program using following keys/steps in order:

RESET (GOTO (Fill the starting address (FILL/TTL to end execution.

12. Check the results.

D.) For MPU EMU-8086 EMULATOR:

1. First open 8086 EMULATOR software.

2. Open a new .com file by clicking new file in File menu.

3. Write the program in mnemonics.

4. Save the program and assign some name.

5. Click the emulate icon in toolbar.

6. A new window will open and click on RUN icon.

7. Check the results.

RESULT:
	ADDRESS
	DATA
	COMMENTS

	0121H
	84H
	Lower byte of result

	0122H
	A2H
	Upper byte of result

	0123H
	02H
	Carry

PRECAUTIONS:

4. Power supply should be switch on after making Vcc to 5V and GND connections carefully.

5. Before doing anything see mpu86 display board.

6. Don’t touch any component on the kit.

EXPERIMENT NO. 4
AIM: Write a program to find out whether a given byte is in the string or not. If it is in the string then find out the address of the byte

APPARATUS: Intel 8086 Microprocessor kit and 8086 emulator.

PROGRAM:

	ADDRESS
	CODE
	LABEL
	MNEMONICS
	 COMMENTS

	0500
	B9

0A

00
	
	MOV CX,0AH
	Initialize counter

	0503
	BF

00

01
	
	MOV DI,100H
	Address the data(source)

	0506
	B0

38
	
	MOV AL,93H
	Move immediate data to AL.

	050A
	F2

AE
	
	REPNE SCASB
	Scan the 0A0 bytes till a match to the byte is found

	050F
	4F
	
	DEC DI
	Decrement DI

	0510
	B8

00

00
	
	MOV AX,0000H
	Move the immediate data with AX.

	0513
	03

CF
	
	ADD AX,DI
	Move the contents of DI to AX.

	0515
	A3

21

01
	
	MOV [121H],AX
	Move the contents of AX to memory.

	0518
	F4
	
	HLT
	End of the program

	Data 42H,67H,84H,64H,93H,34H,28H,46H,55H,72H

DATA:

	ADDRESS
	DATA

	0100H
	42H

	0101H
	67H

	ADDRESS
	DATA

	0102H
	84H

	0103H
	64H

	0104H
	93H

	0105H
	34H

	0106H
	28H

	0107H
	46H

	0108H
	55H

	0109H
	72H

PROCEDURE:

A.) For intel-8086 kit:
1. Press the RESET key and you will see MPU 8086 display board.

2. Press Ex MEM and then filled the starting address where the hex code has to be entered.

3. Fill the hex codes by pressing NEXT key.

4. Save the program by pressing FILL/TTY key after filling all hex codes.

5. Execute program using following keys/steps in order:

RESET (GOTO (Fill the starting address (FILL/TTL to end execution.

13. Check the results.

B.) For MPU EMU-8086 EMULATOR:

1. First open 8086 EMULATOR software.

2. Open a new .com file by clicking new file in File menu.

3. Write the program in mnemonics.

4. Save the program and assign some name.

5. Click the emulate icon in toolbar.

6. A new window will open and click on RUN icon.

7. Check the results.

RESULT:
	ADDRESS
	DATA

	0121H
	04H

	0122H
	01H

PRECAUTIONS:

1. Power supply should be switch on after making Vcc to 5V and GND connections carefully.

2. Before doing anything see mpu86 display board.

3. Don’t touch any component on the kit.

EXPERIMENT NO. 5
AIM: Write a program to convert a decimal number to a binary number.

APPARATUS: Intel 8086 Microprocessor kit and 8086 emulator.

PROGRAM:

	ADDRESS
	CODE
	LABEL
	MNEMONICS
	 COMMENTS

	0500
	B9

09

00
	
	MOV CX,08H
	Initialize counter

	0503
	B8

00

20
	
	MOV AX,2000H
	Copy base address to AX

	0506
	8E

D8
	
	MOV DS,AX
	Copy contents of AX to DS

	0508
	BE

00

01
	
	MOV SI,100H
	Address the data(source)

	050B
	B8

00

35
	
	MOV AX,35H
	Get immediate data in AX

	050E
	D1

E8
	L1
	SHR AX,01H
	Shift logical right

	0510
	D1

DB
	
	RCR BX,01H
	Rotate right through carry

	0512
	E2

FA
	
	LOOP L1
	Get back to L1 till CX not zero

	0514
	F4
	
	HLT
	End of program

DATA:

	REGISTER
	DATA

	AX
	35H

PROCEDURE:

A.) For intel-8086 kit:

1. Press the RESET key and you will see MPU 8086 display board.

2. Press Ex MEM and then filled the starting address where the hex code has to be entered.

3. Fill the hex codes by pressing NEXT key.
4. Save the program by pressing FILL/TTY key after filling all hex codes.

5. Execute program using following keys/steps in order:

RESET (GOTO (Fill the starting address (FILL/TTL to end execution.

6. Check the results.

B.) For MPU EMU-8086 EMULATOR:

1. First open 8086 EMULATOR software.

2. Open a new .com file by clicking new file in File menu.

3. Write the program in mnemonics.

4. Save the program and assign some name.

5. Click the emulate icon in toolbar.

6. A new window will open and click on RUN icon.

7. Check the results.

RESULT:

	REGISTER
	DATA

	BX
	35H

PRECAUTIONS:

1. Power supply should be switch on after making Vcc to 5V and GND connections carefully.

2. Before doing anything see mpu86 display board.

3. Don’t touch any component on the kit.

 EXPERIMENT NO. 6
AIM: Write a program to find number of even, odd, negative and positive numbers in series of twenty 16-bit numbers.

APPARATUS: Intel 8086 Microprocessor kit and 8086 emulator.

PROGRAM:

	ADDRESS
	CODE
	LABEL
	MNEMONICS
	 COMMENTS

	0500
	B9

00

10
	
	MOV AX,1000H
	Copy base address to AX

	0503
	8E

D8
	
	MOV DS,AX
	Copy contents of AX to DS

	0505
	BB

00

00
	
	MOV BX,0000H
	Copy immediate data to BX

	0508
	BA

00

00
	
	MOV DX,0000H
	Copy immediate data to DX

	050B
	B9

09

00
	
	MOV CX,13H
	Initialize counter

	050E
	BE

00

01
	
	MOV SI,100H
	Address the data(source)

	0511
	8B

04
	L2
	MOV AX,[SI]
	Get data in AX pointed by SI

	0513
	D1

D8
	
	RCR AX,01H
	Rotate right through carry

	0515
	73

02
	
	JNC L1
	Jump if no carry to L1

	0517
	EB

02
	
	JMP L5
	Jump to L5

	0519
	FE

C3
	L1
	INC BL
	Increment BL

	051B
	46
	L5
	INC SI
	Increment SI

	ADDRESS
	CODE
	LABEL
	MNEMONICS
	COMMENTS

	051C
	46
	
	INC SI
	Increment SI

	051D
	E2

F2
	
	LOOP L2
	Get back to L2 till CX not zero

	051F
	B9

13

00
	
	MOV CX,13H
	Initialize counter

	0522
	BE

00

01
	
	MOV SI,100H
	Address the data(source)

	0525
	8B

04
	L3
	MOV AX,[SI]
	Get data in AX pointed by SI

	0527
	D1

D0
	
	RCL AX,01H
	Rotate left through carry

	0529
	73

02
	
	JNC L4
	Jump if no carry to L4

	052B
	EB

02
	
	JMP L6
	Jump to L6

	052D
	FE

C2
	L4
	INC DL
	Increment DL

	052F
	46
	L6
	INC SI
	Increment SI

	0530
	46
	
	INC SI
	Increment SI

	0531
	E2

F2
	
	LOOP L3
	Get back to L3 till CX not zero

	0533
	B0

14
	
	MOV AL,14H
	Move immediate data to AL

	0535
	2A

C2
	
	SUB AL,DL
	Subtract DL from AL

	0537
	8A

F0
	
	MOV DH,AL
	Move the contents of AL to DH

	0539
	B0

14
	
	MOV AL,14H
	Move immediate data to AL

	053B
	2A

C3
	
	SUB AL,BL
	Subtract BL from AL

	053D
	8A

F8
	
	MOV BH,AL
	Move the contents of AL to BH.

	053F
	F4
	
	HLT
	End of the program.

DATA:

	ADDRESS
	DATA

	0100H
	24H

	0101H
	10H

	0102H
	54H

	0103H
	87H

	0104H
	37H

	0105H
	24H

	0106H
	87H

	0107H
	2AH

	0108H
	FBH

	0109H
	49H

	010AH
	49H

	010BH
	73H

	010CH
	43H

	010DH
	19H

	010EH
	ACH

	010FH
	3BH

	0110H
	84H

	0111H
	75H

	0112H
	97H

	0113H
	34H

	0114H
	98H

	0115H
	25H

	0116H
	AFH

	0117H
	57H

	0118H
	31H

	0119H
	62H

	011AH
	80H

	011BH
	17H

	011CH
	A9H

	011DH
	95H

	011EH
	91H

	011FH
	33H

	0120H
	92H

	0121H
	19H

	0122H
	05H

	ADDRESS
	DATA

	0123H
	20H

	0124H
	05H

	0125H
	51H

	0126H
	67H

	0127H
	72H

PROCEDURE:

A.) For intel-8086 kit:

1. Press the RESET key and you will see MPU 8086 display board.

2. Press Ex MEM and then filled the starting address where the hex code has to be entered.

3. Fill the hex codes by pressing NEXT key.

4. Save the program by pressing FILL/TTY key after filling all hex codes.

5. Execute program using following keys/steps in order: RESET (GOTO (Fill the starting address (FILL/TTL to end execution.

6. Check the results.

B.) For MPU EMU-8086 EMULATOR:

1. First open 8086 EMULATOR software.

2. Open a new .com file by clicking new file in File menu.

3. Write the program in mnemonics.

4. Save the program and assign some name.

5. Click the emulate icon in toolbar.

6. A new window will open and click on RUN icon.

7. Check the results.

RESULT:
	REGISTER
	CODE
	COMMENTS

	BL
	 07 H
	Even numbers

	BH
	 0D H
	Odd numbers

	DL
	 12 H
	Positive numbers

	DH
	 02 H
	Negative numbers

PRECAUTIONS:

1. Power supply should be switch on after making Vcc to 5V and GND connections carefully.

2. Before doing anything see mpu86 display board.

3. Don’t touch any component on the kit.

 EXPERIMENT NO. 7
AIM: Write a program to find the factorial of a number.

APPARATUS: Intel 8086 Microprocessor kit and 8086 emulator.

PROGRAM:

	ADDRESS
	CODE
	LABEL
	MNEMONICS
	 COMMENTS

	0700
	B9

00

50
	
	MOV AX,5000H
	Copy base address to AX

	0703
	8E

D8
	
	MOV DS,AX
	Copy contents of AX to DS

	0705
	BE

00

01
	
	MOV SI,100H
	Address the data(source)

	0708
	8B

04
	
	MOV AX,01H
	Move immediate data in AX

	070A
	B9

00

05
	
	MOV CX,05H
	Move the number whose factorial is to be taken in CX

	070D
	D1

D8
	L1
	MUL CX
	Multiply the contents of CX with AX

	070F
	73

02
	
	LOOP L1
	Get back to L1 till CX not zero

	0711
	EB

02
	
	MOV [102H],DX
	Move the contents of DX to the memory location 102H

	0713
	FE

C3
	
	MOV [100H],AX
	Move the contents of DX to the memory location 100H

	0715
	F4
	
	HLT
	End of the program.

DATA:

	REGISTER
	DATA

	CX
	05H

PROCEDURE:

A.) For intel-8086 kit:

1. Press the RESET key and you will see MPU 8086 display board.

2. Press Ex MEM and then filled the starting address where the hex code has to be entered.

3. Fill the hex codes by pressing NEXT key.

4. Save the program by pressing FILL/TTY key after filling all hex codes.

5. Execute program using following keys/steps in order: RESET (GOTO (Fill the starting address (FILL/TTL to end execution.

6. Check the results.

B.) For MPU EMU-8086 EMULATOR:

1. First open 8086 EMULATOR software.

2. Open a new .com file by clicking new file in File menu.

3. Write the program in mnemonics.

4. Save the program and assign some name.

5. Click the emulate icon in toolbar.

6. A new window will open and click on RUN icon.

7. Check the results.

RESULT:
	ADDRESS
	DATA

	0100H
	 78 H

	0102H
	 00 H

PRECAUTIONS:

1. Power supply should be switch on after making Vcc to 5V and GND connections carefully.

2. Before doing anything see mpu86 display board.

3. Don’t touch any component on the kit.

 EXPERIMENT NO. 8
AIM: Write a program to find the largest number from a given unordered array.

APPARATUS: Intel 8086 Microprocessor kit and 8086 emulator.

PROGRAM:

	ADDRESS
	CODE
	LABEL
	MNEMONICS
	 COMMENTS

	0700
	B9

09

00
	
	MOV CX,09H
	Initialize counter

	0703
	B8

00

50
	
	MOV AX,5000H
	Copy base address to AX

	0706
	8E

D8
	
	MOV DS,AX
	Copy contents of AX to DS

	0708
	BE

00

01
	
	MOV SI,0100H
	Address the data(source)

	070B
	8B

04
	
	MOV AX,[SI]
	Get data in AX pointed by SI

	070D
	3B

44

01
	L2
	CMP AX,[SI+2]
	Compare the contents of memory location pointed by SI+2 with AX

	0711
	73

03
	
	JNC LI
	Jump if no carry to LI

	0713
	8B

44

02
	
	MOV AX,[SI+2]
	Move the contents of AX to the memory location pointed by SI+2

	0716
	46
	LI
	INC SI
	Increment SI

	0717
	46
	
	INC SI
	Increment SI

	0718
	E2

F4
	
	LOOP L2
	Get back to L2 till CX not zero

	071A
	A3

21

01
	
	MOV [0121H],AX
	Move the contents of AX to memory address

	071D
	F4
	
	HLT
	End of program

	Data 1024H,8754H,2437H,2A87H,49FBH,7349H,1943H,3BACH,7584H,3497H

DATA:

	ADDRESS
	DATA

	0100H
	24H

	0101H
	10H

	0102H
	54H

	0103H
	87H

	0104H
	37H

	0105H
	24H

	0106H
	87H

	0107H
	2AH

	0108H
	FBH

	0109H
	49H

	010AH
	49H

	010BH
	73H

	010CH
	43H

	010DH
	19H

	010EH
	ACH

	010FH
	3BH

	0110H
	84H

	0111H
	75H

	0112H
	97H

	0113H
	34H

PROCEDURE:

A.) For intel-8086 kit:

1. Press the RESET key and you will see MPU 8086 display board.

2. Press Ex MEM and then filled the starting address where the hex code has to be entered.

3. Fill the hex codes by pressing NEXT key.

4. Save the program by pressing FILL/TTY key after filling all hex codes.

5. Execute program using following keys/steps in order:

RESET (GOTO (Fill the starting address (FILL/TTL to end execution.

6. Check the results.

B.) For MPU EMU-8086 EMULATOR:

1. First open 8086 EMULATOR software.

2. Open a new .com file by clicking new file in File menu.

3. Write the program in mnemonics.

4. Save the program and assign some name.

5. Click the emulate icon in toolbar.

6. A new window will open and click on RUN icon.

7. Check the results.

RESULT:

	ADDRESS
	DATA

	0121H
	54H

	0122H
	87H

PRECAUTIONS:

1. Power supply should be switch on after making Vcc to 5V and GND connections carefully.

2. Before doing anything see mpu86 display board.

3. Don’t touch any component on the kit.

EXPERIMENT NO. 9
AIM: Write a program to multiply two 32-bit.

APPARATUS: Intel 8086 Microprocessor kit and 8086 emulator.

PROGRAM:

	ADDRESS
	CODE
	LABEL
	MNEMONICS
	 COMMENTS

	1712
	BE

00

03
	
	MOV SI,0300H
	Address the data(source)

	1715
	BF

00

05
	
	MOV DI,0500H
	Address the data(source)

	1718
	8B

04
	
	MOV AX,[SI]
	Get data in AX pointed by SI

	171A
	F7

25
	
	MUL WORD PTR[DI]
	Multiplies 16-bit content of memory location pointed by DI with AX

	171C
	89

45

04
	
	MOV [DI+4],AX
	Copy the contents of AX to the memory location pointed by [DI+4]

	171F
	8B

CA
	
	MOV CX,DX
	Copy contents of DX to CX

	1721
	8B

44

02
	
	MOV AX,[SI+2]
	Copy the contents of memory location pointed by [SI+2] to AX

	1724
	F7

25
	
	MUL WORD PTR[DI]
	Multiplies 16-bit content of memory location pointed by DI with AX

	1726
	8B

DA
	
	MOV BX,DX
	Copy contents of DX to BX

	1728
	03

C8
	
	ADD CX,AX
	Add AX with CX.

	172A
	83

D3

00
	
	ADC BX,00H
	Add with carry data in BX with immediate data

	ADDRESS
	CODE
	LABEL
	MNEMONICS
	COMMENTS

	172D
	8B

04
	
	MOV AX,[SI]
	Get data in AX pointed by SI

	172F
	F7

65

02
	
	MUL WORD PTR[DI+2]
	Multiplies 16-bit content of memory location pointed by DI+2 with AX

	1732
	03

C8
	
	ADD CX,AX
	Add AX with CX

	1734
	13

DA
	
	ADC BX,DX
	Add with carry data in BX with DX

	1736
	89

45

06
	
	MOV [DI+6],CX
	Copy the contents of CX to the memory location pointed by [DI+6]

	1739
	B9

00

00
	
	MOV CX,00H
	Move immediate data to CX.

	173C
	83

D1

00
	
	ADC CX,00H
	Add with carry data in CX with immediate data

	173F
	8B

44

02
	
	MOV AX,[SI+2]
	Get data in AX pointed by SI+2

	1742
	F7

65

02
	
	MUL WORD PTR[DI+2]
	Multiplies 16-bit content of memory location pointed by DI+2 with AX

	1745
	03

C3
	
	ADD AX,BX
	Add AX with BX

	1747
	13

D1
	
	ADC DX,CX
	Add with carry data in CX with DX

	1749
	89

45

08
	
	MOV [DI+8],AX
	Copy the contents of AX to the memory location pointed by [DI+6]

	174C
	89

55

0A
	
	MOV [DI+0A],DX
	Copy the contents of DX to the memory location pointed by [DI+6]

	174F
	F4
	
	HLT
	End of program

DATA:
	ADDRESS
	DATA

	0300H
	28H

	ADDRESS
	DATA

	0301H
	37H

	0302H
	34H

	0303H
	58H

	0500H
	31H

	0501H
	94H

	0502H
	30H

	0503H
	72H

PROCEDURE:

A.) For intel-8086 kit:

1. Press the RESET key and you will see MPU 8086 display board.

2. Press Ex MEM and then filled the starting address where the hex code has to be entered.

3. Fill the hex codes by pressing NEXT key.

4. Save the program by pressing FILL/TTY key after filling all hex codes.

5. Execute program using following keys/steps in order: RESET (GOTO (Fill the starting address (FILL/TTL to end execution.

6. Check the results.

B.) For MPU EMU-8086 EMULATOR:
1. First open 8086 EMULATOR software.

2. Open a new .com file by clicking new file in File menu.

3. Write the program in mnemonics.

4. Save the program and assign some name.

5. Click the emulate icon in toolbar.

6. A new window will open and click on RUN icon.

7. Check the results.

RESULT:
	ADDRESS
	DATA

	0504H
	A8H

	0505H
	AEH

	0506H
	61H

	0507H
	39H

	0508H
	69H

	0509H
	FDH

	050AH
	57H

	050BH
	27H

PRECAUTIONS:
1. Power supply should be switch on after making Vcc to 5V and GND connections carefully.

2. Before doing anything see mpu86 display board.

3. Don’t touch any component on the kit.

 EXPERIMENT NO. 10
AIM: Write a program to sort an unordered array of 10 elements in

 ascending order.

APPARATUS: Intel 8086 Microprocessor kit and 8086 emulator.

PROGRAM:

	ADDRESS
	CODE
	LABEL
	MNEMONICS
	 COMMENTS

	0700
	B9

09

00
	
	MOV CX,09H
	Initialize counter

	0703
	B8

00

50
	
	MOV AX,5000H
	Copy base address to AX

	0706
	8E

D8
	
	MOV DS,AX
	Copy contents of AX to DS

	0708
	BE

00

01
	
	MOV SI,100H
	Address the data(source)

	070B
	8B

D1
	L3
	MOV DX,CX
	Move contents of DX to CX

	070D
	8A

04
	L2
	MOV AL,[SI]
	Get data in AL pointed by SI

	070F
	3A

44

01
	
	CMP AL,[SI+1]
	Compare the contents of memory location pointed by SI+1 with AL

	0712
	72

05
	
	JC LI
	Jump if carry to LI

	0714
	86

44

01
	
	XCHG AL,[SI+1]
	Exchange the contents of AL with the memory location pointed by SI+1

	0717
	88

04
	
	MOV [SI],AL
	Move the contents of AL to memory location pointed by SI

	0719
	46
	LI
	INC SI
	Increment SI

	071A
	E2

F1
	
	LOOP L2
	Get back to L2 till CX not zero

	ADDRESS
	CODE
	LABEL
	MNEMONICS
	 COMMENTS

	071C
	4A
	
	DEC DX
	Decrement DX

	071D
	75

E5
	
	JNZ L3
	Jump if not zero to L3

	072F
	F4
	
	HLT
	

	Data 42H,67H,84H,64H,93H,34H,28H,46H,55H,72H

DATA:

	ADDRESS
	DATA

	0100H
	42H

	0101H
	67H

	0102H
	84H

	0103H
	64H

	0104H
	93H

	0105H
	34H

	0106H
	28H

	0107H
	46H

	0108H
	55H

	0109H
	72H

PROCEDURE:

A.) For intel-8086 kit:

1. Press the RESET key and you will see MPU 8086 display board.

2. Press Ex MEM and then filled the starting address where the hex code has to be entered.

3. Fill the hex codes by pressing NEXT key.

4. Save the program by pressing FILL/TTY key after filling all hex codes.

5. Execute program using following keys/steps in order:

RESET (GOTO (Fill the starting address (FILL/TTL to end execution.

6. Check the results.

B.) For MPU EMU-8086 EMULATOR:

1. First open 8086 EMULATOR software.

2. Open a new .com file by clicking new file in File menu.

3. Write the program in mnemonics.

4. Save the program and assign some name.

5. Click the emulate icon in toolbar.

6. A new window will open and click on RUN icon.

7. Check the results.

RESULT:
	ADDRESS
	DATA

	0100H
	28H

	0101H
	34H

	0102H
	42H

	0103H
	46H

	0104H
	55H

	0105H
	64H

	0106H
	67H

	0107H
	72H

	0108H
	84H

	0109H
	93H

PRECAUTIONS:

1. Power supply should be switch on after making Vcc to 5V and GND connections carefully.

2. Before doing anything see mpu86 display board.

3. Don’t touch any component on the kit.

 EXPERIMENT NO. 11

AIM: Write a program to find the parity of a multi-byte number.

APPARATUS: Intel 8086 Microprocessor kit and 8086 emulator.

PROGRAM:

	ADDRESS
	CODE
	LABEL
	MNEMONICS
	 COMMENTS

	0500
	B9

00

20
	
	MOV AX,2000H
	Copy base address to AX

	0503
	8E

D8
	
	MOV DS,AX
	Copy contents of AX to DS

	0505
	BE

00

05
	
	MOV SI,500H
	Address the data(source)

	050A
	B9

04

00
	
	MOV CX,04H
	Move the count to CX

	050D
	BA

00

00
	
	MOV DX,00H

	Move immediate data to DX

	050F
	32

04
	L1
	XOR AL,[SI]

	XOR the contents of AL register with the contents of memory location pointed by SI

	0511
	46
	
	INC SI
	Increment SI

	0513
	E2

FB
	
	LOOP L1
	Get back to L1 till CX not zero

	
	7B

01
	
	JNP L2

	Jump if no parity to L2

	
	42
	
	INC DX
	Increment DX

	0515
	F4
	L2
	HLT
	End of the program.

DATA:

	ADDRESS
	CODE

	500
	0101H

	502
	0101H

PROCEDURE:

A.) For intel-8086 kit:

1. Press the RESET key and you will see MPU 8086 display board.

2. Press Ex MEM and then filled the starting address where the hex code has to be entered.

3. Fill the hex codes by pressing NEXT key.

4. Save the program by pressing FILL/TTY key after filling all hex codes.

5. Execute program using following keys/steps in order: RESET (GOTO (Fill the starting address (FILL/TTL to end execution.

6. Check the results.

B.) For MPU EMU-8086 EMULATOR:

1. First open 8086 EMULATOR software.

2. Open a new .com file by clicking new file in File menu.

3. Write the program in mnemonics.

4. Save the program and assign some name.

5. Click the emulate icon in toolbar.

6. A new window will open and click on RUN icon.

	REGISTER
	CODE
	COMMENTS

	DX
	 01
	Even parity

7. Check the results.

RESULT:
PRECAUTIONS:

1. Power supply should be switch on after making Vcc to 5V and GND connections carefully.

2. Before doing anything see mpu86 display board.

3. Don’t touch any component on the kit.

RESET

VCT

INTR

F3

C

BC/IP

D

LS/FL

E

VR

F

PRG

INS

+

DEL

-

F2

8

IW/CS

9

OW/DS

A

/SS

B

/ES

REG

B.S

:

F1

4

IB/SP

5

OB/BP

6

MV/SI

7

EW/DI

FILL

PRV

CRT

NEXT

TTY

.

0

EA/AX

1

ER/BX

2

GO/CX

3

ST/DX

PAGE

