CONTENT DEPENDENT WATER MARKING SCHEME FOR SPEECH SIGNAL
Abstract:
Broadband communication networks and multimedia data available in a digital format opened many challenges and opportunities for innovation. Versatile and simple-to-use software and decreasing prices of digital devices have made it possible for consumers from all around the world to create and exchange multimedia data. Broadband Internet connections and near error-free transmission of data facilitate people to distribute large multimedia files and make identical digital copies of them. A perfect reproduction in digital domain has promoted the protection of intellectual ownership and the prevention of unauthorized tampering of multimedia data to become an important technological and research issue Digital watermarking has been proposed as a new, alternative method to enforce intellectual property rights and protect digital media from tampering. 
Digital watermarking is defined as imperceptible, robust and secure communication of data related to the host signal, which includes embedding into and extraction from the host signal The main results of this project is the development of novel audio watermarking algorithms, with the state-of-the-art performance and an acceptable increase in computational complexity. The algorithms' performance is validated in the presence of the standard watermarking attacks. The main technical solutions include algorithms for embedding high data rate watermarks into the host audio signal, using channel models derived from communications theory for watermark transmission and the detection and modeling of attacks using attack characterization procedure. This project also includes a thorough review of the state-of-the-art literature in the digital audio watermarking and is being implemented using matlab using signal processing, data acquisition toolboxes.

                                   CHAPTER 1

INTRODUCTION:
With the rapid development of the speech, audio, image, and video compression methods, currently it is not a difficult task to spread digital multimedia over Internet. This makes the protections of digital intellectual property rights and content authentications have been a serious problem. Hence the technology of digital watermarking is received a large deal of attention. Generally, digital watermarking techniques are based on either spread spectrum methods or changing the least significant bits of selected coefficients of a certain signal transform. For speech watermarking, to ensure the embedded watermark is

Imperceptible, the audio masking phenomena is considered together with these conventional techniques.
In addition, a speech watermarking system should be robust to various speech compression operations. The development of speech watermarking algorithms, therefore, involves a trade-off among speech fidelity, robustness, and watermark pattern embedding rate specifications. The speech watermarking techniques usually embed speech watermark in unnecessary parts of speech signal, or in human insensitivity auditory regions. Some of speech watermarking methods will change an interval to embed watermark. However, this kind of method has a drawback that is the unavoidably degradation of robustness. In the other methods, the watermarks are embedded by the use of counterfeit human speech. It is unfortunate that such type of method also has the defect of weak robustness especially when the counterfeit human speech is destroyed. The distortion of the counterfeit human speech will also lead to the damage of the watermark Therefore, we can define watermarking systems as systems in which the hidden message is related to the host signal and non-watermarking systems in which the message is unrelated to the host signal. On the other hand, systems for embedding messages into host signals can be divided into steganographic systems, in which the existence of the message is kept secret, and non-steganographic systems, in which the presence of the embedded message does not have to be secret.
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 fig 1: Block of General watermarking Scheme
APPLICATION AREAS:
Digital watermarking is considered as an imperceptible, robust and secure communication of data related to the host signal, which includes embedding into and extraction from the host signal. The basic goal is that embedded watermark information follows the watermarked multimedia and endures unintentional modifications and intentional removal attempts. The principal design challenge is to embed watermark so that it is reliably detected in a watermark detector. The relative importance of the mentioned properties significantly depends on the application for which the algorithm is designed. For copy protection applications, the watermark must be recoverable even when the watermarked signal undergoes a considerable level of distortion, while for tamper assessment applications, the watermark must effectively characterize the modification that took place. In this section, several application areas for digital watermarking will be presented and advantages of digital watermarking over standard technologies examined.

 OWNERSHIP PROTECTION:
In the ownership protection applications, a watermark containing ownership information is embedded to the multimedia host signal. The watermark, known only to the copyright holder, is expected to be very robust and secure (i.e., to survive common signal processing modifications and intentional attacks), enabling the owner to demonstrate the presence of this watermark in case of dispute to demonstrate his ownership. Watermark detection must have a very small false alarm probability. On the other hand, ownership protection applications require a small embedding capacity of the system, because the number of bits that can be embedded and extracted with a small probability of error does not have to be large.

 PROOF OF OWERSHIP:
It is even more demanding to use watermarks not only in the identification of the copyright ownership, but as an actual proof of ownership. The problem arises when adversary uses editing software to replace the original copyright notice with his own one and then claims to own the copyright himself. In the case of early watermark systems, the problem was that the watermark detector was readily available to adversaries. As ,anybody that can detect a watermark can probably remove it as well. Therefore, because an adversary can easily obtain a detector, he can remove owner’s watermark and replace it with his own. To achieve the level of the security necessary for proof the of ownership, it is indispensable to restrict the availability of the detector. When an adversary does not have the detector, the removal of a watermark can be made extremely difficult. 
However, even if owner’s watermark cannot be removed, an adversary might try to undermine the owner. An adversary, using his own watermarking system, might be able to make it appear as if his watermark data was present in the owner’s original host signal. This problem can be solved using a slight alteration of the problem statement Instead of a direct proof of ownership by embedding e.g. "Dave owns this image" watermark signature in the host image, algorithm will instead try to prove that the adversary’s image is derived from the original watermarked image. 
Such an algorithm provides indirect evidence that it is more probable that the real owner owns the disputed image, because he is the one who has the version from which the other two were created.
AUTHENTICATION AND TAMPERING DETECTION:
In the content authentication applications, a set of secondary data is embedded in the

host multimedia signal and is later used to determine whether the host signal was tampered. The robustness against removing the watermark or making it undetectable is not a concern as there is no such motivation from attacker’s point of view. However, forging a valid authentication watermark in an unauthorized or tampered host signal must be prevented. In practical applications it is also desirable to locate (in time or spatial dimension) and to discriminate the unintentional modifications (e.g. distortions incurred due to moderate MPEG compression from content tampering itself. In general, the watermark embedding capacity has to be high to satisfy the need for more additional data than in ownership protection applications. The detection must be performed without the original host signal because either the original is unavailable or its integrity has yet to be established. This kind of watermark detection is usually called a blind detection.
BROADCAST MONITORING:
Watermarking is an obvious alternative method of coding identification information

for an active broadcast monitoring. It has the advantage of being embedded within the multimedia host signal itself rather than exploiting a particular segment of the broadcast signal. Thus, it is compatible with the already installed base of broadcast equipment, including digital and analogue communication channels. The primary drawback is that embedding process is more complex than a simple placing data into file headers. There is also a concern, especially on the part of content creators, that the watermark would introduce distortions and degrade the visual or audio quality of multimedia. A number of broadcast monitoring watermark-based applications are already available on commercial basis. These include program type identification, advertising research, broadcast coverage research etc. Users are able to receive a detailed proof of the performance information that allows them to:

1. Verify that the correct program and its associated promos aired as contracted;

2. Track barter advertising within programming;

3. Automatically track multimedia within programs using automated software online.

INFORMATION CARRIER:
The embedded watermark application is expected to have a high capacity and to be detected and decoded using a using wavelets. While the robustness against intentional attack is not required, a certain degree of robustness against common processing like MPEG compression may be desired. A public watermark embedded into the host multimedia might be used as the link to external databases that contain certain additional information about the multimedia file itself, such as copyright information and licensing conditions. One interesting application is the transmission of metadata along with multimedia. Metadata embedded in, e.g. audio clip, may carry information about composer, soloist, genre of music, etc.

PERCEPTUAL TRANSPARENCY:
In most of the applications, the watermark-embedding algorithm has to insert additional data without affecting the perceptual quality of the audio host signal. The fidelity of the watermarking algorithm is usually defined as a perceptual similarity between the original and watermarked audio sequence. However, the quality of the watermarked audio is usually degraded, either intentionally by an adversary or unintentionally in the transmission process, before a person perceives it. In that case, it is more adequate to define the fidelity of a watermarking algorithm as a perceptual similarity between the watermarked audio and the original host audio at the point at which they are presented to a consumer.

WATERMARK BIT RATE:
The bit rate of the embedded watermark is the number of the embedded bits within a

Unit of time and is usually given in bits per second (bps). Some audio watermarking applications, such as copy control, require the insertion of a serial number or author ID, with the average bit rate of up to 0.5 bps. For a broadcast monitoring watermark, the bit rate is higher, caused by the necessity of the embedding of an ID signature of a commercial within the first second at the start of the broadcast clip, with an average bit rate up to 15 bps. In some envisioned applications, e.g. hiding speech in audio or compressed audio stream in audio, algorithms have to be able to embed watermarks with the bit rate that is a significant fraction of the host audio bit rate, up to 150 kbps.

ROBUSTNESS:
The robustness of the algorithm is defined as an ability of the watermark detector to extract the embedded watermark after common signal processing manipulations. A detailed overview of robustness tests is given in Chapter 3. Applications usually require robustness in the presence of a predefined set of signal processing modifications, so that watermark can be reliably extracted at the detection side. For example, in radio broadcast monitoring, embedded watermark need only to survive distortions caused by the transmission process, including dynamic compression and low pass filtering, because the watermark detection is done directly from the broadcast signal. On the other hand, in some algorithms robustness is completely undesirable and those algorithms are labeled fragile audio watermarking algorithms.

BLIND OR INFORMED WATERMARK DETECTION:
In some applications, a detection algorithm may use the original host audio to extract

Watermark from the watermarked audio sequence (informed detection). It often significantly improves the detector performance, in that the original audio can be subtracted from the watermarked copy, resulting in the watermark sequence alone. However, if detection algorithm does not have access to the original audio (blind detection) and this inability substantially decreases the amount of data that can be hidden in the host signal. The complete process of embedding and extracting of the watermark is modeled as a communications channel where watermark is distorted due to the presence of strong interference and channel effects. A strong interference is caused by the presence of the host audio, and channel effects correspond to signal processing operations.

SECURITY:
Watermark algorithm must be secure in the sense that an adversary must not be able to detect the presence of embedded data, let alone remove the embedded data. The security of watermark process is interpreted in the same way as the security of encryption techniques and it cannot be broken unless the authorized user has access to a secret key that controls watermark embedding. An unauthorized user should be unable to extract the data in a reasonable amount of time even if he knows that the host signal contains a watermark and is familiar with the exact watermark embedding algorithm. Security requirements vary with application and the most stringent are in cover communications applications, and, in some cases, data is encrypted prior to embedding into host audio.

THEORY:
The fundamental process in each watermarking system can be modeled as a form of communication where a message is transmitted from watermark embedder to the watermark receiver. The process of watermarking is viewed as a transmission channel through which the watermark message is being sent, with the host signal being a part of that channel. In Figure 2, a general mapping of a watermarking system into a communications model is given. After the watermark is embedded, the watermarked work is usually distorted after watermark attacks. The distortions of the watermarked signal are, similarly to the data communications model, modeled as additive noise.
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     Fig 2: Basic Watermarking system equivalent to a communication system
In this project, signal processing methods are used for watermark embedding and extracting processes, derivation of perceptual thresholds, transforms of signals to different signal domains (e.g. Fourier domain, wavelet domain), filtering and spectral analysis. Communication principles and models are used for channel noise modeling, different ways of signaling the watermark (e.g. a direct sequence spread spectrum method, frequency hopping method), and derivation of optimized detection method (e.g. matched filtering) and evaluation of overall detection performance of the algorithm (bit error rate, normalized correlation value at detection). 
The basic information theory principles are used for the calculation of the perceptual entropy of an audio sequence, channel capacity limits of a watermark channel and during design of an optimal channel coding method. During transmission and reception signals are often corrupted by noise, which can cause severe problems for downstream processing and user perception. It is well known that to cancel the noise component present in the received signal using adaptive signal processing technique, a reference signal is needed, which is highly correlated to the noise. Since the noise gets added in the channel and is totally random, hence there is no means of creating a correlated noise, at the receiving end. 
Only way possible is to somehow extract the noise, from the received signal, itself, as only the received signal can say the story of the noise added to it. Therefore an automated means of removing the noise would be an invaluable first stage for many signal-processing tasks. Denoising has long been a focus of research and yet there always remains room for improvement. Simple methods originally employed the use of time-domain filtering of the corrupted signal, however, this is only successful when removing high frequency noise from low frequency signals and does not provide satisfactory results under real world conditions. 
To improve performance, modern algorithms filter signals in some transform domain such as z for Fourier. Over the past two decades, a flurry of activity has involved the use of the wavelet transform after the community recognized the possibility that this could be used as a superior alternative to Fourier analysis. Numerous signal and image processing techniques have since been developed to leverage the power of wavelets. These techniques include the discrete wavelet transform, wavelet packet analysis, and most recently, the lifting scheme.
                                               CHAPTER 2

                           SPEED PROCESSING
Speech is produced when air is forced from the lungs through the vocal cords and along the vocal tract. The vocal tract extends from the opening in the vocal cords (called the glottis) to the mouth, and in an average man is about 17 cm long. It introduces short-term correlations (of the order of 1 ms) into the speech signal, and can be thought of as a filter with broad resonances called formants. The frequencies of these formants are controlled by varying the shape of the tract, for example by moving the position of the tongue. An important part of many speech codec’s is the modeling of the vocal tract as a short-term filter. As the shape of the vocal tract varies relatively slowly, the transfer function of its modeling filter needs to be updated only relatively infrequently (typically every 20 ms or so). 

The vocal tract filter is excited by air forced into it through the vocal cords. Speech sounds can be broken into three classes depending on their mode of excitation. 

· Voiced sounds are produced when the vocal cords vibrate open and closed, thus interrupting the flow of air from the lungs to the vocal tract and producing quasi-periodic pulses of air as the excitation. The rate of the opening and closing gives the pitch of the sound. Varying the shape of, and the tension in, the vocal cords, and the pressure of the air behind them can adjust this. Voiced sounds show a high degree of periodicity at the pitch period, which is typically between 2 and 20 ms. this long-term periodicity can be seen in Figure 1 which shows a segment of voiced speech sampled at 8 kHz. Here the pitch period is about 8 ms or 64 samples. 

· Unvoiced sounds result when the excitation is a noise-like turbulence produced by forcing air at high velocities through a constriction in the vocal tract while the glottis is held open. Such sounds show little long-term periodicity as can be seen from Figures 3 and 4 although short-term correlations due to the vocal tract are still present. 

· Plosive sounds result when a complete closure is made in the vocal tract, and air pressure is built up behind this closure and released suddenly. Some sounds cannot be considered to fall into any one of the three classes above, but are a mixture. For example voiced fricatives result when both vocal cord vibration and a constriction in the vocal tract are present. 
 Although there are many possible speech sounds which can be produced, the shape of the vocal tract and its mode of excitation change relatively slowly, and so speech can be considered to be quasi-stationary over short periods of time  (of the order of 20 ms). Speech signals show a high degree of predictability, due sometimes to the quasi-periodic vibrations of the vocal cords and also due to the resonances of the vocal tract. Speech coders attempt to exploit this predictability in order to reduce the data rate necessary for good quality voice transmission From the technical, signal-oriented point of view, the production of speech is widely described as a two-level process. In the first stage the sound is initiated and in the second stage it is filtered on the second level. This distinction between phases has its origin in the source-filter model of speech production.
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Fig 3: Source Filter Model of Speech Production

The basic assumption of the model is that the source signal produced at the glottal level is linearly filtered through the vocal tract. The resulting sound is emitted to the surrounding air through radiation loading (lips). The model assumes that source and filter are independent of each other. Although recent findings show some interaction between the vocal tract and a glottal source (Rothenberg 1981; Fant 1986), Fan’s theory of speech production is still used as a framework for the description of the human voice, especially as far as the articulation of vowels is concerned.  
SPEED PROCESSING:                      
 The term speech processing basically refers to the scientific discipline concerning the analysis and processing of speech signals in order to achieve the best benefit in various practical scenarios. The field of speech processing is, at present, undergoing a rapid growth in terms of both performance and applications. The advances being made in the field of microelectronics, computation and algorithm design stimulate this. Nevertheless, speech processing still covers an extremely broad area, which relates to the following three engineering applications:

• Speech Coding and transmission that is mainly concerned with man-to man voice communication;

• Speech Synthesis which deals with machine-to-man communications;

• Speech Recognition relating to man-to machine communication.

SPEECH CODING:
 Speech coding or compression is the field concerned with compact digital representations of speech signals for the purpose of efficient transmission or storage. The central objective is to represent a signal with a minimum number of bits while maintaining perceptual quality. Current applications for speech and audio coding algorithms include cellular and personal communications networks (PCNs), teleconferencing, desktop multi-media systems, and secure communications.

SPEECH SYNTHESIS:
The process that involves the conversion of a command sequence or input text (words or sentences) into speech waveform using algorithms and previously coded speech data is known as speech synthesis. The inputting of text can be processed through by keyboard, optical character recognition, or from a previously stored database. A speech synthesizer can be characterized by the size of the speech units they concatenate to yield the output speech as well as by the method used to code, store and synthesize the speech. If large speech units are involved, such as phrases and sentences, high-quality output speech (with large memory requirements) can be achieved. On the contrary, efficient coding methods can be used for reducing memory needs, but these usually degrade speech quality.

Factors associated with speech:
Formants:
It has been known from research that vocal tract and nasal tract are tubes with non-uniform cross-sectional area. As sound generated propagates through these the tubes, the frequency spectrum is shaped by the frequency selectivity of the tube. This effect is very similar to the resonance effects observed in organ pipes and wind instruments. In the context of speech production, the resonance frequencies of vocal tract are called formant frequencies or simply formants. In our engineered model the poles of the transfer function are called formants. Human Auditory system is much more sensitive to poles than zeros. 

Phonemes:
Phonemes can be defined as the “Symbols from which every sound can be classified or produced”. Every Language has its particular phonemes which range from 30 – 50. English has 42 phonemes. For speech crude estimation of information rate considering physical limitations on articulator motion is about 10 phonemes per second. 

Types of Phonemes:
Speech sounds can be classified in to 3 distinct classes according to the mode of excitation. 

1. Plosive Sounds 

2. Voiced Sounds 

3. Unvoiced Sounds 
1. Plosive Sounds:
Plosive Sounds result from making a complete closure (again toward the front end of the vocal tract), building up pressure behind the closure, and abruptly releasing it.
2. Voiced Sounds:
Voiced sounds are produced by forcing air through the glottis with the tension of the vocal chords adjusted so that they vibrate in a relaxation oscillation, thereby producing quasi-periodic pulses of air which excite the vocal tract. 

Voiced sounds are characterized by 

• High Energy Levels 

• Very Distinct resonant and formant frequencies. 
The rate at which the vocal chord vibrates determines the pitch. These vibrations are periodic in time thus voiced sounds are approximated by an impulse train. Spacing between impulses is the pitch, F0. 

3. Unvoiced Sounds:
 Voiced Sounds are also known as formants generated by forming a constriction at some point in the vocal tract (usually toward the mouth end), and forcing the air through the constriction at high enough velocity to produce turbulence. This creates a broad-spectrum noise source to excite the vocal tract. 

Unvoiced sounds are characterized by 

• Lower Energy Levels than voiced sounds. 

• Higher frequencies than voiced sounds. 

                         In other words we can say that unvoiced sounds (e.g. /sh/, /s/, /p/) are generated without vocal cords vibrations. The excitation is modeled by a White Gaussian Noise source. Unvoiced sounds have no pitch since they are excited by a non-periodic signal. 
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                       Spectrums Of typical voiced And Unvoiced Speech

By passing the speech through a predictor filter A(z), the spectrum is much more flatten (whitened). But it still contains some fine details.
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SPECIAL TYPE OF VOICED AND UNVOICED SOUNDA:
There are however some special types of voiced and unvoiced sounds which are briefly discussed here. The purpose of their discussion here is only to give the reader an idea about the further types of voiced and unvoiced speech. 

 VOWELS:
Vowels are produced by exciting a fixed vocal tract with quasi periodic pulses of air caused by vibration of the vocal cords. The way in which the cross-sectional area varies along the vocal tract determines the resonant frequencies of the tract (formants) and thus the sound that is produced. The dependence of cross-sectional area upon distance along the tract is called is called area function of the vocal tract. The area function of a particular vowel is determined primarily by the position of the tongue but the position of jaws and lips to a small extent also affect the resulting sound. 

Examples  a,e,i,o,u .
Diphthongs:
 Although there is some ambiguity and disagreement as to what is and what is not a diphthongs, a reasonable definition is that a diphthongs is a gliding monosyllabic speech item that starts at or near the articulator position for one vowel and moves to or toward the position for another. According to this definition, there are 6 diphthongs in American English. 

Diphthongs are produced by varying the vocal tract smoothly between vowel configurations appropriate to the diphthong. Based on these data, the diphthongs can be characterized by a time varying vocal tract area function which varies between two vowel configurations. 

Examples:

Ei/ (as in bay) , oU/ (as in boat) , aI/ (as in buy) , aU/ (as in how) 

Semivowels:
The group of sound consisting of /w/, /l/ , /r/ ,/y/ is quite difficult to characterize. These sounds are called semivowels because of their vowel-like nature. They are generally characterized by a gliding transition in the vocal tract area function between adjacent phonemes. Thus the acoustic characteristics of these sounds are strongly influenced by the context in which they occur. For our purpose they just considered as transitional vowel-like sounds and hence are similar in nature to vowels and diphthongs.
NASALS:
The nasal consonants /m/, /n/ , and /ŋ/ are produced with glottal excitation and the vocal tract totally constricted at some point along the oral passage way. The velum is lowered so that air flows through the nasal tract, with sounds being radiated at the nostrils. Further more the nasal consonants nasalized vowels (i.e., some vowels preceding or following nasal consonants) are characterized by resonances which are spectrally broader, or more highly damped, than those for vowels. 

Unvoiced Fricatives:
The unvoiced fricatives are /f/ ,/θ/ ,/s/ and /sh/ are produced by exciting the vocal tract by a steady air flow which becomes turbulent in the region of a constriction in the vocal tract. The region of the constriction serves to determine which fricative sound is produced. For fricative /f/ the constriction near the lips; for /θ/ it is near the teeth; for /s/ it is the near the oral tract; and for /sh/ it is near the back of the oral tract.
Voiced Fricatives:
The voiced fricatives are /v/ , /th/ , /z/ and /zh/are the counterpart of the unvoiced fricatives /f/ ,/θ/ ,/s/ and /sh/ respectively, in that the place of constriction for each of the corresponding phonemes is essentially identical. 

However the voiced fricatives differ from their unvoiced counterparts in the manner that two excitation sources are involved in their production. The spectra of voiced fricatives can be expected to display two distinct components. 
Voiced Stops:
The voiced stops /b/, /d/,and/g/ are transient non-continuant sounds which are produced by building up pressure behind a total constriction somewhere in the oral tract, and suddenly releasing the pressure. For /b/ the constriction is at the lips; for /d/ the constriction is at the back of the teeth; and for /g/ it is near the velum. During the period there is a total constriction in the tract there is no sound radiated from the lips. Since the stop sounds are dynamical in nature, there properties are highly influenced by the vowel which follows the stop consonant. 
Unvoiced Stops:
The unvoiced stop consonants are /p/,/t/,and/k/ are similar to their voiced counterparts /b/ , /d/ and /g / with one major exception. During the period of the total closure of the tract, as the pressure builds up, the vocal cords do not vibrate. Thus, following the period of closure as the air pressure is released, there is a brief interval for friction (due to the sudden turbulence of the escaping air) followed by a period of aspiration (steady flow of air from glottis exciting the resonances of the vocal tract) before voiced excitation begins. 
 SPEECH RECOGNITION:
Speech or voice recognition is the ability of a machine or program to recognize and carry out voice commands or take dictation. On the whole, speech recognition involves the ability to match a voice pattern against a provided or acquired vocabulary. A limited vocabulary is mostly provided with a product and the user can record additional words. On the other hand, sophisticated software has the ability to accept natural speech (meaning speech as we usually speak it rather than carefully-spoken speech). Speech information can be observed and processed only in the form of sound waveforms. It is an essential for speech signal to be reconstructed properly. Moreover, for this to be process in a discrete Kalman filter, sampling plays a critical role. In the next section we will take a look at how sampling is done. 

ENCODE SPEECH:
Speech coding has been and still is a major issue in the area of digital speech processing. Speech coding is the act of transforming the speech signal at hand, to a more compact form, which can then be transmitted with a considerably smaller memory. The motivation behind this is the fact that access to unlimited amount of bandwidth is not possible. Therefore, there is a need to code and compress speech signals. Speech compression is required in long-distance communication, high-quality speech storage, and message encryption. For example, in digital cellular technology many users need to share the same frequency bandwidth. Utilizing speech compression makes it possible for more users to share the available system. Another example where speech compression is needed is in digital voice storage. For a fixed amount of available memory, compression makes it possible to store longer messages. 

 Speech coding is a loss type of coding, which means that the output signal does not exactly sound like the input. The input and the output signal could be distinguished to be different. Coding of audio however, is a different kind of problem than speech coding. Audio coding tries to code the audio in a perceptually lossless way. This means that even though the input and output signals are not mathematically equivalent, the sound at the output is the same as the input. This type of coding is used in applications for audio storage, broadcasting, and Internet streaming. 
Several techniques of speech coding such as Linear Predictive Coding (LPC), Waveform Coding and Sub band Coding exist. The problem at hand is to use LPC to code given speech sentences. The speech signals that need to be coded are wideband signals with frequencies ranging from 0 to 8 kHz. The sampling frequency should be at 8kHz. Different types of applications have different time delay constraints. For example in network telephony only a delay of 1ms is acceptable, whereas a delay of 500 ms is permissible in video telephony. 
Another constraint at hand is not to exceed an overall bit rate of 8 kbps. The speech coder that will be developed is going to be analyzed using both subjective and objective analysis. Subjective analysis will consist of listening to the encoded speech signal and making adjustments on its quality. The quality of the played back speech will be solely based on the opinion of the listener. The speech can possibly be rated by the listener either impossible to understand, intelligible or natural sounding. Even though this is a valid measure of quality, an objective analysis will be introduced to technically assess the speech quality and to minimize human bias. Furthermore, an analysis on the study of effects of bit rate, complexity and end-to-end delay on the speech quality at the output will be made.
CHAPTER 3

INTRODUCTION TO WAVELET ANALYSIS
Wavelet analysis represents the next logical step: a windowing technique with variable-sized regions. Wavelet analysis allows the use of long time intervals where we want more precise low-frequency information, and shorter regions where we want high-frequency information.

The fundamental idea behind wavelets is to analyze according to scale. The wavelet analysis procedure is to adopt a wavelet prototype function called an analyzing wavelet or mother wavelet. Any signal can then be represented by translated and scaled versions of the mother wavelet. Wavelet analysis is capable of revealing aspects of data that other signal analysis techniques such as Fourier analysis miss aspects like trends, breakdown points, discontinuities in higher derivatives, and self-similarity. Furthermore, because it affords a different view of data than those presented by traditional techniques, it can compress or de-noise a signal without appreciable degradation.

INTRODUCTING WAVELETS:
The fundamental idea behind wavelets is to analyze according to scale. The wavelet analysis procedure is to adopt a wavelet prototype function called an analyzing wavelet or mother wavelet. Any signal can then be represented by translated and scaled versions of the mother wavelet. Wavelet analysis is capable of revealing aspects of data that other signal analysis techniques such as Fourier analysis miss aspects like trends, breakdown points, discontinuities in higher derivatives, and self-similarity. Furthermore, because it affords a different view of data than those presented by traditional techniques, it can compress or de-noise a signal without appreciable degradation.

WAVELET  VS  FOURIRE ANLYSIS :
 GENERAL CONCEPTS:
  In the well-known Fourier analysis, a signal is broken down into constituent sinusoids of different frequencies. These sins and cosines (essentially complex exponentials) are the basis functions and the elements of Fourier synthesis.

 Taking the Fourier transform of a signal can be viewed as a rotation in the function space of the signal from the time domain to the frequency domain. Similarly, the wavelet transform can be viewed as transforming the signal from the time domain to the wavelet domain. This new domain contains more complicated basis functions called wavelets, mother wavelets or analyzing wavelets.

Mathematically, the process of Fourier analysis is represented by the Fourier transform:
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Which is the sum over all time of the signal f(t) multiplied by a complex exponential.

The results of the transform are the Fourier coefficients F(ω), which when multiplied  By a sinusoid of frequency ω, yield the constituent sinusoidal components of the original signal.

A wavelet prototype function at a scale s and a spatial displacement u is defined as:

                            [image: image8.emf]
Replacing the complex exponential in Equation 2.1 with this function yields the continuous wavelet transform (CWT):
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 Which is the sum over all time of the signal multiplied by scaled and shifted versions of the wavelet function ψ. The results of the CWT are many wavelet coefficients C, which are a function of scale and position. Multiplying each coefficient by the appropriately scaled and shifted wavelet yields the constituent wavelets of the original signal. The basis functions in both Fourier and wavelet analysis are localized in frequency making mathematical tools such as power spectra (power in a frequency interval) useful at picking out frequencies and calculating power distributions. The most important difference between these two kinds of transforms is that individual wavelet functions are localized in space. In contrast Fourier sine and cosine functions are non-local and are active for all time t. This localization feature, along with wavelets localization of frequency, makes many functions and operators using wavelets. Sparse. When transformed into the wavelet domain. This sparseness, in turn results in a number of useful applications such as data compression, detecting features in images and de-noising signals.

TIME-FREQUENCY RESOLUTION:
 A major draw back of Fourier analysis is that in transforming to the frequency domain, the time domain information is lost. When looking at the Fourier transform of a signal, it is impossible to tell when a particular event took place. In an effort to correct this deficiency, Dennis Gabor (1946) adapted the Fourier transform to analyze only a small section of the signal at a time. A technique called windowing the signal. Gabor’s adaptation, called the Windowed Fourier Transform (WFT) gives information about signals simultaneously in the time domain and in the frequency domain

 To illustrate the time-frequency resolution differences between the Fourier transform and the wavelet transform consider the following figures.

                               [image: image10.emf]
 Figure 2.1 shows a windowed Fourier transform, where the window is simply a square wave. The square wave window truncates the sine or cosine function to fit a window of a particular width. Because a single window is used for all frequencies in the WFT, the resolution of the analysis is the same at all locations in the time frequency plane. An advantage of wavelet transforms is that the windows vary. Wavelet analysis allows the use of long time intervals where we want more precise low-frequency information, and shorter regions where we want high-frequency information. A way to achieve this is to have short high-frequency basis functions and long low-frequency ones. 

[image: image11.emf]
 Figure 2.2 shows a time-scale view for wavelet analysis rather than a time frequency region. Scale is inversely related to frequency. A low-scale compressed wavelet with rapidly changing details corresponds to a high frequency. A high-scale stretched wavelet that is slowly changing has a low frequency.
Examples of Wavelets:
The figure below illustrates four different types of wavelet basis functions.

   
[image: image12.png]
 The different families make trade-offs between how compactly the basis functions are localized in space and how smooth they are. Within each family of wavelets (such as the Daubechies family) are wavelet subclasses distinguished by the number of filter coefficients and the level of iteration. Wavelets are most often classified within a family by the number of vanishing moments. This is an extra set of mathematical relationships for the coefficients that must be satisfied. The extent of compactness of signals depends on the number of vanishing moments of the wavelet function used. A more detailed discussion is provided in the next section.

THE DISCRETE WAVELET TRANSFORM:
The Discrete Wavelet Transform (DWT) involves choosing scales and positions based on powers of two. So called  dyadic scales and positions. The mother wavelet is rescaled or dilated by powers of two and translated by integers. Specifically, a function f(t) [image: image13.emf]L2(R) (defines space of square integral functions) can be represented as

[image: image14.emf]
The function ψ(t) is known as the mother wavelet, while φ(t) is known as the scaling

Function. The set of functions

            [image: image15.emf]
Where Z is the set of integers is an orthodox- normal basis for L2(R). The numbers a(L, k) are known as the approximation coefficients at scale L, while d(j, k) are known as the detail coefficients at scale j.
The approximation and detail coefficients can be expressed as:

                  [image: image16.emf]
  To provide some understanding of the above coefficients consider a projection fl(t) of the function f(t) that provides the best approximation (in the sense of  minimum error energy) to f(t) at a scale l. This projection can be constructed from the coefficients a(L, k), using the equation

[image: image17.emf]
As the scale l decreases, the approximation becomes finer, converging to f(t) as l → 0.
The difference between the approximation at scale l + 1 and that at l, fl+1(t) - fl(t), is

completely described by the coefficients d(j, k) using the equation

[image: image18.emf]
Using these relations, given a(L, k) and {d(j, k) | j ≤ L}, it is clear that we can build the approximation at any scale. Hence, the wavelet transform breaks the signal up into a coarse approximation fL(t) (given a(L, k)) and a number of layers of detail {fj+1(t)-fj(t)| j < L} (given by {d(j, k) | j ≤ L}). As each layer of detail is added, the approximation at the next finer scale is achieved.

VANISHING MOMENTS:
The number of vanishing moments of a wavelet indicates the smoothness of the wavelet function as well as the flatness of the frequency response of the wavelet filters (filters used to compute the DWT).Typically a wavelet with p vanishing moments satisfies the following equation .

[image: image19.emf]
    or equivalently,

[image: image20.emf]
For the representation of smooth signals, a higher number of vanishing moments leads to a faster decay rate of wavelet coefficients. Thus, wavelets with a high number of vanishing moments lead to a more compact signal representation and are hence useful in coding applications. However, in general, the length of the filters increases with the number of vanishing moments and the complexity of computing the DWT coefficients increases with the size of the wavelet filters.

THE FAST WAVELET TRANSFORM ALGORITHM:
The Discrete Wavelet Transform (DWT) coefficients can be computed by using Mallart’s Fast Wavelet Transform algorithm. This algorithm is sometimes referred to as the two-channel sub-band coder and involves filtering the input signal based on the wavelet function used. Implementation Using Filters

 To explain the implementation of the Fast Wavelet Transform algorithm consider the following equations:

[image: image21.emf]
The first equation is known as the twin-scale relation (or the dilation equation) and defines the scaling function φ. The next equation expresses the wavelet ψ in terms of the scaling function φ. The third equation is the condition required for the wavelet to be Orthogonal to the scaling function and its translates

 The coefficients c(k) or {c0, .., c2N-1} in the above equations represent the impulse response coefficients for a low pass filter of length 2N, with a sum of 1 and a norm of1/2 The high pass filter is obtained from the low pass filter using the relationship g ( )k c( k ) k = −1 1− , where k varies over the range (1 . (2N  . 1)) to 1.

 Equation 2.7 shows that the scaling function is essentially a low pass filter and is used to define the approximations. The wavelet function defined by equation 2.8 is a high pass filter and defines the details.

Starting with a discrete input signal vector s, the first stage of the FWT algorithm decomposes the signal into two sets of coefficients. These are the approximation coefficients cA1 (low frequency information) and the detail coefficients cD1 (high frequency information), as shown in the figure below.

                
[image: image22.png]
The coefficient vectors are obtained by convolving s with the low-pass filter Lo_ D for Approximation and with the high-pass filter Hi _D for details. This filtering operation is Then followed by dyadic decimation or down sampling by a factor of 2. Mathematically the two-channel filtering of the discrete signal s is represented by the

expressions:

[image: image23.emf]
These equations implement a convolution plus down sampling by a factor 2 and give the forward fast wavelet transform.

If the length of each filter is equal to 2N and the length of the original signal s is equal to n, then the corresponding lengths of the coefficients cA1 and cD1 are given by the formula:

[image: image24.emf]
This shows that the total length of the wavelet coefficients is always slightly greater than the length of the original signal due to the filtering process used.

MULTILEVEL DECOMPOSITION:
The decomposition process can be iterated, with successive approximations being decomposed in turn, so that one signal is broken down into many lower resolution Components. This is called the wavelet decomposition tree.


[image: image25.png]
The wavelet decomposition of the signal s analyzed at level j has the following structure

[cAj, cDj, ..., cD1].

 Looking at a signals wavelet decomposition tree can reveal valuable information. The diagram below shows the wavelet decomposition to level 3 of a sample signal S.


[image: image26.png]
Since the analysis process is iterative, in theory it can be continued indefinitely. In reality, the decomposition can only proceed until the vector consists of a single sample. Normally, however there is little or no advantage gained in decomposing a signal beyond a certain level. The selection of the optimal decomposition level in the hierarchy depends on the nature of the signal being analyzed or some other suitable criterion, such as the low-pass filter cut-off.

SIGNAL RECONSTRUCTION:
The original signal can be reconstructed or synthesized using the inverse discrete wavelet transform (IDWT). The synthesis starts with the approximation and detail coefficients cAj and cDj, and then reconstructs cAj-1 by up sampling and filtering with the reconstruction filters.

                 
[image: image27.png]
 The reconstruction filters are designed in such a way to cancel out the effects of aliasing introduced in the wavelet decomposition phase. The reconstruction filters (Lo_R and Hi_R) together with the low and high pass decomposition filters, forms a system known as quadrature mirror filters (QMF).

Methodology

[image: image28.png]
Speech water marking:

The speech water marking means embed a digital data(speech) into  the other  speech signal (.wav) or remove the signal components of desired signal is called speech water marking

Here I have consider two speech signal like 

1) Select the desired  speech signal(.wav),read desired  wave length  and play the selected   desired  speech signal

2) Select the embedded speech signal (.wav), read  and play the selected   embedded  speech signal

3) Select the desired speech signal (.wav), read   selected desired  speech signal

4) Than above signals applied discrete wave let transform with name of the wavelet “Haar” .Because we need required desired processing

5) Due to speech water marking: the desired signals one by one processing continues

Here I have used cat function.

6) Here water marking results playing

7) SWPR: stand for speech water marking signal play, due to recording
8) SWRP: stand for speech water marking signal recorded and playing
CHAPTER 5

    INTRODUCTION TO MATLAB
MATLAB:
Matlab is a commercial "Matrix Laboratory" package which operates as an                                                                  interactive programming environment. 

Matlab is available for PC's, Macintosh and UNIX systems.

Matlab is well adapted to numerical experiments.

Matlab program and script files (m-files) always have filenames ending with ".m"; 

             The programming language is exceptionally straightforward since almost every data object    is assumed to be an array. 

             Graphical output (figure) is available to supplement numerical results. 

Online help is available from the Matlab prompt (a double arrow) by typing help.

 START AND QUIT MATLAB
PC - a double click on the Matlab icon


UNIX system - setup Matlab (return)
        Matlab

On both system leave a Matlab session by typing: Quit         

Or by typing:
Exit  

at the Matlab prompt. 

USING HELP IN MATLAB:

Online help is available from the Matlab prompt (>> a double arrow),both generally (listing of all available commands): 

>> help

[A long list of help topics follows]

And for specific commands: 

>> help fft

[A help message on the fft function follows].
MATRIX, VECTOR AND SCALAR:

· Three fundamental concepts in MATLAB, and in linear algebra, are scalars, vectors and matrices.

· A scalar is simply just a fancy word for a number (a single value).

· A vector is an ordered list of numbers (one-dimensional). In MATLAB they can be represented as a row-vector or a column-vector.

· A matrix is a rectangular array of numbers (multi-dimensional). In MATLAB, a two-dimensional matrix is defined by its number of rows and columns.

Matlab uses variables that are defined to be matrices. 

                           A matrix is a collection of numerical values that are organized into a specific configuration of rows and columns. The number of rows and columns can be any number.

A= [ 1 2 3 4                                           

       5 6 7 8];

A is for example, 2 rows and 4 columns define a 2 x 4 matrix which has 8 elements 

in total. 

A scalar is represented by a 1 x 1 matrix in Matlab: 
a=1;

                           A vector of n elements can be represented by a n x 1 matrix, in which case it is called a column vector, or a vector can be represented by a 1 x n matrix, in which case it is called a row vector of n elements. 
     x = [3.5, 33.22, 24.5];          x is a row vector or 1 x 3 matrix

     x 1 = [ 2                                    x1 is column vector or 4 x 1 matrix

               5

              3

             -1];  

The matrix name can be any group of letters and numbers up to 19, but always beginning with a letter. 

Matlab is "case sensitive", that is, it treats the name 'C' and 'c' as two different variables.

Similarly, 'MID' and 'Mid' are treated as two different variables.

SOME BASIC COMMANDS :

pwd       prints working directory

demo     demonstrates what is possible in Matlab
who       lists all of the variables in your Matlab workspace

whos     list the variables and describes their matrix size

clear      erases variables and functions from memory

clear x   erases the matrix 'x' from your workspace 

close      by itself, closes the current figure window

figure    creates an empty figure window

hold on holds the current plot and all axis properties so that subsequent graphing 

             commands add to the existing graph

hold off sets the next plot property of the current axes to  "replace"
find       find indices of nonzero elements e.g.:

             d = find(x>100) returns the indices of the vector x that are greater than 100

break     terminate execution of m-file or WHILE or FOR loop

for         repeat statements a specific number of times, the general form of a FOR 

             statement is:  

             FOR variable = expr, statement, ..., statement END   

             for n=1:cc/c;

             magn(n,1)=NaNmean(a((n-1)*c+1:n*c,1));

             end

diff       difference and approximate derivative e.g.:
             DIFF(X) for a vector X, is [X(2)-X(1)  X(3)-X(2) ... X(n)-X(n-1)].  

NaN     the arithmetic representation for Not-a-Number, a NaN is obtained as a 

             result of mathematically undefined operations like 0.0/0.0 

INF      the arithmetic representation for positive infinity, a  infinity is also produced

             by operations like dividing by zero, e.g. 1.0/0.0, or from overflow, e.g. exp(1000).

save      saves all the matrices defined in the current session into the file, 

             matlab.mat, located in the current working directory 

load      loads contents of matlab.mat into current workspace

save filename x y z             saves the matrices x, y and z into the file titled filename.mat

save filename x y z /ascii    save the matrices x, y and z into the file titled filename.dat

load filename                       loads the contents of filename into current workspace; the file can 

                                             be a binary (.mat) file  

load filename.dat                 loads the contents of filename.dat into the variable filename

xlabel(‘  ’)  : Allows you  to label x-axis

ylabel(‘  ‘)  : Allows you  to label y-axis

title(‘   ‘)    : Allows you to give title for   

                   plot 

subplot()  : Allows you to create multiple               

                  plots in the same window.
SOME BASIC PLOT COMMANDS :

Kinds of plots:

plot(x,y)         creates a Cartesian plot of the vectors x & y

plot(y)            creates a plot of y vs. the numerical values of the elements in the y-vector

semilogx(x,y) plots log(x) vs y 

semilogy(x,y) plots x vs log(y)

loglog(x,y)     plots log(x) vs log(y)

polar(theta,r)  creates a polar plot of the vectors r & theta where theta is in radians

bar(x)             creates a bar graph of the vector x. (Note also  the command stairs(x))

bar(x,y)          creates a bar-graph of the elements of the vector y, locating the bars 

                       according to the vector elements of 'x' 

Plot description:

grid                
creates a grid on the graphics plot

title('text')      
places a title at top of graphics plot

xlabel('text')  
writes 'text' beneath the x-axis of a plot

ylabel('text')  
writes 'text' beside the y-axis of a plot

text(x,y,'text') 
writes 'text' at the location (x,y) 

text(x,y,'text','sc') writes 'text' at point x,y assuming lower left corner is (0,0) 

                   
 and upper right corner is (1,1)

axis([xmin xmax ymin ymax]) sets scaling for the x- and y-axes on the current plot

ALGEBRIC OPERATIONS IN MATLAB:
Scalar Calculations:
     +         Addition       

     -         Subtraction

     *         Multiplication

     /         Right division (a/b means a ÷ b)

     \         left division (a\b means b ÷ a)

     ^         Exponentiation

For example                   3*4      executed in 'matlab' gives ans=12




   4/5                                        gives ans=0.8               
  
                           Array products: Recall that addition and subtraction of matrices involved addition or subtraction of the individual elements of the matrices. Sometimes it is desired to simply multiply or divide each element of an matrix by the corresponding element of another matrix 'array operations”.  

Array or element-by-element operations are executed when the operator is preceded by a '.' (Period):

     a .* b    multiplies each element of a by the respective element of b

     a ./ b    divides each element of a by the respective element of b

     a .\ b    divides each element of b by the respective element of a

     a .^ b    raise each element of a by the respective b element 

READING AND WRITING SOUND FILES IN MATLAB:
WAVREAD Read Microsoft WAVE (".wav") sound file.  Y=WAVREAD(FILE) reads a WAVE file specified by the string FILE, returning the sampled data in Y. The ".wav" extension is appended

If no extension is given.  Amplitude values are in the range [-1,+1].

[Y,FS,NBITS]=WAVREAD(FILE) returns the sample rate (FS) in Hertz

And the number of bits per sample (NBITS) used to encode the data in the file.

[...]=WAVREAD(FILE,N) returns only the first N samples from each channel in the file.

[...]=WAVREAD(FILE,[N1 N2]) returns only samples N1 through N2 from each channel in the file.

SIZ=WAVREAD(FILE,'size') returns the size of the audio data contained in the file in place of the actual audio data, returning the vector SIZ=[samples channels].

[Y,FS,NBITS,OPTS]=WAVREAD(...) returns a structure OPTS of additional information contained in the WAV file.  The content of this structure differs from file to file.  Typical structure fields include '.fmt' (audio format information) and '.info' (text which may describe subject title, copy right, etc.). Supports multi-channel data, with up to 16 bits per sample.

WAVWRITE Write Microsoft WAVE (".wav") sound file.

WAVWRITE(Y,FS,NBITS,WAVEFILE) writes data Y to a Windows WAVE   file specified by the file name WAVEFILE, with a sample rate of FS Hz and with NBITS number of bits.  NBITS must be 8 or 16.

Stereo data should be specified as a matrix with two columns.

Amplitude values outside the range [-1,+1] are clipped.

WAVWRITE(Y,FS,WAVEFILE) assumes NBITS=16 bits.

WAVWRITE(Y,WAVEFILE) assumes NBITS=16 bits and FS=8000 Hz.

 USE  OF MATLAB:
   Advantages:


Handles vector and matrices very nice


Quick plotting and analysis


EXTENSIVE documentation (type ‘help’)


Lots of nice functions: FFT, fuzzy logic, neural nets, numerical integration, OpenGL

· Drawbacks:


Slow compared to C or Java           
Data Classes:
 Although we work with integers coordinates the values of pixels themselves are not restricted to be integers in MATLAB. Table above list various data classes supported by MATLAB and IPT are representing pixels values. The first eight entries in the table are refers to as numeric data classes. The ninth entry is the char class and, as shown, the last entry is referred to as logical data class.
 All numeric computations in MATLAB are done in double quantities, so this is also a frequent data class encounter in image processing applications.  Class unit 8 also is encountered frequently, especially when reading data from storages devices, as 8 bit images are most common representations found in practice. These two data classes, classes logical, and, to a lesser degree, class unit 16 constitute the primary data classes on which we focus. Many ipt functions however support all the data classes listed in table. Data class double requires 8 bytes to represent a number uint8 and int 8 require one byte each, uint16 and int16 requires 2bytes and unit 32.
Name                                    Description                      

 Double             Double _ precision, floating_ point numbers the Approximate. 

Unit8   unsigned 8_bit integers in the range [0,255] (1byte per                                                                                                                Element).        Element).                        

Unit16             unsigned 16_bit integers in the range [0,65535] (2byte  

             Per element).

Unit 32            unsigned 32_bit integers in the range [0,4294967295]

            (4 bytes per element).

 Int8                 signed 8_bit integers in the  range[-128,127]

            1 byte per element)

 Int 16              signed 16_byte integers in the range   

            [32768, 32767]  (2 bytes per element).                                                                                                                           

 Int 32             Signed 32_byte integers in the range                                       

             [-2147483648, 21474833647]

            (4 byte per element).

Single              single  _precision floating _point numbers with values 

                        In the approximate range (4 bytes per elements).

Char                characters (2 bytes per elements).

Logical            values are 0 to 1 (1byte per element).

         int 32  and single, required 4 bytes each. The char data class holds characters in Unicode representation. A character string is merely a 1*n array of characters logical  array contains only the values 0 to 1,with each element being stored in memory using function logical or by using relational operators. 
Applications and advantages:
1. Avoid ability of   degradation and  robustness for audio signals
2. Protection of intellectual digital works
3. Content preserving operations in the transmission channel should be tolerated to facilitate flexible applications.
4. Low computational complexity both at the transmitter and receiver side is important in real time media processing which can be possible 
5. Localized malicious modification can be easily detected for he protected digital data
EXPERIMENTAL RESULTS
 Main GUI
    [image: image29.png]
               STEP 1: Select the audio signal in for which you want to watermark
[image: image30.png]
Step 2   Select the speech signal which you want to insert
                 [image: image31.png]
Step 3:  Select the watermarking button and hear the watermarked song and a audio  

            watermarked file will be written and stored in the current directory

Appendix 
          Source code
Water_markinggui.m

function varargout = water_marking_gui(varargin)
% WATER_MARKING_GUI M-file for water_marking_gui.fig
%      WATER_MARKING_GUI, by itself, creates a new WATER_MARKING_GUI or raises the existing
%      singleton*.
%
%      H = WATER_MARKING_GUI returns the handle to a new WATER_MARKING_GUI or the handle to
%      the existing singleton*.
%
%      WATER_MARKING_GUI('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in WATER_MARKING_GUI.M with the given input arguments.
%
%      WATER_MARKING_GUI('Property','Value',...) creates a new WATER_MARKING_GUI or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before water_marking_gui_OpeningFunction gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to water_marking_gui_OpeningFcn via varargin.
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @water_marking_gui_OpeningFcn, ...
                   'gui_OutputFcn',  @water_marking_gui_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before water_marking_gui is made visible.
function water_marking_gui_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to water_marking_gui (see VARARGIN)
% Choose default command line output for water_marking_gui
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes water_marking_gui wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = water_marking_gui_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
brb=uigetfile('.wav','select the song');
[brbw fs]=wavread(brb);
k1=size(brbw);
k1=k1(1);
brbw=(brbw(1:k1/4));
brbs=(brbw(1:k1/8));
wavplay(brbs,fs);
save brbs brbs
save brbw brbw
save fs fs
% hObject    handle to pushbutton1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% --- Executes during object creation, after setting all properties.
function pushbutton1_CreateFcn(hObject, eventdata, handles)
% hObject    handle to pushbutton1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
brb1=uigetfile('.wav','select the speech to embedd');
brb1=wavread(brb1);
wavplay(brb1,44050); 
save brb1 brb1
% hObject    handle to pushbutton2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
load brbs   %%% a part of song
load brbw   %%%% a part of song 2
load brb1    %%% a part of sppech 
load fs
[a,d] = dwt(brbs,'haar',1);
[a1,d1] = dwt(brb1,'haar',1);
[a2,d2] = dwt(brbw,'haar',1);
t=size(a);
t2=size(a1);
t3=size(a2);
c=[a(1,:) a1(:,1)' a2(t(2)+1:end)];
wavplay(c,fs/2);
wavwrite(c,fs/2,'water_marking.wav');
% hObject    handle to pushbutton3 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
clc;
clear all;
close;
% hObject    handle to pushbutton4 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% --- Executes during object creation, after setting all properties.
function pushbutton2_CreateFcn(hObject, eventdata, handles)
% hObject    handle to pushbutton2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called
% --- Executes on key press over pushbutton2 with no controls selected.
function pushbutton2_KeyPressFcn(hObject, eventdata, handles)
% hObject    handle to pushbutton2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% --- Executes during object creation, after setting all properties.
function pushbutton4_CreateFcn(hObject, eventdata, handles)
% hObject    handle to pushbutton4 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called
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