AUTONOMOUS ROBOT

AUTONOMOUS ROBOT
Abstract
Now-a-days, Automated systems have less manual operations, flexibility, reliability and accurate. Due to this demand every field prefers automated control systems. Especially in the field of electronics automated systems are giving good performance. In the present scenario of war situations, unmanned systems plays very important role to minimize human losses. So this robot is very useful to do operations like obstacle detection.
This project aims at designing and executing the obstacle detection and avoidance robot. A robot obstacle detection system including a robot housing which navigates with respect to a surface and a sensor subsystem having a defined relationship with respect to the housing and aimed at the surface for detecting the surface. The ultrasonic sensor is a pair sensors has a receiver and a transmitter sensor. The transmitter sends the ultrasonic waves, and if the receiver senses any of the transmitted signal it indicates the presence of an obstacle. If the receiver doesn’t sense any signal it indicates the absence of obstacle. If any obstacle is detected the directions of the robot will be automatically changed.

This robot is fitted with motors. A micro controller is used to control all operations. According to the motor operations the robot will operate as specified in program.

However, the microcontroller being used for the project has latched outputs and as such one does not have to keep the buttons on remote control passed for more than a few milliseconds. The working prototype of the land rover
including remote is designed using micro controllers at both ends with appropriate code written in "C" language.

The programming language used for developing the software to the microcontroller is Embedded/Assembly. The KEIL cross compiler is used to edit, compile and debug this program. Micro Flash programmer is used for burning the developed code on Keil in to the microcontroller Chip. Here in our application we are using AT89C51 microcontroller which is Flash Programmable IC.AT represents the Atmel Corporation represents CMOS technology is used for designing the IC. This IC is one of the versions of 8051.

INDEX

1. INTRODUCTION

· OBJECTIVE OF THE PROJECT

· BLOCK DIAGRAM

2. DESCRIPTION OF THE PROJECT

· BLOCK DIAGRAM DESCRIPTION

· SCHEMATIC

3. HARDWARE DESCRIPTION

· MICROCONTROLL
· L293D

· DC MOTOR

· ULTRASONIC SENSOR

4. SOFTWARE DESCRIPTION

· KEIL C
· CODE
5. CONCLUSION

6. BIBLIOGRAPHY

INTRODUCTION

Objective:

The main aim of this project is to develop a robot, which automatically controls the robot using 8051 Micro controller.

BLOCK DIAGRAM:

Description:

This application is in the area of embedded systems.

An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is specifically designed for a particular function

Since the embedded system is dedicated to specific tasks, design engineers can optimize it reducing the size and cost of the product and increasing the reliability and performance. Embedded systems are controlled by one or more main processing cores that is typically either a microcontroller or a digital signal processor (DSP). Embedded systems control many devices in common use today.

The Keil C51 C Compiler for the 8051 microcontroller is the most popular 8051 C compiler in the world. It provides more features than any other 8051 C compiler available today. The C51 Compiler allows you to write 8051 microcontroller applications in C that, once compiled, have the efficiency and speed of assembly language. Language extensions in the C51 Compiler give you full access to all resources of the 8051.

The C51 Compiler translates C source files into relocatable object modules which contain full symbolic information for debugging with the µVision Debugger or an in-circuit emulator. In addition to the object file, the compiler generates a listing file which may optionally include symbol table and cross reference information.

Embedded C is an extension for the programming language C to support embedded processors, enabling portable and efficient application programming for embedded systems

The AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash programmable and erasable read only memory (EPROM). The device is manufactured using Atmel’s high-density nonvolatile memory technology and is compatible with the industry-standard MCS-51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C51 is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications.
This project aims at designing and executing the fire sensing, alcohol, bomb and obstacle detection and avoidance robot. A robot obstacle detection system including a robot housing which navigates with respect to a surface and a sensor subsystem having a defined relationship with respect to the housing and aimed at the surface for detecting the surface. The ultrasonic sensor is a pair sensors has a receiver and a transmitter sensor. The transmitter sends the ultrasonic waves, and if the receiver senses any of the transmitted signal it indicates the presence of an obstacle. If the receiver doesn’t sense any signal it indicates the absence of obstacle. If any obstacle is detected the directions of the robot will be automatically changed.

This robot is fitted with motors. A micro controller is used to control all operations. According to the motor operations the robot will operate as specified in program.

SCHEMATIC:

[image: image1.emf]XTAL2

18

XTAL1

19

ALE

30

EA

31

PSEN

29

RST

9

P0.0/AD0

39

P0.1/AD1

38

P0.2/AD2

37

P0.3/AD3

36

P0.4/AD4

35

P0.5/AD5

34

P0.6/AD6

33

P0.7/AD7

32

P1.0

1

P1.1

2

P1.2

3

P1.3

4

P1.4

5

P1.5

6

P1.6

7

P1.7

8

P3.0/RXD

10

P3.1/TXD

11

P3.2/INT0

12

P3.3/INT1

13

P3.4/T0

14

P3.7/RD

17

P3.6/WR

16

P3.5/T1

15

P2.7/A15

28

P2.0/A8

21

P2.1/A9

22

P2.2/A10

23

P2.3/A11

24

P2.4/A12

25

P2.5/A13

26

P2.6/A14

27

U1

AT89C51

IN1

2

OUT1

3

OUT2

6

OUT3

11

OUT4

14

IN2

7

IN3

10

IN4

15

EN1

1

EN2

9

VS

8

VSS

16

GND GND

U2

L293D

ULTRASONIC TRANSMITTER

ULTRASONIC RECEIVER

8051 Micro controller:
 The first microprocessor introduced in 1981/1971, was made possible by high levels of integration of digital circuits. Continued integration of peripherals and memory on the same integrated circuit as the microprocessor core led to the creation of micro controllers. A micro controller is an integrated circuit composed of a CPU, various peripheral devices, and typically memory, all in one chip. Using one chip that contains all the necessary functions in place of a microprocessor and multiple peripheral chips has reduced the size and the power consumption of control oriented applications. A micro controller is different from a microprocessor both in hardware and software. In hardware it includes peripherals such as I/O, memory, and analog and digital interface. Micro controllers are more suited for small applications with specific control functions requiring specialized peripherals and interfaces.
They are designed for process control and are required to interface to the real world processes. Many of the peripheral devices integrated on a micro controller are for that specific purpose. Analog to digital converters perform the task of converting an analog signal to digital for use by the CPU, and digital to analog converters perform the task of converting digital data into analog value and waveforms to control analog functions. In addition to the analog interface, micro controllers contain peripheral devices that enable them to communicate to other digital components within a system or to monitor and control digital functions. Communication interfaces, digital I/O and interrupt controllers fall into this category of peripheral devices. Other peripheral devices often included on the same chip include clocks and timers.

 In terms of the software, micro controllers have a more compact set of instructions with commands more suited to process control such as input and output from. Single bit operations such as set and reset, bit-wise logical functions or branching instructions that depend on a single bit are commonly available as part of the instruction set to allow for reading input switch status or on/off control of an external event. Since in a given application the micro controller is programmed for one task, it only has one control program. In a microprocessor based system various programs are stored in a mass storage device and then loaded into the RAM for execution. In contrast the micro controller program is typically stored in a ROM or PROM and RAM is used for temporary storage of data.

Compared with discrete implementation of a system, the micro controller based approach provides shorter system development time, reduced implementation cost, lower power consumption, and higher reliability. The only drawback, which is often not important, is the lower speed of execution. For example, for a micro controller system to perform a logical operation, several clock cycles are needed to read the inputs, perform the function and output the results. The same operation when implemented with discrete components will provide the results as soon as the signals have propagated through the logic gates.

 Micro-controllers are used in a variety of process control applications, replacing complex digital circuits and sometimes-analog functions while providing more flexibility due to their programmability. Portable electronic devices such as personal audio devices (CD players, MP3 players), mobile telephones, digital cameras and video camcorders rely heavily on the reduced size and low power consumption of micro controller based electronics. These features are crucial to applications like implantable medical devices such as pacemakers, or personal medical monitoring devices like glucometers (electronic devices used for the measurement of blood glucose). In other applications such as appliances, home audio and video, automotive, power management, and temperature control, using a micro controller results in reduced board level circuit complexity and consequently reduced cost. With the growing number of applications using micro controllers, it is not surprising that there are such a wide variety of these components. In addition to those commonly available, many manufacturers custom-design a micro controller to suit a specific application.

Architecture

 Architecturally all micro controllers share certain features. They all contain a CPU, memory and I/O on the same chip. Another common feature is the interrupt handling capability. What sets them apart from one another is the choice of CPU, the structure of memory, and choice of peripheral devices, I/O and interrupts handling hardware. The major distinguishing architectural characteristic of micro controllers is the word size. Micro-controllers are available in 4, 8, 16, or 32 bit wide words. The width of the data path impacts several features of the micro controller. The complexity of the instruction set (number of available instructions and addressing modes), program efficiency (code generation and storage space), execution speed, as well as chip implementation and interfacing complexity are all influenced by the width of the data path.

For simple control tasks 4-bit, and for a vast number of control and measurement applications 8-bit micro controllers would be sufficient. For higher precision and speed applications like speech and video processing, or complex instrumentation, 16-bit and 32-bit micro controllers are more appropriate.

Another distinction between micro controllers is the instruction set. Micro-controllers with complex instruction set (CISC) provide capability to perform complex computations rapidly. The extensive set of instructions, allow complex operations to be performed with few instructions. On the other hand reduced instruction set computers (RISC) decrease program execution time by having fewer less complex instructions. Fewer available instructions results in faster execution due to smaller size of the op-code and less decoding time needed for each instruction. The trade-off depends on the complexity of operations needed for a specific application. In simple control applications a RISC based micro controller is more suitable because of its lower overhead for each instruction. In more complex applications, the availability of a more diverse instruction set results in a more efficient and faster executing code because fewer instructions are needed to accomplish a complicated task. For micro controller applications the instruction set should include common computational instructions plus instructions optimized for the specific application at hand.

Just as in microprocessors, micro controllers are also differentiated according to their memory structure. Von Neumann architecture maps the data and program to same memory address space. In the Harvard architecture the instructions are stored in a separate memory space than that used for data storage. Another memory related architectural characteristic of a processor is the addressing scheme. In linear addressing there is a one to one correspondence between an address and a memory location. So with an 8-bit address register, 28 distinct address locations can be accessed. In segmented addressing a separate register is used to point to a segment in memory, and the address register is used to point to an offset from that segment’s start point. This way if all of the program or data are in the same segment, in order to access them, only the address register need to be used and the segment register can remain pointing to the start point of that segment.

 Widely used group of micro controllers is Intel’s MCS51 family. These micro controllers are also 8-bit processors, but with a separate 64Kbyte of data and 64Kbyte of program memory space. As implied by this statement, devices in the MCS51 utilize Harvard architecture. All of I/O addresses as well as CPU registers and various peripheral devices’ registers are mapped in the same space as the data. The 8051, which is one of the options in this family, has 5 interrupt sources, 2 external, two timer interrupts and one serial port interrupt. Interrupt priority is resolved through a priority scheme and ranking in the polling sequence. The priority scheme allows each interrupt to be programmed to one of two priority levels. Furthermore if two interrupts with the same priority occur simultaneously, they are serviced based on their rank in the polling sequence. Other manufacturers such as AMD, Dallas Semiconductor, Fujitsu and Philips also supply micro controllers in the MCS51 family.
BLOCK DIAGRAM:

[image: image2.png]

Fig Block Diagram of AT89C51 Microcontroller

Dallas Semiconductor’s DC87C550 provides increased performance over Intel’s 8051 while maintaining instruction set compatibility. Many instructions that execute in 12 CPU clock cycles in an 8051, will execute in only 4 clocks for the DC87C550 therefore resulting in increased execution speeds of up to three times. Additionally, the DC87C550 has a power management mode that allows slowing of the processor in order to reduce power consumption. This mode can be utilized in battery operated or otherwise low power applications. The architecture of the instruction set varies greatly from one micro controller to another. The choices made in designing the instruction set impact program memory space usage, code execution speed, and ease of programming.

PIN CONFIGURATION:

[image: image3.png]PDIP

P10
PLIg
P1.20
P1.30]
P140
P1.50
P160
P70
RSTQ
(RXD) P3.0C]
(TXD) P3.1]
(INTO) P32
(INTT) P3.30]
(T0) P3.40
1)P3.50]
(WR) P36]
RD)P37Q
XTAL20
XTALI
GNDO

40
39
38
37
36
35
34
33
32
31
30
29
28
27
2
25
24
23
22

pvee
[1P0.0 (ADO)
QP01 (AD1)
[1P0.2 (AD2)
[1P0.3 (AD3)
C1P0.4 (AD4)
[1P0.5 (AD5)
[1P0.6 (ADG)
[1P0.7 (AD7)
pEAVPP

D ALE/PROG
[IPSEN
0P27 (Al5)
P26 (A14)
DP25(A13)
P24 (A12)
C1P2.3(A11)
0P2.2 (A10)
[1P2.1(A9)

Fig Pin Configuration of AT89C51

Pin Description:

VCC:

Supply voltage.

GND:

Ground.

Port 0:

Port 0 is an 8-bit open-drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1’s are written to port 0 pins, the pins can be used as high impedance inputs. Port 0 may also be configured to be the multiplexed low order address/data bus during accesses to external program and data memory. In this mode P0 has internal pull-ups. Port 0 also receives the code bytes during Flash programming, and outputs the code bytes during program verification. External pull-ups are required during program verification.

Port 1:

Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pull-ups. Port 1 also receives the low-order address bytes during Flash programming and verification.

Port 2:

Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memories that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During accesses to external data memories that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.

Port 3:

Port 3 is an 8-bit bi-directional I/O port with internal pullups.The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL) because of the pull-ups.

Port 3 also serves the functions of various special features of the AT89C51 as listed below:

Port 3 also receives some control signals for Flash programming and verification

[image: image4.png]PortPin | Alternate Functions
P20 XD (serial input port)

a1 TXD (saral output port)

P2z TNTO (external intorupt 0)

P23 T (external intorupt 1)

Pad 70 (imer 0 axtamal input)

Pas T (imer 1 extamal input)

P25 ViR (extormal data memory wits strobs)
Pa7 D (external data memory read strobe)

Tab Port pins and their alternate functions

RST:

Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.

ALE/PROG:

Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming. In normal operation ALE is emitted at a constant rate of 1/6the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is

weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

PSEN:

Program Store Enable is the read strobe to external program memory. When the AT89C51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.

EA/VPP:

External Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH.

Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset.

EA should be strapped to VCC for internal program executions. This pin also receives the 12-volt programming enable voltage (VPP) during Flash programming, for parts that require 12-volt VPP.

XTAL1:

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2:

Output from the inverting oscillator amplifier.

Oscillator Characteristics:

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figs 6.2.3. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 6.2.4.There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.

[image: image5.png]Figure 1. Oscillator Connections

1 xTaL2

]

=
i xTaLt

e

1 aw

Note: C1,C2 =30 pF & 0 pF for Crystals
=40 pF 10 pF for Caramic Resonators

[image: image6.png]Figure 2. Exteral Clock Drive Configuration

No ———— xmaw
EXTERNAL

OSCILLATOR ———— XTALY
SIGNAL

aND

 Fig Oscillator Connections Fig External Clock Drive Configuration

Notes:

1. Under steady state (non-transient) conditions, IOL must be externally

 limited as follows:

· Maximum IOL per port pin: 10 mA

· Maximum IOL per 8-bit port: Port 0: 26 mA

· Ports 1, 2, 3: 15 mA

· Maximum total IOL for all output pins: 71 mA

· If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

2. Minimum VCC for Power-down is 2V.

AC CHARACTERISTICS

Under operating conditions, load capacitance for Port 0, ALE/PROG, and PSEN = 100pF; load capacitance for all other outputs = 80pF

 Hardware

 There are a variety of peripheral devices that are often integrated on a micro controller chip. Many of these peripheral devices are the same as those that may be included in a microprocessor while those that make a micro controller distinguishable from a microprocessor are the ones that deal with external interface and communication. Here is a brief description of the hardware components of a micro controller:

1. Interrupt Handlers

 An interrupt is an event (internal or external to the chip) that occurs asynchronously with other functions and requires immediate response from the micro controller. Such events can be detected if the micro controller constantly or periodically monitors their status. But such polling techniques could slow the operation of other functions. To detect and prioritize interrupts, interrupt handling hardware is often included on the micro controller chip. Interrupt handlers usually provide multiple interrupt inputs, with different levels of priority and the means to mask certain interrupts. An example of interrupts is power failure in a hand held thermometer. Should the battery voltage drop below acceptable limits at any time, the device should inform the user of the condition and possibly perform preventive measures before returning control to the interrupted program.

2. I/O ports

 I/O ports provide means of digital data transfer to and from the micro controller. I/O ports are usually configured as a parallel interface where digital data can be simultaneously written to or read from a port address. In micro controller applications it is often possible to use the I/O ports with bit wise instructions. I/O ports can be used for crude user interface functions such as reading of switch settings or displaying some results using LED’s. It is also possible to use I/O ports for more sophisticated interface options. An I2C interface, which is a serial communications protocol, can be emulated using two bits of an I/O port.

3. Digital to Analog Converters (DAC)

 DAC’s provide continuous time output capability by converting a digital word to a proportional voltage or current. Different DAC architectures provide trade-offs in design complexity, resolution, accuracy, and speed. Creating the audio waveforms from the data in a high-end digital audio player requires a high resolution DAC with moderate conversion rate, while creating the waveforms to drive an analog display requires lower resolution at higher conversion rate.

4. Analog to Digital Converters (ADC)

 ADC’s are used to enable the micro controller to receive continuous time signals representing physical parameters. Temperature, sound, light intensity, color, liquid or gas flow, position and speed are all examples physical parameters that may be used by a micro controller. These data are first converted to a voltage or current waveform using appropriate transducers. It is then the function of the ADC to convert the voltage or current to digital form for processing by the microprocessor. There are different types of ADC’s and the choice depends on the required accuracy, sampling rate and cost.

A) Flash Converters

 In a flash ADC multiple analog comparators are used to evaluate the analog input voltage. All the bits of the output digital word are evaluated at once. The only delay in this conversion is that of the analog comparators and the logic used to encode the digital word. This is therefore the fastest method of analog to digital conversion. The resolution is usually limited to 8-bits because of the large number of comparators needed. High speed video processing is an application where flash converters are well suited.

b) Successive Approximation Register (SAR)

 In this type of converter, the digital output is evaluated one-bit at a time starting at the most significant bit. This type of ADC provides good resolution (10-12 bits) at relatively fast conversion rate. For a 10-bit conversion, 10 clock cycles are needed, where the maximum clock rate depends on the comparator settling and digital delays in the SAR circuit. The ADC circuit requires a high speed precise DAC. This is the most commonly used ADC in micro controller applications.

c) Dual Slope ADC

 For high resolution conversions dual slope converters provide a reasonable tradeoff at the expense of conversion speed. The conversion of an analog input to digital is performed by first converting the input voltage to time, and then measuring time using a clock. Because of the architecture of dual slope converters, non-ideal behavior of analog circuits is avoided and high resolutions (12-16 bits) and accuracies are achievable. This approach is most useful in applications where precise measurements of slow signals are needed. Medical instrumentation and monitoring is an area that fits these criteria.

d) Over-sampling ADC

 Precision analog circuits used in conventional ADC’s are sometimes difficult to implement in micro controller integrated circuits because of the highly noisy environment and process limitations associated with high levels of integration. The alternative is using over-sampling converters which can use simple but robust analog circuits along with fast and complex digital circuits. These converters sample the data with low resolution at much higher frequency than what is needed based on Nyquist theorem and use feedback to improve the effective resolution. Because of the required over-sampling, the effective sampling rate is limited. Digitization of voice-band signals in telecommunication systems is often performed using over-sampling techniques.

5. Serial Communication Interface

 Through the use of serial communication the micro controller can be used with various system level peripherals. Here is a brief description of some the serial communication peripherals commonly integrated on a micro controller chip.

a SFRs:

 The 8051 is a flexible micro controller with a relatively large number of modes of operations. Your program may inspect and/or change the operating mode of the 8051 by manipulating the values of the 8051's Special Function Registers (SFRs). SFRs are accessed as if they were normal Internal RAM. The only difference is that Internal RAM is from address 00h through 7Fh whereas SFR registers exist in the address range of 80h through FFh. Each SFR has an address (80h through FFh) and a name. The following chart provides a graphical presentation of the 8051's SFRs, their names, and their address.

 [image: image7.png]sol 1o Tsp T omT ool T T T roon]
Fad IETE TN TN T TN T]

Blue hackaround are 170 port SFR:
e Tou Fackground ave coltrol SFRs
Green blackgraund ave chen SERs

Tab Chart of 8051 SFRs and their addresses

As we can see, although the address range of 80h through FFh offer 128 possible addresses, there are only 21 SFRs in a standard 8051. All other addresses in the SFR range (80h through FFh) are considered invalid. Writing to or reading from these registers may produce undefined values or behavior.

SFR Types

As mentioned in the chart itself, the SFRs that have a blue background are SFRs related to the I/O ports. The 8051 has four I/O ports of 8 bits, for a total of 32 I/O lines. Whether a given I/O line is high or low and the value read from the line are controlled by the SFRs in green. The SFRs with yellow backgrounds are SFRs which in some way control the operation or the configuration of some aspect of the 8051.

For example, TCON controls the timers, SCON controls the serial port. The remaining SFRs, with green backgrounds, are "other SFRs." These SFRs can be thought of as auxiliary SFRs in the sense that they don't directly configure the 8051 but obviously the 8051 cannot operate without them. For example, once the serial port has been configured using SCON, the program may read or write to the serial port using the SBUF register.

SFR Descriptions

This section will endeavor to quickly overview each of the standard SFRs found in the above SFR chart map. It is not the intention of this section to fully explain the functionality of each SFR--this information will be covered in separate chapters of the tutorial. This section is to just give you a general idea of what each SFR does.

P0 (Port 0, Address 80h, Bit-Addressable): This is input/output port 0. Each bit of this SFR corresponds to one of the pins on the microcontroller. For example, bit 0 of port 0 is pin P0.0, bit 7 is pin P0.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to a low level.
SP (Stack Pointer, Address 81h): This is the stack pointer of the microcontroller. This SFR indicates where the next value to be taken from the stack will be read from in Internal RAM.

If you push a value onto the stack, the value will be written to the address of SP + 1. That is to say, if SP holds the value 07h, a PUSH instruction will push the value onto the stack at address 08h. This SFR is modified by all instructions which modify the stack, such as PUSH, POP, LCALL, RET, RETI, and whenever interrupts are provoked by the microcontroller.

DPL/DPH (Data Pointer Low/High, Addresses 82h/83h): The SFRs DPL and DPH work together to represent a 16-bit value called the Data Pointer. The data pointer is used in operations regarding external RAM and some instructions involving code memory. Since it is an unsigned two-byte integer value, it can represent values from 0000h to FFFFh (0 through 65,535 decimal).

PCON (Power Control, Addresses 87h): The Power Control SFR is used to control the 8051's power control modes. Certain operation modes of the 8051 allow the 8051 to go into a type of "sleep" mode which requires much less power.

These modes of operation are controlled through PCON. Additionally, one of the bits in PCON is used to double the effective baud rate of the 8051's serial port.

TCON (Timer Control, Addresses 88h, and Bit-Addressable): The Timer Control SFR is used to configure and modify the way in which the 8051's two timers operate. This SFR controls whether each of the two timers is running or stopped and contains a flag to indicate that each timer has overflowed. Additionally, some non-timer related bits are located in the TCON SFR. These bits are used to configure the way in which the external interrupts are activated and also contain the external interrupt flags which are set when an external interrupt has occurred.

TMOD (Timer Mode, Addresses 89h): The Timer Mode SFR is used to configure the mode of operation of each of the two timers. Using this SFR your program may configure each timer to be a 16-bit timer, an 8-bit auto reload timer, a 13-bit timer, or two separate timers. Additionally, you may configure the timers to only count when an external pin is activated or to count "events" that are indicated on an external pin.

TL0/TH0 (Timer 0 Low/High, Addresses 8Ah/8Bh): These two SFRs, taken together, represent timer 0. Their exact behavior depends on how the timer is configured in the TMOD SFR; however, these timers always count up. What is configurable is how and when they increment in value.
TL1/TH1 (Timer 1 Low/High, Addresses 8Ch/8Dh): These two SFRs, taken together, represent timer 1. Their exact behavior depends on how the timer is configured in the TMOD SFR; however, these timers always count up. What is configurable is how and when they increment in value.

P1 (Port 1, Address 90h, Bit-Addressable): This is input/output port 1. Each bit of this SFR corresponds to one of the pins on the microcontroller. For example, bit 0 of port 1 is pin P1.0, bit 7 is pin P1.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to a low level.

SCON (Serial Control, Addresses 98h, Bit-Addressable): The Serial Control SFR is used to configure the behavior of the 8051's on-board serial port. This SFR controls the baud rate of the serial port, whether the serial port is activated to receive data, and also contains flags that are set when a byte is successfully sent or received.

SBUF (Serial Control, Addresses 99h): The Serial Buffer SFR is used to send and receive data via the on-board serial port. Any value written to SBUF will be sent out the serial port's TXD pin. Likewise, any value which the 8051 receives via the serial port's RXD pin will be delivered to the user program via SBUF. In other words, SBUF serves as the output port when written to and as an input port when read from.

P2 (Port 2, Address A0h, Bit-Addressable): This is input/output port 2. Each bit of this SFR corresponds to one of the pins on the microcontroller. For example, bit 0 of port 2 is pin P2.0, bit 7 is pin P2.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to a low level.

IE (Interrupt Enable, Addresses A8h): The Interrupt Enable SFR is used to enable and disable specific interrupts. The low 7 bits of the SFR are used to enable/disable the specific interrupts, where as the highest bit is used to enable or disable ALL interrupts.

Thus, if the high bit of IE is 0 all interrupts are disabled regardless of whether an individual interrupt is enabled by setting a lower bit.

P3 (Port 3, Address B0h, Bit-Addressable): This is input/output port 3. Each bit of this SFR corresponds to one of the pins on the microcontroller. For example, bit 0 of port 3 is pin P3.0, bit 7 is pin P3.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to a low level.

IP (Interrupt Priority, Addresses B8h, Bit-Addressable): The Interrupt Priority SFR is used to specify the relative priority of each interrupt. On the 8051, an interrupt may either be of low (0) priority or high (1) priority. An interrupt may only interrupt interrupts of lower priority. For example, if we configure the 8051 so that all interrupts are of low priority except the serial interrupt, the serial interrupt will always be able to interrupt the system, even if another interrupt is currently executing. However, if a serial interrupt is executing no other interrupt will be able to interrupt the serial interrupt routine since the serial interrupt routine has the highest priority.

PSW (Program Status Word, Addresses D0h, Bit-Addressable): The Program Status Word is used to store a number of important bits that are set and cleared by 8051 instructions. The PSW SFR contains the carry flag, the auxiliary carry flag, the overflow flag, and the parity flag. Additionally, the PSW register contains the register bank select flags which are used to select which of the "R" register banks are currently selected.
ACC (Accumulator, Addresses E0h, Bit-Addressable): The Accumulator is one of the most used SFRs on the 8051 since it is involved in so many instructions. The Accumulator resides as an SFR at E0h, which means the instruction MOV A, #20h is really the same as MOV E0h,#20h. However, it is a good idea to use the first method since it only requires two bytes whereas the second option requires three bytes.

B (B Register, Addresses F0h, Bit-Addressable): The "B" register is used in two instructions: the multiply and divide operations. The B register is also commonly used by programmers as an auxiliary register to temporarily store values.

Basic Registers

The Accumulator

The Accumulator, as its name suggests, is used as a general register to accumulate the results of a large number of instructions. It can hold an 8-bit (1-byte) value and is the most versatile register the 8051 has due to the shear number of instructions that make use of the accumulator. More than half of the 8051’s 255 instructions manipulate or use the accumulator in some way. For example, if we add the number 10 and 20, the resulting 30 will be stored in the accumulator.

The "R" registers

The "R" registers are a set of eight registers that are named R0, R1, etc. up to and including R7. These registers are used as auxiliary registers in many operations. To continue with the above example, perhaps you are adding 10 and 20. The original number 10 may be stored in the Accumulator whereas the value 20 may be store

in, say, register R4. To process the addition you would execute the command:

ADD A,R4 After executing this instruction the Accumulator will contain the value 30.

The "R" registers as very important auxiliary, or "helper", registers. The Accumulator alone would not be very useful if it were not for these "R" registers. The "R" registers are also used to temporarily store values.

MOV A, R3; Move the value of R3 into the accumulator

ADD A, R4; Add the value of R4

MOV R5, A; Store the resulting value temporarily in R5

MOV A, R; Move the value of R1 into the accumulator

ADD A,R2 ;Add the value of R2

SUBB A,R5 ;Subtract the value of R5 (which now contains R3 + R4)

In the above example we used R5 to temporarily hold the sum of R3 and R4. Of course, this isn’t the most efficient way to calculate (R1+R2) - (R3 +R4) but it does illustrate the use of the "R" registers as a way to store values temporarily.

The "B" Register

The "B" register is very similar to the Accumulator in the sense that it may hold an 8-bit (1-byte) value. The "B" register is only used by two 8051 instructions: MUL AB and DIV AB. Thus, if you want to quickly and easily multiply or divide A by another number, you may store the other number in "B" and make use of these two instructions.

Aside from the MUL and DIV an instruction, the “B” register is often used as yet another temporary storage register much like a ninth "R" register.

The Data Pointer (DPTR)

The Data Pointer (DPTR) is the 8051’s only user-accessible 16-bit (2-byte) register. The Accumulator, "R" registers, and "B" register are all 1-byte values. DPTR, as the name suggests, is used to point to data. It is used by a number of commands which allow the 8051 to access external memory. When the 8051 accesses external memory it will access external memory at the address indicated by DPTR. While DPTR is most often used to point to data in external memory, many programmers often take advantage of the fact that it’s the only true 16-bit register available. It is often used to store 2-byte values which have nothing to do with memory locations.

The Program Counter (PC)

The Program Counter (PC) is a 2-byte address which tells the 8051 where the next instruction to execute is found in memory.

When the 8051 is initialized PC always starts at 0000h and is incremented each time an instruction is executed. It is important to note that PC isn’t always incremented by one. Since some instructions require 2 or 3 bytes the PC will be incremented by 2 or 3 in these cases. The Program Counter is special in that there is no way to directly modify its value. That is to say, you can’t do something like PC=2430h. On the other hand, if you execute LJMP 2340h you’ve effectively accomplished the same thing. It is also interesting to note that while you may change the value of PC (by executing a jump instruction, etc.) there is no way to read the value of PC. That is to say, there is no way to ask the 8051.

Events that Trigger Interrupts

The 8051 can be configured so that any of the following events will cause an interrupt:

• Timer 0 Overflow.

• Timer 1 Overflow.

• Reception/Transmission of Serial Character.

• External Event 0.

• External Event 1.

In other words, we can configure the 8051 so that when Timer 0 overflows or when a character is sent/received, the appropriate interrupt handler routines are called. Obviously we need to be able to distinguish between various interrupts and executing different code depending on what interrupt was triggered. This is accomplished by jumping to a fixed address when a given interrupt occurs.

[image: image8.png]Tnterrupt Flag | Interrupt Handler Address
External 0 TEQ 0003
Timer 0 TFO 000Bh
External T TET 0013h
Timer 1 TFT 001N,
Serial RIAT 0023h

Tab Interrupt Handler Address and the Interrupts associated to them

 By consulting the above chart we see that whenever Timer 0 overflows (i.e., the TF0 bit is set), the main program will be temporarily suspended and control will jump to 00BH. It is assumed that we have code at address 0003H that handles the situation of Timer 0 overflowing.
Setting up Interrupts

 By default at power up, all interrupts are disabled. This means that even if, for example, the TF0 bit is set, the 8051 will not execute the interrupt. Your program must specifically tell the 8051 that it wishes to enable interrupts and specifically which interrupts it wishes to enable. Your program may enable and disable interrupts by modifying the IE SFR (A8h):

[image: image9.png]Bit| Name | Bit Address Explanation of Function
7] EA AFh___| Giobal Interrupt Enable/Disable

6] - AER [Undefined

51 - ADh [Undefined

4] Es ACh [Enable Serial Intermupt

3B ABh | Enable Timer 1 Interrupt

2 [Ext AAh [Enable External 1 Interrupt

T ET ASh [Enable Timer 0 Inferrupt

0] X0 'ABh [Enable External O Interrupt

Tab Setting up Interrupts

For example, to enable Timer 1 Interrupt, you would execute either:

MOV IE, #08h || SETB ET1

Both of the above instructions set bit 3 of IE, thus enabling Timer 1 Interrupt. Once Timer 1 Interrupt is enabled, whenever the TF1 bit is set, the 8051 will automatically put "on hold" the main program and execute the Timer 1 Interrupt Handler at address 001Bh. However, before Timer 1 Interrupt (or any other interrupt) is truly enabled, you must also set bit 7 of IE. Bit 7, the Global Interrupt Enable/Disable, enables or disables all interrupts simultaneously. That is to say, if bit 7 is cleared then no interrupts ill occur, even if all the other bits of IE are set. Setting bit 7 will enable all the interrupts that have been selected by setting other bits in IE. This is useful in program execution if you have time-critical code that needs to execute.

 In this case, you may need the code to execute from start to finish without any interrupt getting in the way. Accomplish this you can simply clear bit 7 of IE (CLR EA) and then set it after your timecriticial code is done. So, to sum up what has been stated in this section, to enable the Timer 1 Interrupt the most common approach is to execute the following two Instructions:

SETB ET1

SETB EA

Thereafter, the Timer 1 Interrupt Handler at 01Bh will automatically be called whenever the TF1 bit is set (upon Timer 1 overflow).

Interrupt Priorities

The 8051 offer two levels of interrupt priority: high and low. By using interrupt priorities you may assign higher priority to certain interrupt conditions. For example, you may have enabled Timer 1 Interrupt, which is automatically called every time Timer 1 overflows. Additionally, we may have enabled the Serial Interrupt, which is called every time a character is received via the serial port. However, you may consider that receiving a character is much more important than the timer interrupt. In this case, if Timer 1 Interrupt is already executing you may wish that the serial interrupt itself interrupts the Timer 1 Interrupt.

When the serial interrupt is complete, control passes back to Timer 1 Interrupt and finally back to the main program. You may accomplish this by assigning a high priority to the Serial Interrupt and a low priority to the Timer 1 Interrupt. Interrupt priorities are controlled by the IP SFR (B8h).

The IP SFR has the following format:

[image: image10.png]Bit | Name |Bit Address | Explanation of Function
7 - - Undefined

& B B Undefined

5 - B Undefined

4 [Ps BCh [Serial Interrupt Priory

3 | prr BB [Timer 1 Interrupt Priorty

2 | Pt BAN __[External 1 Interrupt Priortty

1 P10 B9h __[Timer 0 Interrupt Priority

0 | PX0 BBh ___[External 0 Interrupt Prioriy

Tab Interrupt Priorities

Bit Name Bit Address Explanation of Function

7 - - Undefined

6 - - Undefined

5 - - Undefined

4 PS BCh Serial Interrupt Priority

3 PT1 BBh Timer 1 Interrupt Priority

2 PX1 BAh External 1 Interrupt Priorities

1 PT0 B9h Timer 0 Interrupt Priority

0 PX0 B8h External 0 Interrupt Priority

When considering interrupt priorities, the following rules apply:

• Nothing can interrupt a high-priority interrupt-- not even another high priority interrupt.

• A high-priority interrupt may interrupt a low priority interrupt.

• A low-priority interrupt may only occur if no other interrupt is already executing.

• If two interrupts occur at the same time, the interrupt with higher priority will execute first. If both interrupts are of the same priority the interrupt, which is serviced first by polling sequence, will be executed first.

When an interrupt is triggered, the following actions are taken automatically by the Micro controller:

• The current Program Counter is saved on the stack, low-byte first.

• Interrupts of the same and lower priority are blocked.

• In the case of Timer and External interrupts, the corresponding interrupt flag is set.

• Program execution transfers to the corresponding interrupt handler vector address.

• The Interrupt Handler Routine executes. Take special note of the third step: If the Interrupt being handled is a Timer or External interrupt; the micro controller automatically clears the interrupt flag before passing control to your interrupt handler routine.

An interrupt ends when your program executes the RETI instruction. When the RETI Instruction is executed the micro controller takes the following actions:

• Two bytes are popped off the stack into the Program Counter to restore normal program Execution.

• Interrupt status is restored to its pre-interrupt status.

Serial Interrupts

Serial Interrupts are slightly different than the rest of the interrupts. This is due to the fact that there is two interrupt flags: RI and TI. If either flag is set, a serial interrupt is triggered. As you will recall from the section on the serial port, the RI bit is set when a byte is received by the serial port and the TI bit is set when a byte has been sent. This means that when your serial interrupt is executed, it may have been triggered because the RI flag was set or because the TI flag was set-- or because both flags were set.

Thus, the routine must check the status of these flags to determine that action is appropriate. Also, since the 8051 does not automatically clear the RI and TI flags

You must clear these bits in your interrupt handler.

INT_SERIAL: JNB RI, CHECK_TI; if the RI flag is not set, we jump to check TI

MOV A, SBUF; If we got to this line, it’s because the RI bit *was* set

CLR RI; Clear the RI bit after we’ve processed it

CHECK_TI: JNB TI, EXIT_INT; if the TI flag is not set, we jump to the exit point

CLR TI; Clear the TI bit) Universal Asynchronous Receive Transmit (UART)

 The UART provides means of asynchronous serial communication between devices or systems. It is essentially a parallel to serial and serial to parallel converter that conforms to a certain protocol for coding the data and interface specifications.

b) Serial Peripheral Interface (SPI)

 SPI is used for synchronous serial communication. Because of its synchronous nature it uses a separate connection for clock. Additionally it requires a transmit data, receive data, and enable. SPI interfaces run as fast as 10MHz,which is why high density EEPROM are increasingly using this serial interface method.

c) I2C

 I2C uses a bi-directional 3-wire (including ground) bus for communication between multiple devices. Communication protocol is based on a master/slave relationship. The maximum number of devices is limited by the 16K address space of the protocol and the maximum allowable capacitance on the lines (400pF). The original standard had a 100 kHz maximum clock speed. The low pin count associated with the I2C has made it the industry standard for serial interface to EEPROM chips. The drawback with I2C interface is its inherent intolerance to noise. Enhanced I2C schemes extend the address space to about 512K and the maximum clock speed to about 400kHz.
e) Other serial interface standards

 Other serial interfaces have been developed that specialize in certain functionality. Controller Area Network (CAN) was designed to operate in noisy environments such as in automobiles and industrial applications. Universal Serial Bus (USB) and IEEE 1394 are two serial interface standards that address interface speed issues. USB 2.0 supports data rates as high as 480 Mbps and IEEE 1394b supports data rates greater than 1Gbps.

6. Timers and Clocks
a) General Purpose Timer : A free running timer can be used to keep track of time of day and the date. A timer can also be used for precise measurement of time. For example, using an onboard timer and digital I/O, A dual slope ADC can be externally implemented using few analog components where the timer is used to set the integration period and measure the de-integration time.

b) Watch Dog Timer (WDT) : A timer can be used to verify proper operation of the CPU. This is typically done using a WDT. WDT operates by continuously incrementing a count value stored in the WDT register. If the value in the WDT register reaches a preset final count, an interrupt is generated which indicates a fault condition. During normal operation, the software should prevent the WDT register from reaching its final count by periodically resetting it to zero. For development or testing activities the WDT should be disabled.

c) Real Time Clock (RTC) : RTC is a programmable timer that is used to perform a certain task at regular intervals. For example to sample an analog waveform at regular intervals with an Analog to Digital Converter, an RTC can be programmed to generate interrupts at the sampling rate. The interrupt service routine will then activate the ADC and after completion of each conversion stores the result in an array.

7. Memory : Most often all the memory required for the operation of a micro controller is included on board. Program is usually stored in non-volatile memory such as ROM. In that situation the program has to be fully tested before committing it to silicon. Micro controllers are usually equipped with an emulation mode that enables access to external memory. This mode of operation can be used for program development or debugging. Other forms of memory used in micro controllers include EEPROM and RAM. EEPROM is used for non-volatile storage of variables such as calibration data and system settings. RAM is used for temporary storage of variables.

External Device Drivers

a) LCD Interface: Liquid Crystal Display drivers consisting of logic, signal level generation and row and column drivers may be included on the micro controller chip. LCD interface usually involves a large number of pins for the LCD row and column drivers. Including LCD driver on the chip results in a significant increase in the package pin count.

b) LED Interface: LED’s are used for status indicator or signal transmission. Special high current drivers are needed to handle the large current required by the LED. Integrating the driver on the micro controller simplifies system level design but the large currents can complicate the design of the chip.

FEATURES OF 8051 MICRO CONTROLLER

The features of the micro controller are as follows:

• Compatible with MCS-51 ™ Products

• 4K Bytes of In-System Reprogrammable Flash Memory

– Endurance: 1,000 Write/Erase Cycles

• Fully Static Operation: 0 Hz to 24 MHz

• Three-level Program Memory Lock

• 128 x 8-bit Internal RAM

• 32 Programmable I/O Lines

• Two 16-bit Timer/Counters

• Six Interrupt Sources

• Programmable Serial Channel

• Low-power Idle and Power-down Modes

[image: image11.png]ne

EXTERNAL
OSCILLATOR
SIGNAL

XLt

Figure. External Clock Drive Configuration

Power-down Mode

 In the power-down mode, the oscillator is stopped, and the instruction that invokes power-down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the power-down mode is terminated. The only exit from power-down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before V CC is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.

Program Memory Lock Bits

 On the chip are three lock bits that can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the table below. When lock bit 1 is programmed, the logic level at the EA pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value, and holds that value until reset is activated. It is necessary that the latched value of EA be in agreement with the current logic level at that pin in order for the device to function properly.

INTERRUPT PROGRAMMING WITH 8051

 An interrupt is an external or internal event that interrupts the micro controller to inform it that a device needs its service. In the interrupt method, whenever any device needs its service, the device notifies the micro controller by sending it an interrupt signal. Upon receiving an interrupt signal, the micro controller interrupts whatever it is doing and serves the device. For every interrupt, there must be an service routine called as interrupt service routine (ISR) or interrupt handler. There is a fixed location in memory that holds the address of its ISR. The group of memory locations set aside to hold the addresses of ISRs is called the vector table.

Steps in executing an interrupt

 Upon activation of an interrupt in a micro controller, it follows the following steps:

It finishes the instruction it is executing and saves the address of the next instruction on the stack.

It also saves the current status of all interrupts internally.

It jumps to a fixed location in memory called vector table that holds the address of the interrupt service routine.

The micro controller gets the address of the ISR from the interrupt vector table and jumps to it. It starts to execute the interrupt service subroutine until it reaches the last instruction of the subroutine, which is RETI (Return from Interrupt).Upon executing the RETI instruction, the micro controller returns to the place where it was interrupted. First, it gets the program counter (PC) address from the stack by popping the top two bytes of the stack into the PC. Then it starts execute from that address.

SIX INTERRUPTS IN 8051

 There are really five interrupts available to the user in the 8051 but many manufacturer’s data sheets state that there are six interrupts since they include RESET.

RESET: When the reset pin is activated, the 8051 jumps to address location 0000. This is the power-up reset.

Two interrupts are set aside for the timers: one for timer0 and one for timer1. Memory locations 000BH and 001BH in the interrupt vector table belong to timer0 and timer1, respectively.

Two interrupts are set aside for hardware external hardware interrupts. Pin numbers 12 (P3.2) and 13 (P3.3) in port34 are for the external hardware interrupts INT0 and INT1, respectively. Memory locations 0003H and 0013H in the interrupt vector table are assigned to INT0 and INT1, respectively.

Serial communication has a single interrupt that belongs to both receive and transfer. The interrupt vector table location 0023H belongs to this interrupt.

Table 1: Interrupt Vector Table for the 8051

	INTERRUPT
	ROM Locatio (Hex)
	Pin

	Reset
	0000
	9

	interrupt 0 (INT0)
	0003
	P3.2 (12)

	Timer 0
	000B
	

	interrupt 1 (INT1)
	0013
	P3.3 (13)

	Timer 1
	001B
	

	SerialCOMinterrupt
	0023
	

Enabling and disabling an interrupt

 Upon rest, all interrupts are disabled (masked), meaning that none will be responded to by the micro controller if they are activated. The interrupts must be enabled by software in order for the micro controller to respond to them. There is a register called INTERRUPT ENABLE (IE) that is responsible for enabling and disabling the interrupts.

IE (Interrupt Enable) Register

1. EA IE.7 Disables all interrupts. If EA=0, no interrupt is acknowledged. If ea=1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.

2. -- IE.6 Not implemented, reserved for future use.*

3. ET2 IE.5 Enables or disables timer2 overflow or capture interrupt.

4. ES IE.4 Enables or disables the serial port interrupt.

5. ET1 IE.3 Enables or disables timer1 overflow interrupt.

6. EX1 IE.2 Enables or disables external interrupt1.

7. ET0 IE.1 Enables or disables timer0 overflow interrupt.

6. EX0 IE.0 Enables or disables external interrupt0.

NOTE: * User software should not write 1s to reserved bits. These bits may be used in future Flash micro controllers to invoke new features.

Steps in enabling an interrupt

 To enable an interrupt, we take the following steps:

Bit D7 of the TE register must be set to high to allow the rest of register to take effect.

If EA=1, interrupts are enabled and will be responded to if their corresponding bits in IE are high. If EA=0, no interrupt will be responded to, even if the associated bit in the IE register is high.

DC Motor:

DC motors are configured in many types and sizes, including brush less, servo, and gear motor types. A motor consists of a rotor and a permanent magnetic field stator. The magnetic field is maintained using either permanent magnets or electromagnetic windings. DC motors are most commonly used in variable speed and torque.

Motion and controls cover a wide range of components that in some way are used to generate and/or control motion. Areas within this category include bearings and bushings, clutches and brakes, controls and drives, drive components, encoders and resolves, Integrated motion control, limit switches, linear actuators, linear and rotary motion components, linear position sensing, motors (both AC and DC motors), orientation position sensing, pneumatics and pneumatic components, positioning stages, slides and guides, power transmission (mechanical), seals, slip rings, solenoids, springs.

 Motors are the devices that provide the actual speed and torque in a drive system. This family includes AC motor types (single and multiphase motors, universal, servo motors, induction, synchronous, and gear motor) and DC motors (brush less, servo motor, and gear motor) as well as linear, stepper and air motors, and motor contactors and starters.

 In any electric motor, operation is based on simple electromagnetism. A current-carrying conductor generates a magnetic field; when this is then placed in an external magnetic field, it will experience a force proportional to the current in the conductor, and to the strength of the external magnetic field. As you are well aware of from playing with magnets as a kid, opposite (North and South) polarities attract, while like polarities (North and North, South and South) repel. The internal configuration of a DC motor is designed to harness the magnetic interaction between a current-carrying conductor and an external magnetic field to generate rotational motion.

Let's start by looking at a simple 2-pole DC electric motor (here red represents a magnet or winding with a "North" polarization, while green represents a magnet or winding with a "South" polarization).

[image: image12.png]

Every DC motor has six basic parts -- axle, rotor (a.k.a., armature), stator, commutator, field magnet(s), and brushes. In most common DC motors (and all that Beamers will see), the external magnetic field is produced by high-strength permanent magnets1. The stator is the stationary part of the motor -- this includes the motor casing, as well as two or more permanent magnet pole pieces. The rotor (together with the axle and attached commutator) rotates with respect to the stator. The rotor consists of windings (generally on a core), the windings being electrically connected to the commutator. The above diagram shows a common motor layout -- with the rotor inside the stator (field) magnets.

 The geometry of the brushes, commutator contacts, and rotor windings are such that when power is applied, the polarities of the energized winding and the stator magnet(s) are misaligned, and the rotor will rotate until it is almost aligned with the stator's field magnets. As the rotor reaches alignment, the brushes move to the next commutator contacts, and energize the next winding. Given our example two-pole motor, the rotation reverses the direction of current through the rotor winding, leading to a "flip" of the rotor's magnetic field, and driving it to continue rotating.

In real life, though, DC motors will always have more than two poles (three is a very common number). In particular, this avoids "dead spots" in the commutator. You can imagine how with our example two-pole motor, if the rotor is exactly at the middle of its rotation (perfectly aligned with the field magnets), it will get "stuck" there. Meanwhile, with a two-pole motor, there is a moment where the commutator shorts out the power supply (i.e., both brushes touch both commutator contacts simultaneously). This would be bad for the power supply, waste energy, and damage motor components as well. Yet another disadvantage of such a simple motor is that it would exhibit a high amount of torque” ripple" (the amount of torque it could produce is cyclic with the position of the rotor).

 [image: image13.png]

So since most small DC motors are of a three-pole design, let's tinker with the workings of one via an interactive animation (JavaScript required):

	[image: image14.png]

You'll notice a few things from this -- namely, one pole is fully energized at a time (but two others are "partially" energized). As each brush transitions from one commutator contact to the next, one coil's field will rapidly collapse, as the next coil's field will rapidly charge up (this occurs within a few microsecond). We'll see more about the effects of this later, but in the meantime you can see that this is a direct result of the coil windings' series wiring:

[image: image15.png]

There's probably no better way to see how an average dc motor is put together, than by just opening one up. Unfortunately this is tedious work, as well as requiring the destruction of a perfectly good motor.

This is a basic 3-pole dcmotor, with 2 brushes and three commutator contacts.

PWM technique:

 A pulse width modulator (PWM) is a device that may be used as an efficient light dimmer or DC motor speed controller. A PWM works by making a square wave with a variable on-to-off ratio; the average on time may be varied from 0 to 100 percent. In this manner, a variable amount of power is transferred to the load. The main advantage of a PWM circuit over a resistive power controller is the efficiency, at a 50% level, the PWM will use about 50% of full power, almost all of which is transferred to the load, a resistive controller at 50% load power would consume about 71% of full power, 50% of the power goes to the load and the other 21% is wasted heating the series resistor. Load efficiency is almost always a critical factor in solar powered and other alternative energy systems. One additional advantage of pulse width modulation is that the pulses reach the full supply voltage and will produce more torque in a motor by being able to overcome the internal motor resistances more easily. Finally, in a PWM circuits, common small potentiometers may be used to control a wide variety of loads whereas large and expensive high power variable resistors are needed for resistive controllers.

 Pulse width modulation consists of three signals, which are modulated by a square wave. The duty cycle or high time is proportional to the amplitude of the square wave. The effective average voltage over one cycle is the duty cycle times the peak-to-peak voltage. Thus, the average voltage follows a square wave. In fact, this method depends on the motor inductance to integrate out the PWM frequency.

 [image: image16.png]

A very simply off line motor drive can be built using a TRIAC and a control IC. This circuit can control the speed of a universal motor. A universal motor is a series wound DC motor. The circuit uses phase angle control to vary the effective motor voltage.

[image: image17.png]

A micro controller can also be used to control a triac. A PNP of transistor may be used to drive the triac. As shown, the MCU ground is connected to the AC line. The gate trigger current is lower if instead the MCU 5V supply is connected to the AC line. The MCU must have some means of detecting zero crossing and a timer, which can control the triac firing. A general-purpose timer with one input capture and one output compare makes an ideal phase angle control.

L293D IC (DC MOTOR DRIVER)

[image: image18.jpg]

[image: image19.png]PIN CONNECTIONS (Top i)

evaLe 1 caf
et 1 i
oursur 1 c1f
o o
oo
oo
oo 1
oureur 2 oof
et 2 f
v o

)
is
18
1
15
18
1
1
2
o 1

Fo ves.
D newr 4
D oursur 4
fo oo
fo oo
fo oo
D oo
D oureur 3
D w5
o enamie 2

Sotrzetes)

oy

Powerap(izezsa)

s
e
vy

FIGURE: L293 & L293D Driver ICs

The L293 and L293D are quadruple high-current half-H drivers. The L293 is designed to provide bidirectional drive currents of up to 1 A at voltages from 4.5 V to 36 V. The L293D is designed to provide bidirectional drive currents of up to 600-mA at voltages from 4.5 V to 36 V. Both devices are designed to drive inductive loads such as relays, solenoids, dc and bipolar stepping motors, as well as other high-current/high-voltage loads in positive-supply applications. All inputs are TTL compatible. Each output is a complete totem-pole drive circuit, with a Darlington transistor sink and a pseudo-Darlington source. Drivers are enabled in pairs, with drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4 enabled by 3,4EN.

When an enable input is high, the associated drivers are enabled and their outputs are active and in phase with their inputs. When the enable input is low, those drivers are disabled and their outputs are off and in the high-impedance state. With the proper data inputs, each pair of drivers forms a full-H (or bridge) reversible drive suitable for solenoid or motor applications. On the L293, external high-speed output clamp diodes should be used for inductive transient suppression. A VCC1 terminal, separate from VCC2, is provided for the logic inputs to minimize device power dissipation. The L293and L293D are characterized for operation from 0°C to 70°C.

[image: image20.jpg]How to controll DC motors with an H-Bridge IC

=
g
g
>
-
aesz)
4+
=z
g
g
@

Pin5 & e ok QPin7
ToVa+ 8 ap®
ov o g A O ov

Both inputs low - motor halt
First output high, second output low - motor forward
First output low, second output high - motor reverse
Both inputs high - motor halt

[image: image21.emf]
RESISTORS: -

A Resistor is a heat-dissipating element and in the electronic circuits it is mostly used for either controlling the current in the circuit or developing a voltage drop across it, which could be utilized for many applications. There are various types of resistors, which can be classified according to a number of factors depending upon:

· Material used for fabrication

· Wattage and physical size

· Intended application

· Ambient temperature rating

· Cost

Basically the resistor can be split in to the following four parts from the construction view point.

(1) Base

(2) Resistance element

(3) Terminals

 (4) Protective means.

The following characteristics are inherent in all resistors and may be controlled by design considerations and choice of material i.e. Temperature co–efficient of resistance, Voltage co–efficient of resistance, high frequency characteristics, power rating, tolerance & voltage rating of resistors. Resistors may be classified as

(1) Fixed

(2) Semi variable

(3) Variable resistor.

CAPACITORS

The fundamental relation for the capacitance between two flat plates separated by a dielectric material is given by:-

C=0.08854KA/D

Where: -

C= capacitance in pf.

K= dielectric constant

A=Area per plate in square cm.

D=Distance between two plates in cm

Design of capacitor depends on the proper dielectric material with particular type of application. The dielectric material used for capacitors may be grouped in various classes like Mica, Glass, air, ceramic, paper, Aluminum, electrolyte etc. The value of capacitance never remains constant. It changes with temperature, frequency and aging. The capacitance value marked on the capacitor strictly applies only at specified temperature and at low frequencies.

LED (Light Emitting Diodes):

As its name implies it is a diode, which emits light when forward biased. Charge carrier recombination takes place when electrons from the N-side cross the junction and recombine with the holes on the P side. Electrons are in the higher conduction band on the N side whereas holes are in the lower valence band on the P side. During recombination, some of the energy is given up in the form of heat and light. In the case of semiconductor materials like Gallium arsenide (GaAs), Gallium phoshide (Gap) and Gallium arsenide phoshide (GaAsP) a greater percentage of energy is released during recombination and is given out in the form of light. LED emits no light when junction is reverse biased.

ULTRASONIC SENSOR

[image: image22.png]

Specifications:

Power Voltage: DC 6-12V

Quiescent Current: less than 2mA

Output Level: high 5V

Output Level: Low 0V

Sensing Angle: no greater than 15°

Sensing Distance: 2mm-3m

Note: The sensing distance varies by smoothness of different surfaces.
Ultrasonic sensors (also known as tranceivers when they both send and receive) work on a principle similar to radar or sonar which evaluate attributes of a target by interpreting the echoes from radio or sound waves respectively. Ultrasonic sensors generate high frequency sound waves and evaluate the echo which is received back by the sensor. Sensors calculate the time interval between sending the signal and receiving the echo to determine the distance to an object.

This technology can be used for measuring: wind speed and direction (anemometer), fullness of a tank and speed through air or water. For measuring speed or direction a device uses multiple detectors and calculates the speed from the relative distances to particulates in the air or water. To measure the amount of liquid in a tank, the sensor measures the distance to the surface of the fluid. Further applications include: humidifiers, sonar, medical ultrasonography, burglar alarms and non-destructive testing.

Systems typically use a transducer which generates sound waves in the ultrasonic range, above 20,000 hertz, by turning electrical energy into sound, then upon receiving the echo turn the sound waves into electrical energy which can be measured and displayed

BATTERY:

An electrical battery is a combination of one or more electrochemical cells, used to convert stored chemical energy into electrical energy. Since the invention of the first Voltaic pile in 1800 by Alessandro Volta, the battery has become a common power source for many household and industrial applications. According to a 2005 estimate, the worldwide battery industry generates US$48 billion in sales each year, with 6% annual growth.

Batteries may be used once and discarded, or recharged for years as in standby power applications. Miniature cells are used to power devices such as hearing aids and wristwatches; larger batteries provide standby power for telephone exchanges or computer data centers.

KEILC:
1. Click on the Keil uVision Icon on DeskTop

2. The following fig will appear

[image: image23.png]¥ Vision2.

ExpresssCH-DAPCB... | i Documentt - Mirosof... {1 ision2

3. Click on the Project menu from the title bar

4. Then Click on New Project

[image: image24.png]pVision2

[Ele 9 ow Pt Dobug Pl Porphersls Toob SHCS indow 1l

asud
1 [& (@] proe:

© [{8 doseProject

Prod Worsores Conponents, Erirorment ok,

Select Device for Target

Import pisiont Project

Remove Item

oo aksr
(%] Build target F7
£ mebuid et s

© Trandae e
% stop buld

L0ssncetisspr.uvz
2 Ciimashavillinking.uv2

3CHKeNCS\ExamplesiHeloitello.Uvz
4 CHKeiCS1\Examplesieasure|Measure. vz

Create a new project o | O Rjw

e : ‘s

5. Save the Project by typing suitable project name with no extension in u r own folder sited in either C:\ or D:\

[image: image25.png]EEC- I EE %% % Ve B s
#|& QR er e
copL|Es o

Sovein [D empadn =]
[wj7emp

‘

File name:

Temp.Opt

Save s ype: | Temp.h2
Temp_Lv2.Bak

Bl Fites

oW R fw

6. Then Click on Save button above.

7. Select the component for u r project. i.e. Atmel……

8. Click on the + Symbol beside of Atmel

[image: image26.png]© hol
< herfler UTHE

 hndog Devices

@ drchaChips

e

S melWieless

@ Cast e

@ Chipeon

 OML Microciis
 Cybemetic Mito Systems
@ GbaTech

S Cyonalitegraed Prodicly

<)

EER-=N scicct Device for Target ‘Target 1"

88| o |

S i

Froject Workapae| /1900 Almel
' o I~ Use Extended Linker (X51) nstead of BL51
aroe

Faniy ™ Use Extended Assemblr (AX5T) nstead of AT
Database Desciptin:
@ hcerLabs ~

o | O Rjw

)

9. Select AT89C51 as shown below

[image: image27.png]EER-=N scicct Device for Target ‘Target 1"
5|8 m |
S i
Vendor Atmel
Profec workspad
Tt Do ATes ™ Use Extended Liker (LX51) rstead o BLS1
aroe
Famiy MCSST T Use Evteded Assemblr (851 nstead of 5T
Database Desciptin:
ATBIBIC512 A | [B051-based Fully Static 20MHz CMOS contiller with 32 1/0 Lines,
TRa/BeER2 2 Timers/Couniers, 6 Inenupts2 Prrty Levels, LART.
Thee-Level Pogram biemory Lock, 4k Epts Fash Menary,
128 Bytes Onchip ARM

ATBTFSIRC
ATBIFE2

ATBICTOS
ATBICTOS1U

aTeSCHICO

o | O Rjw

)

10. Then Click on “OK”

11. The Following fig will appear

[image: image28.png]i Temp - pVision2

and Acd

ExpressSCH -DHPCD.. | i Documentd - Micosoh, | B Temp - iviion 125240

12. Then Click either YES or NO………mostly “NO”

13. Now your project is ready to USE

14. Now double click on the Target1, you would get another option “Source group 1” as shown in next page.

[image: image29.wmf]
15. Click on the file option from menu bar and select “new”

[image: image30.png]i Temp - pVision2

crlvo

4j start Expross5CH - DIPCB, 4 PROGRAMMING STEP, 5 Temp - visionz) 12:57 A0

16. The next screen will be as shown in next page, and just maximize it by double clicking on its blue boarder.

[image: image31.png]mp. - pVision2 1

et 5 e Erowc: oy P Pehra Tods S it |
PedEd s B0 o m .

e anE ere

cEE s A K

=33 Target 1
(23 Source Group 1

Fies
For o, press L.

e

17. Now start writing program in either in “C” or “ASM”

18. For a program written in Assembly, then save it with extension “. asm” and for “C” based program save it with extension “ .C”

[image: image32.png][BYeie et yew Bojct Dobuo Fash Pespherss Loos 51CS indon e

== x|

BEEF R0
W& @ mmE| oeme

| me s s e o]

Projact Workspace x|
=33 Target 1

(23 Source Group 1

[Brene. iz

File name:

Save as pe:

[EXAMPLE ASM]

[AlFies)

Lscist

cap fuum |

19. Now right click on Source group 1 and click on “Add files to Group Source”

[image: image33.png]Temp. - p¥ision2 - [D:\tempsadan\EXAMPLE. ASM]

|Edle et yow eroject Dobug Flash pererls Tods SHCs window ek ETR
2N A r-R S L I |}

e anE ere

| me s s e o]

o Watspars =5 R o SSTART AT 0 RODRESS
e SO WAIN NP OVER TO KATN LADLE
ma: coL B compLENENT THE. STATUS

NP BACK TO THE LABLE "HAIN"
D THE PROGRAIN HERE

Select Device for Target Target 1"

Options for Graup ‘Source Group I

openrie

i rebuidtarger

(%] Build target F7
T e

% sop st

Manage Companerts

Remave Group Saurce Group 1'and s Flles:

[okt Depereterces

Ak Fles to curent Project Group [Lscs [

20. Now you will get another window, on which by default “C” files will appear.

[image: image34.png]Temp - pVision2

tempsadan\EXAMPL

[BYeie et yew Bojct Dobuo Fash Pespherss Loos 51CS indon e

== x|

BEEF R0
W& @ mmE| oeme

o %%t

| me s s e o]

[Source Group 1

[e T —
= Tt Add Files o Group 'Source Group 1°

Lookin: | 3 tempsadan

File name:

Files of type:

C Source fie (-c)

Lirary e ()
Text il [t
Al fes]

21. Now select as per your file extension given while saving the file

22. Click only one time on option “ADD”

23. Now Press function key F7 to compile. Any error will appear if so happen.

[image: image35.png]Mempsadan\EXAMPLE. ASM]

|Edle et yow eroject Dobug Flash pererls Tods SHCs window ek _|=

X

BEEF (Do
W& @ mE e

A T T Yo T ~la

[Swme s KTaen o]

Projet iorkapace —=] ORG 08 JETART AT 0 ADDRESS
SR et | sour AT J3UMP OVER TO WATH LABLE
5 Sowes Group | : CPL P10 JCONPLEMENT THE STATUS
SIMP MATH (TP BACK TO THE LABLE "NATH"
= 23 JEND THE PROGRAN HERE
fies [§ [We
*[Build target 'Target 1'
' |assembling EXAMPLE.ASM. ..
linking...
§|Program Size: data-8.0 xdata-D code=6
['Temp" - 0 Error(s), 0 Warning(s).
3T\ puild { Command , FrdinFies ILe o

24. If the file contains no error, then press Control+F5 simultaneously.

25. The new window is as follows

[image: image36.png]Temp - pVision2 - [D:\empsadan\EXAMPLE. ASM]

|Edle et yow eroect Dobug Flash perperls Tods SHCs window ek ETR
2N A r-R S L I |}

@ & anE e
[lsonren 2o AREYSOE »

Projec Workspace —=] O0RG 0H JETART AT 0 ADDRESS
Feger o) SIMp MATN 7TMMP OVER TO MATH LABLE
e mn: CPL P10 JCONPLEMENT THE STATUS

SIMP MATH (TP BACK TO THE LABLE "NATH"
o 000 £ JEND THE PROGRAN HERE
i 000
2 000 Wision2
a 000
" 000 ‘ EVALUATION VERSION
5 000 Runring with Code Size Lini: 26
® 000
7 000 o
o [1]
a 00
b 000
» 000
smar 007
e 000,
FC Cox
sales 0
sec 000
pw 000

e & [@s

26. Then Click “OK”

27. Now Click on the Peripherals from menu bar, and check your required port as shown in fig below

[image: image37.png]Temp. - p¥ision2 - [D:\tempsadan\EXAMPLE. ASM]

|Bree ot yew projct Debug Fiash [pedpherls Took SICS window Hep _ = x|
L D i
(%] ‘é ”@”ﬁﬂ) gy [Interrupt.
[gslmom®o ol
ot Worapace = T , T
Fegser v 1=l| [P OVER TO MATN LABLE
- s FLEET THE STATUS
Regs STMP MATN ;JUMP BACK TO THE LABLE "MAIN"
0 v e (am e PRocRAn FERE
2 o
B o
u o
B o
B o
K o
= Sys
. o
s b
B & [@e
*|Running with Code Size Limit: 2K -
"|Load "D:\\tempsadan\\Temp"
E
‘g@ >
3 ASM ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess -
3T 0T Buid), Command £ FndinFies /. Il 3

T Lsca [l [Rw

28. Drag the port a side and click in the program file.

[image: image38.png]Temp. - p¥ision2 - [D:\tempsadan\EXAMPLE. ASM]

|Edle et yow eroject Dobug Flash pererls Tods SHCs window ek _|= x|
PP B[R0 %R =l
@ 8 qmE oere
[gslnompo o 28 AREYSOE »
o Workipcs == e o ST AT 0 RonREs
Fegser v 1=l| [s wATH SIUNP OVER TO MATN LABLE
- s oot 7110 LcomrEmET T STATUS
Regs STMP MATN ;JUMP BACK TO THE LABLE "MAIN"
0 v = [e prosea raRe
2 o
I o Parallel Port 1
u o
5 o — Bits 1]
B o o WO
K o =
o Tl
. o
s b
B & [Wo
*|Running with Code Size Limit: 2K -
"|Load "D:\\tempsadan\\Temp"
E
‘g@ >
3 ASM ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess -
3T 0T Buid), Command £ FndinFies /. < 3
T L5 C:33 cp [Riw

Ready

29. Now keep Pressing function key “F11” slowly and observe.

30. You are running your program successfully

CONCLUSION

 The project “AUTONOMOUS ROBOT” has been successfully designed and tested. It has been developed by integrating features of all the hardware components used. Presence of every module has been reasoned out and placed carefully thus contributing to the best working of the unit.

Secondly, using highly advanced IC’s and with the help of growing technology the project has been successfully implemented.

 Finally we conclude that EMBEDDED SYSTEM is an emerging field and there is a huge scope for research and development.

BIBLIOGRAPHY

The 8051 Micro controller and Embedded

 Systems

 -Muhammad Ali Mazidi

 Janice Gillispie Mazidi

The 8051 Micro controller Architecture,

 Programming & Applications

 -Kenneth J.Ayala

Fundamentals Of Micro processors and

 Micro computers

 -B.Ram

Micro processor Architecture, Programming

 & Applications

 -Ramesh S.Gaonkar

Electronic Components

 -D.V.Prasad

Wireless Communications

 - Theodore S. Rappaport

Mobile Tele Communications

 - William C.Y. Lee

References on the Web:

www.national.com
www.atmel.com
www.microsoftsearch.com
www.geocities.com
· Ultrasonic Acoustic Sensing Brown University

· Laser Ultrasonic Sensor Streamlines Papermaking Process, Lawrence Berkeley Lab, Dan Krotz

· Ultrasonic Flaw Detection for Technicians, Chapter 2, 3rd ed., 2004 by J. C. Drury (~5 pages)

· Measure distance using the ultrasonic sensor

· Ultra Technology More uniform fibre distribution in paper with ultrasonics in the paper machine wet end.

· Ultrasound transducer entry in the public domain NCI Dictionary of Cancer Terms

EA - ET2 ES ET1 EX1 ET0 EX0

DC MOTOR

L293D

ULTRASONIC RECEIVER

MCU

ULTRASONIC TRANSMITTER

BATTERY

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING, ADAM’S ENGINEERING COLLEGE PAGE NO 1
[Type text]
[Type text] [Type text]

_1196710073.doc
[image: image1.png]i Temp - pVision2 FEX

7 start ExpressSCH -DHPCD... | T PROGRANNING STER... {1 Temp - iviion)@ tzsoan

