PAGE

1. INTRODUCTION

As computer, compress technology, storage media and high speed communication skill are developed dramatically; digital video has become one of the most important elements in many applications such as education, news and games. Multimedia data are also getting bigger than before. In order to extract and search important information from a huge amount of video data, we need to extract text from video. Text is obviously an important element in video. So extracting text appears as a key clue for understanding contents of video and for instance for classifying automatically some videos. Videotext detection and recognition has been identified as one of the key components for the video retrieval and analysis system. Videotext detection and recognition can be used in many applications, such as semantic video indexing, summarization, video surveillance and security, multilingual video information access, etc.
Videotext can be classified into two broad categories: Graphic text and scene text. Graphic text or text overlay is the videotext added mechanically by video editors, examples include the news/sports video caption, movie credits etc. Scene texts are the videotexts embedded in the real-world objects or scenes, examples include street name, car license number, and the number/name on the back of a soccer player. This report is to address the problem of accurately detecting and extracting the graph videotexts for videotext recognition. Although the overlay text is manually added into the video, the experiments showed they are even as hard to extract as many video objects, such as face, people etc. This is due to the following reasons: 1. Many overlay texts present in the cluttered scene background; 2. There is no consistent color distribution for texts in different videos. Consequently, the color-tone based approach widely used in face or people detection application actually cannot be applied in text detection. 3. The size of the text regions may be very small such that when the color segmentation based approach is applied, the small text region may merge into the large non-text regions in its vicinity.
Here we used edge detection based method for extracting the text and it is implemented using Matlab. Here the two critical angles are defines and the text is extracted and recognized using the coincidence of the edges of the image with the threshold defined based on the critical angles.

The two angles used here are 180 degree and 90 degree. If we add more threshold angles the accuracy of the extracted text can be increased but the image fragments also may get into the final result as the coincidence of the are edges.

2. MAIN concept

Text extraction in video consists in three steps. The first one is to find text region in original images. Then the text needs to be separated from background. And finally a binary image has to be produced (for example, text is white and background is black)

[image: image1.png]
Fig 2.1. Main steps for text extraction from image

Difficulties of such a project can be classified in following main categories:

1. Background and text may be ambiguous.

2. Text color may change: text can have arbitrary and non-uniform color.

 3. Background and text are sometimes reversed.
4. Text may move.
5. Unknown text size, position, orientation, and layout: captions lack the

 structure usually associated with documents.
6. Unconstrained background: the background can have colors similar to the

 text color. The background may include streaks that appear very similar to

 character strokes.
7. Color bleeding: lossy video compression may cause colors to run together.
8. Low contrast: low bit-rate video compression can cause loss of contrast
 between character strokes and the background.
3. Characteristics of text in video

In order to have good result in text extraction, it is necessary to deal with the characteristics of text. Most of the time, artificial text in video has the following properties:
 - Monochrome: that is to say that text consist of same or similar colors

- Easily readable for human: that is to say that text is distinguishable with

 background and maintains a readable size (not too big and not too small)

- Appearing in multiple subsequent frames: that is to say that text is fixed or move

 linearly at a low speed and maintains same size and shape.
We made the following assumptions for doing this particular project:

· No real-time processing

· Monochromatic letters

· Non-moving text

· Size (height and width) restricted text
4. Text detection
The term text detection here means the distinguishing the letters or the characters from the image part. This is the process of determining whether a given part or part of the image is a text or some other figures. Text detection generally can be classified into two categories:
4.1. BOTTOM-up methods: They segment images into regions and group “character” regions into words. . The input image is segmented based on the monochromatic nature of the text components using a split-and-merge algorithm. Segments that are too small and too large are filtered out. After dilation, motion information and contrast analysis are used to enhance the extracted results. The methods, to some degree, can avoid performing text detection. Due to the difficulty of developing efficient segmentation algorithms for text in complex background, the methods are not robust for detecting text in many camera-based images and videos.
4.2. TOP-down methods: They first detect text regions in images using filters and then perform bottom-up techniques inside the text regions. These methods are able to process more complex images than bottom-up approaches. Top-down methods are also divided into two categories
 -Heuristic methods: they use heuristic filters

- Machine learning methods: they use trained filters

Here we are using heuristic method of text extraction. This method of text extraction can be performed in two different approaches. Each of both uses the characteristics of artificial text.
A) Connected regions approach
The main idea of this approach is that a letter can be considered as a homogeneous region (using our restrictions), and thus it could be very useful to divide the frame into homogeneous regions. To compute such a division, a split-and-merge algorithm seems to be very adequate. Its concept is: while there is a non homogeneous region, then split it into four regions. And if two adjacent regions are homogeneous, then they can be merged. Then, using some size characterizations of the text (not too big and not too small), the inadequate regions will be deleted. The same process will be executed for the different frames, and the results will be temporally integrated in order to keep only the elements which are present in all the frames.

B) Edge detection approach

The main idea of this approach is that text contrasts a lot with background. The text will have a well defined edge that makes it possible to identify the text clearly. Thus, using edge detection concepts seems to be a good idea. The edge detection is based on certain predefined critical angles called the threshold angles. The lines that coincide with these thresholds are identified as the text edges. After that the edge lengths will be computed, the length number of edges in x and y direction will be calculated and if it is higher than a certain threshold then it will be considered as a text area. Then each text area will be binarized using the luminance. For binarizing also we are using thresholds. The intermediate luminescence is taken as the threshold value and the areas which are brighter than the threshold is white and the other areas are black. So in a final result, the text will be in white and the background in black (or the inverse). Finally, the same process will be executed for the different frames, and the results will be temporally integrated in order to keep only the elements which are present in all the frames.

5. ALGORITHM AND FLOW CHART
We are using edge detection approach as it is simple to implement and is also works almost efficiently. The algorithm as well as the flow chart for our software is shown below
5.1. ALGORITHM
1. Take the frame

2. RGB to Gray image

3. defining the angles

4. Edge detection
5. Defining thresholds for vertical and horizontal text segmentation
6. X and Y projection using threshold

7. Binarization
This algorithm is the realized by using a flowchart and is implemented with matlab of version7.0. This algorithm is simple to implement and the matlab has sufficient commands to implement this particular algorithm with relatively small number of steps.
5.2. FLOW CHART

[image: image2.png]
Fig 5.1. Flow Chart For Text Extraction

5.3. Digital image
A digital image is a two-dimensional (3-D image is called range data) array of intensity values, f(x, y), which represents 2-D intensity function discretized both in spatial coordinates (spatial sampling) and brightness (quantization) values. The elements of such an array are called pixels (picture elements). The storage requirement for an image depends on the spatial resolution and number of bits necessary for pixel quantization. The input image is a frame that is taken from a video or can be an image taken using digital camera.
5.4. Gray Level Transformations
An image processing system that looks at every input pixel gray level and generates a corresponding output gray level according to a fixed gray level map is referred to as a basic gray level transformation. An image can be represented by a two-dimensional function, f(x, y), where x and y are special co-ordinates, and the amplitude of f at any point is the intensity or gray level of that image at that point. The RGB image when grayscaled, the resulting image is a form of black and white image. This method is used for contrast stretching. Because enhancement of the image at any point depends only at the gray level at that point. This method is the simplest of al the image enhancement techniques. The values of the pixels, before and after the processing given by r and s respectively are related by an expression given as

 s = T(r)

where T is the transformation that maps the pixel value r to pixel value s. since we are dealing with digital quantities the values are stored in a one-dimensional array and the transformation is implemented via look up tables. For an 8-bit environment, a look up table containing the values of T will have 256 entries. The main types of gray transformation are linear (negative and identity transformations), logarithmic (log and inverse-log transformations), and power-law (nth power and nth root transformations).

Grayscale transforms are integer functions from [0,255] to [0,255], thus to any integer value between 0 and 255 we make another value between 0 and 255 correspond. To obtain the image of a color by a grayscale transform, it must be applied to the three red, green and blue components separately and then reconstitute the final color. The graph of grayscale transform is called an output look-up table, or gamma-curve. In practice you can control the gamma-curve of your video-card to set lightness or contrast, so that each time it sends a pixel to the screen, it makes it pass through the grayscale transform first. Here are the effects of increasing contrast and lightness to the gamma-curve of the corresponding grayscale transform:
If we want to compose brightness and contrast transforms you should first apply the contrast transform and then the brightness transform. One can also easily create his own grayscale transform to improve the visibility of an image. For example, if you have a very dark image with a small bright zone in it. You cannot increase lot brightness because the bright zone will saturate quickly but the idea is to increase the contrast exactly where there are the most pixels, in this case: for low values of colors (dark). This will have the effect of flattening the colors histogram and making the image use a wider range of colors, thus making it more visible. So, first the density histogram must be built, counting the number of pixels for each 0-255 value. Then we built the contrast curve we want, finally we integrate to obtain the final transform. The integration comes from the fact that contrast is a slope value, therefore to come back to the contrast transform function we must integrate. Those figures explain this technique
[image: image3.png]
[image: image4.png]
Fig.5.2. Basic Grayscale Transforms

:

[image: image5.png]
Fig.5.3. Bitmap Input Color Histogram: Two Large Amounts Of Pixels In Thin Color Bandwidths.

[image: image6.png]
Fig.5.4 .The Contrast Slope Must Be Big In Those Two Areas To Flatten The Input Histogram.

[image: image7.png]
Fig.5.5. The Contrast Transform: It Is Obtained By Integrating The Previous Plot.

[image: image8.png]
Fig.5.6. The Input Bitmap Color Histogram Before And After The Contrast Transform: Now Pixels Are Averagely Distributed On The Whole Color Bandwidth.

5.5. Edge detection

Discrete differentiation forms the foundation for many applications in computer vision. One such example is edge detection – a topic that has received an excessive amount of attention. An edge is loosely defined as an extended region in the image that undergoes a rapid directional change in intensity. We define a point as an edge pint if its two-dimensional first order derivative is greater than a specified threshold. A set of points that are connected according to a predefined criterion of connectedness is defined as an edge. Differential techniques are the obvious choice for measuring such changes. A basic edge detector begins by computing first-order spatial derivatives of an image f[x, y]:

fx [x, y] = (f[x, y] ⋆ h′[x]) ⋆ h[y] (7.37)

fy [x, y] = (f[x, y] ⋆ h[x]) ⋆ h′[y], (7.38)

where h′ [.] and h [.] are the derivative and prefilter. The “strength” of an edge at each spatial location is defined to be the magnitude of the gradient vector

▼ [x, y] = (fx[x, y] fy[x, y]), defined as:

| ▼ [x, y]| = sqrt(f2x[x, y] + f2y [x, y]).

The direction of an edge at appoint (x, y) is perpendicular to the direction of gradient vector at that point.

The computation of gradient of an image is based on obtaining the partial derivatives of ∂f/∂x and ∂f/∂y at every pixel location. Let the 3* 3 area shown in figure represent the gray levels in a neighborhood of an image. One of the simplest ways to implement a first order derivative at a point z5 is to use the following Roberts cross-gradient operators:

Gx = (z9-z5)

 and

Gy = (z8-z6)

These derivatives can be implemented for an entire image by using the masks shown in fig . Masks of size 2*2 are awkward to implement because they do not have a clear center. An approach using masks of size 3*3 is given by

Gx = (z7+z8+z9)-(z1+z2+z3)

and

Gy = (z3+z6+z9)-(z1+z4+z7)

In this formulation, the difference between the first and third rows of the 3*3 image region approximates the derivative in the x-direction, and the difference between the third and first column approximates the derivative in the y direction. The Prewitt and Sobel operators are among the most used in practice for computing digital gradients. The Prewitt masks are simpler to implement but the latter have superior noise suppression characteristics. Here we are using Sobel masks because our work needs better noise suppression.

	 z1
	 z2
	 z3

	 z4
	 z5
	 z6

	 z7
	 z8
	 z9

Fig. 5.7 A 3*3 Region Of An Image

	 -1
	 0
	 1

	 -2
	 0
	 2

	 -1
	 0
	 1

	 -1
	 - 2
	 -1

	 0
	 0
	 0

	 1
	 2
	 1

Fig.5.8 Sobel Masks For Edge Detection

	 0
	 1
	 2

	 -1
	 0
	 1

	 2
	 -1
	 0

	 -2
	 -1
	 0

	 -1
	 0
	 1

	 0
	 1
	 2

Fig. 5.9.Sobel method for detecting diagonal edges

5.6. Projections analysis
Edge projections are computed, and rows or columns with values under a threshold are discarded. Boxes with more than one text line are divided and some noisy areas are eliminated. The threshold is selected so that the text with a range of size both horizontally and vertically can be detected without much noise (hare picture segments). The text having a size higher than a threshold length is identified. The remaining areas are eliminated as noise. If the threshold length is decreased more details can be added but with increased susceptibility to noise. If the threshold length is decreased the picture detail also may get into the final result.
CONCLUSION

In many ways the result of these experiments are both surprisingly good and surprisingly bad. For images without definite edges the program may not work properly. But it will work perfectly for image texts which have prominent edge. This can be extended by including Text Recognition to it. Also extending it to video, real time operation, the program can work surprisingly well and useful. Adding all these features we can use this project for classifying automatically some images, for the retrieval and analysis system and in many applications, such as semantic video indexing, summarization, video surveillance and security, multilingual video information access,etc.
BIBLIOGRAPHY
[1] [Li00]Li, D. Doermann and O. Kia. Automatic Text Detection and Tracking in Digital Video. IEEE Transactions on Image Processing. Vol. 9, No. 1, pp. 147- 156, Jan. 2000.

[2] Lienhart96]Rainer Lienhart and Frank Stuber. Automatic Text Recognition in Digital Videos. Proc. SPIE 2666: Image and Video Processing IV, pp. 180-188, 1996.

