CONTENTS

3. INTRODUCTION
3.2 INTRODUCTION TO PROJECT

3.2 PURPOSE OF THE PROJECT

3.3 EXISTING SYSTEM & ITS DISADVANTAGES

 3.4 PROPOSED SYSTEM & ITS ADVANTAGES

4. SYSTEM ANALYSIS

4.1 STUDY OF THE SYSTEM
4.2 INPUT & OUTPUT REPRESENTATION
4.3 PROCESS MODELS USED WITH JUSTIFICATION
 4.4 SYSTEM ARCHITECTURE
5. FEASIBILITY STUDY

 5.1 TECHNICAL FEASIBILITY

 5.2 OPERATIONAL FEASIBILITY

 5.3 ECONOMIC FEASIBILITY

6. REQUIREMENT SPECIFICATIONS

 6.1 FUNCIONAL REQUIREMENTS

 6.2 PERFORMANCE REQUIREMENTS

 6.3 SOFTWARE REQUIREMENTS

 6.4 HARDWARE REQUIREMENTS

 6.1.1 INTRODUCTION TO JAVA

 6.1.2 SWINGS
 6.1.3 JDBC

7. SYSTEM DESIGN
 7.1 INTRODUCTION

 7.2 DATA FLOW DIAGRAMS

 7.3 UML DIAGRAMS

8. OUTPUT SCREENS

9. SYSTEM TESTING

 INTRODUCTION TO TESTING

 9.1 TESTING STRATEGIES

10. SYSTEM SECURITY

 10.1 INTRODUCTION

10.2 SECURITY IN SOFTWARE

11. BIBLIOGRAPHY

3. INTRODUCTION
3.2 INTRODUCTION TO PROJECT
· SPATIAL query processing is becoming an integral part of many new mobile applications.

· Recently, there has been a growing interest in the use of location-based spatial queries (LBSQs), which represent a set of spatial queries that retrieve information based on mobile users’ current locations.

· User mobility and data exchange through wireless communication give LBSQs some unique characteristics that the traditional spatial query processing in centralized databases does not address.
 3.2 PURPOSE OF THE PROJECT

· Novel query processing techniques must be devised to handle the following new challenges:

1. Mobile query semantics

2. High workload

3. Query promptness and accuracy

 No of Modules

· Wireless Data Broadcast

· Sharing-Based Nearest Neighbor Queries
 Wireless Data Broadcast

· In general, there are two approaches for mobile data access.

· One is the on-demand access model, and the other is the wireless broadcast model.

· For the on-demand access model, point-to-point connections are established between the server and the mobile clients, and the server processes queries that the clients submit on demand. For the wireless broadcast model, the server repeatedly broadcasts all the information in wireless channels, and the clients are responsible for filtering the information.

· An example of such a system is the Microsoft Direct Band Network.

· The advantage of the broadcast model over the on-demand model is that it is a scalable approach.

· However, the broadcast model has large latency, as clients have to wait for the information that they need in a broadcasting cycle. If a client misses the packets that it needs, it has to wait for the next broadcast cycle.

Sharing-Based Nearest Neighbor Queries
· At first, by scanning the on-air index, the k-nearest object to the query point is found, and a minimal circle centered at q and containing all those k objects is constructed.

· The MBR of that circle, enclosing at least k objects, serves as the search range. Consequently, q has to receive the data packets that covers the MBR from the broadcast channel for retrieving its k-nearest objects.

· The other problem with this search algorithm is that the indexing information has to be replicated in the broadcast cycle to enable twice scanning.

· The first scan is for deciding the kNN search range, and the second scan is for retrieving k objects based on the search range.

· Therefore, we propose the Sharing-Based Nearest Neighbor (SBNN) query approach to improve the preceding on-air kNN query algorithm.

· The SBNN algorithm attempts to verify the validity of k objects by processing results obtained from several peers. Table 1 summarizes the symbolic notations used throughout this section.
 3.3 EXISTING SYSTEM & ITS DISADVANTAGES
· Existing techniques cannot be used effectively in a wireless broadcast environment, where only sequential data access is supported.

· It may not scale to very large user populations.

· In an existing system to communicate with the server, a client must most likely use a fee-based cellular-type network to achieve a reasonable operating range.

· Third, users must reveal their current location and send it to the server, which may be undesirable for privacy reasons
3.3 PROPOSED SYSTEM & ITS ADVANTAGES
· This System is a novel approach for reducing the spatial query access latency by leveraging results from nearby peers in wireless broadcast environments.

· Our scheme allows a mobile client to locally verify whether candidate objects received from peers are indeed part of its own spatial query result set.

· The method exhibits great scalability: the higher the mobile peer density, the more the queries answered by peers.

· The query access latency can be decreased with the increase in clients.
System Requirement Specification

Software Interface
· JDK 1.5

· Java Swing

· SQL Server
 Hardware Interface
· PROCESSOR :
PENTIUM IV 2.6 GHz

· RAM

 :
512 MB DD RAM

· MONITOR
 :
15” COLOR

· HARD DISK :
40 GB

· KEYBOARD :
STANDARD 102 KEYS

· MOUSE

 :
3 BUTTON

SDLC METHDOLOGIES

 This document play a vital role in the development of life cycle (SDLC) as it describes the complete requirement of the system. It means for use by developers and will be the basic during testing phase. Any changes made to the requirements in the future will have to go through formal change approval process.

SPIRAL MODEL was defined by Barry Boehm in his 1988 article, “A spiral Model of Software Development and Enhancement. This model was not the first model to discuss iterative development, but it was the first model to explain why the iteration models.

As originally envisioned, the iterations were typically 6 months to 2 years long. Each phase starts with a design goal and ends with a client reviewing the progress thus far. Analysis and engineering efforts are applied at each phase of the project, with an eye toward the end goal of the project.

The steps for Spiral Model can be generalized as follows:

· The new system requirements are defined in as much details as possible. This usually involves interviewing a number of users representing all the external or internal users and other aspects of the existing system.

· A preliminary design is created for the new system.

· A first prototype of the new system is constructed from the preliminary design. This is usually a scaled-down system, and represents an approximation of the characteristics of the final product.

· A second prototype is evolved by a fourfold procedure:

1. Evaluating the first prototype in terms of its strengths, weakness, and risks.

2. Defining the requirements of the second prototype.

3. Planning an designing the second prototype.

4. Constructing and testing the second prototype.

· At the customer option, the entire project can be aborted if the risk is deemed too great. Risk factors might involved development cost overruns, operating-cost miscalculation, or any other factor that could, in the customer’s judgment, result in a less-than-satisfactory final product.

· The existing prototype is evaluated in the same manner as was the previous prototype, and if necessary, another prototype is developed from it according to the fourfold procedure outlined above.

· The preceding steps are iterated until the customer is satisfied that the refined prototype represents the final product desired.

· The final system is constructed, based on the refined prototype.

· The final system is thoroughly evaluated and tested. Routine maintenance is carried on a continuing basis to prevent large scale failures and to minimize down time.

The following diagram shows how a spiral model acts like:
[image: image1.png]N Cumulative cost

Progress
| S 2. Identify and
resolve risks

"\ Risk anayse

N Riskanaysis \
Risk analysis "\

Reaqure-
Review [monis pan 5 Operational
g / oo pronpe 2| AL
} ¥
\ conceptof | conceptor / Require- |
Cordin | e/ ments /) orat | |
\ ments / Detailed
design |
oovtment | vaticten /
o | & ¥aidaton
” S /" Code /
— P
Yofeair, " Integration
e g
4. Plan the next Test -~

iteration Release | Implementation
le—

Development and Test

 Fig 1.0-Spiral Model
ADVANTAGES:

· Estimates(i.e. budget, schedule etc .) become more relistic as work progresses, because important issues discoved earlier.

· It is more able to cope with the changes that are software development generally entails.

· Software engineers can get their hands in and start woring on the core of a project earlier.

INPUT DESIGN

Input design is a part of overall system design. The main objective during the input design as given below:

· To produce cost-effective method of input

· To achieve the highest possible level of accuracy.

· To ensure that the input is acceptable and understood by the user.

Input States:

The main input stages can be listed as below:

· Data recording

· Data transcription

· Data conversion

· Data verification

· Data control

· Data transmission

· Data validation

· Data correction

Input Types:
It is necessary to determine the various types of input. Inputs can be categorized as follows:

· External Inputs which are prime inputs for the system.

· Internal Inputs, which are user communications with the systems.

· Operational, which are computer department’s communications to the system?

· Interactive, which are inputs entered during a dialogue.

Input Media:
At this stage choice has to be made about the input media. To conclude about the input media consideration has to be given to:

· Type of Input

· Flexibility of Format

· Speed

· Accuracy

· Verification methods

· Rejection rates

· Ease of correction

· Storage and handling requirements

· Security

· Easy to use

· Portability

Keeping in view the above description of the input types and input media, it can be said that most of the inputs are of the form of internal and interactive. As input data is to be directly keyed in by the user, the keyboard can be considered to be the most suitable input device.

OUTPUT DESIGN:
Outputs from computer systems are required primarily to communicate the results of processing to users. They are also used to provide a permanent copy of the results for later consultation. The various types of outputs in general are:

· External Outputs, whose destination is outside the organization,.

· Internal Outputs whose destination is within organization and they are the

· User’s main interface with the computer.

· Operational outputs whose use is purely within the computer department.

· Interface outputs, which involve the user in communicating directly with User Interface.

Output Definition:

The outputs should be defined in terms of the following points:
· Type of the output

· Content of the output

· Format of the output

· Location of the output

· Frequency of the output

· Volume of the output

· Sequence of the output

It is not always desirable to print or display data as it is held on a computer. It should be decided as which form of the output is the most suitable.

For Example

· Will decimal points need to be inserted

· Should leading zeros be suppressed.

Output Media:
 In the next stage it is to be decided that which medium is the most appropriate for the output. The main considerations when deciding about the output media are:

· The suitability for the device to the particular application.

· The need for a hard copy.

· The response time required.

· The location of the users

· The software and hardware available.

Keeping in view the above description the project is to have outputs mainly coming under the category of internal outputs. The main outputs desired according to the requirement specification are: The outputs were needed to be generated as a hot copy and as well as queries to be viewed on the screen. Keeping in view these outputs, the format for the output is taken from the outputs, which are currently being obtained after manual processing. The standard printer is to be used as output media for hard copies.

APPLICATION DEVELOPMENT:

N-Tier Applications:
N-Tier Applications can easily implement the concepts of Distributed Application Design and Architecture. The N-Tier Applications provide strategic benefits to Enterprise Solutions. While 2-tier, client-server can help us create quick and easy solutions and may be used for Rapid Prototyping, they can easily become a maintenance and security night mare

The N-tier Applications provide specific advantages that are vital to the business continuity of the enterprise. Typical features of a real life n-tier may include the following:

· Security

· Availability and Scalability

· Manageability

· Easy Maintenance

· Data Abstraction

The above mentioned points are some of the key design goals of a successful n-tier application that intends to provide a good Business Solution.

Definition:

Simply stated, an n-tier application helps us distribute the overall functionality into various tiers or layers:

· Presentation Layer

· Business Rules Layer

· Data Access Layer

· Database/Data Store

Each layer can be developed independently of the other provided that it adheres to the standards and communicates with the other layers as per the specifications.

This is the one of the biggest advantages of the n-tier application. Each layer can potentially treat the other layer as a ‘Block-Box’.

In other words, each layer does not care how other layer processes the data as long as it sends the right data in a correct format.
 [image: image2.png]Presentation Layer

7'y

L 2

Business Rules Layer

L 2

-
Data Access Layer

3
E

 Fig 1.1-N-Tier Architecture
1. The Presentation Layer:

Also called as the client layer comprises of components that are dedicated to presenting the data to the user. For example: Windows/Web Forms and buttons, edit boxes, Text boxes, labels, grids, etc.

2. The Business Rules Layer:

This layer encapsulates the Business rules or the business logic of the encapsulations. To have a separate layer for business logic is of a great advantage. This is because any changes in Business Rules can be easily handled in this layer. As long as the interface between the layers remains the same, any changes to the functionality/processing logic in this layer can be made without impacting the others. A lot of client-server apps failed to implement successfully as changing the business logic was a painful process.

3. The Data Access Layer:
This layer comprises of components that help in accessing the Database. If used in the right way, this layer provides a level of abstraction for the database structures. Simply put changes made to the database, tables, etc do not affect the rest of the application because of the Data Access layer. The different application layers send the data requests to this layer and receive the response from this layer.
4. The Database Layer:

This layer comprises of the Database Components such as DB Files, Tables, Views, etc. The Actual database could be created using SQL Server, Oracle, Flat files, etc.
In an n-tier application, the entire application can be implemented in such a way that it is independent of the actual Database. For instance, you could change the Database Location with minimal changes to Data Access Layer. The rest of the Application should remain unaffected
REQURIEMENTS ANALYSIS

The requirement phase basically consists of three activities:

· Requirement Analysis

· Requirement Specification

· Requirement Validation

Requirement Analysis:

 Requirement Analysis is a software engineering task that bridges the gap between system level software allocation and software design. It provides the system engineer to specify software function and performance indicate software’s interface with the other system elements and establish constraints that software must meet.

 The basic aim of this stage is to obtain a clear picture of the needs and requirements of the end-user and also the organization. Analysis involves interaction between the clients and the analysis. Usually analysts research a problem by asking questions and reading existing documents. The analysts have to uncover the real needs of the user even if they don’t know them clearly. During analysis it is essential that a complete and consistent set of specifications emerge for the system. Here it is essential to resolve the contradictions that could emerge from information got from various parties. This is essential to ensure that the final specifications are consistent.

It may be divided into 5 areas of effort.

· Problem recognition

· Evaluation and synthesis

· Modeling

· Specification

· Review

 Each Requirement analysis method has a unique point of view. However all analysis methods are related by a set of operational principles.

 They are

· The information domain of the problem must be represented and understood.

· The functions that the software is to perform must be defined.

· The behavior of the software as a consequence of external events must be defined.

· The models that depict information, function and behavior must be partitioned in a hierarchical or layered fashion.

· The analysis process must move from essential information to Implementation detail

Requirement Analysis in this Project

 The main aim in this stage is to assess what kind of a system would be suitable for a problem and how to build it. The requirements of this system can be defined by going through the existing system and its problems. They discussing (speak) about the new system to be built and their expectations from it. The steps involved would be
Problem Recognition:
 The main problem is here while taking the appointments for the Doctors. If we want to verify the old data or historical data it is very difficult to find out. Maintain the data related to all

department is very difficult.
Evaluation and Synthesis:

 In the proposed system this application saves the lot of time, and it is time saving process when we use this application. Using this application we can easy to manage daily treatments and easy to maintain the historical data. No specific training is required for the employees to use this application. They can easily use the tool that decreases manual hours spending for normal things and hence increases the performance.
REQUIREMENTS SPECIFICATION

 Specification Principles:

 Software Requirements Specification plays an important role in creating quality software solutions. Specification is basically a representation process. Requirements are represented in a manner that ultimately leads to successful software implementation.

 Requirements may be specified in a variety of ways. However there are some guidelines worth following: -

Representation format and content should be relevant to the problem

Information contained within the specification should be nested

Diagrams and other notational forms should be restricted in number and consistent in use.

Representations should be revisable.

 Software Requirements Specifications:

The software requirements specification is produced at the culmination of the analysis task. The function and performance allocated to the software as a part of system engineering are refined by establishing a complete information description, a detailed functional and behavioral description, and indication of performance requirements and design constraints, appropriate validation criteria and other data pertinent to requirements.
5. FEASIBILITY STUDY
All projects are feasible given unlimited resources and infinite time. But the development of software is plagued by the scarcity of resources and difficult delivery rates. It is both necessary
and prudent to evaluate the feasibility of a project at the earliest possible time.
 Three key considerations are involved in the feasibility analysis.

5.1Technical Feasibility:

 Technical feasibility centers on the existing computer system (hardware, software, etc.,) and to what extent it can support the proposed addition. If the budget is a serious constraint, then the project is judged not feasible.
5.2Operational Feasibility:
 People are inherently resistant to change, and computers have been known to facilitate change. It is understandable that the introduction of a candidate system requires special effort to educate, sell, and train the staff on new ways of conducting business.
5.3Economic Feasibility:

 This procedure is to determine the benefits and savings that are expected from a candidate system and compare them with costs. If benefits outweigh costs, then the decision is made to design and implement the system. Otherwise, further justification or alterations in proposed system will have to be made if it is to have a chance of being approved. This is an ongoing effort that improves in accuracy at each phase of the system life cycle.
FEASIBILITY STUDY IN THIS PROJECT

1. Technical feasibility:

The system is self-explanatory and does not need any extra sophisticated training. As the system has been built by concentrating on the Graphical User Interface Concepts, the application can also be handled very easily with a novice User. The overall time that is required to train the users upon the system is less than half an hour.

 The System has been added with features of menu-driven and button interaction methods, which makes the user the master as he starts working through the environment. The net time the customer should concentrate is on the installation time.
 2. Financial Feasibility:
 i) Time Based: Contrast to the manual system management can generate any report just by single click. In manual system it is too difficult to maintain historical data which become easier in this system. Time consumed to add new records or to view the reports is very less compared to manual system. So this project is feasible in this point of view
 ii)Cost Based: No special investment need to manage the tool. No specific training is required for employees to use the tool. Investment requires only once at the time of installation. The software used in this project is freeware so the cost of developing the tool is minimal and hence the overall cost.

SYSTEM DESIGN

 The most creative and challenging phase of the life cycle is system design. The term design describes a final system and the process by which it is developed. It refers to the technical specifications that will be applied in implementations the candidate system. The design may be defined as “the process of applying various techniques and principles for the purpose of defining a device, a process or a system in sufficient details to permit its physical realization”.

 The designer’s goal is how the output is to be produced and in what format samples of the output and input are also presented. Second input data and database files have to be designed to meet the requirements of the proposed output. The processing phases are handled through the program Construction and Testing. Finally, details related to justification of the system and an estimate of the impact of the candidate system on the user and the organization are documented and evaluated by management as a step toward implementation.

 The importance of software design can be stated in a single word “Quality”. Design provides us with representations of software that can be assessed for quality. Design is the only way that we can accurately translate a customer’s requirements into a finished software product or system without design we risk building an unstable system, that might fail it small changes are made or may be difficult to test, or one who’s quality can’t be tested. So it is an essential phase in the development of a software product.
Software Description

What is JAVA?

 Java ha two things: a programming language and a platform.

 Java is a high-level programming language that is all of the following

Simple

Architecture-neutral

Object-oriented
Portable
Secure

Distributed

High-performance

Interpreted

Multithreaded

Robust

Dynamic

Java is also unusual in that each Java program is both compiled and interpreted. With a compile you translate a Java program into an intermediate language called Java byte codes the platform-independent code instruction is passed and run on the computer.

Compilation happens just once; interpretation occurs each time the program is executed. The figure illustrates how this works.

[image: image3]
You can think of Java byte codes as the machine code instructions for the Java Virtual Machine (Java VM). Every Java interpreter, whether it’s a Java development tool or a Web browser that can run Java applets, is an implementation of the Java VM. The Java VM can also be implemented in hardware.

Java byte codes help make “write once, run anywhere” possible. You can compile your Java program into byte codes on my platform that has a Java compiler. The byte codes can then be run any implementation of the Java VM. For example, the same Java program can run Windows NT, Solaris, and Macintosh.

Java Platform

A platform is the hardware of software environment in which a program runs. The Java platform differs from most other platforms in that it’s a software only platform that runs on the top of other, hardware-based platform. Most other platforms are described as a combination of hardware and operating system

The Java platform has two components:

The Java Virtual Machine (Java VM)

The Java Application Programming Interface (Java API)
 You’ve already been introduced to the Java VM. It’s the base for the Java platform and is ported onto various hardware-based platforms.

 The Java API is a large collection of ready-made software components that provide many useful capabilities, such as graphical user interface (GUI) widgets.

 The Java API is grouped into libraries (package) of related components. The next sections, what can Java do? Highlights each area of functionally provided by the package in the Java API.

How does the Java API support all of these kinds of programs? With packages of software components that provide a wide range of functionality. The API is the API included in every full implementation of the platform.

The core API gives you the following features:

The Essentials: Objects, Strings, threads, numbers, input and output, data structures, system properties, date and time, and so on.

Applets: The set of conventions used by Java applets.

Networking: URL’s TCP and UDP sockets and IP addresses.

Internationalization: Help for writing programs that can be localized for users.

 Worldwide programs can automatically adapt to specific locates and be displayed in the appropriate language.
Java Program
· Java API

· Java Virtual Machine

· Java Program

· Hard Ware

API and Virtual Machine insulates the Java program from hardware dependencies. As a platform-independent environment, Java can be a bit slower than native code. However, smart compilers, well-tuned interpreters, and Just-in-time-byte-code compilers can bring Java’s performance close to the native code without threatening portability.
What can Java do?

However, Java is not just for writing cut, entertaining applets for the World Wide Web (WWW). Java is a general purpose, high-level programming language and a powerful software platform. Using the fineries Java API, you can write many types of programs.
Networking

 This article is about a client/server multi-threaded socket class. The thread is optional since the developer is still responsible to decide if needs it. There are other Socket classes here and other places over the Internet but none of them can provide feedback (event detection) to your application like this one does. It provides you with the following events detection: connection established, connection dropped, connection failed and data reception (including 0 byte packet).

Description

 This article presents a new socket class which supports both TCP and UDP communication. But it provides some advantages compared to other classes that you may find here or on some other Socket Programming articles. First of all, this class doesn't have any limitation like the need to provide a window handle to be used. This limitation is bad if all you want is a simple console application. So this library doesn't have such a limitation. It also provides threading support automatically for you, which handles the socket connection and disconnection to a peer. It also features some options not yet found in any socket classes that I have seen so far. It supports both client and server sockets. A server socket can be referred as to a socket that can accept many connections. And a client socket is a socket that is connected to server socket. You may still use this class to communicate between two applications without establishing a connection. In the latter case, you will want to create two UDP server sockets (one for each application). This class also helps reduce coding need to create chat-like applications and IPC (Inter-Process Communication) between two or more applications (processes). Reliable communication between two peers is also supported with TCP/IP with error handling. You may want to use the smart addressing operation to control the destination of the data being transmitted (UDP only). TCP operation of this class deals only with communication between two peers.

Analysis of Network Client Server

TCP/IP stack

 The TCP/IP stack is shorter than the OSI one:

[image: image4.png]application | | application| OSI 5-7
TCP UDP Osl 4
P 0Osl 3
[

Y
h/w interface oSl 1-2

TCP is a connection-oriented protocol; UDP (User Datagram Protocol) is a connectionless protocol.

IP datagram’s

The IP layer provides a connectionless and unreliable delivery system. It considers each datagram independently of the others. Any association between datagram must be supplied by the higher layers. The IP layer supplies a checksum that includes its own header. The header includes the source and destination addresses. The IP layer handles routing through an Internet. It is also responsible for breaking up large datagram into smaller ones for transmission and reassembling them at the other end.
UDP

UDP is also connectionless and unreliable. What it adds to IP is a checksum for the contents of the datagram and port numbers.
TCP

TCP supplies logic to give a reliable connection-oriented protocol above IP. It provides a virtual circuit that two processes can use to communicate.

Internet addresses

In order to use a service, you must be able to find it. The Internet uses an address scheme for machines so that they can be located. The address is a 32 bit integer which gives the IP address. This encodes a network ID and more addressing. The network ID falls into various classes according to the size of the network address.

Network address

Class A uses 8 bits for the network address with 24 bits left over for other addressing. Class B uses 16 bit network addressing. Class C uses 24 bit network addressing and class D uses all 32.

Subnet address

Internally, the UNIX network is divided into sub networks. Building 11 is currently on one sub network and uses 10-bit addressing, allowing 1024 different hosts.

Host address

8 bits are finally used for host addresses within our subnet. This places a limit of 256 machines that can be on the subnet.

Port addresses

A service exists on a host, and is identified by its port. This is a 16 bit number. To send a message to a server, you send it to the port for that service of the host that it is running on. This is not location transparency! Certain of these ports are "well known".

Sockets

A socket is a data structure maintained by the system to handle network connections. A socket is created using the call socket. It returns an integer that is like a file descriptor.

Server Socket

A Server Socket listens for the Socket request and performs message handling functions, file sharing, database sharing functions etc.

JDBC

In an effort to set an independent database standard API for Java, Sun Microsystems developed Java Database Connectivity, or JDBC. JDBC offers a generic SQL database access mechanism that provides a consistent interface to a variety of RDBMS. This consistent interface is achieved through the use of “plug-in” database connectivity modules, or drivers. If a database vendor wishes to have JDBC support, he or she must provide the driver for each platform that the database and Java run on.

To gain a wider acceptance of JDBC, Sun based JDBC’s framework on ODBC. As you discovered earlier in this chapter, ODBC has widespread support on a variety of platforms. Basing JDBC on ODBC will allow vendors to bring JDBC drivers to market much faster than developing a completely new connectivity solution.

JDBC Goals

Few software packages are designed without goals in mind. JDBC is one that, because of its many goals, drove the development of the API. These goals, in conjunction with early reviewer feedback, have finalized the JDBC class library into a solid framework for building database applications in Java.

The goals that were set for JDBC are important. They will give you some insight as to why certain classes and functionalities behave the way they do. The eight design goals for JDBC are as follows:

1. SQLLevelAPI
The designers felt that their main goal was to define a SQL interface for Java. Although not the lowest database interface level possible, it is at a low enough level for higher-level tools and APIs to be created. Conversely, it is at a high enough level for application programmers to use it confidently. Attaining this goal allows for future tool vendors to “generate” JDBC code and to hide many of JDBC’s complexities from the end user.

2. SQLConformance
SQL syntax varies as you move from database vendor to database vendor. In an effort to support a wide variety of vendors, JDBC will allow any query statement to be passed through it to the underlying database driver. This allows the connectivity module to handle non-standard functionality in a manner that is suitable for its users.

3. JDBC must be implemental on top of common database interfaces
The JDBC SQL API must “sit” on top of other common SQL level APIs. This goal allows JDBC to use existing ODBC level drivers by the use of a software interface. This interface would translate JDBC calls to ODBC and vice versa.

4. Provide a Java interface that is consistent with the rest of the Java system
Because of Java’s acceptance in the user community thus far, the designers feel that they should not stray from the current design of the core Java system.

5. Keep it simple
This goal probably appears in all software design goal listings. JDBC is no exception. Sun felt that the design of JDBC should be very simple, allowing for only one method of completing a task per mechanism. Allowing duplicate functionality only serves to confuse the users of the API.

6. Use strong static typing wherever possible

 Strong typing allows for more error checking to be done at compile time; also, less errors
 appear at runtime.
7. Keep the common cases simple

Because more often than not, the usual SQL calls used by the programmer are simple SELECT’s, INSERT’s, DELETE’s and UPDATE’s, these queries should be simple to perform with JDBC. However, more complex SQL statements should also be possible.

SOFTWARE ENVIRONMENT
WHY CHOOSE "JAVA":

In its brief existence, the WORLD WIDE WEB has evolved into a truly global Information space. Not only does it offer information on any subject, it provides its citizens with the power to globally publish information on any subject and at minimal cost. The massive international participation in the web has resulted in the creation of many web pages that are not only informative, but also entertaining. This entertainment value has further fueled the webs growth and has led to browsing becoming an international pastime.

Browsing involves scanning web pages for interesting information, following useful links to other pages, and repeating the process until we come across something that makes us temporarily stop and focus sometimes we mutter "HMM" or "That's interesting!" and create a bookmark. Then, eventually, we move on.

The tendency to move on and continue browsing is natural.

We usually don't read the same book over and over. If we have stock of magazines in front of us, we are likely to flip through them all. Web pages are like magazine pages, except that they are move available, usually free and have more "next" pages to which to turn computer programs are different. They are active, while books, magazines, and web pages are static or passive. People do use programs over and over. I still use word perfect 5.1. Some people still use cp/m. I have a friend who played Doom several hours a day for months.

This difference between active computer program and passive web pages is what makes JAVA an attractive addition to the web. When we click on a web page containing a JAVA APPLET, we don't just read it, listen to it, or which it we interact with it. Interactivity is the difference between a program and a page, and JAVA has brought dynamic, interactive content to the web.

JAVA'S rapidly growing popularity is due to the web. But Java's inherent power does not come from the fact that it is a web programming language. The talented software engineers at sun in bring Java to the web, have elegantly solved a much broader and more significant problem- how to develop network -capable windowing software that will run on almost any 32-bit computer and operating system.

The Modern software developers faces enormous headaches and challenges when he tries to develop software that is portable to Microsoft windows, x window systems, motif, Macintosh, and OS/2 windowing and networking environments. The usual approach is to pick a target operating system (o s), write software for that o s, and eventually migrate it to the other o s platforms. This usually involves great expense in terms of labor and software development resources. It also results in the sacrifice of features that are difficult to support across multiple o s platforms.

Java fulfills the software developer's dream of being able to write software in a single language that will support windowing and networking on all major o s platforms, without specified tailoring or even compilation. But Java's attractiveness does not end here. Sun's engineers were thoughtful enough to develop in java a language and runtime system that art simple, compact, Object Oriented, extendible, and secure. And then they gave it away for free!

ABOUT JAVA:

Java is a programming language, a runtime system, a set of development tools, an application programming interface (API). The relationship between these elements is depicted in figure.
The Java API contains predefined software packages with numerous platform-independent "hooks" into the native windowing and networking capabilities of the host operating system. The Java API provides a single common API across all operating system to which Java is ported.

The keys to Java's portability are its run time system, and its API. The run time system is very compact, evolving from earlier Sun efforts to build a software platform for consumer electronics. Because this platform was not designed around any existing microprocessor, it was built from scratch to be simple and efficient. The fact that it was not tied to a given hardware architecture enabled it to be architecture neutral. The Simple, efficient, compact and architectural neutral nature of the runtime system allows it to be highly portable and still provide effective performance.

The powerful windowing and networking features included in the Java API make it easier for programmers to develop software that is both attractive and platform independent. For example, Adam is a programming language that is highly standardized and supported on most operating systems. Yet Adam applications are not very portable. This is because Adam does not come with a common API that supports windowing and networking on all platforms. Java differs from Adam and all other programming languages in that there is one universal, but powerful, Java API for all operating systems platforms. That is why Java is the most portable language.

JAVA AND MODULARITY

Application Java supports the partition of a large program into modules. Specifically, a Java program consists of number of classes. If the program is properly designed, these classes will reflect encapsulation and information hiding. In Java, grouping sets of related classes into packages. Could enhance encapsulation and information hiding.

JAVA AND STRUCTURED PROGRAMMING

Java supports the three control structures of structured programming. Unlike c and c++, there is no go statement in Java. There is essentially no need for a go because Java supports the labeled break and continues statements.

JAVA AND PORTABILTY

 Portability is critical to success in the emerging world of networked applications and commerce. Java takes a multi programmed approach to this challenge. At the heart of this approach is the fact that the Java compiler generates byte codes that are intercepted at runtime. The fact that byte codes are generated is important because it avoids the problem of baring the binary code on a basic set of primitive types such as integers and floating point-which would be tied to a specific platform.

The byte code based system is important to writing a portable interpreter. The byte codes generated by the compiler are based on the specification of a Java Virtual Machine which, as its name suggests, is not a specific hardware platform but a machine implemented in software. The virtual machine is very similar to real C.P.U with its own instruction set, storage formats and registers. Since it is written in software, however it is portable.

JAVA AND HIGH PERFORMANCE

The reason why Java's portable solution is such a coup is that interpreted platforms have generally been very slow. Often their performance is so poor the systems based on interpreters have been unusable. Java's byte code system however, provides a "lean and mean" interpreted solution.

One of the key features that Java offers to improve performance is multithreading. Most interactive applications are characterized by large periods of time during which the user passes between actions to decide what to do next.

JAVA AND SECURITY

Unlike C++, Java does not support explicit pointer variables. Even without explicit pointer variables, is possible to access illegally if a byte code has been doctored appropriately. Java precludes this sort of security attack as well; the Java interpreter checks each byte code before interpreting it. There is still one loophole however, malefactor can modify the Java byte code interpreter to disable this byte code checking.

JAVA AND REALLABILITY
One way to ensure that a program is reliable is to implement it in a strongly typed language. In
such a language, every variable has to be of a specific type, a variable can take on only those values has permitted for that type, and the only operations that can be performed on that variable are operations permitted for variables of that type. One consequences is that when a method is invoked within a strongly type language, the type of each actual parameter has to match that of the corresponding formal parameter.

JAVA AND CONSTANTS

Java is pure object-oriented language. Thus, it does not support constants as such Instead, constants have to be defined as final variables within a class. It is some what confusing for a constant to be defend as a "variable".

Unlike C and C++, Java also does not support macros such as # define that can be used, in conjunction with a preprocessor, to declare the value of a constant. There is a good reason for this. Java applets are design to be independent programs loaded over the Internet. Java therefore does not support header files or other components that need to be available in conjunction with otherwise stand-alone programs.

JAVA AND OBJECT ORIENTATION

Java supports the five basic elements of Object-Oriented language, namely, classes, objects, inheritance, polymorphism, and dynamic binding. Java is a pure Object-Oriented language, it does not support the classical paradigm. Thus there are no functions or procedures, only methods or classes.

JAVA AND REUSABILITY

All Object-Oriented programming language supports reuse via inheritance of classes. In addition, mechanisms such as templates (in C++) and generics (in Adam) provide reuse at a higher level of abstraction. A template or generic is a module that is defined in terms of parameters. The generic is then instantiated for a particular set of parameters.

Java does not directly supports template of this kind. Java interfaces are similar to templates, but they are flexible and less powerful than templates. Nevertheless, they do provide a level of abstraction that can increases main trainability and reusability.

JAVA AND VISIBILITY

In Java, however, there are five types of access and the rules are more convoluted than in C++ because Java classes can be grouped into package of related classes, the simplest Visibility modifier is public, then it can be accessed from any where within the product. A protected attribute can be accessed by immediate derived classes. Private attribute cannot be accessed outside the class.

JAVA DATABASE CONNECTIVITY

Introduction

The database is the most important component of a company's information services infrastructure. It is heart of the applications on which a company depends for its survival. Any programming language must be able to provide an application with access to these databases if it is to be considered a serious programming language.

The issues surrounding database access are often very difficult; other languages use either proprietary APIs specific to individual databases or complex universal APIs such as ODBC. Before starting any program the must be a need to used through data modeling and database design.

DATA BASE ARCHITECTURE

 There are three types of architecture: ONE TIER ARCHITECTURE TWO-TIERED THREE-TIERED ONE TIER ARCHITECTURE

The application and the data reside together logically. These are not usually database programs. The logic and its data reside together. figure below shows a model of a single-tier application.

TWO-TIERED

The application resides in a different logical location than the data. These are usually database applications. Most client/Server applications fit into this category. figure shows a model of a two-tier application.

THREE-TIERED

In a three-tiered system, the application resides in a different logical location than the logic of the application and the data.

To put it another way, the client software makes a call to a remote service. that remote service is responsible for interacting with the data and responding to the client. the client has no knowledge of how and where the data is stored. All it knows about is the remote service has no knowledge of the clients that will be calling it. It only knows about the data.

DFD (Data Flow Diagrams)

Data flows are data structures in motion, while data stores are data structures. Data flows are paths or ‘pipe lines’, along which data structures travel, where as the data stores are place where data structures are kept until needed.

 Data flows are data structures in motion, while data stores are data structures at rest. Hence it is possible that the data flow and the data store would be made up of the same data structure
 Data flow diagrams is a very handy tool for the system analyst because it gives the analyst the overall picture of the system, it is a diagrammatic approach.

A DFD is a pictorial representation of the path which data takes From its initial interaction with the existing system until it completes any interaction. The diagram will describe the logical data flows dealing the movements of any physical items. The DFD also gives the insight into the data that is used in the system i.e., who actually uses it is temporarily stored.

A DFD does not show a sequence of steps. A DFD only shows what the different process in a system is and what data flows between them.

 The following are some DFD symbols used in the project

External entities

 DATAFLOWS

RULES FOR DFD:
· Fix the scope of the system by means of context diagrams.

· Organize the DFD so that the main sequence of the actions reads left to right and top to bottom.

· Identify all inputs and outputs.

· Identify and label each process internal to the system with rounded circles.

· A process is required for all the data transformation and transfers. Therefore, never connect a data store to a data source or the destinations or another data store with just a data flow arrow.

· Do not indicate hardware and ignore control information.

· Make sure the names of the processes accurately convey everything the process is done.

· There must not be unnamed process.

· Indicate external sources and destinations of the data, with squares.

· Number each occurrence of repeated external entities.

· Identify all data flows for each process step, except simple Record retrievals.

· Label
data flow on each arrow.

· Use details flow on each arrow.

· Use the details flow arrow to indicate data movements.

· There can’t be unnamed data flow.

· A data flow can’t connect two external entities.

LEVELS OF DFD:

The complexity of the business system means that it is a responsible to represent the operations of any system of single data flow diagram. At the top level, an Overview of the different systems in an organization is shown by the way of context analysis diagram. When exploded into DFD

They are represented by:

· LEVEL-0 : SYSTEM INPUT/OUTPUT

· LEVEL-1:SUBSYSTEM LEVEL DATAFLOW FUNCTIONAL

· LEVEL-2: FILE LEVEL DETAIL DATA FLOW.

The input and output data shown should be consistent from one level to the next.

LEVEL-0:
SYSTEM INPUT/OUTPUT LEVEL

A level-0 DFD describes the system-wide boundaries, dealing inputs to and outputs from the system and major processes. This diagram is similar to the combined user-level context diagram.

LEVEL-1: SUBSYSTEM LEVEL DATA FLOW

A level-1 DFD describes the next level of details within the system, detailing the data flows between subsystems, which makeup the whole.

LEVEL-2: FILE LEVEL DETAIL DATA FLOW

All the projects are feasible given unlimited resources and infinite time. It is both necessary and prudent to evaluate the feasibility of the project at the earliest possible time. Feasibility and the risk analysis are pertained in many ways. If project risk is great.

Data Flow Diagram

[image: image5]
UML DIAGRAMS
Unified Modeling Language:

 The Unified Modeling Language allows the software engineer to express an analysis model using the modeling notation that is governed by a set of syntactic semantic and pragmatic rules.

 A UML system is represented using five different views that describe the system from distinctly different perspective. Each view is defined by a set of diagram, which is as follows.

· User Model View

i. This view represents the system from the users perspective.

ii. The analysis representation describes a usage scenario from the end-users perspective.

· Structural model view

i. In this model the data and functionality are arrived from inside the system.

ii. This model view models the static structures.
· Behavioral Model View

It represents the dynamic of behavioral as parts of the system, depicting the interactions of collection between various structural elements described in the user model and structural model view.
· Implementation Model View

In this the structural and behavioral as parts of the system are represented as they are to be built.
· Environmental Model View
 In this the structural and behavioral aspects of the environment in which the system is to be implemented are represented.
UML is specifically constructed through two different domains they are:

· UML Analysis modeling, this focuses on the user model and structural model views of the system.

· UML design modeling, which focuses on the behavioral modeling, implementation modeling and environmental model views.

Use case Diagrams represent the functionality of the system from a user’s point of view. Use cases are used during requirements elicitation and analysis to represent the functionality of the system. Use cases focus on the behavior of the system from external point of view.

USE CASE DIAGRAM:

[image: image6.emf]Centralized Server

MH1

MH2

MH4

MH3

Class diagram
[image: image7.emf]::Default::CentralizedServer

jButton1 : javax.swing.JButton

jButton10 : javax.swing.JButton

jButton11 : javax.swing.JButton

jButton2 : javax.swing.JButton

jButton3 : javax.swing.JButton

jButton4 : javax.swing.JButton

jButton5 : javax.swing.JButton

jButton6 : javax.swing.JButton

jButton7 : javax.swing.JButton

jButton8 : javax.swing.JButton

jButton9 : javax.swing.JButton

jLabel1 : javax.swing.JLabel

jLabel2 : javax.swing.JLabel

jLabel3 : javax.swing.JLabel

jLabel4 : javax.swing.JLabel

jLabel5 : javax.swing.JLabel

jLabel6 : javax.swing.JLabel

jLabel7 : javax.swing.JLabel

jLabel8 : javax.swing.JLabel

jScrollPane1 : javax.swing.JScrollPane

jScrollPane2 : javax.swing.JScrollPane

jSeparator1 : javax.swing.JSeparator

jTextArea1 : javax.swing.JTextArea

jTextArea2 : javax.swing.JTextArea

jTextField1 : javax.swing.JTextField

jTextField2 : javax.swing.JTextField

jTextField3 : javax.swing.JTextField

jTextField4 : javax.swing.JTextField

(: @SuppressWarnings

) : "unchecked"

Count : int

criteria : String

d : Jdbc

direction : String

distance : String

location : String

portno : String

rs : ResultSet

s2 : Socket

s3 : Socket

s4 : Socket

s5 : Socket

s6 : Socket

s7 : Socket

s8 : Socket

send : String[]

send1 : String[]

send2 : String[]

ss3 : ServerSocket

initComponents(...)

jButton10ActionPerformed(...)

jButton11ActionPerformed(...)

jButton2ActionPerformed(...)

jButton3ActionPerformed(...)

jButton4ActionPerformed(...)

jButton6ActionPerformed(...)

jButton7ActionPerformed(...)

jButton8ActionPerformed(...)

jButton9ActionPerformed(...)

CentralizedServer(...)

main(...)

::Default::Jdbc

gettingResults(...)

insertClient(...)

insertServer(...)

main(...)

neighbourSearch(...)

retrive(...)

retriveFinalrst(...)

retriveMH2db(...)

retrivePort(...)

retriveResults(...)

search(...)

::Default::MobileHost1

jButton1 : javax.swing.JButton

jButton10 : javax.swing.JButton

jButton2 : javax.swing.JButton

jButton3 : javax.swing.JButton

jButton4 : javax.swing.JButton

jButton5 : javax.swing.JButton

jButton6 : javax.swing.JButton

jButton7 : javax.swing.JButton

jButton8 : javax.swing.JButton

jButton9 : javax.swing.JButton

jComboBox1 : javax.swing.JComboBox

jComboBox2 : javax.swing.JComboBox

jComboBox3 : javax.swing.JComboBox

jComboBox4 : javax.swing.JComboBox

jLabel1 : javax.swing.JLabel

jLabel10 : javax.swing.JLabel

jLabel11 : javax.swing.JLabel

jLabel12 : javax.swing.JLabel

jLabel13 : javax.swing.JLabel

jLabel14 : javax.swing.JLabel

jLabel15 : javax.swing.JLabel

jLabel2 : javax.swing.JLabel

jLabel3 : javax.swing.JLabel

jLabel4 : javax.swing.JLabel

jLabel5 : javax.swing.JLabel

jLabel6 : javax.swing.JLabel

jLabel7 : javax.swing.JLabel

jLabel8 : javax.swing.JLabel

jLabel9 : javax.swing.JLabel

jScrollPane1 : javax.swing.JScrollPane

jScrollPane2 : javax.swing.JScrollPane

jScrollPane3 : javax.swing.JScrollPane

jSeparator1 : javax.swing.JSeparator

jTextArea1 : javax.swing.JTextArea

jTextArea2 : javax.swing.JTextArea

jTextArea3 : javax.swing.JTextArea

jTextField1 : javax.swing.JTextField

jTextField2 : javax.swing.JTextField

jTextField3 : javax.swing.JTextField

jTextField4 : javax.swing.JTextField

jTextField5 : javax.swing.JTextField

(: @SuppressWarnings

) : "unchecked"

con : Connection

d : Jdbc

DD_Count : int

getplc : String

getport : int

LC_Count : int

neighbourEndTime : double

neighbourFinalTime : double

port : Socket

port1 : String

s2 : Socket

s3 : Socket

s5 : Socket

s6 : Socket

s7 : Socket

s8 : Socket

ser : double

serverEndTime : double

serverFinalTime : double

ss5 : ServerSocket

ss6 : ServerSocket

ss7 : ServerSocket

st : Statement

StartTime : double

initComponents(...)

jButton10ActionPerformed(...)

jButton2ActionPerformed(...)

jButton3ActionPerformed(...)

jButton4ActionPerformed(...)

jButton5ActionPerformed(...)

jButton6ActionPerformed(...)

jButton7ActionPerformed(...)

jButton8ActionPerformed(...)

jButton9ActionPerformed(...)

jComboBox1ActionPerformed(...)

jComboBox2ActionPerformed(...)

jComboBox3ActionPerformed(...)

main(...)

MobileHost1(...)

prefinalres(...)

prtRecv(...)

rstRecv(...)

::Default::MobileHost2

jButton1 : javax.swing.JButton

jButton10 : javax.swing.JButton

jButton2 : javax.swing.JButton

jButton3 : javax.swing.JButton

jButton4 : javax.swing.JButton

jButton5 : javax.swing.JButton

jButton6 : javax.swing.JButton

jButton7 : javax.swing.JButton

jButton8 : javax.swing.JButton

jButton9 : javax.swing.JButton

jComboBox1 : javax.swing.JComboBox

jComboBox2 : javax.swing.JComboBox

jComboBox3 : javax.swing.JComboBox

jComboBox4 : javax.swing.JComboBox

jLabel1 : javax.swing.JLabel

jLabel10 : javax.swing.JLabel

jLabel11 : javax.swing.JLabel

jLabel12 : javax.swing.JLabel

jLabel13 : javax.swing.JLabel

jLabel14 : javax.swing.JLabel

jLabel15 : javax.swing.JLabel

jLabel2 : javax.swing.JLabel

jLabel3 : javax.swing.JLabel

jLabel4 : javax.swing.JLabel

jLabel5 : javax.swing.JLabel

jLabel6 : javax.swing.JLabel

jLabel7 : javax.swing.JLabel

jLabel8 : javax.swing.JLabel

jLabel9 : javax.swing.JLabel

jScrollPane1 : javax.swing.JScrollPane

jScrollPane2 : javax.swing.JScrollPane

jScrollPane3 : javax.swing.JScrollPane

jSeparator1 : javax.swing.JSeparator

jTextArea1 : javax.swing.JTextArea

jTextArea2 : javax.swing.JTextArea

jTextArea3 : javax.swing.JTextArea

jTextField1 : javax.swing.JTextField

jTextField2 : javax.swing.JTextField

jTextField3 : javax.swing.JTextField

jTextField4 : javax.swing.JTextField

jTextField5 : javax.swing.JTextField

(: @SuppressWarnings

) : "unchecked"

con : Connection

d : Jdbc

DD_Count : int

getplc : String

getport : int

LC_Count : int

neighbourEndTime : double

neighbourFinalTime : double

pfr : int

port : Socket

s2 : Socket

s3 : Socket

s4 : Socket

s5 : Socket

s6 : Socket

s7 : Socket

ser : double

serverEndTime : double

serverFinalTime : double

ss5 : ServerSocket

ss6 : ServerSocket

ss7 : ServerSocket

ss8 : ServerSocket

st : Statement

StartTime : double

initComponents(...)

jButton10ActionPerformed(...)

jButton2ActionPerformed(...)

jButton3ActionPerformed(...)

jButton4ActionPerformed(...)

jButton5ActionPerformed(...)

jButton6ActionPerformed(...)

jButton7ActionPerformed(...)

jButton8ActionPerformed(...)

jButton9ActionPerformed(...)

jComboBox1ActionPerformed(...)

jComboBox2ActionPerformed(...)

jComboBox3ActionPerformed(...)

main(...)

MobileHost2(...)

prefinalres(...)

prtRecv(...)

rstRecv(...)

::Default::MobileHost3

jButton1 : javax.swing.JButton

jButton10 : javax.swing.JButton

jButton2 : javax.swing.JButton

jButton3 : javax.swing.JButton

jButton4 : javax.swing.JButton

jButton5 : javax.swing.JButton

jButton6 : javax.swing.JButton

jButton7 : javax.swing.JButton

jButton8 : javax.swing.JButton

jButton9 : javax.swing.JButton

jComboBox1 : javax.swing.JComboBox

jComboBox2 : javax.swing.JComboBox

jComboBox3 : javax.swing.JComboBox

jComboBox4 : javax.swing.JComboBox

jLabel1 : javax.swing.JLabel

jLabel10 : javax.swing.JLabel

jLabel11 : javax.swing.JLabel

jLabel12 : javax.swing.JLabel

jLabel13 : javax.swing.JLabel

jLabel14 : javax.swing.JLabel

jLabel15 : javax.swing.JLabel

jLabel2 : javax.swing.JLabel

jLabel3 : javax.swing.JLabel

jLabel4 : javax.swing.JLabel

jLabel5 : javax.swing.JLabel

jLabel6 : javax.swing.JLabel

jLabel7 : javax.swing.JLabel

jLabel8 : javax.swing.JLabel

jLabel9 : javax.swing.JLabel

jScrollPane1 : javax.swing.JScrollPane

jScrollPane2 : javax.swing.JScrollPane

jScrollPane3 : javax.swing.JScrollPane

jSeparator1 : javax.swing.JSeparator

jTextArea1 : javax.swing.JTextArea

jTextArea2 : javax.swing.JTextArea

jTextArea3 : javax.swing.JTextArea

jTextField1 : javax.swing.JTextField

jTextField2 : javax.swing.JTextField

jTextField3 : javax.swing.JTextField

jTextField4 : javax.swing.JTextField

jTextField5 : javax.swing.JTextField

(: @SuppressWarnings

) : "unchecked"

con : Connection

d : Jdbc

DD_Count : int

getport : int

LC_Count : int

neighbourEndTime : double

neighbourFinalTime : double

port : Socket

s2 : Socket

s3 : Socket

s5 : Socket

s6 : Socket

ser : double

serverEndTime : double

serverFinalTime : double

ss5 : ServerSocket

ss6 : ServerSocket

ss7 : ServerSocket

st : Statement

StartTime : double

initComponents(...)

jButton10ActionPerformed(...)

jButton2ActionPerformed(...)

jButton3ActionPerformed(...)

jButton4ActionPerformed(...)

jButton5ActionPerformed(...)

jButton6ActionPerformed(...)

jButton7ActionPerformed(...)

jButton8ActionPerformed(...)

jButton9ActionPerformed(...)

jComboBox1ActionPerformed(...)

jComboBox2ActionPerformed(...)

jComboBox3ActionPerformed(...)

main(...)

MobileHost3(...)

prefinalres(...)

prtRecv(...)

rstRecv(...)

::javaapplication4::Main

main(...)

[image: image8.emf]::Default::CentralizedServer

(: @SuppressWarnings

) : "unchecked"

Count : int

criteria : String

d : Jdbc

direction : String

distance : String

location : String

portno : String

rs : ResultSet

s2 : Socket

s3 : Socket

s4 : Socket

s5 : Socket

s6 : Socket

s7 : Socket

s8 : Socket

send : String[]

send1 : String[]

send2 : String[]

ss3 : ServerSocket

CentralizedServer(...)

main(...)

::Default::Jdbc

gettingResults(...)

insertClient(...)

insertServer(...)

main(...)

neighbourSearch(...)

retrive(...)

retriveFinalrst(...)

retriveMH2db(...)

retrivePort(...)

retriveResults(...)

search(...)

::Default::MobileHost1

(: @SuppressWarnings

) : "unchecked"

con : Connection

d : Jdbc

DD_Count : int

getplc : String

getport : int

LC_Count : int

neighbourEndTime : double

neighbourFinalTime : double

port : Socket

port1 : String

s2 : Socket

s3 : Socket

s5 : Socket

s6 : Socket

s7 : Socket

s8 : Socket

ser : double

serverEndTime : double

serverFinalTime : double

ss5 : ServerSocket

ss6 : ServerSocket

ss7 : ServerSocket

st : Statement

StartTime : double

main(...)

MobileHost1(...)

prefinalres(...)

prtRecv(...)

rstRecv(...)

::Default::MobileHost2

(: @SuppressWarnings

) : "unchecked"

con : Connection

d : Jdbc

DD_Count : int

getplc : String

getport : int

LC_Count : int

neighbourEndTime : double

neighbourFinalTime : double

pfr : int

port : Socket

s2 : Socket

s3 : Socket

s4 : Socket

s5 : Socket

s6 : Socket

s7 : Socket

ser : double

serverEndTime : double

serverFinalTime : double

ss5 : ServerSocket

ss6 : ServerSocket

ss7 : ServerSocket

ss8 : ServerSocket

st : Statement

StartTime : double

main(...)

MobileHost2(...)

prefinalres(...)

prtRecv(...)

rstRecv(...)

::Default::MobileHost3

(: @SuppressWarnings

) : "unchecked"

con : Connection

d : Jdbc

DD_Count : int

getport : int

LC_Count : int

neighbourEndTime : double

neighbourFinalTime : double

port : Socket

s2 : Socket

s3 : Socket

s5 : Socket

s6 : Socket

ser : double

serverEndTime : double

serverFinalTime : double

ss5 : ServerSocket

ss6 : ServerSocket

ss7 : ServerSocket

st : Statement

StartTime : double

main(...)

MobileHost3(...)

prefinalres(...)

prtRecv(...)

rstRecv(...)

::javaapplication4::Main

main(...)

Sequence diagram for mobile host:

[image: image9.emf]MOBILE HOST PORT

NUMBER

QUERY

LOCATION

PREFERED

CRITERIA

SEND/CLEAR QUERY

enter port number

location like chennai,vijawada..

hospitals

send/clear

see the message here

TESTING

 Software Testing is a critical element of software quality assurance and represents the ultimate review of specification, design and coding, Testing presents an interesting anomaly for the software engineer.

Testing Objectives include:
1. Testing is a process of executing a program with the intent of finding an error

2. A good test case is one that has a probability of finding an as yet undiscovered error

3. A successful test is one that uncovers an undiscovered error

Testing Principles:
· All tests should be traceable to end user requirements

· Tests should be planned long before testing begins

· Testing should begin on a small scale and progress towards testing in large

· Exhaustive testing is not possible

· To be most effective testing should be conducted by a independent third party

TESTING STRATEGIES

A Strategy for software testing integrates software test cases into a series of well planned steps that result in the successful construction of software. Software testing is a broader topic for what is referred to as Verification and Validation. Verification refers to the set of activities that ensure that the software correctly implements a specific function. Validation refers he set of activities that ensure that the software that has been built is traceable to customer’s requirements

Unit Testing:

Unit testing focuses verification effort on the smallest unit of software design that is the module. Using procedural design description as a guide, important control paths are tested to uncover errors within the boundaries of the module. The unit test is normally white box testing oriented and the step can be conducted in parallel for multiple modules.

Integration Testing:

 Integration testing is a systematic technique for constructing the program structure, while conducting test to uncover errors associated with the interface. The objective is to take unit tested methods and build a program structure that has been dictated by design.

Top-down Integration:

 Top down integrations is an incremental approach for construction of program structure. Modules are integrated by moving downward through the control hierarchy, beginning with the main control program. Modules subordinate to the main program are incorporated in the structure either in the breath-first or depth-first manner.

Bottom-up Integration:

 This method as the name suggests, begins construction and testing with atomic modules i.e., modules at the lowest level. Because the modules are integrated in the bottom up manner the processing required for the modules subordinate to a given level is always available and the need for stubs is eliminated.

Validation Testing:

At the end of integration testing software is completely assembled as a package. Validation testing is the next stage, which can be defined as successful when the software functions in the manner reasonably expected by the customer. Reasonable expectations are those defined in the software requirements specifications. Information contained in those sections form a basis for validation testing approach.

System Testing:

System testing is actually a series of different tests whose primary purpose is to fully exercise the computer-based system. Although each test has a different purpose, all work to verify that all system elements have been properly integrated to perform allocated functions.

Security Testing:

Attempts to verify the protection mechanisms built into the system.

Performance Testing:

This method is designed to test runtime performance of software within the context of an integrated system.

Conclusion

 This project presents a novel approach for reducing the spatial query access latency by leveraging results from nearby peers in wireless broadcast environments. Significantly, our scheme allows a mobile client to locally verify whether candidate objects received from peers are indeed part of its own spatial query result set. The experiment results indicate that our method can reduce the access to the wireless broadcast channel by a significant amount, for example, up to 80 percent, in a dense urban area. This is achieved with minimal caching at the peers. By virtue of its P2P architecture, the method exhibits great
scalability: the higher the mobile peer density, the more the queries answered by peers. Therefore, the query access latency can be markedly decreased with the increase in clients
BIBLIOGRAPHY
References for the Project Development Were Taken From the following Books and Web Sites.

JAVA Technologies

JAVA Complete Reference

Java Script Programming by Yehuda Shiran

Mastering JAVA Security

JAVA2 Networking by Pistoria

JAVA Security by Scotl oaks

Head First EJB Sierra Bates

J2EE Professional by Shadab siddiqui

JAVA server pages by Larne Pekowsley

JAVA Server pages by Nick Todd

HTML

HTML Black Book by Holzner

JDBC
Java Database Programming with JDBC by Patel moss.

Software Engineering by Roger Pressman
Java Program

Compilers

Interpreter

My Program

Process: A transaction of information that resides within the bounds of the system to be module.

DATASTORE: A repository of data that is to be stored for use by one or more processes may be as simple as buffer of queue or as a relational database.

 Centralized Server

MH1

MH2

MH3

MH4

MH-Mobile Host

