
Table of Contents

 Page
1. Introduction

2

2. Project Plan

2

3. KLT(Kanade-Lucas-Tomasi) Feature Tracker - Theory

3

4. KLT Algorithm implementation details

4

Structures

4

Functions

7

5. Hardware

9

 Issues to be considered in designing and implementing a DSP system:

9
Complexity of the algorithm

Sample rate and Speed

Data representation

Streaming data support

 Features of 5510

9

 Multiply-accumulate hardware

 Harvard architecture

 Zero-overhead looping

 Specialized addressing

 Direct Memory Access (DMA)

 On-chip hardware timer

6. Implementation of Feature Selection in the Embedded system

10

7. Scope for improving the implementation

11

 Floating point processor

 Streaming data

 Parallel implementation

 Memory saving

8. Results

11

9. Conclusion

 12

10. Reference

14

Appendix A:
Source code

MiceTracking.c

Convolve.c

Error.c

Klt.c

Klt_util.c

Pyramid.c

SelectGoodFeatures.c

KLT(Kanade-Lucas-Tomasi) feature tracking algorithm in embedded hardware

1. Introduction
The focus of this project is to implement the Kanade-Lucas-Tomasi feature tracking Algorithm in hardware to track mice. KLT algorithm is designed to select good features and track them from one image to the next. It can be customized to track features by changing a set of parameter values. When features are lost the algorithm replaces the lost feature by finding another new feature in the new image. Feature selection(also called Description) in Image Processing deals with extracting attributes that result in some quantitative information of interest. Feature selection is necessary to convert the raw image pixel data to a form suitable for computer processing

To track the mice we use the KLT tracking algorithm to select the eyes as the two features to be tracked. Tracking mice using the hardware implementation offers the advantage of having a wireless 'low bandwidth' link to the host processing computer system. This eliminates the need to deal with the large amount of raw pixel data that needs to be stored for later processing in a computer system. KLT works with raw image data and does not need the images to be in a specific format. The mouse movement is captured and the raw data along with the dimension of the image is fed into the embedded hardware which tracks the mice eyes and passes as output the location of the eyes as (x,y) co-ordinates of a two dimensional image.

The hardware used for this implementation is TMS320C5510 DSP starter kit. The Code Composer Studio™ DSK development platform was for the Integrated Development Environment (IDE). Although TMS320C5510 was not the best choice of hardware for the algorithm implementation, considering the time and cost factors it was appropriate to have a initial design which could be ported to another appropriate hardware system. As TMS320C5510 kit does not support streaming data(for non-voice signals), the image data is read from the files directly. The implementation was done using C as programming language.

The major effort in this project was in understanding the KLT algorithm and familiarizing with the DSK kit for efficient implementation.

2. Project plan:

Our project plan had four phases:

· Study the KLT theory

· Study the KLT implementation details

· Familiarize with the TMS320C5510 kit

· Implement the algorithm in the DSK kit.

3. KLT(Kanade-Lucas-Tomasi) Feature Tracker - Theory

As the camera moves, the patterns of image intensities changes in a complex way. These changes can be described as image motion:

 I(x,y,t+() = I(x-((x,y,t,(), y-((x,y,t,()).

Thus a later image taken at time t+(can be obtained by moving every point in the current image, taken at time t, by a suitable amount. The amount of motion (((,(,) is called the displacement of the point at x=(x,y). The image motion is better represented by an affine motion field

 (= Dx + d
where D is a deformation matrix and d is the translation of the feature window's center. The image coordinates x are measured with respect to the window's center. Then, a point x in the first image I moves to point Ax + d in the second image J, where A = 1 +D and I is the 2 x 2 identity matrix:

 J(Ax + d) = I(x).

Given two images I and J and a window in image I, tracking means determining the parameters that appear in the deformation matrix D and the displacement vector d. The quality of this estimate depends on the size of the feature window, the texturedness of the image within it, and the amount of camera motion between frames. When the window is small, the matrix D is harder to estimate, because the variations of motion within it are smaller and therefore less reliable. However, smaller windows are in general preferable for tracking because they are less likely to straddle a depth discontinuity.

Solving for the Image motion the smaller system Zd = e should be solved in order to determine 'd' and where 'e' is the last two entries of the error vector which depends on the difference between the two images. We can track a window from one frame to frame is this equation represents good measurements and if it can be solved reliably. Consequently, the symmetric 2 X 2 matrix Z of the system must be both above the image noise level and well conditioned.

Two small eigen values mean a roughly constant intensity profile within a window. A large and a small Eigen value correspond to a unidirectional texture pattern. Two large eigen values can represent corners, salt and pepper textures, or any other pattern that can be tracked reliably. In fact the intensity variations in a window are bounded by the maximum allowable pixel value, so the greater eigen value cannot be arbitarily large. In conclusion, if the two eigen values of Z are ((and (2, we accept a window if

 min(((,(2) >(

where (, is a predefined threshold.

The quality of the image features during tracking is monitored using a measure of feature dissimilarity that quantifies the change of appearance of a feature between the first and the current frame. The idea is , dissimilarity is the feature's rms residue between the first and the current frame , and when the dissimilarity grows too large the feature should be abandoned.

4. KLT Algorithm implementation details

KLT implementation in the C programming language is from the vision group in Stanford. http://vision.stanford.edu/~birch/klt/.

This implementation has several functions and the main functions are:

· KLTSelectGoodFeatures

· KLTTrackFeatures

· KLTReplaceLostFeatures

The structures defined by this implementation are:

· KLT_TrackingContext

· KLT_Feature

· KLT_FeatureList

· KLT_FeatureHistory

· KLT_FeatureTable

Structures

1.KLT_TrackingContext

KLT_TrackingContext

typedef struct {

int mindist;

int window_width, window_height;

KLT_BOOL sequentialMode;

KLT_BOOL smoothBeforeSelecting;

KLT_BOOL writeInternalImages;

int min_eigenvalue;

float min_determinant;

float min_displacement;

int max_iterations;

float max_residue;

float grad_sigma;

float smooth_sigma_fact;

float pyramid_sigma_fact;

int nSkippedPixels;

int borderx;

int bordery;

int nPyramidLevels;

int subsampling;

void *pyramid_last;

void *pyramid_last_gradx;

void *pyramid_last_grady;

} *KLT_TrackingContext;

A KLT_TrackingContext collects all the parameters governing the tracker, so that calls to the tracker do not have to involve an exhorbitant number of parameters. Each parameter may be changed manually by the user except for the last three, which must not be touched. In addition, a few of the parameters can be more easily changed via the convenience functions KLTChangeTCPyramid() and KLTUpdateTCBorder(). Below is a brief description of each parameter, along with suggested default values (which are located in "klt.c"). The parameters preceded by an asterisk (*) are those whose effects can be viewed by setting writeInternalImages.

· Mindist: The minimum distance between each feature being selected, in pixels. Used by KLTSelectGoodFeatures() and KLTReplaceLostFeatures(). Default: 10.

· Window _width, window_height: The size of the feature window, in pixels. It is suggested that you call the convenience function KLTUpdateTCBorder() after changing this parameter. Default: 7

· SequentialMode: If TRUE, then the previous image is saved and used later. Used by KLTTrackFeatures() and KLTReplaceLostFeatures() to speed the computation when tracking through an image sequence. Default: FALSE.

· SmoothBeforeSelecting: If TRUE, then the image is smoothed before features are selected in both KLTSelectGoodFeatures() and KLTReplaceLostFeatures(). This is to ensure that the image used for selecting features is identical to the image used for tracking features, in which case the feature selection is optimal by construction (see Good Features to Track). If you only need to select features but not track them, or if you are willing to sacrifice a slight decrease in performance for a slight improvement in speed, then set this parameter to FALSE. After setting to TRUE, do not manually set to FALSE, but rather call KLTStopSequentialMode(). Default: TRUE.

· WriteinternalImages: If TRUE, then the internal images used for feature selection and tracking, that is, the smoothed and differentiated versions of the original images, are written to files "kltimg_sgfrlf*.pgm" by KLTSelectGoodFeatures() and KLTReplaceLostFeatures(). The smoothed and differentiated versions at each level of the pyramid are written to files "kltimg_tf*.pgm" by KLTTrackFeatures(). By examining these files, the user can better determine the desired parameters for smoothing, etc. Default: FALSE

· min_eigenvalue The minimum allowable eigenvalue for new features being selected. In other words, KLTSelectGoodFeatures() and KLTReplaceLostFeatures() add only those features whose minimum eigenvalue is at least min_eigenvalue, which must not be less than one. By setting this parameter to a number larger than one and nFeatures to a very large number, the effect is to select all features whose minimum eigenvalue is above a threshold. Default: 1.

· min_determinant The minimum allowable determinant before a feature is declared lost. Used by KLTTrackFeatures(). Default: 0.01.

· min_displacement: The minimum displacement, in pixels, necessary to stop the iterative tracker and declare tracking successful. Used by KLTTrackFeatures(). Default: 0.1.

· max_iterations: The maximum number of iterations allowed when tracking. If exceeded, the feature is lost. Used by KLTTrackFeatures(). Default: 10.

· Max_residue: The maximum residue, averaged per pixel, allowed when tracking. If exceeded, the feature is lost. Used by KLTTrackFeatures(). Default: 10.0.

· Grad_sigma: The standard deviation, in pixels, of the Gaussian used for computing the image gradients. Default: 1.0.

· Smooth_sigma_fact: Multiplied by max(window_width,window_height) to yield the standard deviation of the Gaussian used for smoothing the image. Because the tracker uses a Newton-Raphson method, there must be no local minima within each window. It is suggested that you call the convenience function KLTUpdateTCBorder() after changing this parameter. Default: 0.1.

· pyramid_sigma_fact Multiplied by subsampling to yield the standard deviation of the Gaussian used for smoothing the image before subsampling. It is suggested that you call the convenience function KLTUpdateTCBorder() after changing this parameter. Default: 0.9.

· nSkippedPixels The number of pixels in between each pair of possible features. Used to speed up the computation of KLTSelectGoodFeatures() and KLTReplaceLostFeatures(). Default: 0.

· borderx, bordery The size of the border, in pixels, that is not analyzed by the computation of KLTSelectGoodFeatures() and KLTReplaceLostFeatures(). This border is necessary because convolution with the Gaussian causes much of the image's values to become unknown. Tracking in those regions can produce strange results. Can be changed more easily using the convenience function KLTUpdateTCBorder().

 Default: KLTUpdateTCBorder() => 23.

· nPyramidLevels The number of pyramid levels. Can be changed more easily using the convenience function KLTChangeTCPyramid(). Default: KLTChangeTCPyramid(15) => 2.

· subsampling The amount of subsampling between adjacent pyramid levels. Must be either 2, 4, 8, 16, or 32. Can be changed more easily using the convenience function KLTChangeTCPyramid(). It is suggested that you call the convenience function KLTUpdateTCBorder() after changing this parameter.

 Default: KLTChangeTCPyramid(15) => 4.

· pyramid_last, pyramid_last_gradx, pyramid_last_grady Used to hold the most recent image. These fields must not be touched manually. Default: NULL.

2. KLT_Feature

 KLT_Feature

typedef struct {

KLT_locType x;

KLT_locType y;

int val;

} *KLT_Feature;

A KLT_Feature contains an (x,y) location and a value. (KLT_locType is equal to float.) The value is interpreted as follows:

· A positive value means the feature has just been found by KLTSelectGoodFeatures() or KLTReplaceLostFeatures().

· KLT_TRACKED (0) means the feature has been successfully tracked.

· KLT_NOT_FOUND (-1) means that no feature could be found. For example, if the user attempts to find 150 features in an image, but only 125 can be found, then the remaining 25 will be assigned a value of KLT_NOT_FOUND.

· KLT_SMALL_DET (-2) indicates that the feature has been lost due to the 2 by 2 gradient matrix having a small determinant.

· KLT_MAX_ITERATIONS (-3) means that the feature has been lost because the number of iterations exceeded the maximum allowable.

· KLT_OOB (-4) means that the feature has been lost because it was out of bounds (i.e., it was too close to the image border).

· KLT_LARGE_RESIDUE (-5) means that the feature has been lost because the residue between the two feature windows was too large.

3. KLT_FeatureList

KLT_FeatureList

typedef struct {

int nFeatures;

KLT_Feature *feature;

} *KLT_FeatureList;

A KLT_FeatureList is an array of features. The nFeatures field indicates the number of features allocated, but not necessarily the number of non-lost features. It must not be changed manually.

NOTE: Although a feature list and a feature history look similar, the former is intended to refer to an array of features from a single image, while the latter refers to the same feature tracked through several images.

Main functions

1. Selection of good features:

KLTSelectGoodFeatures()

void KLTSelectGoodFeatures(

KLT_TrackingContext tc,

KLT_PixelType *img,

int ncols,

int nrows,

KLT_FeatureList fl);

KLTSelectGoodFeatures() takes an image pointed to by img. If tc->smoothBeforeSelecting is set to TRUE, then the image is smoothed by convolving with a Gaussian of sigma = tc->smooth_sigma_fact * max(tc->window_width, tc->window_height); otherwise, the image is not smoothed. In either case, gradients are computed from the resulting image by convolving with the derivative of a Gaussian of sigma = tc->grad_sigma. These gradients (one in the x direction and the other in the y direction) are used to select the features.

Pixels throughout the image are then measured as to their "goodness", which is a measure of their trackability. Generally each pixel within the image's interior is considered, where the interior is defined by tc->borderx and tc->bordery (i.e., setting these parameters to zero causes the interior to equal the whole image). The parameter tc->nSkippedPixels can be used to speed up the process in the following way: its default value is zero, in which case every pixel within the interior is considered; if it is set to one, then every other pixel within the interior is considered; setting it to two causes every third pixel to be considered; and similarly for higher values. Since neighboring pixels generally have similar goodness values, then skipping every other one will probably not noticeably decrease performance.

The goodness of each pixel is measured as the minimum eigenvalue of the 2 by 2 gradient matrix computed from the tc->window_width by tc->window_height window around the pixel. After all the pixels have been considered, they are sorted in descending order according to goodness. Then, one by one the top fl->nFeatures features (or pixels) whose minimum eigenvalue is at least tc->min_eigenvalue are selected, ensuring that each new feature is at least tc->mindist pixels away from all the other features.

2. KLTTrackFeatures

KLTTrackFeatures()

void KLTTrackFeatures(

KLT_TrackingContext tc,

KLT_PixelType *img1,

KLT_PixelType *img2,

int ncols,

int nrows,

KLT_FeatureList fl);

KLTTrackFeatures() takes two images pointed to by img1 and img2. (NOTE: KLT_PixelType is, unless modified by the user, an unsigned char.) If tc->sequentialMode is TRUE, and KLTTrackFeatures() has been previously called, then img1 is ignored and the first image is taken instead from tc->pyramid_last, tc->pyramid_last_gradx, and tc->pyramid_last_grady. In either case, the resulting images are smoothed by convolving with a Gaussian of sigma = tc->smooth_sigma_fact * max(tc->window_width, tc->window_height). Then a multi-resolution image pyramid is created with tc->nPyramidLevels levels and tc->subsampling pixels subsampled between each level; smoothing before sampling is accomplished with sigma = tc->subsampling * tc->pyramid_sigma_fact. Gradients are computed at each level of the pyramid by convolving with the derivative of a Gaussian of sigma = tc->grad_sigma.

In the feature list, each feature that is not lost (i.e., whose value is nonnegative) is tracked beginning with the coarsest resolution and ending with the finest resolution, with each resolution providing the starting point for the subsequent resolution. At each resolution, tracking is accomplished by a Newton-Raphson iterative minimization between the intensities of the two windows, one window in each image. There are five conditions that cause the iterations to stop (only in the first case is the tracker successful):

 1. the feature moves by no more than tc->min_displacement

 2. the determinant of the 2-by-2 gradient matrix is less than tc->min_determinant

 3. the number of iterations exceeds tc->max_iterations

 4. the feature is out of bounds (i.e., it is within tc->borderx or tc->bordery of the border of the image)

 5. the residue is too large (i.e., the average intensity difference between pixels in the two windows is greater than tc->max_residue)

The value of the feature in these cases becomes KLT_TRACKED, KLT_SMALL_DET, KLT_MAX_ITERATIONS, KLT_OOB, and KLT_LARGE_RESIDUE, respectively, which are in turn equal to 0, -2, -3, -4, and -5. (See the reference page of KLT_Feature to see what a value of -1 means.)

If tc->writeInternalImages is TRUE, then the smoothed image and the image derivatives at each level of the pyramid are written to "kltimg_tf_[I][n].pgm", "kltimg_tf_[I][n]_gx.pgm", and "kltimg_tf_[I][n]_gy.pgm", where [I] = i,j denotes either the first image or the second image, and [n] = 0,1,2,... denotes the level of the pyramid.

After all the features are tracked, if tc->sequentialMode is TRUE, then the second image and its derivatives are stored in tc->pyramid_last, tc->pyramid_last_gradx, and tc->pyramid_last_grady.

3. KLTReplaceLostFeatures

KLTReplaceLostFeatures()

void KLTReplaceLostFeatures(

KLT_TrackingContext tc,

KLT_PixelType *img,

int ncols,

int nrows,

KLT_FeatureList fl);

KLTReplaceLostFeatures() takes an image pointed to by img and a feature list fl. (NOTE: KLT_PixelType is, unless modified by the user, an unsigned char.) If tc->sequentialMode is TRUE, and if KLTTrackFeatures() has previously been called, then img is ignored and instead the image from tc->pyramid_last, tc->pyramid_last_gradx, and tc->pyramid_last_grady is used. Otherwise, the gradients are computed using a Gaussian of sigma = tc->grad_sigma, but not before the image is smoothed with a Gaussian of sigma = (tc->smooth_sigma_fact * max(tc->window_width, tc->window_height)) if tc->smoothBeforeSelecting is TRUE.

Essentially, the same computation is performed as that of KLTSelectGoodFeatures(), except that only the lost features are replaced, rather than all the features. All new features are guaranteed to be at least tc->mindist pixels away from each other and from all the existing features.

5. Embedded system Hardware

Issues to be considered in designing and implementing a DSP system:

· Complexity of the algorithm: The arithmetic operations to be performed and the precision required are decided by the application

· Sample rate and Speed: The rate at which input samples are received and processed. To meet throughput requirement at a given sample rate, it must be possible to operate the DSP data at particular clock rate(or speed).

· Data representation: The format and the number of bits used for data representation depend on the arithmetic precision and the dynamic range required for the given application.

· Streaming data support: To support real-time data.

The TMS320C5510 DSK was chosen as the hardware for implementing the KLT algorithm as it was readily available with the idea of porting the design to another appropriate hardware.

Salient Features of 5510:

· Multiply-accumulate hardware: Multiply -accumulate is the most frequently used operation in digital signal processing. In order to implement it efficiently, the DSP has a hardware multiplier, an accumulator with an adequate number of bits to hold the sum of products and an explicit multiply-accumulate instruction.

· Harvard architecture: There are two memory spaces typically partitioned as program memory and data memory. The processor core connects to these memory spaces by two separate bus sets, allowing two simultaneous accesses to the memory. This arrangement doubles the processor's memory bandwidth and is crucial in keeping the processor core fed with data and instructions.

· Zero-overhead looping: One common characteristic of DSP algorithms is that most of the processing time is spent on executing instructions contained with relatively small loops. That is why most DSP processors include specialized hardware for zero-head looping. The term zero overhead looping means that the processor can execute loops without consuming cycles to test the value of the loop counter, perform a conditional branch to the top of the loop, decrement the loop counter.

· Specialized addressing: DSP processors often support specialized addressing modes that are useful for common signal processing operations and algorithms. Examples include modulo(circular) addressing , useful for implementing digital delay lines and bit-reversed addressing useful for implementing a commonly used algorithm called the Fast Fourier transform.

· DMA : TMS320CC5510 offer 6 Direct Memory access channels. The DMA controllers allow movement of data to and from internal memory, external memory and peripherals to occur without intervention from the CPU and in the background of CPU operation. Channeling the real-time data through the DMA can save CPU time.

· On-chip hardware timer that can act as a counter.

	[image: image1.png]£2 = |
File Edit Image Options
View Help

SHEEX

55126 24BPP [174 [100%

[image: image2.png]=] E3 |
File Edit Image Dptions
View Help

SHEEX

@

55126 % 24 BPP [9/16 [100

Raw data

 Tracked feature

High BW

Low BW

 Block diagram - Overview of the application

The images of the mouse that needs to be tracked are captured by a camera and the image data is transferred to the KLT tracking algorithm implemented in the DSK. The embedded hardware selects the features required for tracking the mouse and the feature details are transmitted to the computer for further processing.

6.Implementation of Feature Selection in the Embedded system

· The mindist and window_size parameters of the tracking context was changed to 3 from its default values given in the reference implementation to be able to track the eyes in an image size of 45 by 22 pixels.
· Measured the execution time of the KLTSelectFeatures function using the high resolution timer function CLK_gethtime(). CLK_countspms() gives the number of hardwrea timer register ticks per millisecond.

 Start = CLK_gethtime(); //Starting counter ticks count

 functioncall();

 stop = CLK_gethtime(); //Stopping counter ticjks count

 time_used = stop - start; //Number of counter ticks

 num_clocks_count = CLOCK_FREQ_MS/CLK_countspms();

 //num_clocks_count give the number of counterticks per clock period

 num_clocks_used = num_clocks_count * time_used ;

 tottime = (num_clocks_used/200000); //in ms since clk freq = 200Mhz

 In the case of 45 by 22 frame image this value was 51ms for the KLTSelectFeatures function.

· File-IO execution time (3 usec) was found to be negligible compared to the Select-features function(51 ms).
· The periodic function is scheduled for 70 ms. (14 frames per sec). This function invokes the file-processing function followed by the KLTSelectFeatures.

· Separate the signal processing functions from the file formatting functions. If implemented on a system like C5471 which has an ARM and DSP then it would be easier to implement.

7.Results
This implementation supports 14 frames per sec for selecting the features.

Results of selecting the eyes as the two features of the mouse for a 45 by 22 size image :

	Location
	X1
	Y1
	X2
	Y2

	KLT reference implementation
	22
	13
	31
	13

	KLT Embedded system implementation
	22
	12
	29
	12

 PGM format image of mouse

Image with tracked features

8. Scope for improving the implementation

· Floating point processor: The major bottleneck in the implementation is , TMSC320C55x processor is not a floating point processor. Since the KLT algorithm is full of floating of operations this is a big drawback. Every Floating-point multiply /addition operation translates to about 20 assembly language instructions which could be completed in one instruction in the case of Floating Point processor. The intrinsic functions supported by C55X to do Multiply and accumulate operations (MAC) operations cannot be used on floating point and hence the convolution functions in the KLT algorithm cannot be optimized used MAC operations.

Example where MAC intrinsic would be appropriate to use:

File: convolve.c

Function: _convolveImageVert()

for (k = kernel.width-1 ; k >= 0 ; k--) {

 sum += *ppp * kernel.data[k];

 ppp += ncols;

 }

 In the above code snipped replacing the multiply and add function with

Sum = _smac(sum, *ppp, *kernel.data[k]);

 can save 40 instructions if implemented in a Floating point processor supporting MAC

 (which is usually supported by DSP).
· Streaming data support: Choosing a setup that supports streaming data elimiates the need for file IO and hence speeds processing.
· Parallel implementation: The functions that compute the gradient in the horizontal and vertical direction can be executed simultaneously. This could save some time.

· Memory saving: This algorithm is quite memory intensive since we are dealing with raw image data files quite a few malloc functions are invoked. To give an idea consider the code below.

 floatimg = _KLTCreateFloatImage(ncols, nrows);

 gradx = _KLTCreateFloatImage(ncols, nrows);

 grady = _KLTCreateFloatImage(ncols, nrows);

 if (tc->smoothBeforeSelecting) {

 _KLT_FloatImage tmpimg;

 tmpimg = _KLTCreateFloatImage(ncols, nrows);

 _KLTToFloatImage(img, ncols, nrows, tmpimg);

 _KLTComputeSmoothedImage(tmpimg, _KLTComputeSmoothSigma(tc), floatimg);

 _KLTFreeFloatImage(tmpimg);

 } else _KLTToFloatImage(img, ncols, nrows, floatimg);

 /* Compute gradient of image in x and y direction */

 _KLTComputeGradients(floatimg, tc->grad_sigma, gradx, grady);

 }

_KLT_FloatImage _KLTCreateFloatImage(

 int ncols,

 int nrows)

{

 _KLT_FloatImage floatimg;

 int nbytes = sizeof(_KLT_FloatImageRec) +

 ncols * nrows * sizeof(float);

 floatimg = (_KLT_FloatImage) malloc(nbytes);

 floatimg->ncols = ncols;

 floatimg->nrows = nrows;

 floatimg->data = (float *) (floatimg + 1);

 return(floatimg);

}
Consider an image of size 100 by 50 (total of 100*50 = 5000 pixels)

The above given code requires 4 * 100 * 50 *2 = 40K
Another 5K for the original image.

Optimizing the algorithm for saving memory might work out to be a fruitful effort if at all possible.

9. Conclusion

Successfully implemented the feature selection part of the KLT algorithm in embedded hardware

with limited scope. There is still lot of room for improvement.

10. References

· http://vision.stanford.edu/~birch/klt/

· Jianbo Shi and Carlo Tomasi. Good Features to Track. IEEE Conference on Computer Vision and Pattern Recognition, pages 593-600, 1994.

· TMS320C5510 Reference Manuals
.

Mouse that needs to be tracked

KLT tracking algorithm in embedded hardware

Computer -processing

System

PAGE
13

