 INDEX:
1) INTRODUCTION

2) ABSTRACT

3) BLOCK DIAGRAM

4) BLOCK DIAGRAM OF POWER SUPPLY

5) DESCRIPTIO

6) WHAT IS GSM?

 i) POWER SUPPLY

 7) MICROCONTROLLERS

 i) FEATURES OF AT89C51

 8) 8051 Microcontroller's pins

 9) Input/Output Ports (I/O Ports)

10) Current limitations on pins

11) 8051 Microcontroller Memory Organization

12) Program Memory

13) Data Memory

14) Additional Memory Block of Data Memory

15) How to extend memory?

16) Addressing

 i) Direct Addressing

 ii) Indirect Addressing

17) SFRs (Special Function Registers)

 i) Register (Accumulator)

 ii) B Register

 iii) R Registers (R0-R7)

18) Switches and LED’S

19) SERIAL COMMUNICATION

i) RS 232 CABLE

ii) MAX 232

20) LIQUID CRYSTAL DISPLAY

21) EEPROM

22) KEYPAD

24) SCHEMATIC DIAGRAM

25) WORKING PROCEDURE

26) ADVANTAGES

27) APPLICATIONS

28) SCHEMATIC DIAGRAM

29) CODE

30) CONCLUSION

31) REFERENCE

INTRODUCTION

An embedded system is a combination of software and hardware to perform a dedicated task.

Some of the main devices used in embedded products are Microprocessors and Microcontrollers.

Microprocessors are commonly referred to as general purpose processors as they simply accept the inputs, process it and give the output.

In contrast, a microcontroller not only accepts the data as inputs but also manipulates it, interfaces the data with various devices, controls the data and thus finally gives the result.
ABSTRACT:

Nowadays there are various electronic equipment available for remote operation of grid control. However, the main disadvantage of these systems is that they can be operated only from short ranges and also less reliable. Thus, to overcome the above drawbacks, we are using one of the wireless communication technique i.e., GSM (Global System for Mobile communications) is a digital cellular communications system which has rapidly gained acceptance and market share worldwide.

The development of GSM is the first step towards a true personal communication system that will allow us to communication anywhere, anytime and with anyone.

 GSM (Global Systems for Mobile Communication) is vastly used because of its simplicity in both transmitter and receiver design, can operate at 900 or 1800MHZ band, faster , more reliable and globally network .

This project is designed for seven power grids. 8051 is the heart of the project. A GSM modem is interfaced to microcontroller. This modem receives the messages from control mobile and sends as input to MCU. The MCU verify for authentication of the number and, if the number is authorised, grid control will be taken place, EEPROM is interfaced to this controller to save the grid position at every instant. This grid position information will not be deleted even in power failure conditions. 3X4 keypad is interfaced to change the mobile number at any time. 16X2 LCD is interfaced to display user-required information. In this project TRAIC is used as load controller (as a switch), MOC3021 used as a Triac driver.
GSM network operators have roaming facilities, user can often continue to use there mobile phones when they travel to other countries etc….

 This project uses regulated 5v, 750mA power supply. 7805 and 7812 three terminal voltage regulators are used for voltage regulation. Bridge type full wave rectifier is used to rectify the ac output of secondary of 230/12v step down transformer.

[image: image1.png][image: image30.png][image: image31.png][image: image32.png][image: image33.jpg][image: image34.emf][image: image35.emf][image: image36.emf][image: image37.png][image: image38.png][image: image39.png][image: image40.png][image: image41.png][image: image42.png][image: image43.emf][image: image44.emf][image: image45.png][image: image46.png][image: image47.png][image: image48.emf]Figures: March, 2005

37%

1%

4%

43%

4%

3%

3%

3% (INDIA)

3%

Arab World

Asia Pacific

Africa

East Central Asia

Europe

Russia

India

North America

South America

BLOCK DIAGRAM:

INTRODUCTION TO EMBEDDED SYSTEMS

 An embedded system can be defined as a computing device that does a specific focused job. Appliances such as the air-conditioner, VCD player, DVD player, printer, fax machine, mobile phone etc. are examples of embedded systems. Each of these appliances will have a processor and special hardware to meet the specific requirement of the application along with the embedded software that is executed by the processor for meeting that specific requirement. The embedded software is also called “firm ware”. The desktop/laptop computer is a general purpose computer. You can use it for a variety of applications such as playing games, word processing, accounting, software development and so on. In contrast, the software in the embedded systems is always fixed listed below:

· Embedded systems do a very specific task, they cannot be programmed to do different things. . Embedded systems have very limited resources, particularly the memory. Generally, they do not have secondary storage devices such as the CDROM or the floppy disk. Embedded systems have to work against some deadlines. A specific job has to be completed within a specific time. In some embedded systems, called real-time systems, the deadlines are stringent. Missing a deadline may cause a catastrophe-loss of life or damage to property. Embedded systems are constrained for power. As many embedded systems operate through a battery, the power consumption has to be very low.

· Some embedded systems have to operate in extreme environmental conditions such as very high temperatures and humidity.

Application Areas

Nearly 99 per cent of the processors manufactured end up in embedded systems. The embedded system market is one of the highest growth areas as these systems are used in very market segment- consumer electronics, office automation, industrial automation, biomedical engineering, wireless communication,

data communication, telecommunications, transportation, military and so on.

Consumer appliances: At home we use a number of embedded systems which include digital camera, digital diary, DVD player, electronic toys, microwave oven, remote controls for TV and air-conditioner, VCO player, video game consoles, video recorders etc. Today’s high-tech car has about 20 embedded systems for transmission control, engine spark control, air-conditioning, navigation etc. Even wristwatches are now

becoming embedded systems. The palmtops are powerful embedded systems using which we can carry out many general-purpose tasks such as playing games and word processing.

Office automation: The office automation products using em embedded systems are copying machine, fax machine, key telephone, modem, printer, scanner etc.

Industrial automation: Today a lot of industries use embedded systems for process control. These include pharmaceutical, cement, sugar, oil exploration, nuclear energy, electricity generation and transmission. The embedded systems for industrial use are designed to carry out specific tasks such as monitoring the temperature, pressure, humidity, voltage, current etc., and then take appropriate action based on the monitored levels to control other devices or to send information to a centralized monitoring station. In hazardous industrial environment, where human presence has to be avoided, robots are used, which are programmed to do specific jobs. The robots are now becoming very powerful and carry out many interesting and complicated tasks such as hardware assembly.

Medical electronics: Almost every medical equipment in the hospital is an embedded system. These equipments include diagnostic aids such as ECG, EEG, blood pressure measuring devices, X-ray scanners; equipment used in blood analysis, radiation, colonscopy, endoscopy etc. Developments in medical electronics have paved way for more accurate diagnosis of diseases.

Computer networking: Computer networking products such as bridges, routers, Integrated Services Digital Networks (ISDN), Asynchronous Transfer Mode (ATM), X.25 and frame relay switches are embedded systems which implement the necessary data communication protocols. For example, a router interconnects two networks. The two networks may be running different protocol stacks. The router’s function is to obtain the data packets from incoming pores, analyze the packets and send them towards the destination after doing necessary protocol conversion. Most networking equipments, other than the end systems (desktop computers) we use to access the networks, are embedded systems

.

Telecommunications: In the field of telecommunications, the embedded systems can be categorized as subscriber terminals and network equipment. The subscriber terminals such as key telephones, ISDN phones, terminal adapters, web cameras are embedded systems. The network equipment includes multiplexers, multiple access systems, Packet Assemblers Dissemblers (PADs), sate11ite modems etc. IP phone, IP gateway, IP gatekeeper etc. are the latest embedded systems that provide very low-cost voice communication over the Internet.

Wireless technologies: Advances in mobile communications are paving way for many interesting applications using embedded systems. The mobile phone is one of the marvels of the last decade of the 20’h century. It is a very powerful embedded system that provides voice communication while we are on the move. The Personal Digital Assistants and the palmtops can now be used to access multimedia services over the Internet. Mobile communication infrastructure such as base station controllers, mobile switching centers are also powerful embedded systems.

Insemination: Testing and measurement are the fundamental requirements in all scientific and engineering activities. The measuring equipment we use in laboratories to measure parameters such as weight, temperature, pressure, humidity, voltage, current etc. are all embedded systems. Test equipment such as oscilloscope, spectrum analyzer, logic analyzer, protocol analyzer, radio communication test set etc. are embedded systems built around powerful processors. Thank to miniaturization, the test and measuring equipment are now becoming portable facilitating easy testing and measurement in the field by field-personnel.

Security: Security of persons and information has always been a major issue. We need to protect our homes and offices; and also the information we transmit and store. Developing embedded systems for security applications is one of the most lucrative businesses nowadays. Security devices at homes, offices, airports etc. for authentication and verification are embedded systems. Encryption devices are nearly 99 per cent of

the processors that are manufactured end up in~ embedded systems. Embedded systems find applications in . every industrial segment- consumer electronics, transportation, avionics, biomedical engineering, manufacturing, process control and industrial automation, data communication, telecommunication, defense, security etc. Used to encrypt the data/voice being transmitted on communication links such as telephone lines. Biometric systems using fingerprint and face recognition are now being extensively used for user authentication in banking applications as well as for access control in high security buildings.

Finance: Financial dealing through cash and cheques are now slowly paving way for transactions using smart cards and ATM (Automatic Teller Machine, also expanded as Any Time Money) machines. Smart card, of the size of a credit card, has a small micro-controller and memory; and it interacts with the smart card reader! ATM machine and acts as an electronic wallet. Smart card technology has the capability of ushering in a cashless society. Well, the list goes on. It is no exaggeration to say that eyes wherever you go, you can see, or at least feel, the work of an embedded system!
Overview of Embedded System Architecture

Every embedded system consists of custom-built hardware built around a Central Processing Unit (CPU). This hardware also contains memory chips onto which the software is loaded. The software residing on the memory chip is also called the ‘firmware’. The embedded system architecture can be represented as a layered architecture as shown in Fig.

The operating system runs above the hardware, and the application software runs above the operating system. The same architecture is applicable to any computer including a desktop computer. However, there are significant differences. It is not compulsory to have an operating system in every embedded system. For small appliances such as remote control units, air conditioners, toys etc., there is no need for an operating system and you can write only the software specific to that application. For applications involving complex processing, it is advisable to have an operating system. In such a case, you need to integrate the application software with the operating system and then transfer the entire software on to the memory chip. Once the software is transferred to the memory chip, the software will continue to run for a long time you don’t need to reload new software.

Now, let us see the details of the various building blocks of the hardware of an embedded system. As shown in Fig. the building blocks are;

· Central Processing Unit (CPU)

· Memory (Read-only Memory and Random Access Memory)

· Input Devices

· Output devices

· Communication interfaces

· Application-specific circuitry

Central Processing Unit (CPU):

The Central Processing Unit (processor, in short) can be any of the following: microcontroller, microprocessor or Digital Signal Processor (DSP). A micro-controller is a low-cost processor. Its main attraction is that on the chip itself, there will be many other components such as memory, serial communication interface, analog-to digital converter etc. So, for small applications, a micro-controller is the best choice as the number of external components required will be very less. On the other hand, microprocessors are more powerful, but you need to use many external components with them. D5P is used mainly for applications in which signal processing is involved such as audio and video processing.

Memory:

The memory is categorized as Random Access 11emory (RAM) and Read Only Memory (ROM). The contents of the RAM will be erased if power is switched off to the chip, whereas ROM retains the contents even if the power is switched off. So, the firmware is stored in the ROM. When power is switched on, the processor reads the ROM; the program is program is executed.

Input devices:

Unlike the desktops, the input devices to an embedded system have very limited capability. There will be no keyboard or a mouse, and hence interacting with the embedded system is no easy task. Many embedded systems will have a small keypad-you press one key to give a specific command. A keypad may be used to input only the digits. Many embedded systems used in process control do not have any input device for user interaction; they take inputs from sensors or transducers 1’fnd produce electrical signals that are in turn fed to other systems.

Output devices:

The output devices of the embedded systems also have very limited capability. Some embedded systems will have a few Light Emitting Diodes (LEDs) to indicate the health status of the system modules, or for visual indication of alarms. A small Liquid Crystal Display (LCD) may also be used to display some important parameters.

Communication interfaces:

The embedded systems may need to, interact with other embedded systems at they may have to transmit data to a desktop. To facilitate this, the embedded systems are provided with one or a few communication interfaces such as RS232, RS422, RS485, Universal Serial Bus (USB), IEEE 1394, Ethernet etc.

Application-specific circuitry:

 Sensors, transducers, special processing and control circuitry may be required fat an embedded system, depending on its application. This circuitry interacts with the processor to carry out the necessary work. The entire hardware has to be given power supply either through the 230 volts main supply or through a battery. The hardware has to design in such a way that the power consumption is minimized.
GLOBAL SYSTEM FOR MOBILE COMMUNICATION

It is a globally accepted standard for digital cellular communication. GSM is the name of standardization group established in 1982 to create a common European mobile telephone standard that would formulate specifications for a pan-European mobile cellular radio system operating at 900MHZ.

Throughout the evolution of cellular telecommunications, various systems have been developed without the benefit of standardized specification. This presented many problems directly related to compatibility, especially with the development of digital radio technology. The GSM standard is intended to address these problems.

GSM-Introduction
• Architecture
• Technical Specifications
• Frame Structure
• Channels
· Security
· Characteristics and features
· Applications
Definition:

Global System for Mobile (GSM) is a second generation cellular standard

 developed to cater voice services and data delivery using digital modulation.

GSM-History
 • Developed by Group Special Mobile (founded 1982) which was an initiative of

 CEPT (Conference of European Post and Telecommunication)

 • Aim : to replace the incompatible analog system

 • Presently the responsibility of GSM standardization resides with special mobile

 group under ETSI (European telecommunication Standards Institute)

· Full set of specifications phase-I became available in 1990

 • Under ETSI, GSM is named as “Global System for Mobile communication “

 • Today many providers all over the world use GSM (more than 135

 Countries in Asia, Africa, Europe, Australia, America)

 • More than 1300 million subscribers in world and 45 million subscribers in India.

GSM IN WORLD

GSM IN INDIA

GSM SERVICES

· Tele-services
· Bearer or Data Services

· Supplementary services
Tele-services

 • Telecommunication services that enable voice communication

 via mobile phones

 • Offered services

 - Mobile telephony

 - Emergency calling
Bearer or Data Services

· Include various data services for information transfer between GSM and other networks like PSTN, ISDN etc at rates from 300 to 9600 bps

· Short Message Service (SMS)

· up to 160 character alphanumeric data transmission to/from the mobile terminal

· Unified Messaging Services(UMS)

· Group 3 fax

· Voice mailbox

· Electronic mail

Supplementary services

 Call related services :

· Call Waiting- Notification of an incoming call while on the handset

· Call Hold- Put a caller on hold to take another call

· Call Barring- All calls, outgoing calls, or incoming calls

· Call Forwarding- Calls can be sent to various numbers defined by the user

· Multi Party Call Conferencing - Link multiple calls together

· CLIP – Caller line identification presentation

· CLIR – Caller line identification restriction

· CUG – Closed user group
GSM System Architecture-I
· Mobile Station (MS)

Mobile Equipment (ME)

Subscriber Identity Module (SIM)

· Base Station Subsystem (BSS)

Base Transceiver Station (BTS)

Base Station Controller (BSC)

· Network Switching Subsystem(NSS)

Mobile Switching Center (MSC)

Home Location Register (HLR)

Visitor Location Register (VLR)

Authentication Center (AUC)

Equipment Identity Register (EIR)
System Architecture Mobile Station (MS)
The Mobile Station is made up of two entities:

1. Mobile Equipment (ME)

 2. Subscriber Identity Module (SIM)

Mobile Equipment

· Portable,vehicle mounted, hand held device

· Uniquely identified by an IMEI (International Mobile Equipment Identity)

· Voice and data transmission

· Monitoring power and signal quality of surrounding cells for optimum handover

· Power level : 0.8W – 20 W

· 160 character long SMS.

Subscriber Identity Module (SIM)

· Smart card contains the International Mobile Subscriber Identity (IMSI)

· Allows user to send and receive calls and receive other subscribed services

· Encoded network identification details

 - Key Ki,Kc and A3,A5 and A8 algorithms

· Protected by a password or PIN

· Can be moved from phone to phone – contains key information to activate the phone

System Architecture Base Station Subsystem (BSS)
Base Station Subsystem is composed of two parts that communicate across the standardized Abis interface allowing operation between components made by different suppliers

1. Base Transceiver Station (BTS)

2. Base Station Controller (BSC)
System Architecture Base Station Subsystem (BSS)

 Base Transceiver Station (BTS):

· Encodes,encrypts,multiplexes,modulates and feeds the RF signals to the antenna.

· Frequency hopping

· Communicates with Mobile station and BSC

· Consists of Transceivers (TRX) units

 Base Station Controller (BSC)

· Manages Radio resources for BTS

· Assigns Frequency and time slots for all MS’s in its area

· Handles call set up

· Transcoding and rate adaptation functionality

· Handover for each MS

· Radio Power control

· It communicates with MSC and BTS

System Architecture Network Switching Subsystem(NSS)

Mobile Switching Center (MSC)

· Heart of the network

· Manages communication between GSM and other networks

· Call setup function and basic switching

· Call routing

· Billing information and collection

· Mobility management

- Registration

- Location Updating

- Inter BSS and inter MSC call handoff

· MSC does gateway function while its customer roams to other network by using HLR/VLR.

System Architecture Network Switching Subsystem
· Home Location Registers (HLR)

- Permanent database about mobile subscribers in a large service area (generally one per GSM network operator)

Database contains IMSI, MS ISDN, prepaid/postpaid, roaming restrictions, and supplementary services.

· Visitor Location Registers (VLR)

· Temporary database which updates whenever new MS enters its area, by HLR database

· Controls those mobiles roaming in its area

· Reduces number of queries to HLR

· Database contains IMSI, TMSI, MSISDN, MSRN, Location Area, authentication key

· Authentication Center (AUC)

· Protects against intruders in air interface

· Maintains authentication keys and algorithms and provides security triplets (RAND, SRES, Kc)

· Generally associated with HLR

· Equipment Identity Register (EIR)

 - Database that is used to track handsets using the IMEI (International

 Mobile Equipment Identity)

· Made up of three sub-classes: The White List, The Black List and the Gray List

· Only one EIR per PLMN

GSM Specifications-1
· RF Spectrum

GSM 900

 Mobile to BTS (uplink): 890-915 Mhz

 BTS to Mobile(downlink):935-960 Mhz

 Bandwidth : 2* 25 Mhz

GSM 1800

 Mobile to BTS (uplink): 1710-1785 Mhz

 BTS to Mobile(downlink) 1805-1880 Mhz

 Bandwidth : 2* 75 Mhz
GSM Specification-II

· Carrier Separation : 200 Khz

· Duplex Distance : 45 Mhz

· No. of RF carriers : 124

· Access Method : TDMA/FDMA

· Modulation Method : GMSK

· Modulation data rate : 270.833 Kbps
OPERATION OF GSM

[image: image49.emf]Figures: March 2005

Bharti

27%

BSNL

22%

Spice

4%

IDEA

13%

Hutch

19%

BPL

6%

Aircel

4%

Reliance

3%

MTNL

2%

Bharti

BSNL

Hutch

IDEA

BPL

Aircel

Spice

Reliance

MTNL

Call Routing

· Call Originating from MS

· Call termination to MS

Outgoing Call

[image: image2]
1. MS sends dialed number to BSS

2. BSS sends dialed number to MSC

 3,4 MSC checks VLR if MS is allowed the requested service. If so, MSC asks BSS

 to allocate resources for call.

5 MSC routes the call to GMSC

6 GMSC routes the call to local exchange of called user

7, 8,
9, 10 Answer back (ring back) tone is routed from called user to MS via

 GMSC, MSC, BSS

Incoming Call

[image: image3]
1. Calling a GSM subscribers

2. Forwarding call to GSMC

3. Signal Setup to HLR

4. 5. Request MSRN from VLR

6. Forward responsible MSC to GMSC

7. Forward Call to current MSC

8. 9. Get current status of MS

10. 11. Paging of MS

12. 13. MS answers

14. 15. Security checks

16. 17. Set up connection

\Handovers

[image: image4]
· Between 1 and 2 – Inter BTS / Intra BSC

· Between 1 and 3 –

 Inter BSC/ Intra MSC

· Between 1 and 4 –

 Inter MSC
Security in GSM
· On air interface, GSM uses encryption and TMSI instead of IMSI.

· SIM is provided 4-8 digit PIN to validate the ownership of SIM

· 3 algorithms are specified :

- A3 algorithm for authentication

- A5 algorithm for encryption

- A8 algorithm for key generation
Characteristics of GSM Standard
· Fully digital system using 900,1800 MHz frequency band.

· TDMA over radio carriers(200 KHz carrier spacing.

· 8 full rate or 16 half rate TDMA channels per carrier.

· User/terminal authentication for fraud control.

· Encryption of speech and data transmission over the radio path.

· Full international roaming capability.

· Low speed data services (upto 9.6 Kb/s).

· Compatibility with ISDN.

· Support of Short Message Service (SMS).
Advantages of GSM over Analog system:

· Capacity increases

· Reduced RF transmission power and longer battery life.

· International roaming capability.

· Better security against fraud (through terminal validation and user authentication).

· Encryption capability for information security and privacy.

· Compatibility with ISDN,leading to wider range of services
GSM Applications
· Mobile telephony

· GSM-R

· Telemetry System

 - Fleet management

 - Automatic meter reading

 - Toll Collection

 - Remote control and fault reporting of DG sets

· Value Added Services

Future Of GSM
· 2nd Generation

· GSM -9.6 Kbps (data rate)

· 2.5 Generation (Future of GSM)

· HSCSD (High Speed ckt Switched data)

· Data rate : 76.8 Kbps (9.6 x 8 kbps)

· GPRS (General Packet Radio service)

· Data rate: 14.4 - 115.2 Kbps

· EDGE (Enhanced data rate for GSM Evolution)

· Data rate: 547.2 Kbps (max)

· 3 Generation

· WCDMA(Wide band CDMA)

· Data rate : 0.348 – 2.0 Mbps

POWER SUPPLY:

The input to the circuit is applied from the regulated power supply. The a.c. input i.e., 230V from the mains supply is step down by the transformer to 12V and is fed to a rectifier. The output obtained from the rectifier is a pulsating d.c voltage. So in order to get a pure d.c voltage, the output voltage from the rectifier is fed to a filter to remove any a.c components present even after rectification. Now, this voltage is given to a voltage regulator to obtain a pure constant dc voltage.

Fig: Power supply
Transformer:

Usually, DC voltages are required to operate various electronic equipment and these voltages are 5V, 9V or 12V. But these voltages cannot be obtained directly. Thus the a.c input available at the mains supply i.e., 230V is to be brought down to the required voltage level. This is done by a transformer. Thus, a step down transformer is employed to decrease the voltage to a required level.

Rectifier:

The output from the transformer is fed to the rectifier. It converts A.C. into pulsating D.C. The rectifier may be a half wave or a full wave rectifier. In this project, a bridge rectifier is used because of its merits like good stability and full wave rectification.

Filter:

Capacitive filter is used in this project. It removes the ripples from the output of rectifier and smoothens the D.C. Output received from this filter is constant until the mains voltage and load is maintained constant. However, if either of the two is varied, D.C. voltage received at this point changes. Therefore a regulator is applied at the output stage.

Voltage regulator:

As the name itself implies, it regulates the input applied to it. A voltage regulator is an electrical regulator designed to automatically maintain a constant voltage level. In this project, power supply of 5V and 12V are required. In order to obtain these voltage levels, 7805 and 7812 voltage regulators are to be used. The first number 78 represents positive supply and the numbers 05, 12 represent the required output voltage levels.
MICROCONTROLLERS:

Microprocessors and microcontrollers are widely used in embedded systems products. Microcontroller is a programmable device. A microcontroller has a CPU in addition to a fixed amount of RAM, ROM, I/O ports and a timer embedded all on a single chip. The fixed amount of on-chip ROM, RAM and number of I/O ports in microcontrollers makes them ideal for many applications in which cost and space are critical.

The Intel 8051 is a Harvard architecture, single chip microcontroller (µC) which was developed by Intel in 1980 for use in embedded systems. It was popular in the 1980s and early 1990s, but today it has largely been superseded by a vast range of enhanced devices with 8051-compatible processor cores that are manufactured by more than 20 independent manufacturers including Atmel, Infineon Technologies and Maxim Integrated Products.

8051 is an 8-bit processor, meaning that the CPU can work on only 8 bits of data at a time. Data larger than 8 bits has to be broken into 8-bit pieces to be processed by the CPU. 8051 is available in different memory types such as UV-EPROM, Flash and NV-RAM.

The microcontroller used in this project is AT89C51. Atmel Corporation introduced this 89C51 microcontroller. This microcontroller belongs to 8051 family. This microcontroller had 128 bytes of RAM, 4K bytes of on-chip ROM, two timers, one serial port and four ports (each 8-bits wide) all on a single chip. AT89C51 is Flash type 8051.

The present project is implemented on Keil Uvision. In order to program the device, Proload tool has been used to burn the program onto the microcontroller.

The features, pin description of the microcontroller and the software tools used are discussed in the following sections.
FEATURES OF AT89C51:

· 4K Bytes of Re-programmable Flash Memory.

· RAM is 128 bytes.

· 2.7V to 6V Operating Range.

· Fully Static Operation: 0 Hz to 24 MHz.

· Two-level Program Memory Lock.

· 128 x 8-bit Internal RAM.

· 32 Programmable I/O Lines.

· Two 16-bit Timer/Counters.

· Six Interrupt Sources.

· Programmable Serial UART Channel.

· Low-power Idle and Power-down Modes.
Description:

The AT89C51 is a low-voltage, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash programmable memory. The device is manufactured using Atmel’s high-density nonvolatile memory technology and is compatible with the industry-standard MCS-51 instruction set. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C51 is a powerful microcomputer, which provides a highly flexible and cost-effective solution to many embedded control applications.

In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The power-down mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.

Fig: Pin diagram
[image: image5.emf]

Fig: Block diagram
PIN DESCRIPTION:

Vcc

Pin 40 provides supply voltage to the chip. The voltage source is +5V.

GND

Pin 20 is the ground.
XTAL1 and XTAL2

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier that can be configured for use as an on-chip oscillator, as shown in Figure 11. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven, as shown in the below figure. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.
[image: image6.emf]
 Fig: Oscillator Connections
C1, C2 = 30 pF ± 10 pF for Crystals

 = 40 pF ± 10 pF for Ceramic Resonators

Fig: External Clock Drive Configuration

RESET

Pin9 is the reset pin. It is an input and is active high. Upon applying a high pulse to this pin, the microcontroller will reset and terminate all the activities. This is often referred to as a power-on reset.

EA (External access)

Pin 31 is EA. It is an active low signal. It is an input pin and must be connected to either Vcc or GND but it cannot be left unconnected.

 The 8051 family members all come with on-chip ROM to store programs. In such cases, the EA pin is connected to Vcc. If the code is stored on an external ROM, the EA pin must be connected to GND to indicate that the code is stored externally.
PSEN (Program store enable)

This is an output pin.

ALE (Address latch enable)

This is an output pin and is active high.
Ports 0, 1, 2 and 3

The four ports P0, P1, P2 and P3 each use 8 pins, making them 8-bit ports. All the ports upon RESET are configured as input, since P0-P3 have value FFH on them.

Port 0(P0)

Port 0 is also designated as AD0-AD7, allowing it to be used for both address and data. ALE indicates if P0 has address or data. When ALE=0, it provides data D0-D7, but when ALE=1, it has address A0-A7. Therefore, ALE is used for demultiplexing address and data with the help of an internal latch.

 When there is no external memory connection, the pins of P0 must be connected to a 10K-ohm pull-up resistor. This is due to the fact that P0 is an open drain. With external pull-up resistors connected to P0, it can be used as a simple I/O, just like P1 and P2. But the ports P1, P2 and P3 do not need any pull-up resistors since they already have pull-up resistors internally. Upon reset, ports P1, P2 and P3 are configured as input ports.

Port 1 and Port 2

 With no external memory connection, both P1 and P2 are used as simple I/O. With external memory connections, port 2 must be used along with P0 to provide the 16-bit address for the external memory. Port 2 is designated as A8-A15 indicating its dual function. While P0 provides the lower 8 bits via A0-A7, it is the job of P2 to provide bits A8-A15 of the address.
Port 3

Port 3 occupies a total of 8 pins, pins 10 through 17. It can be used as input or output. P3 does not need any pull-up resistors, the same as port 1 and port 2. Port 3 has an additional function of providing some extremely important signals such as interrupts.

[image: image7.emf]

Table: Port 3 Alternate Functions

Machine cycle for the 8051

The CPU takes a certain number of clock cycles to execute an instruction. In the 8051 family, these clock cycles are referred to as machine cycles. The length of the machine cycle depends on the frequency of the crystal oscillator. The crystal oscillator, along with on-chip circuitry, provides the clock source for the 8051 CPU.

The frequency can vary from 4 MHz to 30 MHz, depending upon the chip rating and manufacturer. But the exact frequency of 11.0592 MHz crystal oscillator is used to make the 8051 based system compatible with the serial port of the IBM PC.

In the original version of 8051, one machine cycle lasts 12 oscillator periods. Therefore, to calculate the machine cycle for the 8051, the calculation is made as 1/12 of the crystal frequency and its inverse is taken.
The assembly language program is written and this program has to be dumped into the microcontroller for the hardware kit to function according to the software. The program dumped in the microcontroller is stored in the Flash memory in the microcontroller. Before that, this Flash memory has to be programmed and is discussed in the next section.

PROGRAMMING THE FLASH:

The AT89C51 is normally shipped with the on-chip Flash memory array in the erased state (that is, contents = FFH) and ready to be programmed. The programming interface accepts either a high-voltage (12-volt) or a low-voltage (VCC) program enable signal. The low-voltage programming mode provides a convenient way to program the AT89C51 inside the user’s system, while the high-voltage programming mode is compatible with conventional third party Flash or EPROM programmers. The AT89C51 is shipped with either the high-voltage or low-voltage programming mode enabled. The respective top-side marking and device signature codes are listed in the following table.

[image: image8.emf]
The AT89C51 code memory array is programmed byte-byte in either programming mode.
To program any nonblank byte in the on-chip Flash Memory, the entire memory must be erased using the Chip Erase Mode.
Programming Algorithm:

Before programming the AT89C51, the address, data and control signals should be set up according to the Flash programming mode table. To program the AT89C51, the following steps should be considered:
1. Input the desired memory location on the address lines.

2. Input the appropriate data byte on the data lines.

3. Activate the correct combination of control signals.

4. Raise EA/VPP to 12V for the high-voltage programming mode.

5. Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The byte-write cycle is self-timed and typically takes no more than 1.5 ms.

Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached.

Data Polling:

The AT89C51 features Data Polling to indicate the end of a write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written datum on PO.7. Once the write cycle has been completed, true data are valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.
Ready/Busy:
The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.4 is pulled low after ALE goes high during programming to indicate BUSY. P3.4 is pulled high again when programming is done to indicate READY.

Chip Erase:

The entire Flash array is erased electrically by using the proper combination of control signals and by holding ALE/PROG low for 10 ms. The code array is written with all “1”s. The chip erase operation must be executed before the code memory can be re-programmed.
Reading the Signature Bytes:

 The signature bytes are read by the same procedure as a normal verification of locations 030H, 031H, and 032H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows.
(030H) = 1EH indicates manufactured by Atmel

(031H) = 51H indicates 89C51

(032H) = FFH indicates 12V programming

(032H) = 05H indicates 5V programming

Programming Interface:
Every code byte in the Flash array can be written and the entire array can be erased by using the appropriate combination of control signals. The write operation cycle is self timed and once initiated, will automatically time itself to completion. All major programming vendors offer worldwide support for the Atmel microcontroller series.

[image: image9.emf]
Fig: Flash Programming Modes

Fig: Programming the Flash

Fig: Verifying the Flash

SWITCH AND LED INTERFACING WITH THE MICROCONTROLLER:
Switches and LEDs are the most widely used input/output devices of the 8051.

SWITCH INTERFACING:

CPU accesses the switches through ports. Therefore these switches are connected to a microcontroller. This switch is connected between the supply and ground terminals. A single microcontroller (consisting of a microprocessor, RAM and EEPROM and several ports all on a single chip) takes care of hardware and software interfacing of the switch.

These switches are connected to an input port. When no switch is pressed, reading the input port will yield 1s since they are all connected to high (Vcc). But if any switch is pressed, one of the input port pins will have 0 since the switch pressed provides the path to ground. It is the function of the microcontroller to scan the switches continuously to detect and identify the switch pressed.

The switches that we are using in our project are 4 leg micro switches of momentary type.

 Vcc

 R

 Gnd

 Fig: Interfacing switch with the microcontroller

Thus now the two conditions are to be remembered:

1. When the switch is open, the total supply i.e., Vcc appears at the port pin P2.0

P2.0 = 1

2. When the switch is closed i.e., when it is pressed, the total supply path is provided to ground. Thus the voltage value at the port pin P2.0 will be zero.

P2.0 = 0

By reading the pin status, the microcontroller identifies whether the switch is pressed or not. When the switch is pressed, the corresponding related to this switch press written in the program will be executed.

LED INTERFACING:

LED stands for Light Emitting Diode.

Microcontroller port pins cannot drive these LEDs as these require high currents to switch on. Thus the positive terminal of LED is directly connected to Vcc, power supply and the negative terminal is connected to port pin through a current limiting resistor.

This current limiting resistor is connected to protect the port pins from sudden flow of high currents from the power supply.

Thus in order to glow the LED, first there should be a current flow through the LED. In order to have a current flow, a voltage difference should exist between the LED terminals. To ensure the voltage difference between the terminals and as the positive terminal of LED is connected to power supply Vcc, the negative terminal has to be connected to ground. Thus this ground value is provided by the microcontroller port pin. This can be achieved by writing an instruction “CLR P1.0”. With this, the port pin P1.0 is initialized to zero and thus now a voltage difference is established between the LED terminals and accordingly, current flows and therefore the LED glows. LED and switches can be connected to any one of the four port pins.

Fig: LED Interfacing with the microcontroller

Light-emitting diode (LED)

Light-emitting diodes are elements for light signalization in electronics. They are manufactured in different shapes, colors and sizes. For their low price, low consumption and simple use, they have almost completely pushed aside other light sources- bulbs at first place. They perform similar to common diodes with the difference that they emit light when current flows through them.

[image: image10.png]
It is important to know that each diode will be immediately destroyed unless its current is limited. This means that a conductor must be connected in parallel to a diode. In order to correctly determine value of this conductor, it is necessary to know diode’s voltage drop in forward direction, which depends on what material a diode is made of and what colour it is. Values typical for the most frequently used diodes are shown in table below: As seen, there are three main types of LEDs. Standard ones get ful brightness at current of 20mA. Low Current diodes get ful brightness at ten times lower current while Super Bright diodes produce more intensive light than Standard ones.

Since the 8051 microcontrollers can provide only low input current and since their pins are configured as outputs when voltage level on them is equal to 0, direct connectining to LEDs is carried out as it is shown on figure (Low current LED, cathode is connected to output pin).

Switches and Pushbuttons

There is nothing simpler than this! This is the simplest way of controlling appearance of some voltage on microcontroller’s input pin. There is also no need for additional explanation of how these components operate.

[image: image11.png]
Nevertheless, it is not so simple in practice... This is about something commonly unnoticeable when using these components in everyday life. It is about contact bounce- a common problem with m e c h a n i c a l switches. If contact switching does not happen so quickly, several consecutive bounces can be noticed prior to maintain stable state. The reasons for this are: vibrations, slight rough spots and dirt. Anyway, whole this process does not last long (a few micro- or miliseconds), but long enough to be registered by the microcontroller. Concerning pulse counter, error occurs in almost 100% of cases!

[image: image12.png]
The simplest solution is to connect simple RC circuit which will “suppress” each quick voltage change. Since the bouncing time is not defined, the values of elements are not strictly determined. In the most cases, the values shown on figure are sufficient.

If complete safety is needed, radical measures should be taken! The circuit, shown on the figure (RS flip-flop), changes logic state on its output with the first pulse triggered by contact bounce. Even though this is more expensive solution (SPDT switch), the problem is definitely resolved! Besides, since the condensator is not used, very short pulses can be also registered in this way. In addition to these hardware solutions, a simple software solution is commonly applied too: when a program tests the state of some input pin and finds changes, the check should be done one more time after certain time delay. If the change is confirmed it means that switch (or pushbutton) has changed its position. The advantages of such solution are obvious: it is free of charge, effects of disturbances are eliminated too and it can be adjusted to the worst-quality contacts.
SERIAL COMMUNICATION:

The main requirements for serial communication are:

1. Microcontroller

2. PC

3. RS 232 cable

4. MAX 232 IC

5. HyperTerminal

When the pins P3.0 and P3.1 of microcontroller are set, UART, which is inbuilt in the microcontroller, will be enabled to start the serial communication.

TIMERS:

The 8051 has two timers: Timer 0 and Timer 1. They can be used either as timers to generate a time delay or as counters to count events happening outside the microcontroller.

Both Timer 0 and Timer 1 are 16-bit wide. Since the 8051 has an 8-bit architecture, each 16-bit timer is accessed as two separate registers of low byte and high byte.

Lower byte register of Timer 0 is TL0 and higher byte is TH0. Similarly lower byte register of Timer1 is TL1 and higher byte register is TH1.

TMOD (timer mode) register:

Both timers 0 and 1 use the same register TMOD to set the various operation modes.

TMOD is an 8-bit register in which the lower 4 bits are set aside for Timer 0 and the upper 4 bits for Timer 1. In each case, the lower 2 bits are used to set the timer mode and the upper 2 bits to specify the operation.

(MSB) (LSB)

GATE

Every timer has a means of starting and stopping. Some timers do this by software, some by hardware and some have both software and hardware controls. The timers in the 8051 have both. The start and stop of the timer are controlled by the way of software by the TR (timer start) bits TR0 and TR1. These instructions start and stop the timers as long as GATE=0 in the TMOD register. The hardware way of starting and stopping the timer by an external source is achieved by making GATE=1 in the TMOD register.

C/T

Timer or counter selected. Cleared for timer operation and set for counter operation.

M1

Mode bit 1

M0

Mode bit 0

M1
M0
Mode

Operating Mode

0
0
0

13-bit timer mode

8-bit timer/counter THx with TLx as 5-bit prescaler

0
1
1

16-bit timer mode

16-bit timer/counters THx and TLx are cascaded

1
0
2

8-bit auto reload timer/counter

THx holds a value that is to be reloaded into TLx each time

it overflows

1
1
3

Split timer mode

The mode used here to generate a time delay is MODE 2.

This mode 2 is an 8-bit timer and therefore it allows only values of 00H to FFH to be loaded into the timer’s register TH. After TH is loaded with the 8-bit value, the 8051 give a copy of it to TL. When the timer starts, it starts to count up by incrementing the TL register. It counts up until it reaches its limit of FFH. When it rolls over from FFH to 00H, it sets high the TF (timer flag). If Timer 0 is used, TF0 goes high and if Timer 1 is used, TF1 goes high. When the TL register rolls from FFH to 0 and TF is set to 1, TL is reloaded automatically with the original value kept by the TH register.

ASYNCHRONOUS AND SYNCHRONOUS SERIAL COMMUNICATION

Computers transfer data in two ways: parallel and serial. In parallel data transfers, often 8 or more lines are used to transfer data to a device that is only a few feet away. Although a lot of data can be transferred in a short amount of time by using many wires in parallel, the distance cannot be great. To transfer to a device located many meters away, the serial method is best suitable.

In serial communication, the data is sent one bit at a time. The 8051 has serial communication capability built into it, thereby making possible fast data transfer using only a few wires.

The fact that serial communication uses a single data line instead of the 8-bit data line instead of the 8-bit data line of parallel communication not only makes it cheaper but also enables two computers located in two different cities to communicate over the telephone.

Serial data communication uses two methods, asynchronous and synchronous. The synchronous method transfers a block of data at a time, while the asynchronous method transfers a single byte at a time. With synchronous communications, the two devices initially synchronize themselves to each other, and then continually send characters to stay in sync. Even when data is not really being sent, a constant flow of bits allows each device to know where the other is at any given time. That is, each character that is sent is either actual data or an idle character. Synchronous communications allows faster data transfer rates than asynchronous methods, because additional bits to mark the beginning and end of each data byte are not required. The serial ports on IBM-style PCs are asynchronous devices and therefore only support asynchronous serial communications.

Asynchronous means "no synchronization", and thus does not require sending and receiving idle characters. However, the beginning and end of each byte of data must be identified by start and stop bits. The start bit indicates when the data byte is about to begin and the stop bit signals when it ends. The requirement to send these additional two bits causes asynchronous communication to be slightly slower than synchronous however it has the advantage that the processor does not have to deal with the additional idle characters.

There are special IC chips made by many manufacturers for serial data communications. These chips are commonly referred to as UART(universal asynchronous receiver-transmitter) and USART(universal synchronous-asynchronous receiver-transmitter). The 8051 has a built-in UART.

In the asynchronous method, the data such as ASCII characters are packed between a start and a stop bit. The start bit is always one bit, but the stop bit can be one or two bits. The start bit is always a 0 (low) and stop bit (s) is 1 (high). This is called framing.

The rate of data transfer in serial data communication is stated as bps (bits per second). Another widely used terminology for bps is baud rate. The data transfer rate of a given computer system depends on communication ports incorporated into that system. And in asynchronous serial data communication, this baud rate is generally limited to 100,000bps. The baud rate is fixed to 9600bps in order to interface with the microcontroller using a crystal of 11.0592 MHz.

RS232 CABLE:

To allow compatibility among data communication equipment, an interfacing standard called RS232 is used. Since the standard was set long before the advent of the TTL logic family, its input and output voltage levels are not TTL compatible. For this reason, to connect any RS232 to a microcontroller system, voltage converters such as MAX232 are used to convert the TTL logic levels to the RS232 voltage levels and vice versa.

MAX 232:

Max232 IC is a specialized circuit which makes standard voltages as required by RS232 standards. This IC provides best noise rejection and very reliable against discharges and short circuits. MAX232 IC chips are commonly referred to as line drivers.

 To ensure data transfer between PC and microcontroller, the baud rate and voltage levels of Microcontroller and PC should be the same. The voltage levels of microcontroller are logic1 and logic 0 i.e., logic 1 is +5V and logic 0 is 0V. But for PC, RS232 voltage levels are considered and they are: logic 1 is taken as -3V to -25V and logic 0 as +3V to +25V. So, in order to equal these voltage levels, MAX232 IC is used. Thus this IC converts RS232 voltage levels to microcontroller voltage levels and vice versa.

Fig: Pin diagram of MAX 232 IC

SCON (serial control) register:

The SCON register is an 8-bit register used to program the start bit, stop bit and data bits of data framing.

 SM0

SCON.7

Serial port mode specifier

SM1

SCON.6

Serial port mode specifier

SM2

SCON.5

Used for multiprocessor communication

REN

SCON.4

Set/cleared by software to enable/disable reception

TB8

SCON.3

Not widely used

RB8

SCON.2

Not widely used

TI

SCON.1

Transmit interrupt flag. Set by hardware at the

beginning of the stop bit in mode 1. Must be

cleared by software.

RI

SCON.0

Receive interrupt flag. Set by hardware at the

beginning of the stop bit in mode 1. Must be

cleared by software.

SM0

SM1

0

0

Serial
Mode 0

0

1

Serial Mode 1, 8-bit data, 1 stop bit, 1 start bit

1

0

Serial Mode 2

1

1

Serial Mode 3

Of the four serial modes, only mode 1 is widely used. In the SCON register, when serial mode 1 is chosen, the data framing is 8 bits, 1 stop bit and 1 start bit, which makes it compatible with the COM port of IBM/ compatible PC’s. And the most important is serial mode 1 allows the baud rate to be variable and is set by Timer 1 of the 8051. In serial mode 1, for each character a total of 10 bits are transferred, where the first bit is the start bit, followed by 8 bits of data and finally 1 stop bit.
MAX 232 INTERFACING WITH MICROCONTROLLER:

[image: image13]
LIQUID CRYSTAL DISPLAY:

LCD stands for Liquid Crystal Display. LCD is finding wide spread use replacing LEDs (seven segment LEDs or other multi segment LEDs) because of the following reasons:

1. The declining prices of LCDs.

2. The ability to display numbers, characters and graphics. This is in contrast to LEDs, which are limited to numbers and a few characters.

3. Incorporation of a refreshing controller into the LCD, thereby relieving the CPU of the task of refreshing the LCD. In contrast, the LED must be refreshed by the CPU to keep displaying the data.

4. Ease of programming for characters and graphics.
These components are “specialized” for being used with the microcontrollers, which means that they cannot be activated by standard IC circuits. They are used for writing different messages on a miniature LCD.

A model described here is for its low price and great possibilities most frequently used in practice. It is based on the HD44780 microcontroller (Hitachi) and can display messages in two lines with 16 characters each . It displays all the alphabets, Greek letters, punctuation marks, mathematical symbols etc. In addition, it is possible to display symbols that user makes up on its own. Automatic shifting message on display (shift left and right), appearance of the pointer, backlight etc. are considered as useful characteristics.

Pins Functions

There are pins along one side of the small printed board used for connection to the microcontroller. There are total of 14 pins marked with numbers (16 in case the background light is built in). Their function is described in the table below:

	Function
	Pin Number
	Name
	Logic State
	Description

	Ground
	1
	Vss
	-
	0V

	Power supply
	2
	Vdd
	-
	+5V

	Contrast
	3
	Vee
	-
	0 - Vdd

	Control of operating
	4
	RS
	0
1
	D0 – D7 are interpreted as commands
D0 – D7 are interpreted as data

	
	5
	R/W
	0
1
	Write data (from controller to LCD)
Read data (from LCD to controller)

	
	6
	E
	0
1
From 1 to 0
	Access to LCD disabled
Normal operating
Data/commands are transferred to LCD

	Data / commands
	7
	D0
	0/1
	Bit 0 LSB

	
	8
	D1
	0/1
	Bit 1

	
	9
	D2
	0/1
	Bit 2

	
	10
	D3
	0/1
	Bit 3

	
	11
	D4
	0/1
	Bit 4

	
	12
	D5
	0/1
	Bit 5

	
	13
	D6
	0/1
	Bit 6

	
	14
	D7
	0/1
	Bit 7 MSB

LCD screen:

LCD screen consists of two lines with 16 characters each. Each character consists of 5x7 dot matrix. Contrast on display depends on the power supply voltage and whether messages are displayed in one or two lines. For that reason, variable voltage 0-Vdd is applied on pin marked as Vee. Trimmer potentiometer is usually used for that purpose. Some versions of displays have built in backlight (blue or green diodes). When used during operating, a resistor for current limitation should be used (like with any LE diode).

[image: image14.png]
LCD Basic Commands

All data transferred to LCD through outputs D0-D7 will be interpreted as commands or as data, which depends on logic state on pin RS:

RS = 1 - Bits D0 - D7 are addresses of characters that should be displayed. Built in processor addresses built in “map of characters” and displays corresponding symbols. Displaying position is determined by DDRAM address. This address is either previously defined or the address of previously transferred character is automatically incremented.

RS = 0 - Bits D0 - D7 are commands which determine display mode. List of commands which LCD recognizes are given in the table below:
	Command
	RS
	RW
	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0
	Execution Time

	Clear display
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1.64mS

	Cursor home
	0
	0
	0
	0
	0
	0
	0
	0
	1
	x
	1.64mS

	Entry mode set
	0
	0
	0
	0
	0
	0
	0
	1
	I/D
	S
	40uS

	Display on/off control
	0
	0
	0
	0
	0
	0
	1
	D
	U
	B
	40uS

	Cursor/Display Shift
	0
	0
	0
	0
	0
	1
	D/C
	R/L
	x
	x
	40uS

	Function set
	0
	0
	0
	0
	1
	DL
	N
	F
	x
	x
	40uS

	Set CGRAM address
	0
	0
	0
	1
	CGRAM address
	40uS

	Set DDRAM address
	0
	0
	1
	DDRAM address
	40uS

	Read “BUSY” flag (BF)
	0
	1
	BF
	DDRAM address
	-

	Write to CGRAM or DDRAM
	1
	0
	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0
	40uS

	Read from CGRAM or DDRAM
	1
	1
	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0
	40uS

I/D 1 = Increment (by 1)

 R/L 1 = Shift right
 0 = Decrement (by 1)

 0 = Shift left
 S 1 = Display shift on

 DL 1 = 8-bit interface

 0 = Display shift off

 0 = 4-bit interface

D 1 = Display on

 N 1 = Display in two lines

 0 = Display off

 0 = Display in one line

U 1 = Cursor on

 F 1 = Character format 5x10 dots

 0 = Cursor off

 0 = Character format 5x7 dots

B 1 = Cursor blink on

D/C 1 = Display shift

 0 = Cursor blink off

 0 = Cursor shift
LCD Connection

Depending on how many lines are used for connection to the microcontroller, there are 8-bit and 4-bit LCD modes. The appropriate mode is determined at the beginning of the process in a phase called “initialization”. In the first case, the data are transferred through outputs D0-D7 as it has been already explained. In case of 4-bit LED mode, for the sake of saving valuable I/O pins of the microcontroller, there are only 4 higher bits (D4-D7) used for communication, while other may be left unconnected.

 Consequently, each data is sent to LCD in two steps: four higher bits are sent first (that normally would be sent through lines D4-D7), four lower bits are sent afterwards. With the help of initialization, LCD will correctly connect and interpret each data received. Besides, with regards to the fact that data are rarely read from LCD (data mainly are transferred from microcontroller to LCD) one more I/O pin may be saved by simple connecting R/W pin to the Ground. Such saving has its price. Even though message displaying will be normally performed, it will not be possible to read from busy flag since it is not possible to read from display.

LCD Initialization

Once the power supply is turned on, LCD is automatically cleared. This process lasts for approximately 15mS. After that, display is ready to operate. The mode of operating is set by default. This means that:

1. Display is cleared

2. Mode

 DL = 1 Communication through 8-bit interface

 N = 0 Messages are displayed in one line

 F = 0 Character font 5 x 8 dots

3. Display/Cursor on/off

 D = 0 Display off

 U = 0 Cursor off

 B = 0 Cursor blink off

4. Character entry

 ID = 1 Addresses on display are automatically incremented by 1

 S = 0 Display shift off

Automatic reset is mainly performed without any problems. Mainly but not always! If for any reason power supply voltage does not reach full value in the course of 10mS, display will start perform completely unpredictably. If voltage supply unit can not meet this condition or if it is needed to provide completely safe operating, the process of initialization by which a new reset enabling display to operate normally must be applied.

Algorithm according to the initialization is being performed depends on whether connection to the microcontroller is through 4- or 8-bit interface. All left over to be done after that is to give basic commands and of course- to display messages.

[image: image15.png]
Fig: Procedure on 8-bit initialization.

CONTRAST CONTROL:

To have a clear view of the characters on the LCD, contrast should be adjusted. To adjust the contrast, the voltage should be varied. For this, a preset is used which can behave like a variable voltage device. As the voltage of this preset is varied, the contrast of the LCD can be adjusted.

 Fig: Variable resistor
Potentiometer

Variable resistors used as potentiometers have all three terminals connected.

This arrangement is normally used to vary voltage, for example to set the switching point of a circuit with a sensor, or control the volume (loudness) in an amplifier circuit. If the terminals at the ends of the track are connected across the power supply, then the wiper terminal will provide a voltage which can be varied from zero up to the maximum of the supply.

	[image: image16.png]

	Potentiometer Symbol

Presets

These are miniature versions of the standard variable resistor. They are designed to be mounted directly onto the circuit board and adjusted only when the circuit is built. For example to set the frequency of an alarm tone or the sensitivity of a light-sensitive circuit. A small screwdriver or similar tool is required to adjust presets.

Presets are much cheaper than standard variable resistors so they are sometimes used in projects where a standard variable resistor would normally be used.

Multiturn presets are used where very precise adjustments must be made. The screw must be turned many times (10+) to move the slider from one end of the track to the other, giving very fine control.
	[image: image17.png]

	Preset Symbol

LCD INTERFACING WITH THE MICROCONTROLLER:

[image: image18]
EEPROM:
In the design of all microprocessors-based systems, semiconductor memories are used as primary storage for code and data. Semiconductor memories are connected directly to the CPU and they are the memory that the CPU first asks for information (code and data). For this reason, semiconductor memories are sometimes referred to as primary memory.

Important Terminology common to all Semiconductor Memories:
Memory capacity:

The number of bits that a semiconductor memory chip can store is called chip capacity. It can be in units of Kilobits, Megabits and so on. This must be distinguished from the storage capacity of computer system. While the memory capacity of a memory IC chip is always given in bits, the memory capacity of a computer system is given in bytes.

Memory organization:

Memory chips are organized into a number of locations within the IC. Each location can hold 1 bit, 4 bits, 8 bits or even 16 bits, depending on how it is designed internally. The number of bits that each location within the memory chip can hold is always equal to the number of data pins on the chip. i.e., the total number of bits that a memory chip can store is equal to the number of locations times the number of data bits per location.

Speed:
One of the most important characteristics of a memory chip is the speed at which its data can be accessed. The speed of the memory chip is commonly referred to as its access time. The access time of memory chip varies from a few nanoseconds to hundreds of nanoseconds, depending on the IC technology used in the design and fabrication process.

The different types of memories are RAM, ROM, EPROM and EEPROM.

RAM and ROM are inbuilt in the microprocessor.

This project requires the data such as the total number of available units and the pulse count to be stored permanently and this data modifies upon the power consumption. Thus this data has to be stored in such a location where it cannot be erased when power fails and also the data should be allowed to make changes in it without the system interface i.e., there should be a provision in such a way that the data should be accessed (or modified) while it is in system board but not external erasure and programming. The flash memory inbuilt in the microcontroller can erase the entire contents in less than a second and the erasure method is electrical. But the major drawback of Flash memory is that when flash memory’s contents are erased, the entire device will be erased but not a desired section or byte.

For this purpose, we prefer EEPROM in our project.

EEPROM (Electrically Erasable Programmable Read only memory)
EEPROM has several advantages over other memory devices, such as the fact that its method of erasure is electrical and therefore instant. In addition, in EEPROM one can select which byte to be erased, in contrast to flash , in which the entire contents of ROM are erased. The main advantage of EEPROM is that one can program and erase its contents while it is in system board. It does not require physical removal of the memory chip from its socket. In general, the cost per bit for EEPROM is much higher when compared to other devices.

The EEPROM used in this project is 24C04 type.

Features of 24C04 EEPROM:

· 1 million erase/write cycles with 40 years data retention.
· Single supply voltage:

3v to 5.5v for st24x04 versions.
2.5v to 5.5v for st25x04 versions.
· Hardware write control versions:

st24w04 and st25w04.
· Programmable write protection.
· Two wire serial interface, fully i2c bus compatible.
· Byte and multibyte write (up to 4 bytes).
· Page write (up to 8 bytes).

· Byte, random and sequential read modes

· Self timed programming cycle

· Automatic address incrementing

· Enhanced ESD/Latch up performances

DIP Pin Connections

 SO Pin Connection
[image: image19.emf]

 Fig: Signal Names

[image: image20.emf]

 Fig: Logic Diagram
DESCRIPTION
The 24C04 is a 4 Kbit electrically erasable programmable memory (EEPROM), organized as 2 blocks of 256 x8 bits. They are manufactured in ST Microelectronics’ Hi-Endurance Advanced CMOS technology which guarantees an endurance of one million erase/write cycles with a data retention of 40 years. Both Plastic Dual-in-Line and Plastic Small Outline packages are available. The memories are compatible with the I2C standard, two wire serial interface which uses a bi-directional data bus and serial clock. The memories carry a built-in 4 bit, unique device identification code (1010) corresponding to the I2C bus definition. This is used together with 2 chip enable inputs (E2, E1) so that up to 4 x 4K devices may be attached to the I2C bus and selected individually. The memories behave as a slave device in the I2C protocol with all memory operations synchronized by the serial clock. Read and write operations are initiated by a START condition generated by the bus master. The START condition is followed by a stream of 7 bits (identification code 1010), plus one read/write bit and terminated by an acknowledge bit.

[image: image21.emf]

Table: Device Select Mode

[image: image22.emf]
Table: Operating Modes
When writing data to the memory it responds to the 8 bits received by asserting an acknowledge bit during the 9th bit time. When data is read by the bus master, it acknowledges the receipt of the data bytes in the same way. Data transfers are terminated with a STOP condition.

Power On Reset: VCC lock out write protect.

In order to prevent data corruption and inadvertent write operations during power up, a Power On Reset (POR) circuit is implemented. Until the VCC voltage has reached the POR threshold value, the internal reset is active, all operations are disabled and the device will not respond to any command. In the same way, when VCC drops down from the operating voltage to below the POR threshold value, all operations are disabled and the device will not respond to any command. A stable VCC must be applied before applying any logic signal.
SIGNAL DESCRIPTIONS

Serial Clock (SCL).

 The SCL input pin is used to synchronize all data in and out of the memory. A resistor can be connected from the SCL line to VCC to act as a pull up.

Serial Data (SDA).

 The SDA pin is bi-directional and is used to transfer data in or out of the memory. It is an open drain output that may be wire-OR’ed with other open drain or open collector signals on the bus. A resistor must be connected from the SDA bus line to VCC to act as pull up.
Chip Enable (E1 - E2).

These chip enable inputs are used to set the 2 least significant bits (b2, b3) of the 7 bit device select code. These inputs may be driven dynamically or tied to VCC or VSS to establish the device select code.

Protect Enable (PRE).

The PRE input pin, in addition to the status of the Block Address Pointer bit (b2, location 1FFh as in below figure), sets the PRE write protection active.
[image: image23.emf]

Fig: Memory Protection
Mode (MODE).

The MODE input is available on pin 7 and may be driven dynamically. It must be at VIL or VIH for the Byte Write mode, VIH for Multibyte Write mode or VIL for Page Write mode. When unconnected, the MODE input is internally read as VIH (Multibyte Write mode).

Write Control (WC).

An hardware Write Control feature (WC) is offered only for ST24W04 and ST25W04 versions on pin 7. This feature is useful to protect the contents of the memory from any erroneous erase/write cycle. The Write Control signal is used to enable (WC = VIH) or disable (WC =VIL) the internal write protection. When unconnected, the WC input is internally read as VIL and the memory area is not write protected.

DEVICE OPERATION

I2C Bus Background

The ST24/25x04 supports the I2C protocol. This protocol defines any device that sends data onto the bus as a transmitter and any device that reads the data as a receiver. The device that controls the data transfer is known as the master and the other as the slave. The master will always initiate a data transfer and will provide the serial clock for synchronization.

The ST24/25x04 is always slave devices in all communications.
[image: image24.emf]

Fig: I2C Protocol

Start Condition.
START is identified by a high to low transition of the SDA line while the clock SCL is stable in the high state. A START condition must precede any command for data transfer. Except during a programming cycle, the ST24/25x04 continuously monitor the SDA and SCL signals for a START condition and will not respond unless one is given.

Stop Condition.
STOP is identified by a low to high transition of the SDA line while the clock SCL is stable in the high state. A STOP condition terminates communication between the ST24/25x04 and the bus master. A STOP condition at the end of a Read command, after and only after a No Acknowledge, forces the standby state. A STOP condition at the end of a Write command triggers the internal EEPROM write cycle.
Acknowledge Bit (ACK).
An acknowledge signal is used to indicate a successful data transfer. The bus transmitter, either master or slave, will release the SDA bus after sending 8 bits of data. During the 9th clock pulse period the receiver pulls the SDA bus low to acknowledge the receipt of the 8 bits of data.
Data Input.
During data input the ST24/25x04 sample the SDA bus signal on the rising edge of the clock SCL. Note that for correct device operation the SDA signal must be stable during the clock low to high transition and the data must change ONLY when the SCL line is low.
Memory Addressing.
 To start communication between the bus master and the slave ST24/25x04, the master must initiate a START condition. Following this, the master sends onto the SDA bus line 8 bits (MSB first) corresponding to the device select code (7 bits) and a READ or WRITE bit. The 4 most significant bits of the device select code are the device type identifier, corresponding to the I2C bus definition. For these memories the 4 bits are fixed as 1010b. The following 2 bits identify the specific memory on the bus. They are matched to the chip enable signals E2, E1. Thus up to 4 x 4K memories can be connected on the same bus giving a memory capacity total of 16 Kilobits. After a START condition any memory on the bus will identify the device code and compare the following 2 bits to its chip enable inputs E2, E1. The 7th bit sent is the block number (one block = 256 bytes). The 8th bit sent is the read or write bit (RW), this bit is set to ’1’ for read and ’0’ for write operations. If a match is found, the corresponding memory will acknowledge the identification on the SDA bus during the 9th bit time.

[image: image25.emf]

Fig: AC Waveforms
Write Operations

The Multibyte Write mode (only available on the ST24/25C04 versions) is selected when the MODE pin is at VIH and the Page Write mode when MODE pin is at VIL. The MODE pin may be driven dynamically with CMOS input levels. Following a START condition the master sends a device select code with the RW bit reset to ’0’. The memory acknowledges this and waits for a byte address. The byte address of 8 bits provides access to one block of 256 bytes of the memory. After receipt of the byte address the device again responds with an acknowledge. For the ST24/25W04 versions, any write command with WC = 1 will not modify the memory content.

Byte Write.
In the Byte Write mode the master sends one data byte, which is acknowledged by the memory. The master then terminates the transfer by generating a STOP condition. The Write mode is independent of the state of the MODE pin which could be left floating if only this mode was to be used. However it is not a recommended operating mode, as this pin has to be connected to either VIH or VIL, to minimize the stand-by current.

Multibyte Write.
For the Multibyte Write mode, the MODE pin must be at VIH. The Multibyte Write mode can be started from any address in the memory. The master sends from one up to 4 bytes of data, which are each acknowledged by the memory. The transfer is terminated by the master generating a STOP condition. The duration of the write cycle is Tw = 10ms maximum except when bytes are accessed on 2 rows (that is have different values for the 6 most significant address bits A7-A2), the programming time is then doubled to a maximum of 20ms. Writing more than 4 bytes in the Multibyte Write mode may modify data bytes in an adjacent row (one row is 8 bytes long). However, the Multibyte Write can properly write up to 8 consecutive bytes as soon as the first address of these 8 bytes is the first address of the row, the 7 following bytes being written in the 7 following bytes of this same row.

Page Write.
For the Page Write mode, the MODE pin must be at VIL. The Page Write mode allows up to 8 bytes to be written in a single write cycle, provided that they are all located in the same ’row’ in the memory: that is the 5 most significant memory address bits (A7-A3) are the same inside one block. The master sends from one up to 8 bytes of data, which are each acknowledged by the memory. After each byte is transferred, the internal byte address counter (3 least significant bits only) is incremented. The transfer is terminated by the master generating a STOP condition. Care must be taken to avoid address counter ’roll-over’ which could result in data being overwritten. Note that, for any write mode, the generation by the master of the STOP condition starts the internal memory program cycle. All inputs are disabled until the completion of this cycle and the memory will not respond to any request.

Minimizing System Delays by Polling on ACK.

During the internal write cycle, the memory disconnects itself from the bus in order to copy the data from the internal latches to the memory cells. The maximum value of the write time (Tw) is given from the AC Characteristics, since the typical time is shorter, the time seen by the system may be reduced by an ACK polling sequence issued by the master.

[image: image26.emf]

Fig: Write Cycle Polling using ACK

Data in the upper block of 256 bytes of the memory may be write protected. The memory is write protected between a boundary address and the top of memory (address 1FFh) when the PRE input pin is taken high and when the Protect Flag (bit b2 in location 1FFh) is set to ’0’. The boundary address is user defined by writing it in the Block Address Pointer. The Block Address Pointer is an 8 bit EEPROM register located at the address 1FFh. It is composed by 5 MSBs Address Pointer, which defines the bottom boundary address and 3 LSBs which must be programmed at ’0’. This Address Pointer can therefore address a boundary in steps of 8 bytes.
The sequence to use the Write Protected feature is:

– write the data to be protected into the top of the memory, up to, but not including, location 1FFh;

– set the protection by writing the correct bottom boundary address in the Address Pointer (5 MSBs of location 1FFh) with bit b2 (Protect flag) set to ’0’. Note that for a correct functionality of the memory, all the 3 LSBs of the Block Address Pointer must also be programmed at ’0’. The area will now be protected when the PRE input pin is taken High. While the PRE input pin is read at ’0’ by the memory, the location 1FFh can be used as a normal EEPROM byte.
[image: image27.emf]
Fig: Write Modes Sequence

Read Operations

Read operations are independent of the state of the MODE pin. On delivery, the memory content is set at all "1’s" (or FFh).
Current Address Read.
The memory has an internal byte address counter. Each time a byte is read, this counter is incremented. For the Current Address Read mode, following a START condition, the master sends a memory address with the RW bit set to ’1’. The memory acknowledges this and outputs the byte addressed by the internal byte address counter. This counter is then incremented. The master does NOT acknowledge the byte output, but terminates the transfer with a STOP condition.
Random Address Read.
 A dummy write is performed to load the address into the address counter. This is followed by another START condition from the master and the byte address is repeated with the RW bit set to ’1’. The memory acknowledges this and outputs the byte addressed. The master has to NOT acknowledge the byte output, but terminates the transfer with a STOP condition.
Sequential Read.
 This mode can be initiated with either a Current Address Read or a Random Address Read. However, in this case the master DOES acknowledge the data byte output and the memory continues to output the next byte in sequence. To terminate the stream of bytes, the master must NOT acknowledge the last byte output, but MUST generate a STOP condition. The output data is from consecutive byte addresses, with the internal byte address counter automatically incremented after each byte output. After a count of the last memory address, the address counter will ’roll- over’ and the memory will continue to output data.
Acknowledge in Read Mode.
 In all read modes the ST24/25x04 wait for an acknowledge during the 9th bit time. If the master does not pull the SDA line low during this time, the ST24/25x04 terminate the data transfer and switches to a standby state.

[image: image28.emf]
Fig: Read Modes Sequence
KEYPAD:
Keypads and LCDs are the most widely used input/output devices of the 8051 and a basic understanding of them is essential. The keypads are mainly three types:

1. 4*3 keypad

2. 4*4 keypad

3. 4*8 keypad.

The keypad used in this project is 4*3 keypad.

 Calculator keypad

Telephone keypad
INTERFACING THE KEYPAD TO 8051

At the lowest level, keyboards are organized in a matrix of rows and columns. The CPU accesses both rows and columns through ports. Therefore, with two 8-bit ports, an 8*8 matrix of keys can be connected to a microprocessor. When a key is pressed, a row and a column make a contact, otherwise there is no connection between rows and columns. A single microcontroller (consisting of a microprocessor, RAM, EPROM and several ports all on a single chip) takes care of hardware and software interfacing of the keypad. In such systems, it is the function of programs stored in EPROM of the microcontroller to scan the keys continuously, identify which one has been activated and present it to the motherboard.

[image: image29.png]
 Fig: 4*3 Matrix Keypad Connections to Ports
Scanning and identifying the key:

The rows are connected to an output port and the columns are connected to an input port. If no key has been pressed, reading the input port will yield 1s for all columns since they are all connected to high (Vcc). If all the rows are grounded and a key is pressed, one of the columns will have 0 since the key pressed provides the path to ground. It is the function of the microcontroller to scan the keypad continuously to detect and identify the key pressed.

Grounding rows and reading the columns:

To detect a pressed key, the microcontroller grounds all rows by providing 0 (zero) to the output latch, then it reads the columns. If the data read from the columns is D2-D0 =111, no key has been pressed and the process continues until a key press is detected. However, if one of the column bits has a zero, this means that a key press has occurred i.e., for example, if D2-D0=110, this means that a key in the D0 column has been pressed. After a key press is detected, the microcontroller will go through a process of identifying the key. Starting with the top row, the microcontroller grounds it by providing a low to row D0 only and then it reads the columns. If the data read is all 1s, no key in that row is activated and the process is moved to the next row. It grounds the next row, reads the columns and checks for any zero. This process continues until the row is identified. After identification of the row in which the key has been pressed, the next task is to find out which column the pressed key belongs to. Now this will be easy since the microcontroller knows at any time which row and column are being accessed.
Operating Procedure

1) Switch ON the GSM modem and wait for 30seconds.

2) Power up the controller board.

3) If the user wants to change the number.

 Then press # When Prompted.

 If the user presses # key then:

· Enter the 10 digit phone no when prompted.

· To confirm press ‘#’ key.

· To confirm again press ‘*’ key and to cancel press ‘#’ key.

If the user presses ‘#’ key, please follow instructions from step3.

4) Now the G.S.M modem is ready.

5) To switch ON devices. The user has to send the following messages to the gsm modem

“APP1 ON”

“APP2 ON”

“APP7 ON”

6) To turn off a device. Send the message to the gsm modem.

“APP1 OFF”

“APP2 OFF”

“APP7 OFF”

7) To turn off all devices send message “RESET” to the GSM modem.

Advantages:

System can be monitored and controlled from any where

Mobile number can be changed at any time

Grid status will not be lost in power failure condition

Scopes for Advancements:

· This system is developed for mobile reporting application only. It also can be interfaced to computer system to record and process data base.

Applications:
1) Banks

2) Offices

3) Industries

4) Jeweler Shops and Home Applications

CODE:
#include<reg51.h>

#include"includes.h"

#define led P0
void update_status(unsigned char[]);

void main()

{

unsigned char j,i,h,phone_no[10],dstat[2]={"26"},m=0;

lcd_init();

serial_init();

sms_init();

clear_messages();

longdelay();

disp(0x80,"GSM MODEM READY");

longdelay();

clrscr();

delay(100);

disp(0x80,"GETTING DEVICE");

disp(0xc0," STATUS");

longdelay();

longdelay();

longdelay();

i=read(0xa0,0x01);

P2=i;

longdelay();

clrscr();

disp(0x80,"OK ");

disp(0X80,"PRESS #");

disp(0xc0,"TO CHANGE NO");

i=get_key(0x00);

if(i=='$')

{

clrscr();

goto sarath;

}

goto lill;

sill:

clrscr();

disp(0X80,"* = CONTINUE");

disp(0xc0,"# = CHANGE NO");

i=get_key(0x01);

lill:

 clrscr();

 if(i!=0x23&&i!=0x2a)

 {

 disp(0x80,"WRONG ENTRY");

 longdelay();

 longdelay();

 longdelay();

 clrscr();

 goto sill;

 }

 if(i=='#')

{

 disp(0x80,"ENTER NO");

 lcd_com(0xc0);

 h=0;

 phone_no[h]=0;

 i=0;

 while(i<=9)

 {

 lcd_dis(0xb0);

 i++;

 }

 lcd_com(0xc0);

while(h!=10)

 {

 i=get_key(0x01);

 phone_no[h]=i;

 lcd_dis(phone_no[h]);

 delay(500);

 h++;

 }

}

clrscr();

kill:disp(0x80,"NO =");

if(i=='*')

{

i=0x10;

delay(200);

while(i<=0x19)

{

j=read(0xa0,i);

lcd_dis(j);

delay(100);

i++;

}

}

disp(0x85,phone_no);

disp(0x8f," ");

disp(0xc0," # = CONFIRM");

i=get_key(0x01);

if (i!='#')

{

clrscr();

goto kill;

}

clrscr();

disp(0x80,"CONFIRMED");

disp(0xc0,"NO = ");

sequential_write(0xa0,0x10,phone_no);

i=0x10;

delay(200);

lcd_com(0xc5);

while(i<=0x19)

{

j=read(0xa0,i);

lcd_dis(j);

delay(100);

i++;

}

longdelay();

longdelay();

hill:disp(0x80," # * ");

 disp(0xc0,"CANCEL CONTINUE");

i=get_key(0x01);

clrscr();

if(i!='*'&&i!='#')

goto hill;

if(i=='#')

goto sill;

sarath:

longdelay();

disp(0x80,"GSM MODEM IDLE");

lcd_com(0xc0);

m=0x31;

while(m<=0x39)

{

lcd_com(0xc0);

i=get_no(m);

longdelay();

if(i=='*')

break;

m++;

}

if((m>=0x30)&&(m<=0x39))

goto king;

else

goto munni;

king:disp(0x80,"NEW SMS RECEIVED");

delay(100);

longdelay();

longdelay();

clrscr();

disp(0x80,"CHECKING NUMBER");

j=sender_no(m);

if(j==1)

{

//del_messg(m);

if(m!=0x39)

goto sarath;

else

goto munni;

}

clrscr();

disp(0x80,"CHECKING MESSAGE");

j=disp_messg(m);

longdelay();

longdelay();

clrscr();

munni:if(m==0x39)

{

clrscr();

disp(0x80,"INBOX MEMORY FULL");

clear_messages();

clrscr();

disp(0x80,"MEMORY CLEARED");

}

i=P2;

dstat[0]=i;

update_status(dstat);

clrscr();

//del_messg(m);

goto sarath;

while(1);

}

void update_status(unsigned char arr[])

{

 unsigned char i=0;

 start_i2c();

 delay(2500);

 write(0xa0);

 delay(2500);

 write(0x01);

 delay(2500);

 while(arr[i]!=0)

 {

 write(arr[i]);

 delay(2500);

 i++;

 }

 delay(2500);

 stop_i2c();

}

Program for sending the message:

#include<reg51.h>

#define led P0

sbit l1= P2^0;

sbit l2= P2^1;

sbit l3= P2^2;

sbit l4= P2^3;

sbit l5= P2^4;

sbit l6= P2^5;

sbit l7= P2^6;

void sms_init(void);

void new_line(void);

void clear_messages(void);

unsigned char sender_no(unsigned char);

unsigned char no_compare(unsigned char[]);

unsigned char strcomp(unsigned char[],unsigned char[]);

unsigned char disp_messg(unsigned char);

unsigned char compare_messg(unsigned char[]);

unsigned char get_no(unsigned char);

extern void lcd_init(void);

extern void delay (unsigned int);

extern void clrscr(void);

extern void lcd_com(unsigned char);

extern void lcd_dis(unsigned char);

extern void longdelay(void);

extern void disp(unsigned char,unsigned char[]);

extern void send_com(unsigned char[]);

extern unsigned char read(unsigned char,unsigned char);

void sms_init(void)

{

 disp(0x80,"STARTING MODEM");

 longdelay();

 longdelay();

 send_com("at+cmgf=1");

 new_line();

 longdelay();

 longdelay();

 send_com("ate0");

 new_line();

 longdelay();

 longdelay();

 longdelay();

 led=0x00;

 longdelay();

 clrscr();

}

void new_line(void)

{

 SBUF=10; ///////////new line

 while(TI==0);

 TI=0;

 SBUF=13; /////////force cursor to starting of the line

 while(TI==0);

 TI=0;

}

void clear_messages(void)

{

 unsigned char i=0x31;

 while(i<=0x39)

 {

 send_com("at+cmgd=");

 SBUF=i;

 while(TI==0);

 TI=0;

 new_line();

 longdelay();

 i++;

 }

 longdelay();

}

unsigned char sender_no(unsigned char m)

{

unsigned char i=0,j=0,arr[54];

 send_com("at+cmgr=");

 SBUF=m;

 while(TI==0);

 TI=0;

 newline();

 delay(100);

i=0;

while(i!=55)

{

while(RI==0);

RI=0;

arr[i]=SBUF;

i++;

}

j=no_compare(arr);

if(j==0)

disp(0x80,"VALID NUMBER");

else

disp(0x80,"INVALID NUMBER");

longdelay();

longdelay();

longdelay();
return j;

}

unsigned char no_compare(unsigned char arr2[])

{

unsigned char i=0x10,j=27,k=0,l=0;

unsigned char sus[10],bus[10];

while(i<=0x19)

{

bus[l++]=read(0xa0,i++);

//lcd_dis(bus[(l-1)]);

delay(100);

}

i=4;

lcd_com(0xc0);

while(arr2[i]!=0x2b)

i++;

i=i+3;

l=0;

while(arr2[i]!='"')

sus[l++]=arr2[i++];

l=0;

while(l<=9)

lcd_dis(sus[l++]);

k=0;

delay(35);

k=strcomp(bus,sus);

longdelay();

clrscr();

if(k==1)

disp(0x80,"INVALID NUMBER");

else

disp(0x80,"VALID NUMBER");

return k;

}

unsigned char strcomp(unsigned char mill[],unsigned char sill[])

{

 unsigned char k=0,i=0;

 longdelay();

 longdelay();

 clrscr();

 while(mill[i]!='\0')

 {

if(mill[i]==sill[i])

 i++;

else

 {

 k=1;

 break;

 }

 }

 return k;

 }

 unsigned char disp_messg(unsigned char hi)

{

 unsigned char i=0,j=0;

 unsigned char arr[48];

 send_com("at+cmgr=");

 SBUF=hi;

 while(TI==0);

 TI=0;

 new_line();

while(i<=58)

{

while(RI==0);

RI=0;

i++;

}

while(1)

{

while(RI==0);

RI=0;

if(SBUF==10)

break;

}

lcd_com(0xc0);

while(1)

{

while(RI==0);

RI=0;

if(SBUF==13)

break;

arr[j]=SBUF;

//lcd_dis(SBUF);

j++;

}

arr[j]='\0';

j=compare_messg(arr);

return j;

}

unsigned char compare_messg(unsigned char arr[])

{

 int i=0,j=0,l=0;

 code unsigned char d[]={"RESET"},d1[]={"APP1 ON"},d2[]={"APP2 ON"},d3[]={"APP3 ON"},d4[]={"APP4 ON"},d5[]={"APP5 ON"},d6[]={"APP6 ON"},d7[]={"APP7 ON"},d11[]={"APP1 OFF"},d22[]={"APP2 OFF"},d33[]={"APP3 OFF"},d44[]={"APP4 OFF"},d55[]={"APP5 OFF"},d66[]={"APP6 OFF"},d77[]={"APP7 OFF"};

 unsigned char m=0,n=0,p=0,no[10],q=0;

 lcd_com(0xc0);

 while(arr[j]!='\0')

 lcd_dis(arr[j++]);

 l=strcomp(d1,arr);

 if(l==0)

 {

 l1=0;

 i=0;

 goto lill;

 }

l=strcomp(d2,arr);

 if(l==0)

 {

 l2=0;

 i=0;

 goto lill;

 }

l=strcomp(d3,arr);

 if(l==0)

 {

 l3=0;

 i=0;

 goto lill;

 }

l=strcomp(d4,arr);

 if(l==0)

 {

 l4=0;

 i=0;

 goto lill;

 }

l=strcomp(d5,arr);

 if(l==0)

 {

 l5=0;

 i=0;

 goto lill;

 }

l=strcomp(d6,arr);

 if(l==0)

 {

 l6=0;

 i=0;

 goto lill;

 }

l=strcomp(d7,arr);

 if(l==0)

 {

 l7=0;

 i=0;

 goto lill;

 }

l=strcomp(d11,arr);

 if(l==0)

 {

 l1=1;

 i=0;

 goto lill;

 }

l=strcar(d22,arr);

 if(l==0)

 {

 l2=1;

 i=0;

 goto lill;

 }

l=strcomp(d33,arr);

 if(l==0)

 {

 l3=1;

 i=0;

 goto lill;

 }

l=strcomp(d44,arr);

 if(l==0)

 {

 l4=1;

 i=0;

 goto lill;

 }

l=strcomp(d55,arr);

 if(l==0)

 {

 l5=1;

 i=0;

 goto lill;

 }

l=strcomp(d66,arr);

 if(l==0)

 {

 l6=1;

 i=0;

 goto lill;

 }

l=strcomp(d77,arr);

 if(l==0)

 {

 l7=1;

 i=0;

 goto lill;

 }

 l=strcomp(d,arr);

 if(l==0)

 {

 P2=0Xff;

 i=0;

 goto lill;

 }

 i=1;

lill:

send_com("at+cmgs=");

SBUF='"';

while(TI==0);

TI=0;

n=0;

m=0x10;

delay(200);

lcd_com(0xc5);

while(m<=0x19)

{

n=read(0xa0,m);

no[p++]=n;

//lcd_dis(j);

delay(100);

m++;

}

send_com(no);

SBUF='"';

while(TI==0);

TI=0;

new_line();

if(i==0)

{

send_com(" DEVICE STATUS");

new_line();

send_com("DEVICE1 ");

if(l1==0)

send_com("ON");

else

send_com("OFF");

new_line();

send_com("DEVICE2 ");

if(l2==0)

send_com("ON");

else

send_com("OFF");

new_line();

send_com("DEVICE3 ");

if(l3==0)

send_com("ON");

else

send_com("OFF");

new_line();

send_com("DEVICE4 ");

if(l4==0)

send_com("ON");

else

send_com("OFF");

new_line();

send_com("DEVICE5 ");

if(l5==0)

send_com("ON");

else

send_com("OFF");

new_line();

send_com("DEVICE6 ");

if(l6==0)

send_com("ON");

else

send_com("OFF");

new_line();

send_com("DEVICE7 ");

if(l7==0)

send_com("ON");

else

send_com("OFF");

new_line();

}

else

send_com(" WRONG CODE");

SBUF=0x1a;

 while(TI==0);

 TI=0;

q=0;

while(q<=5)

{

while(RI==0);

RI=0;

q++;

}

longdelay();

if(i==0)

disp(0xc0,"VALID MESSAGE");

else

disp(0xc0,"INVALID MESSAGE");

return i;

}

unsigned char get_no(unsigned char i)

{

 unsigned char j=0,k=0,arr[16];

 delay(100);

 lcd_dis(i);

 send_com("at+cmgr=");

 delay(50);

 SBUF=i;

 while(TI==0);

 TI=1;

 delay(50);

 j=0;

 k=0;

 new_line();

while(j<=2)

 {

 while(RI==0);

 RI=0;

 j++;

 }

while(RI==0);

 RI=0;

 if(SBUF=='O')

jmp nani;

 for(k=0;k<=15;k++)

 {

 while(RI==0);

 RI=0;

 arr[k]=SBUF;

 }

//clrscr();

k=0;

while(k<=15)

{

//lcd_dis(arr[k]);

if(arr[k]==' ')

break;

k++;

}

k++;

while(k<=15)

{

//lcd_dis('s');

if(arr[k]==' ')

break;

k++;

}

k++;

if(arr[k]=='U')

return '*';

nani:

return '$';

}

Program for displaying the message on LCD:
#include<reg51.h>

#define lcddat P1

sbit rs = P3^5;

sbit wr = P3^6;

sbit enb = P3^7;

void lcd_init(void);

void delay (unsigned int);

void clrscr(void);

void lcd_com(unsigned char);

void lcd_dis(unsigned char);

void longdelay(void);

void disp(unsigned char,unsigned char[]);

void lcd_init(void)

{

lcd_com(0x38);

lcd_com(0x06);

lcd_com(0x0e);

lcd_com(0x80);

lcd_com(0x01);

}

void clrscr(void)

{

 lcd_com(0x01);

 delay(100);

}

void delay(unsigned int b)

{

 unsigned int i=0,j=0;

 for(i=0;i<=b;i++)

 j=~j;

 }

void lcd_com(unsigned char b)

{

 lcddat=b;

 rs=0;

 wr=0;

 enb=1;

 delay(100);

 enb=0;

}

void lcd_dis(unsigned char b)

{

 lcddat=b;

 rs=1;

 wr=0;

 enb=1;

 delay(35);

 enb=0;

}

void disp(unsigned char g,unsigned char arr[])

{

 unsigned char i=0;

 lcd_com(g);

 delay(100);

 while(arr[i]!=0)

 lcd_dis(arr[i++]);

 }

void longdelay(void)

{

delay(4000);

delay(4000);

delay(4000);

delay(4000);

delay(4000);

delay(4000);

delay(4000);

delay(4000);

delay(4000);

delay(4000);

}
CONCLUSION:
 In this project work, we have studied and implemented a complete working model using a Microcontroller. The programming and interfacing of microcontroller has been mastered during the implementation. This work includes the study of GSM modem using sensors.
GSM network operators have roaming facilities, user can often continue to use there mobile phones when they travel to other countries etc..

REFERENCE:
 1. WWW. howstuffworks.com
 2. EMBEDDED SYSTEM BY RAJ KAMAL

3. 8051 MICROCONTROLLER AND EMBEDDED SYSTEMS BY MAZZIDI
 4. Magazines

 5. Electronics for you

6. Electrikindia

7. WWW.google.com
8. WWW.Electronic projects.com

Regulator

Key Pad

8

9

C

5

1

EEPROM

I2C Protocol

GRID

GRID

GRID

GRID

16X2 LCD

TRIAC

Driver

MAX232

GSM Modem

Crystal

RESET

230V AC

 50Hz

D.C Output

Regulator

Filter

Bridge Rectifier

Step down transformer

P2.0

Vcc

 P1.0

GATE C/T M1 M0 GATE C/T M1 M0

 TIMER 1 TIMER 0

SM0 SM1 SM2 REN TB8 RB8 TI RI

TxD (P3.1)

RxD (P3.0)

MAX 232

11

11

100

12

89S52

14

13

2

3

5

DB-9

Gnd

4 (RS) 1

5 (R/W) 2

6(EN) 3

 LCD

D0

D1

D2

D3

D4

D5 15

D6 16

D7

 P2.0

 P2.1

 P2.2

89S52 P1.0

 P1.1

 P1.2

 P1.3

 P1.4

 P1.5

 P1.6

 P1.7

Vcc

Gnd

PRESET

(CONTRAST CONTROL)

Vcc

FOR BACKLIGHT PURPOSE

Filter Circuit

Bridge Rectifier

Step down T/F

Power supply to all sections

