FPGA based mp3 player




CONTENTS                          	  	    Page No.


 1. Acknowledgements              					     4
 2.  Abstract                 	         			         		     5
 3. Introduction                    				                 6
 4. System description						     6
(a) System block diagram          				     7
(b) Description of subsystems				     7
(c) System functional requirements and
 performance specification				     8
    5.  Background information on the MP3 format			     8
     (a)  Standard for MP3 encoding and decoding		     9
     (b)  Overview of MP3 encoding process			     9
     6.  Mp3 decoding 							    10
	      (a) Mp3 file structure					    10
	      (b) Bitrate and sampling frequency table			    13
	      (c) Initial reading						    15
	      (d) Huffman decoding					    15
	      (e) Re-quantization and reordering,			    15
	      (f) Alias reduction,  					    15
	      (g) Inverse modified discrete cosine transform (IMDCT)  16
         	      (h) Synthesis polyphase filter bank			    16
   7.  Flow chart 							    17
   8. The code								    18
   9. The hardware platform						    22
 10. Results								    23
 11. Observations and Debugging Procedures			    23

 12. Conclusion							    23

 13. Bibliography						  	    24        			     		





Abstract:



            Digital design using a Field Programmable Gate Array (FPGA) device is a rapidly evolving field. A complete embedded system can be built and programmed into a single FPGA chip for digital signal processing applications. The increasing density and capacity of these devices make it possible to implement an entire embedded system on a single chip. The goal of the project is to design an MPEG Layer III (MP3) player using a “Altera” FPGA board. The system will read an MP3 file from a compact flash memory, decode the MP3 bit stream into 16-bit pulse code modulated (PCM) outputs using a standard MP3 decoding algorithm, and play the output through an external speaker. Hardware description language such as Verilog HDL is used to drive external peripherals, including the stereo Audio codec. The Audio codec converts the digital PCM outputs into an analog sound wave. The software and hardware designs are integrated on the Embedded Development Kit platform. In this project, data compression techniques are used in MP3 encoding and decoding are explored and tested on hardware.

	During the last few years the usage of the MPEG-1 layer-III (mp3) audio codec has exploded, and a large part of the global bandwidth consumed is used for transferring layer-III compressed audio data, or in casual language “mp3 files”. During the first years of widespread mp3 usages software decoders were the most common, but during the last couple of years portable and other stand-alone players gained in popularity. This report describes an attempt to create an efficient dedicated mp3 decoder in hardware.













Introduction:

         Digital design using a Field Programmable Gate Array (FPGA) is a rapidly evolving field.  A complete embedded system can be built and programmed into a single FPGA chip for digital signal processing applications. 


The goals of this project are to—

       (1) gain an in-depth understanding of hardware/software co-design using an FPGA,

       (2) understand the specifications set for encoding and decoding MP3 files., and

       (3) build a FPGA-based MPEG Layer III (MP3) system, which implements the MP3 decoding    algorithm using VHDL and C language on the Embedded Development Kit (EDK) software platform


System Description:

        The inputs to the FPGA MP3 player system will be an MP3 bit stream that is preloaded onto a compact flash memory(CFM) and any user interface control input. Using pushbuttons, the user will be enabled scan through the MP3 file list, and then select, play, pause, and/or stop the song.  In addition, volume control is triggered by a change in the on-board rotary encoder dial position.
 
       The outputs of the MP3 decoder, that is, 16-bit pulse code modulated (PCM) outputs and play the audio files through an external speaker. The PCM outputs need to be converted to analog format via the on-board stereo audio codec hardware chip before the audio can be heard with an external speaker that can be attached through the audio jack with a 15 mW amplifier. The system block diagram is as shown below in figure 1.1.









System block diagram:

 (
Compact flash memory(input)
)
 (
User interface
)


 (
Display
) (
FPGA
)

 (
-Play/ pause
-Select mp3 files
-On/off
(using the pushbuttons present in FPGA)
) (
External speakers
) (
Stereo 
Audio code
c
)







	Figure 1.1:   Block diagram of  FPGA based mp3 player

The system includes:

·  MP3 Decoder 
A MP3 decoder runs on the FPGA that will decode the selected MP3 stream with the sampling frequency specified in the MP3 header. A typical sampling frequency is 44.1 kHz. The software and hardware designs are integrated on the Xilinx Embedded Development Kit platform.

· External Peripherals: 
Verilog HDL is used to drive all external peripherals. Most applications utilize devices by means of high-level device-generic commands. Driver software accept these generic high-level commands and break them into a series of low-level device-specific commands. 




·  User Interface 
The user interface provides the inputs to control the MP3 player, such as selecting, playing, pausing, and stopping the MP3 files. It will also allow outputting related information on the LED.

·  Compact Flash Memory Card
The 2 Gb capacity compact flash memory(CFM) supplies the preloaded MP3 files for the MP3 decoder system in the FPGA. MP3 files are loaded onto to the CFM using a PC and memory card reader.

·  Onboard Stereo Audio Codec 
The Audio codec is used to convert the PCM format signal from the MP3 decoder into an audio signal, which is fed into an external speaker through an audio jack.

System functional requirements and performance specifications:

· Input MP3 bit stream requirements:
The MP3 player will decode MP3 inputs with various bit rates (from 128 kbps to 320 kbps) and different sampling frequencies (32 kHz, 44.1 kHz or 48 kHz)  

·  Decoding speed:
The ultimate objective of decoding speed is to process MP3 files in real-time. The execution time of the MP3 decoding will be profiled and measured.  If the real-time specification can not be met, further optimization will be needed.  

Background information on the MP3 format:
The need to reduce the size of audio files without any noticeable quality loss was stated in the 1980ies by the International Organization for Standardization (ISO). A working group within the ISO known as the Moving Pictures Experts Group (MPEG), developed a standard that contained several techniques for both audio and video compression. The audio part of the standard included three modes with increasing complexity and performance, as shown in Figure 6-1. The third mode, called Layer III, manages to compress music by a factor of 12 with almost no audible degradation. This technique is known as MP3 and has become very popular and widely used in applications today.

 

Table 1.2:


Overview of MP3 Encoding Process:
           MP3 encoding involves representing a song as a bit stream (an array of 0’s and 1’s) that can be recovered by a MP3 decoder (player). The high percentage compression involved in MP3 encoding allows songs to be stored and shared rather easily and quickly on computers and through the internet without losing any perceptible quality. This lossy compression works by first masking inaudible frequency components to the human ear, and then using several data compression techniques that remove data redundancies.

First the analog audio is sampled at a specific sampling rate, typically at 44.1 kHz. This is due to Nyquist frequency’s rule, in which the sampling rate must be at least two times greater than the largest possible frequency component present in the data. And since the range of audible frequencies to the human ear is roughly 20 Hz to 22 kHz, this sampling rate is usually chosen. The signals are quantized using pulse code modulation, where each sample amplitude is represented by 16 bits.
To remove redundancies and compress data, frequency analysis techniques are used. The PCM samples are filtered for 32 equal frequency spectrums, called subbands using a polyphase architecture that yields in a higher computational efficiency. A discrete cosine transformation is then applied to remove low energy signals from high frequency components. 
Further compression is achieved by using a lossless compression technique known as Huffman encoding that is based on statistical behavior of data. Finally, the bit stream is arranged into frames that the MP3 decoder will analyze to reconstruct the MP3 sound.

MP3 decoding:
MP3 decoding is the reverse process of MP3 encoding. Fortunately, decoding is not nearly as complex, since it does not require a psychoacoustic model (a virtual model of the human ear and how it perceives different frequencies). The MP3 decoder’s role is to recover the original audio by analyzing certain sections of a frame to gain information about encoding parameters used and then use reverse procedures to reconstruct PCM samples.

Each frame consists of exactly 1152 PCM samples and contains at least two sections: 
A header section that contains important encoding parameters, such as bit rate and sampling frequency used and an audio data section that holds the encoded bit stream. Some MP3 bit streams contain an optional ID3 tag frame that can be used to store MP3 related information including the title and author of the song.

	TAG
(optional)
	Frame 1
	Frame 2
	Frame 3
	………
	TAG
(optional)




The first four bites of each frame is Header and the rest are data. The size of each frame varies according to bitrate.

[image: ]
		
		Figure 1.3:  MPEG I layer 3 frame format



The various fields in a frame of audio data are discussed below.
Header is 4 bytes long and contains sync word to indicate the start of frame. Header contains Layer information (MPEG Layer I, II or III), bitrate information, sampling frequency and mode information to indicate if the stream is mono or stereo.
Error Check This fields contains a 16 bit parity check word for optional error detection with in the encoded stream.
Side information Contains information to decode Main data. Some of the fields in side information are listed below--
1. It contains scale factor selection information, that indicate the number of scalefactors transferred per each subband and each channel. Scalefactors indicate the amount bywhich an audio sample needs to be scaled. Since, human ear response is different for signals at different frequencies, the entire audio spectrum is divided into subbands. The samples in the more sensitive bands are scaled more than the samples in the lesser sensitive region of the spectrum.
2. It contains global gain which needs to be applied to all the samples in the frame.
3. Information regarding the number of bits used to encode the scalefactors. To achieve compression, even the scalefactors are encoded to save the bits. This information in the sideinfo will indicate the number of bits to encode a particular scalefactor.
4.  Information regarding the huffman table to be selected to decode a set of samples. This information specifies one of the 32 huffman tables used for huffman decoding. Main data The main data contains the coded scale factors and the Huffman coded bits.
5.  Scalefactors are used in the decoder to get division factors for a group of values. These groups are called scalefactor bands and the group stretches over several frequency lines. The groups are selected based on the non-uniform response of human ear for various frequencies.
6. The quantized values are encoded using huffman codes. The huffman encoding is used to code the most likely values with lesser number of bits and rarely occurring values with larger number of bits. The huffman codes are decoded to get the quantized values using the table select information in the sideinfo section of the frame.
Ancillary data This field is the private data and the encoder can send extra information like ID3 tag containing artist information and name of the song.

The frame size in bytes varies from song to song, and in some cases, even within one song (when using variable bit rates). The general equation for calculating the frame size in bytes is found in Equation 1.4.





Equation 1.4
Frame size (in bytes) = (144* bit rate)/ (sampling rate + padding)

Where 144= (1152 PCM/frame) / (8 bits/byte) and where padding is an integer number to ensure that the frame size is an integer number Bit rate is the rate at which the compressed bit stream is delivered from the storage medium to the input of a decoder while sampling frequency defines the umber of samples per second taken from a continuous signal to make a discrete signal. For MP3 encoding, there are several allowed bit rates and sampling frequencies that can be used.
Typically, a sampling rate of 44.1 kHz is used and is known as “CD quality” while 48 kHz is referred to as “DVD quality.”
For MP3 encoding, there are several allowed bit rates and sampling frequencies that can be used, as illustrated in Table 1.5 and 1.6 respectively. These tables are copied directly from the ISO standard document.

Table 1.5:

	Bitrate index
	Bitrate specified(Kbps)

	
	Layer I 
	Layer II
	Layer III

	0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
	Free 
32
64
96
128
160
192
224
256
288
320
352
384
416
448
Forbidden
	Free
32
48
56
64
80
96
112
128
160
192
224
256
320
384
Forbidden
	Free
32
40
48
60
64
80
96
112
128
160
192
224
256
320
Forbidden 


Table 1.6:

	Sampling frequency
	Frequency specified

	00
01
10
11
	44.1
48
32
Reserved



The MP3 decoding process is shown in Figure 1.7. It includes the following stages: 
1)  Initial reading
2) Huffman decoding
3) Re-quantization and reordering,
4) Stereo decoding, alias reduction, 
5) Inverse modified discrete cosine transform (IMDCT) and
6) Synthesis polyphase filter  bank 


       Mp3 bitstream

 (
Re-quantization
) (
Huffman decoding
)
 (
Initial reading
)




 (
Alias reconstruction
) (
Synthesis filter bank
)
 (
IMDCT
)





      16 bit PCM samples

		Fig 1.7:  Diagram of decoding process




Initial reading:

                 The incoming data stream is split up into individual frames. The header section of each frame is analyzed to obtain parameters used in the encoding process (i.e. bit rate and sampling frequency). The first action is the synchronization of the decoder to the incoming bit stream by checking if the first 12 bits of the header section are 1’s.  Scalefactors and Huffman table selection bits are also decoded.

Huffman decoding:
 
              The Huffman algorithm is used for lossless data compression. The basic idea of the technique is to assign shorter binary codes to more frequent samples and longer codes to less frequent samples. The Huffman decoding procedure is based on tables that are used to map the Huffman binary codes to the original samples. 


Re-quantization:

            During the encoding process, the outputs of the MDCT, or frequency domain samples, were pre-quantized in an attempt to use more precision when needed. It turns out that finer frequency resolution is needed for low volume sounds and larger values are coded with less accuracy. Afterwards, the values were scaled, or multiplied by a scalefactor, a value that is based on the absolute threshold of the human ear (a frequency dependent function). Larger scalefactors are needed if the frequency components are more difficult to hear. So for the decoding process, the values need to be requantized. Afterwards, de-scaling is required.


Re-ordering: 

             In the MP3 encoding process, the use of short windows would generate frequency lines ordered first by subband, then by window and at last by frequency.  In order to increase the efficiency of the Huffman coding the frequency lines for the short windows case were reordered into subbands first, then frequency and at last by window, since the samples close in frequency are more likely to have similar values.  The reordering block in the MP3 decoding process will re-sort the samples by subbands, then on windows and then on increasing frequency. For a description on windowing, refer to the IMDCT block.


Alias reduction block:

             Aliasing is the overlap of frequency components when energies greater than Nyquist frequency are present. This is the result of the decimation or the reduction of sampling rate in the analysis filter bank process where overlapping of adjacent subband filters is inevitable. In the encoding process, these aliasing effects are removed to reduce the amount of information that needs to be transmitted. This can be achieved by using a series of butterfly computations that add weighted, mirrored versions of adjacent subbands to each other. In the decoding process, aliasing artifacts must be added to the signal again in order to obtain a correct reconstruction of the audio signal. The alias reconstruction calculation consists of eight butterfly calculations for each subband.




Inverse Modified Discrete Cosine Transform (IMDCT):

              The Inverse Modified Discrete Cosine Transform (IMDCT) is the inverse of the modified discrete cosine transform used in MP3 encoding. The MDCT was used to represents signals as a sum of cosine waves, essentially transforming them to the frequency domain. Compared to the DFT and other well-known transforms, the MDCT has a few properties that make it very suitable for audio compression. First of all, the MDCT has the energy compaction property common to discrete cosine transforms. This means most of the information in the signal is concentrated to a few output samples with high energy. The term modified is used since there is a 50% overlap. The lower 18 values are added with the higher 18 values from the previous 
frame, and used as output. The higher 18 values are then stored and used the same way when the next frame is being decoded. This overlapping that avoids sharp discontinuities.



Synthesis polyphase filter bank :

              The synthesis polyphase filter bank is the final step in the decoding process.  It is used to combine the signal energies from all the 32 subbands. The result output for each frame is 1152 16 bit PCM samples. A  polyphase architecture is used since the decimation of the sampling rate allows the use of a lower number of filter coefficients, and thus improves computational efficiency.  The method recommended by ISO standard for transforming subband samples to the Pulse code modulated format involves shifting, matrixing with a 32 point discrete cosine transform that represent band pass filter coefficients, a 512 point window to improve filter quality, and finally a summation for all the subbands. Various algorithms can be implemented that observe symmetry properties and reduce the number of computations. For example, the DCT function can be calculated using a method known as the fast DCT in a  similar manner that a DFT function can be more efficiently computed using the FFT. The method recommended by the ISO standard document [5] for transforming the subband samples into the PCM format is illustrated in Figure





Flowcharts:

            The MP3 decoding algorithm described thus far is implemented completed in software using C language. High level flowcharts for the main program, as well as the select_song and play_song functions are illustrated below.

 (
Select_song
 
) (
DIP SW UP?
) (
Enter main
) (
Start
)













               NO




	YES
 (
Enable cache
)




	
 (
Play_song
 
)	



 (
Disable cache
)	






                Fig 1.8 :  Flow Chart for FPGA mp3 player





Code:

#include<stdio.h>
#include <math.h>
#include "xio.h"
#include "sleep.h"
#include "xparameters.h"
#include <xbasic_types.h>
int c;
#define MY_AC_BASEADDR XPAR_OPB_AC_CONTROLLER_REF_0_BASEADDR
#define AC_InFIFO               MY_AC_BASEADDR
#define AC_OutFIFO             MY_AC_BASEADDR + 0x4
#define AC_FIFO_Status       MY_AC_BASEADDR + 0x8
#define AC_Control               MY_AC_BASEADDR + 0xC
#define AC_RegAddr             MY_AC_BASEADDR + 0x10
#define AC_RegRead             MY_AC_BASEADDR + 0x14
#define AC_RegWrite            MY_AC_BASEADDR + 0x18
#define AC_IN_FIFO_OFFSET          0x0
#define AC_STATUS_OFFSET          0x8
#define AC_InFIFO_Full         0x01
#define AC_InFIFO_Half_Full    0x02
#define AC_OutFIFO_Full        0x04
#define AC_OutFIFO_Empty       0x08
#define AC_Reg_Access_Finished 0x10
#define AC_CODEC_RDY           0x20 <stdio.h>
#include <math.h>
#include "xio.h"
#include "sleep.h"
#include "xparameters.h"
#include <xbasic_types.h>
int c;
#define MY_AC_BASEADDR XPAR_OPB_AC_CONTROLLER_REF_0_BASEADDR
#define AC_InFIFO               MY_AC_BASEADDR
#define AC_OutFIFO             MY_AC_BASEADDR + 0x4
#define AC_FIFO_Status       MY_AC_BASEADDR + 0x8
#define AC_Control               MY_AC_BASEADDR + 0xC
#define AC_RegAddr             MY_AC_BASEADDR + 0x10
#define AC_RegRead             MY_AC_BASEADDR + 0x14
#define AC_RegWrite            MY_AC_BASEADDR + 0x18
#define AC_IN_FIFO_OFFSET          0x0
#define AC_STATUS_OFFSET          0x8
#define AC_InFIFO_Full         0x01
#define AC_InFIFO_Half_Full    0x02
#define AC_OutFIFO_Full        0x04
#define AC_OutFIFO_Empty       0x08
#define AC_Reg_Access_Finished 0x10
#define AC_CODEC_RDY           0x20
#define AC_ExtendedAudioStat  0x2A
#define AC_PCM_DAC_Rate       0x2C //from xac_l.h
#define AC_PCM_ADC_Rate       0x32 //from xac_l.h
#define AC_PCM_DAC_Rate0      0x78
#define AC_PCM_DAC_Rate1      0x7A
#define AC_Reserved0x34       0x34
#define AC_JackSense          0x72
#define AC_SerialConfig       0x74
#define AC_MiscControlBits    0x76
#define AC_VendorID1          0x7C
#define AC_VendorID2          0x7E
// Volume Constants
#define AC_VolMute     0x8000
#define AC_VOL_MIN      0x1f1f //0x3F3F
#define AC_VOL_MID    0x1010// 0x0a0a //0x1010
#define AC_VOL_MAX     0x0000
// Macros for reading/writing AC core registers
#define XAC_mGetRegister (BaseAddress, offset)  XIo_In32((BaseAddress + offset))
#define XAC_mSetInFifoData (BaseAddress, value) XIo_Out32 ((BaseAddress) + 
AC_IN_FIFO_OFFSET, (value))
#define XAC_mGetOutFifoData (BaseAddress) XIo_In32 ((BaseAddress + AC_OUT_FIFO_OFFSET))
#define XAC_mGetStatus (BaseAddress) XIo_In32 ((BaseAddress + AC_STATUS_OFFSET))
#define XAC_mSetControl (BaseAddress, value) XIo_Out32 ((BaseAddress) + AC_CONTROL_OFFSET, 
#define XAC_mSetACRegisterAccessCommand (BaseAddress, value) \
XIo_Out32 ((BaseAddress) + AC_REG_CONTROL_OFFSET, (value))
#define XAC_mGetACRegisterData (BaseAddress) XIo_In32 ((BaseAddress + 
AC_REG_READ_OFFSET))
#define XAC_mSetACRegisterData (BaseAddress, value) XIo_Out32 ((BaseAddress) + 
AC_REG_WRITE_OFFSET, (value))
// Status register macros
#define XAC_isInFIFOFull (BaseAddress) (XAC_mGetStatus (BaseAddress) & AC_IN_FIFO_FULL)
#define XAC_isInFIFOEmpty (BaseAddress) (XAC_mGetStatus (BaseAddress) & 
AC_IN_FIFO_EMPTY)
#define XAC_isOutFIFOEmpty (BaseAddress) (XAC_mGetStatus (BaseAddress) & 
AC_OUT_FIFO_EMPTY)
#define XAC_isOutFIFOFull (BaseAddress) (XAC_mGetStatus (BaseAddress) & 
AC_OUT_FIFO_FULL)
#define XAC_isRegisterAccessFinished (BaseAddress) \
            ((XAC_mGetStatus (BaseAddress) & AC_REG_ACCESS_BUSY) == 0)
 //           (XAC_mGetStatus (BaseAddress) & AC_REG_ACCESS_FINISHED))
#define XAC_isRegisterAccessError (BaseAddress) \
           ((XAC_mGetStatus (BaseAddress) & AC_REG_ACCESS_ERROR) > 0)
#define XAC_isCodecReady (BaseAddress) \
           (XAC_mGetStatus (BaseAddress) & AC_CODEC_RDY)
#define XAC_isInFIFOUnderrun (BaseAddress) (XAC_mGetStatus (BaseAddress) & 
AC_IN_FIFO_UNDERRUN)
#define XAC_isOutFIFOOverrun (BaseAddress)   (XAC_mGetStatus (BaseAddress) & 
AC_OUT_FIFO_UNDERRUN)
#define XAC_getInFIFOLevel (BaseAddress) \
     ((XAC_mGetStatus (BaseAddress) & AC_IN_FIFO_LEVEL) >> AC_IN_FIFO_LEVEL_RSH
void XAC_Delay (Xuint32 value) {
 while (value-- > 0);
}
#define AC_CLEAR_IN_FIFO              0x1
#define AC_CLEAR_OUT_FIFO             0x2
#define AC_ENABLE_IN_FIFO_INTERRUPT   0x4
#define AC_ENABLE_OUT_FIFO_INTERRUPT 0x8
#define AC_ENABLE_RESET_AC          0x10
#define AC_DISABLE_RESET_AC         0x0
#define AC_CLEAR_FIFOS AC_CLEAR_IN_FIFO | AC_CLEAR_OUT_FIFO
/#define XAC_mSetControl (BaseAddress, value) \
/            XIo_Out32 ((BaseAddress) + AC_CONTROL_OFFSET, (value))
/
#define AC_CONTROL_OFFSET      0xC //works if C, E or F...does not otherwise
void XAC_ClearFifos (Xuint32 BaseAddress) 
{
  Xuint32 i;
  XAC_mSetControl (BaseAddress, AC_CLEAR_FIFOS);
  for (i = 0; i < 512; i++) 
    XAC_mSetInFifoData (BaseAddress, 0);
}
void WriteACReg (int reg_addr, int value) 
{
  XIo_Out32 (AC_RegWrite, value);
  XIo_Out32 (AC_RegAddr, reg_addr);
  //while ((XIo_In32 (AC_FIFO_Status) & AC_Reg_Access_Finished) == 0);
  usleep (10);
}
int ReadACReg (int reg_addr
(
  XIo_Out32 (AC_RegAddr, reg_addr | 0x80);
 // while ((XIo_In32 (AC_FIFO_Status) & AC_Reg_Access_Finished) == 0);
  usleep (10);
  return XIo_In32 (AC_RegRead);   }
#define AC_IN_FIFO_FULL         0x01
void XAC_WriteFifo (Xuint32 BaseAddress, Xuint32 sample)
 {
  while (XAC_isInFIFOFull (BaseAddress));
  XAC_mSetInFifoData (BaseAddress, sample);
 }
int SetupAC (int samplerate) {
    WriteACReg (AC_Reset, 0);
    while (! (XIo_In32 (AC_FIFO_Status) & AC_CODEC_RDY)) {};
    XAC_ClearFifos (MY_AC_BASEADDR); /** Clear FIFOs **/  
   //xil_printf("-- Set DAC rate to %d Hz \r\n",samplerate);
    WriteACReg (AC_PCM_DAC_Rate, samplerate);
    WriteACReg (AC_PCM_DAC_Rate0, samplerate);
    // xil_printf ("-- Volume settings initialized \r\n");  
   //need these settings, especially PCMoutVol...otherwise no audio heard
 WriteACReg (AC_MasterVol,     AC_VOL_MAX);
 WriteACReg (AC_HeadphoneVol, AC_VOL_MAX);
 WriteACReg (AC_MasterVolMono, AC_VOL_MAX);
 WriteACReg (AC_PCBeepVol,     AC_VolMute);
 WriteACReg (AC_PhoneInVol,    AC_VolMute);
 WriteACReg (AC_CDVol,         AC_VolMute);
 WriteACReg (AC_VideoVol,      AC_VolMute);
WriteACReg (AC_AuxOutVol,     AC_VolMute);
 WriteACReg (AC_PCMOutVol,     AC_VOL_MAX);   
 WriteACReg (AC_RecordGain, AC_VolMute); //added
 WriteACReg (AC_PowerDown,   0x0100); //added
 WriteACReg (AC_LineInVol,   AC_VolMute); //added
}
//these variables must be initialized to zero outside volume_control function 
//otherwise, incorrect results
int q=0;
Xuint32 VI_old=0;
void volume_control (int VI)
{
//initial method for checking encoder position and updating volume register value
//works, but only 4 different settings AND encoder values (VI) are not predictable
//one would think that values would increase by some constant for every increment in encoder position
//However, VI values are very random for the 360 degree rotation
//Majority of positions are VI==0
//      if (VI==1) {WriteACReg (AC_HeadphoneVol, AC_VOL_MAX) ;}
//      if (VI==2) {WriteACReg (AC_HeadphoneVol, AC_VOL_MIN) ;}
//      if (VI==3) {WriteACReg (AC_HeadphoneVol, AC_VOL_MID) ;}
//      if (VI==4) {WriteACReg (AC_HeadphoneVol, AC_VolMute) ;}
int volume_setting;
//xil_printf("VI:%d \n\r", VI);
if(VI!=VI_old)
{
   q++;
volume_setting=8000 - (1000*q); 
                      //1000 is an arbitrary number, but very good choice for noticeable difference in volume
//xil_printf ("vol: %s\n\r", volume_setting); //--for debugging purposes
if (volume_setting<1) {q=0 ;}
   
WriteACReg (AC_HeadphoneVol, volume_setting);
}
VI_old=VI;
//xil_printf ("VI_old:%d \n\r", VI_old); //--for debugging purposes
}
The Hardware plateform:

	The basic hardware platforms used are FPGA and the stereo audio codec.

FPGA - Field Programmable Gate Array:

 	FPGA is a silicon chip with unconnected logic gates. It is an integrated circuit that contains many (64 to over 10,000) identical logic cells that can be viewed as standard components. The individual cells are interconnected by a matrix of wires and 
programmable switches. Field Programmable means that the FPGA's function is defined by a user's program rather than by the manufacturer of the device. Depending on the particular device, the program is either 'burned' in permanently or semi-permanently as part of a board assembly process, or is loaded from an external memory each time the device is powered up.

[image: C:\Users\dany V\Desktop\last dsk\edited pics\fp.jpg]

			       Fig 1.9.  The FPGA block



      	The Field-Programmable Gate Arrays (FPGAs) provide the benefits of custom CMOS VLSI, while avoiding the initial cost, time delay, and inherent risk of a 
conventional masked gate array. The FPGAs are customized by loading configuration 
data into the internal memory cells.

Stereo Audio Codec:

The Audio codec is used to convert the PCM format signal from the MP3 decoder into an audio signal, which is fed into an external speaker through an audio jack.

[image: C:\Users\dany V\Desktop\MusicBox.jpg]



                                Fig1.10. The functional diagram



Results:

	The first few weeks have been dedicated to becoming familiar with the Xilinx ISE software. Xilinx tutorials and board demonstration projects have been studied.  In addition, peripheral setup, compilation, and debugging procedures have been practiced extensively.  

	The majority of specifications and goals were met. MP3 files can be accessed and read from the compact flash memory. The list of songs on the compact flash can be scanned and selected. The MP3 bit stream can be decoded in real time and heard on an external speaker with adequate quality. The “STOP,” “PAUSE,” and “Volume control” functions was completed in the last week. Rewind, forward modes and the LCD display were never experimented due to time constraints.


Observations:

	Testing and debugging on the Spartan XC2S100 board proved inconclusive. Failure to get results with the project schedule time winding down, a switch to use to the Altera development board that would allow the use of a full user-interface subsystem.



Conclusion:

	In this project, a FPGA-based MP3 decoder has been implemented on the Altera development board.  It can read MP3 files from a compact flash memory device, then decode and play it through the stereo audio codec. Different controls such as song selection, pause and stop modes are included.




Bibliography:

A. Abdel-Gawad, “A full hardware implementation for an MP3 decoder chip 
     using VHDL”,  Project report, University of California at Santa Barbara.

A Full Hardware Implementation for an MP3 Decoder Chip using VHDL, Ahmed H. 
Abdel-Gawad, Saad F. Abdel-Aziz, et al.

http://www.fpga4fun.com

http://www.wikipedia.com

http://www.xilinx.com

http://www.indianengineer.tk

xx

image3.jpeg

image4.jpeg

image1.png

image2.png

