 INTRODUCTION

 1. INTRODUCTION
This section is going to introduce the new system “Automation of network protocol analysis”, which is being developed. It includes the Introduction, literature survey, motivation to the project, problem statement, objective of the study, limitations of the study and organization of the document. This section specifies the over all view of the system with which the brief idea of the system is understood.
1.1 OVERVIEW
When packets are transmitted out of a system in streams or frames, we generally use tools like Ethereal/Wireshark to sniff the packets and analyze its contents to check the accuracy of it. These open source tools (i.e. Ethereal/Wireshark) are known as network protocol analyzers and they are very useful during development of software projects that are into networking domain.
Wireshark is a network packet analyzer. A network packet analyzer will try to capture network packets and tries to display that packet data as detailed as possible. You could think of a network packet analyzer as a measuring device used to examine what's going on inside a network cable, just like a voltmeter is used by an electrician to examine what's going on inside an electric cable (but at a higher level, of course). In the past, such tools were either very expensive, proprietary, or both. However, with the advent of Wireshark, all that has changed.
Wireshark is perhaps one of the best open source packet analyzers available today. It allows the user to see all traffic being passed over the network (us0ually an Ethernet network but support is being added for others) by putting the network interface into promiscuous mode.
This project is mainly aimed to automate the entire process. Starting from sniffing the network packets till the validation of it has been taken care. Here we have automated the logging part through a C program. Whenever packets will be transmitted from a system, Ethereal/Wireshark will be automatically invoked and start capturing the network packets. That will be stored in .pcap format automatically. To validate the contents the logic has been implemented to check particular pattern of packets or any specific string. The .pcap format will be converted into a text format so that the validation can be accomplished through parsing the entire Ethereal/Wireshark log. Based upon the parsing logic, success or failure verdict will be indicated to user. The logic can always be extended depending upon the project requirements.
1.2 MOTIVATION
Since Wireshark should be invoked manually and even network packet analysis is manual user finds it difficult for analysis. So our project is aimed to eliminate the manual effort where the developers or test engineers analyze the network packets manually. Here we are automating the entire process right from capturing the network packets till the analysis of it.
This project as a module can save project cost as well as the duration to a major extent when integrated to the software development life cycle (SDLC). The logic can always be extended depending upon the project requirements. Along with analyzing the packets, we are also analyzing the performance of the network.
1.3 AIM OF THE PROJECT
The aim of the project is to eliminate the manual effort and provide the user with an efficient automated system for analyzing the network packets.
1.3.1 Problem Definition
The project is aimed to capture the network packets that are going out of the system and analyzing them. Pcap header is appended to the network packets so that the Wireshark can recognize it. The pcap file is converted to the text file and is used for parsing. Based on the parsing logic, pass/fail verdict is displayed to the user.

1.3.2 Problem Description
Proposed system consists of client and server module. Client interacts with server by entering an option. Based upon the option, the server calls a corresponding function. The functions implemented are based on three logics. One for UDP, SIP and QoS parameters each . Another module is implemented to convert raw data packets to .pcap format by appending the pcap header.

UDP and SIP modules implement the parsing logic, the result(success/failure) of which is sent back to the client. The QoS module displays the network performance parameters like delay and speed.

1.4 OBJECTIVE OF THE STUDY

Using this project following goals can be met:
a. Capture live packet data from a network interface.

b. Display packets with very detailed protocol information.

c. Open and Save packet data captured.

d. Captured network data can be browsed via a GUI, or via the terminal (command line) version of the utility, tshark.
e. Filter packets on many criteria.

f. Search for packets on many criteria.

g. Hundreds of protocols can be dissected.
1.5 LITERATURE SURVEY

This project can be better understood on knowing few concepts and tools used. They are as described below.

1.5.1 Network Protocol Analysis

Network protocol analysis is a process for a program or a device to decode network protocol headers and trailers to understand the data and information inside the packet encapsulated by the protocol. To conduct protocol analysis, packets must be captured at real time for line speed analysis or later analysis. Such program or device is called a Protocol Analyzer. The basic concept of packet analyzing is dealt by first understanding the actual meaning of packet capturing and its types.

Packet capture is the act of capturing data packets crossing a network. Deep packet capture (DPC) is the act of capturing complete network packets (header and payload) crossing a network. Once captured and stored, either in short-term memory or long-term storage, software tools can perform Deep packet inspection (DPI) to review network packet data, perform forensics analysis to uncover the root cause of network problems, identify security threats, and ensure data communications and network usage complies with outlined policy. Some DPCs can be coupled with DPI and can as a result manage, inspect, and analyze all network traffic in real-time at wire speeds while keeping a historical archive of all network traffic for further analysis.
The packet analyzer (also known as a network analyzer, protocol analyzer or sniffer or for particular types of networks, an Ethernet sniffer or wireless sniffer) is computer software or computer hardware that can intercept and log traffic passing over a digital network or part of a network. As data streams flow across the network, the sniffer captures each packet and eventually decodes and analyzes its content according to the appropriate RFC or other specifications. The following are the few notable packets analyzers: Carnivore, dSniff, Ettercap, Fluke Lanmeter, Microsoft Network Monitor, OPNET Technologies ACE Analyst, Network Instruments Observer, PacketTrap pt360, Tool Suite, snoop (part of Solaris), tcpdump, WildPackets OmniPeek (old name AiroPeek, EtherPeek), Wireshark (formerly known as Ethereal), NetworkActiv PIAFCTM, Capsa, Cain and abel.
1.5.2 Wireshark

Wireshark is a network packet analyzer. A network packet analyzer will try to capture network packets and tries to display that packet data as detailed as possible. You could think of a network packet analyzer as a measuring device used to examine what's going on inside a network cable, just like a voltmeter is used by an electrician to examine what's going on inside an electric cable (but at a higher level, of course). In the past, such tools were either very expensive, proprietary, or both. However, with the advent of Wireshark, all that has changed.
1.5.2.1 History
Wireshark is a free packet analyzer computer application. It is used for network troubleshooting, analysis, software and communications protocol development, and education. Originally named Ethereal, in May 2006 the project was renamed Wireshark due to trademark issues. Wireshark is very similar to tcpdump, but it has graphical front-end, and many more information sorting and filtering options. It allows the user to see all traffic being passed over the network by putting the network interface into promiscuous mode (In computing, promiscuous mode is a configuration of a network card or NIC that makes the card pass all traffic it receives to the central processing unit rather than just packets addressed to it — a feature normally used for packet sniffing).
Out of necessity, Gerald Combs (a computer science graduate of the University of Missouri-Kansas City) started writing a program called Ethereal so that he could have a tool to capture and analyze packets; he released the first version around 1998. As of now there are over 500 contributing authors while Gerald continues to maintain the overall code and issues releases of new versions; the entire list of authors is available from Wireshark's web-site.

The name was changed to Wireshark in May, 2006, because creator and lead developer Gerald Combs could not keep using the Ethereal trademark (which was then owned by his old employer, Network Integration Services) when he changed jobs. He still held copyright on most of the source code (and the rest was redistributable under the GNU GPL), so he took the Subversion repository for Ethereal and used it as the basis for the Subversion repository of Wireshark.
e-WEEK Labs named Wireshark one of "The Most Important Open-Source Apps of All Time" as of May 2, 2007.
1.5.2.2 Comparison of Wireshark and Other Network Analyzers

The first and much known advantage to the user of the Wireshark tool is that it can be operated using either GUI or console. No other network analyzer has got both the options provided for the user, they usually support any one of the two- GUI and console.

Basic general information about the software-creator/company, license/price, etc. is shown in the table 1.1 below.

Table 1.1 Comparison of Wireshark and other network analyzers

	 Network Analyzer
	Creator
	GUI / Console
	Cost (USD)
	Software license

	ACE Analyst
	OPNET Technologies
	GUI
	Unknown
	Proprietary EULA

	Cain and Abel
	Massimiliano Montoro
	?
	Free
	Freeware

	Carnivore
	Federal Bureau of Investigation
	?
	N/A
	N/A

	dSniff
	Dug Song
	?
	Probably Free
	Not specified

	Ettercap
	ALoR and NaGA
	Both
	Free
	GNU GPL

	Kismet
	Mike Kershaw (dragorn)
	Console
	Free
	GNU GPL

	LANMeter
	Fluke corporation
	handheld
	?
	?

	Microsoft Network Monitor
	Microsoft
	GUI
	Free
	Proprietary EULA

	Observer
	Network Instruments
	GUI
	Free
	BSD License

	PacketView Pro
	Klos Technologies, Inc.
	Console
	$1,299.00
	Proprietary EULA

	pt360 Tool Suite
	PacketTrap
	?
	$99
	?

	snoop
	Sun Microsystems
	Console
	Free
	CDDL

	tcpdump
	The Tcpdump team
	Console
	Free
	BSD License

	Wireshark (formerly Ethereal)
	The Wireshark team
	Both
	Free
	GNU GPL

 The utilities can run on these operating systems as shown in table 1.2.
	Client
	Windows
	Mac OS X
	Linux
	BSD
	Solaris

	ACE Analyst
	Yes
	
	Yes
	
	Yes

	Cain and Abel
	Yes
	No
	No
	No
	No

	Carnivore
	Yes
	No
	No
	No
	No

	dSniff
	?
	Yes
	Yes
	Yes
	Yes

	Ettercap
	Yes
	Yes
	Yes
	Yes
	Yes

	Kismet
	Yes
	Yes
	Yes
	Yes
	

	LANMeter
	No
	No
	No
	No
	No

	Microsoft Network Monitor
	Yes
	No
	No
	No
	No

	Observer
	Yes
	Yes
	Yes
	Yes
	?

	OmniPeek (formerly AiroPeek, EtherPeek)
	Yes
	No
	No
	No
	No

	PacketView Pro
	Yes
	
	
	
	

	pt360 Tool Suite
	
	
	
	
	

	snoop
	No
	No
	No
	No
	Yes

	tcpdump
	Yes
	Yes
	Yes
	Yes
	Yes

	Wireshark (formerly Ethereal)
	Yes
	Yes
	Yes
	Yes
	Yes

 Table 1.2 Utilities and the operating systems on which they run

1.5.2.3 Users and applications

The following are few examples of users and situations in which Wireshark can be useful:

i. Network administrators use it to troubleshoot network problems.
ii. Network security engineers use it to examine security problems.
iii. Developers use it to debug protocol implementations.
iv. People use it to learn network protocol internals.
Beside these examples, Wireshark can be helpful in many other situations too. Wireshark is software that understands the structure of different networking protocols. Thus, it is able to display the encapsulation and the fields along with their meanings of different packets specified by different networking protocols.
1.5.2.4 pcap
Wireshark uses .pcap to capture packets, so it can only capture the packets on the networks supported by pcap. Data can be captured from the wire from a live network connection or read from a file that records the already-captured packets.

In the field of computer network administration, pcap (packet capture) consists of an application programming interface (API) for capturing network traffic. Unix-
like systems implement .pcap in the libpcap library; Windows uses a port of libpcap known as WinPcap.
Libpcap and WinPcap also support saving captured packets to a file, and reading files containing saved packets; applications can be written, using libpcap or WinPcap, to be able to capture network traffic and analyze it, or to read a saved capture and analyze it, using the same analysis code. A capture file saved in the format that libpcap and WinPcap use can be read by applications that understand that format.

a. Libpcap: Libpcap was originally developed by the tcpdump developers in the Network Research Group at Lawrence Berkeley Laboratory. The low-level packet capture, capture file reading, and capture file writing code of tcpdump was extracted and made into a library, with which tcpdump was linked.
b. WinPcap: WinPcap consists of:

i. Drivers for Windows 95/98/Me, and for the Windows NT family (Windows NT 4.0, Windows 2000, Windows XP, Windows Server 2003,Windows Vista, etc.);

ii. Implementations of a lower-level library for the listed operating systems, to communicate with those drivers;

iii. A port of libpcap that uses the API offered by the low-level library implementations.

Live data can be read from a number of types of network, including Ethernet, IEEE 802.11, PPP, and loopback. Wireshark runs on Unix and Unix-like systems, including Linux, Solaris, HP-UX, FreeBSD, NetBSD, OpenBSD and Mac OS X, and on Microsoft Windows. Wireshark is invoked manually for analyzing the packets.

1.5.2.5 Wireshark Screenshots

On running the Wireshark tool one can initiate either packet capture or filtering. A screenshot of Wireshark would be as shown in Figure 1.1. In this figure we can see the different captured packets that are moving into the network.

1.6 ORGANISATION OF THE REPORT
In this document we include the software requirement specification [2], which specifies the functional and non-functional requirements of the system. [3] includes the design of the project where the system architecture, hardware and software interfaces, a detailed description of different features along with the UML diagrams are specified. [4] gives the implementation details where the pseudo codes of the important modules are specified . [5] describes about the testing, which specifies how the different modules of the project are tested for its correct working. [6] presents the conclusion and future work. The document ends with the few appendices.
[image: image1.png]Ble Edt View Go Gopture Anabze Statstcs Hop
S e 2 BRes2¥FE
Dter: [=][# Espression...] £ cear|[& aor

No.. Time Saurce Destination protocol _info
47 139.931463 wistron_07: AP 192.168.1.254 1 at 0D
48 139.931465 192.16811.254 O standard query A w.google.con
49 139.975406 192,168,168 NS Standard query response CNAVE wew.L.google.con A 66.102.9.99
50 139976811 66.102.9.99 TP 62216 > hitp [SIN] Seq=0 Win=8192 Len=0 MSS<1460 WS=2
51 140.079578 192.168.1.68 TP http > 62216 [SIN, AK] Seq=0 Ack=] Wn=5720 Len=0 MSS=1430 |
52 140.079583 66.102.9.99 TP 62216 > http [ACK] Seq=l Ack=1 Win=65780 Len=0
53 140.000278 66.102.5.99 HITP GET /conplete/searchrhlesnscli ent=suggests)
54 140008765 66.102.9.99 TP 62216 > http [FIN, AK] 5eq=B05 Acks] Winz6S780 Len=0
55 140. 088521 66.102.9.99 TP 62218 > http [SYN] Seq=D Win=8192 Len=0 MSS=1460 WS=2
56 140.197484 192.168.1.68 T http > 62216 [AK] Seqel Ack=B05 Win7360 Len=o
57 140157777 192,168,168 TG http > 62216 [FIN, ACK] Seq=] Ack=808 Win=7360 Len=0
58 140, 157811 66.102.9.99 TP 62216 > hitp [ACK] Seq=805 Ack=2 Win=65780 Len=0 |

< =0
b Frame 1 (42 bytes on wire, 42 bytes captured)
b Ethernet 11, Sre «

)

oy

), Dst: Broadeast (f

o000 1 1 £1 1 £1 11 00 0c 29 38 eb 0s 08 06 00 OL
0010 08 00 05 04 00 01 00 0c 29 38 ab Os €0 a8 39 80
o020 00 0000 00 00 00 c0 a8 39 02

‘tho: <lve capturs in progress> Al Packets: 445 Displayed: 445 Marked: 0 Frofie: Defaulkt

 Figure 1.1 Screenshot of Wireshark tool

12

