EMBEDDED PASSWORD BASED SECURITY DOOR LOCK SYSTEM

TABLE OF CONTENTS

1.
ABSTRACT

2.
SCHEMATIC DIAGRAM

3. CIRCUIT DESCRIPTION

4.
INTRODUCTION

4.1. EMBEDDED SYSTEMS

4.2. MICROCONTROLLER

4.3. LCD

4.4. LED

4.5. KEIL SOFTWARE
5.
COMPONENT DESCRIPTION

5.1. AT89S52

5.2. DC MOTOR

5.3. L293D

5.4. KEYPAD

 5.5. ISP PROGRAMMER
6. CODING

7. REFERENCE

ABSTRACT
AIM:

 This project is described to design and develop a digital code lock using micro controller AT 89s52
DESCRIPTION:

Home/office security is top priority of all concerned. Today there are plenty of home/office security products to ensure your family’s security completely. Home/office security is the most significant one for every home/office owner either in an individual house or an apartment. For that different security systems are available. Those are smart cards, RFID’s, I-button, password and biometrics etc.
 Access control is the ability to permit or deny the use of a particular resource by a particular entity. Access control system can be used in managing physical resources (such as a movie theater, to which only ticket holders should be admitted), logical resources (a bank account, with a limited number of people authorized to make a withdrawal), or digital resources, for these kinds of things.

 The main idea of designing digital locking system is to provide many modern security features than mechanical lock; here key pad is used to enter the password. If that password matches to the password that was already stored in flash of the controller then the dc motor is activated and the door will be opened. If it does not matched then the buzzer is activated. Applications are entrance doors, car doors, bank lockers etc.
BLOCK DIAGRAM:

[image: image1.emf]33pf

XTAL1

VCC

GND

GND

VCC

4.7K

XTAL2

GND

DC MOTOR

1

2

104pf

FROM ISP(4)

GND

AT89S52 CRYSTAL

D4(LCD)

33 pf

GND

+

-

GND

P1.6

P1.7

BUZZER

P

GND

P0.4

33 pf

KEYPAD

1

2

3

4

5

6

7

8.2K

VCC = 5V

230V,A.C

1

2

AT89S52 ISP

GND

VCC

A4(L293D)

I

GND

FROM ISP(2)

VCC

LED

P1.5

EN(LCD)

1K

S

GND

P0.3

R8

R7

R6

R5

R4

R3

R2

R1

C

10K PULLUP

9

8

7

6

5

4

3

2

1

XTAL2

10uf/35V

P1.5

7805 REGULATOR

1

3

VIN

VOUT

RESET

AT89S52

20

18

17

29

30

19

32

9

10

11

12

13

14

15

16

40

39

38

37

36

35

34

33

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

31

GND

XTAL2

(RD) P3.7

PSEN

ALE/PROG

XTAL1

P0.7/AD7

RST

(RXD) P3.0

(TXD) P3.1

(INT0) P3.2

(INT1) P3.3

(T0) P3.4

(T1) P3.5

(WR) P3.6

VCC

P0.0/AD0

P0.1/AD1

P0.2/AD2

P0.3/AD3

P0.4/AD4

P0.5/AD5

P0.6/AD6

P2.7/A15

P2.6/A14

P2.5/A13

P2.4/A12

P2.3/A11

P2.2/A10

P2.1/A9

P2.0/A8

(T2) P1.0

(T2 EX) P1.1

P1.2

P1.3

P1.4

(MOSI) P1.5

(MISO) P1.6

(SCK) P1.7

EA/VPP

P0.1

GND

BUZZER

1,2EN

A1

Y1

GND

GND

GND

GND

Y2

A2

VCC2

3,4EN

A3

Y3

Y4

A4

VCC1

L293D

1

2

3

4

5

6

7

8

9

10

14

16

15

13

12

11

TRANSFORMER

P0.5

VCC

P1.2

RS(LCD)

D7(LCD)

GND

VCC

D5(LCD)

VCC

P0.6

VCC

220 ohm

-

+

BRIDGE RECTIFIER

1

4

3

2

POWER SUPPLY(5VDC)

BC 109

P1.0

RST

VCC

FROMISP(6)&RST

FROM ISP(10)

SWITCH

(9V,1 AMP)

GND

1

2

3

4

5

6

7

8

9

10

1000uf/35V

R8

R7

R6

R5

R4

R1

R2

R3

C

10K PULLUP

1

2

3

4

5

6

7

8

9

TRIM POT

5K

D6(LCD)

11.0592MHz

P0.7

R8

R7

R6

R5

R4

R1

R2

R3

C

10K PULLUP

1

2

3

4

5

6

7

8

9

GND

VCC

VEE

RS

RW

EN

D0

D3

D2

D4

D5

D6

D7

D1

LED+

LED-

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

2

GND

VCC

10 uf/63V

C

VCC

XTAL1

LCD

VCC

RST

A3(L293D)

33pf

XTAL1

VCC

GND

GND

VCC

4.7K

XTAL2

GND

DC MOTOR

1

2

104pf

FROM ISP(4)

GND

AT89S52 CRYSTAL

D4(LCD)

33 pf

GND

+

-

GND

P1.6

P1.7

BUZZER

P

GND

P0.4

33 pf

KEYPAD

1

2

3

4

5

6

7

8.2K

VCC = 5V

230V,A.C

1

2

AT89S52 ISP

GND

VCC

A4(L293D)

I

GND

FROM ISP(2)

VCC

LED

P1.5

EN(LCD)

1K

S

GND

P0.3

R8R7R6R5R4R3R2R1

C

10K PULLUP

987654321

XTAL2

10uf/35V

P1.5

7805 REGULATOR

13

VINVOUT

RESET

AT89S52

20

18

17

29

30

19

329

10

11

12

13

14

15

16

40

39

38

37

36

35

34

33

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

31

GND

XTAL2

(RD) P3.7

PSEN

ALE/PROG

XTAL1

P0.7/AD7RST

(RXD) P3.0

(TXD) P3.1

(INT0) P3.2

(INT1) P3.3

(T0) P3.4

(T1) P3.5

(WR) P3.6

VCC

P0.0/AD0

P0.1/AD1

P0.2/AD2

P0.3/AD3

P0.4/AD4

P0.5/AD5

P0.6/AD6

P2.7/A15

P2.6/A14

P2.5/A13

P2.4/A12

P2.3/A11

P2.2/A10

P2.1/A9

P2.0/A8

(T2) P1.0

(T2 EX) P1.1

P1.2

P1.3

P1.4

(MOSI) P1.5

(MISO) P1.6

(SCK) P1.7

EA/VPP

P0.1

GND

BUZZER

1,2EN

A1

Y1

GND

GNDGND

GND

Y2

A2

VCC23,4EN

A3

Y3

Y4

A4

VCC1

L293D

1

2

3

4

5

6

7

89

10

14

16

15

13

12

11

TRANSFORMER

P0.5

VCC

P1.2

RS(LCD)

D7(LCD)

GND

VCC

D5(LCD)

VCC

P0.6

VCC

220 ohm

-+

BRIDGE RECTIFIER

1

4

3

2

POWER SUPPLY(5VDC)

BC 109

P1.0

RST

VCC

FROMISP(6)&RST

FROM ISP(10)

SWITCH

(9V,1 AMP)

GND

12

34

56

78

910

1000uf/35V

R8R7R6R5R4R1R2R3

C

10K PULLUP

123456789

TRIM POT

5K

D6(LCD)

11.0592MHz

P0.7

R8R7R6R5R4R1R2R3

C

10K PULLUP

123456789

GND

VCC

VEE

RS

RW

EN

D0

D3

D2

D4

D5

D6

D7

D1

LED+

LED-

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

2

GND

VCC

10 uf/63VC

VCC

XTAL1

LCD

VCC

RST

A3(L293D)

REQUIREMENTS:

HARDWARE REQUIREMENTS:
· AT89S52

· LCD DISPLAY

· BUZZER

· KEYPAD

SOFTWARE REQUIREMENTS:

· KEIL C Compiler

· PROGRAMMING IN EMBEDDED C
SCHEMATIC DIAGRAM
[image: image23.jpg]
CIRCUIT DESCRIPTION

DESIGNING:

Since the main intension of this project is to design a security Door locks system. In order to fulfill this application there are few steps that has been performed i.e.

1) Designing the power supply for the entire circuitry.

2) Selection of microcontroller that suits our application.

3) Selection Key pad.

4) Selection of DC motor.

5) Selection of buzzer according to the requirement.

Complete studies of all the above points are useful to develop this project.

POWER SUPPLY SECTION:

In-order to work with any components basic requirement is power supply. In this section there is a requirement of 5V power supply.

[image: image2.png]
 Transformers convert AC electricity from one voltage to another with little loss of power. Transformers work only with AC and this is one of the reasons why mains electricity is AC.

Step-up transformers increase voltage, step-down transformers reduce voltage. Most power supplies use a step-down transformer to reduce the dangerously high mains voltage (230V in UK) to a safer low voltage.
A Bridge Rectifier can be made using four individual diodes, but it is also available in special packages containing the four diodes required. It is called a full-wave rectifier because it uses all the AC wave (both positive and negative sections

	
	

By the electrolytic Capacitor connected across the DC supply to act as a reservoir, Smoothing is performed by a large value supplying current to the output when the varying DC voltage from the rectifier is falling
[image: image3.png]
Regulator

	[image: image4.png]
	[image: image5.jpg]

	
	

 Voltage regulator ICs are available with fixed (typically 5, 12 and 15V) or variable output voltages. They are also rated by the maximum current they can pass. Negative voltage regulators are available,mainly for use in dual supplies

SELECTION OF MICROCONTROLLER:

 As we know that there so many types of micro controller families that are available in the market.

Those are

1) 8051 Family

2) AVR microcontroller Family
3) PIC microcontroller Family

4) ARM Family
 Basic 8051 family is enough for our application; hence we are not concentrating on higher end controller families.But still we selected AT89S52 controller because of inbuilt ISP (in system programmer) option.

There are minimum six requirements for proper operation of microcontroller.

Those are:

1) power supply section

2) pull-ups for ports (it is must for PORT0)

3) Reset circuit

4) Crystal circuit

5) ISP circuit (for program dumping)

6) EA/VPP pin is connected to Vcc.

 PORT0 is open collector that’s why we are using pull-up resistor which makes PORT0 as an I/O port. Reset circuit is used to reset the microcontroller. Crystal circuit is used for the microcontroller for timing pluses. In this project we are not using external memory that’s why EA/VPP pin in the microcontroller is connected to Vcc that indicates internal memory is used for this application.

SELECTION OF KEYPAD:

 In this project to enter the password I selected the 4X3 keypad. There are many keypad’s available in the market but for my requirement this keypad enough.

SELECTION OF DC MOTOR:

In my project I selected DC 5V 2400 RPM DC motor. Because my hardware kit is working with 5 volts DC

CIRCUIT OPERATION:

Here after giving the power supply it will display to open the door or to close the door to close the door we have to press the ‘*’ and for opening the door ‘#’ has to pressed. Program will not continue till we press ‘*’ or ’#’.after that it will ask to enter the password and instead of displaying the password we are displaying ‘*’ on the LCD. If password is matched according to the command door will open/close. For opening and closing the door in this project we connected DC motors and we are rotating forward direction for opening the door and reverse direction for closing the door. If password not matched buzzer will start .This process will continue .Here in this project we kept password as 160 we can change it through program and changed program we have to dump it in to the microcontroller.
EMBEDDED SYSTEMS

 Embedded systems are electronic devices that incorporate microprocessors with in their implementations. The main purposes of the microprocessors are to simplify the system design and provide flexibility. Having a microprocessor in the device helps in removing the bugs, making modifications, or adding new features are only matter of rewriting the software that controls the device. Or in other words embedded computer systems are electronic systems that include a microcomputer to perform a specific dedicated application. The computer is hidden inside these products. Embedded systems are ubiquitous.

Embedded systems designers usually have a significant grasp of hardware technologies. They use specific programming languages and software to develop embedded systems and manipulate the equipment.

CHARACTERISTICS:

Two major areas of differences are cost and power consumption. Since many embedded systems are produced in tens of thousands to millions of units range, reducing cost is a major concern. Embedded systems often use a (relatively) slow processor and small memory size to minimize costs.

PLATFORM:

There are many different CPU architectures used in embedded designs. This in contrast to the desktop computer market which is limited to just a few competing architectures mainly the Intel/AMD x86 and the Apple/Motorola/IBM Power PC’s which are used in the Apple Macintosh. One common configuration for embedded systems is the system on a chip, an application-specific integrated circuit, for which the CPU was purchased as intellectual property to add to the IC's design.
OPERATING SYSTEM:

They often have no operating system, or a specialized embedded operating system (often a real-time operating system), or the programmer is assigned to port one of these to the new system.

DEBUGGING:

Debugging is usually performed with an in-circuit emulator, or some type of debugger that can interrupt the micro controller’s internal microcode. The microcode interrupt lets the debugger operate in hardware in which only the CPU works. The CPU-based debugger can be used to test and debug the electronics of the computer from the viewpoint of the CPU.
DESIGN OF EMBEDDED SYSTEMS:

The electronics usually uses either a microprocessor or a microcontroller. Some large or old systems use general-purpose mainframes computers or minicomputers.

START-UP:

All embedded systems have start-up code. Usually it disables interrupts, sets up the electronics, tests the computer (RAM, CPU and software), and then starts the application code. Many embedded systems recover from short-term power failures by restarting (without recent self-tests). Restart times under a tenth of a second are common.Many designers have found one of more hardware plus software-controlled LED’s useful to indicate errors during development (and in some instances, after product release, to produce troubleshooting diagnostics).

THE CONTROL LOOP:

In this design, the software has a loop. The loop calls subroutines. Each subroutine manages a part of the hardware or software. Interrupts generally set flags, or update counters that are read by the rest of the software. A simple API disables and enables interrupts. Done right, it handles nested calls in nested subroutines, and restores the preceding interrupt state in the outermost enable. This is one of the simplest methods of creating an exocrine.

One major disadvantage of this system is that it does not guarantee a time to respond to any particular hardware event. Careful coding can easily assure that nothing disables interrupts for long. Thus interrupt code can run at very precise timings. Another major weakness of this system is that it can become complex to add new features. Algorithms that take a long time to run must be carefully broken down so only a little piece gets done each time through the main loop.

USER INTERFACES:

Interface designers at PARC, Apple Computer, Boeing and HP minimize the number of types of user actions. For example, use two buttons (the absolute minimum) to control a menu system (just to be clear, one button should be "next menu entry" the other button should be "select this menu entry"). A touch-screen or screen-edge buttons also minimize the types of user actions.
MICROCONTROLLER 89S52

Microcontrollers as the name suggests are small controllers. They are like single chip computers that are often embedded into other systems to function as processing/controlling unit. For example the remote control you are using probably has microcontrollers inside that do decoding and other controlling functions. They are also used in automobiles, washing machines, microwave ovens, toys ... etc, where automation is needed.
FEATURES:
· Compatible with MCS®-51 Products

· 8K Bytes of In-System Programmable (ISP) Flash Memory

 -Endurance: 1000 Write/Erase Cycles

· 4.0V to 5.5V Operating Range

· Fully Static Operation: 0 Hz to 33 MHz

· Three-level Program Memory Lock

· 256 x 8-bit Internal RAM

· 32 Programmable I/O Lines

· Three 16-bit Timer/Counters

· Eight Interrupt Sources

· Full Duplex UART Serial Channel

DESCRIPTION:

The AT89S52 is a low-power, high-performance CMOS 8-bit microcontroller with 8K bytes of in-system programmable Flash memory. The device is manufactured using Atmel’s high-density nonvolatile memory technology and is compatible with the industry-standard 80C51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with in-system programmable Flash on a monolithic chip, the Atmel 89S52 is a powerful microcontroller which provides a highly-flexible and cost-effective solution to many embedded control applications. The AT89S52 provides the following standard features: 8K bytes of Flash, 256 bytes of RAM, 32 I/O lines, Watchdog timer, two data pointers, three 16-bit timer/counters, a six-vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator, and clock circuitry

PIN CONFIGURATION 40-lead PDIP:
 [image: image6.emf]
ARCHITECTURE:

[image: image7.emf]
PIN DESCRIPTION:

VCC:

Supply voltage.

GND:

Ground.
Port 0:
 Port 0 is an 8-bit open drain bidirectional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs.

 Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode, P0 has internal pull-ups.

Port 1:

 Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. In addition, P1.0 and P1.1 can be configured to be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively, as shown in the following table.

	Port Pin
	Alternate Functions

	P1.0
	T2(external count to Timer/Counter 2), clock-out

	P1.1
	T2EX(Timer/Counter 2 capture/reload trigger and direction control)

	P1.5
	MOSI (used for In-System Programming)

	P1.6
	MISO(used for In-System Programming)

	P1.7
	SCK(used for In-System Programming)

Port 2:

Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pull-ups.
Port 3:

Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. Port 3 also serves the functions of various special features of the AT89S52, as shown in the following table.

	Port Pin
	Alternate Functions

	P3.0
	RXD (serial Input port)

	P3.1
	TXD (serial output port)

	P3.2
	INT0 bar (external Interrupt 0)

	P3.3
	INT1 bar (external Interrupt 1)

	P3.4
	T0 (timer 0 external Input)

	P3.5
	T1 (timer 1 external input)

	P3.6
	WR bar (external data memory write strobe)

	P3.7
	RD bar (external data memory read strobe)

RST:
 Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. This pin drives high for 98 oscillator periods after the Watchdog times out. The DISRTO bit in SFR AUXR (address 8EH) can be used to disable this feature. In the default state of bit DISRTO, the RESET HIGH out feature is enabled.
[image: image8.emf]
 Address Latch Enable (ALE) is an output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG bar) during Flash programming.
XTAL1:

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2:

 Output from the inverting oscillator amplifier
LIQUID CRYSTAL DISPLAY (LCD)
 A liquid crystal display (LCD) is a thin, flat panel used for electronically displaying information such as text, images, and moving pictures. Its uses include monitors for computers, televisions, instrument panels, and other devices ranging from aircraft cockpit displays, to every-day consumer devices such as video players, gaming devices, clocks, watches, calculators, and telephones. Among its major features are its lightweight construction, its portability, and its ability to be produced in much larger screen sizes than are practical for the construction of cathode ray tube (CRT) display technology
PIN DESCRIPTION:
[image: image9.png]
PIN DESCRIPTION:

	PIN
	SYMBOL
	I/O
	DESCRIPTION

	1
	VSS
	--
	Ground

	2
	VCC
	--
	+5V power supply

	3
	VEE
	--
	Power supply to control contrast

	4
	RS
	I
	RS=0 to select command register

RS=1 to select data register

	5
	R/W
	I
	R/W=0 for write

R/W=1 for read

	6
	EN
	I/O
	Enable

	7
	DB0
	I/O
	The 8-bit data bus

	8
	DB1
	I/O
	The 8-bit data bus

	9
	DB2
	I/O
	The 8-bit data bus

	10
	DB3
	I/O
	The 8-bit data bus

	11
	DB4
	I/O
	The 8-bit data bus

	12
	DB5
	I/O
	The 8-bit data bus

	13
	DB6
	I/O
	The 8-bit data bus

	14
	DB7
	I/O
	The 8-bit data bus

Vcc, Vss and Vee:

 While VCC and VSS provide +5V and ground respectively, VEE is used for controlling LCD contrast.
RS (REGISTER SELECT):

There are two important registers inside the LCD. When RS is low (0), the data is to be treated as a command or special instruction (such as clear screen, position cursor, etc.). When RS is high (1), the data that is sent is a text data which should be displayed on the screen. For example, to display the letter "T" on the screen you would set RS high.
RW (READ/WRITE): The RW line is the "Read/Write" control line. When RW is low (0), the information on the data bus is being written to the LCD. When RW is high (1), the program is effectively querying (or reading) the LCD. Only one instruction ("Get LCD status") is a read command. All others are write commands, so RW will almost be low.
EN (ENABLE): The EN line is called "Enable". This control line is used to tell the LCD that you are sending it data. To send data to the LCD, your program should first set this line high (1) and then set the other two control lines and/or put data on the data bus.
D0-D7 (DATA LINES): The 8-bit data pins, D0-D7 are used to send information to the LCD or read the content of the LCD’s internal registers. To display letters and numbers, we send ASCII codes for the letters A-Z, a-z and numbers 0-9 to these pins while making RS=1. There are also instruction command codes that can be sent to the LCD to clear the display or force the cursor to the home position or blink the cursor.
LCD COMMAND CODES:
	CODE (HEX)
	COMMAND TO LCD INSTRUCTION REGISTER

	1
	CLEAR DISPLAY SCREEN

	2
	RETURN HOME

	4
	DECREMENT CURSOR(SHIFT CURSOR TO LEFT)

	6
	INCREMENT CURSOR(SHIFT CURSOR TO RIGHT)

	5
	SHIFT DISPLAY RIGHT

	7
	SHIFT DISPLAY LEFT

	8
	DISPLAY OFF,CURSOR OFF

	A
	DISPLAY OFF,CURSOR ON

	C
	DISPLAY ON,CURSOR OFF

	E
	DISPLAY ON CURSOR BLINKING

	F
	DISPLAY ON CURSOR BLINKING

	10
	SHIFT CURSOR POSITION TO LEFT

	14
	SHIFT CURSOR POSITION TO RIGHT

	18
	SHIFT THE ENTIRE DISPLAY TO THE LEFT

	1C
	SHIFT THE ENTIRE DISPLAY TO THE RIGHT

	80
	FORCE CURSOR TO BEGINNING OF 1ST LINE

	C0
	FORCE CURSOR TO BEGINNING OF 2ND LINE

	38
	2 LINES AND 5x7 MATRIX

ADVANTAGES:
 LCD interfacing with 8051 is a real-world application. In recent years the LCD is finding widespread use replacing LED’s (seven segment LED’s or other multi segment LED’s).
This is due to following reasons:

· The declining prices of LCD’s.

· The ability to display numbers, characters and graphics. This is in contrast to LED’s, which are limited to numbers and a few characters.
LIGHT EMITTING DIODE (LED)
 A light-emitting diode (LED) is a semiconductor diode that emits incoherent narrow spectrum light when electrically biased in the forward direction of the pn-junction, as in the common LED circuit. This effect is a form of electroluminescence.

[image: image10.png]
[image: image11.jpg]
The wavelength of the light emitted, and therefore its color, depends on the band gap energy of the materials forming the p-n junction. In silicon or germanium diodes, the electrons and holes recombine by a non-radiative transition which produces no optical emission, because these are indirect band gap materials. [image: image12.png]
ADVANTAGES OF LEDS:

· LED’s have many advantages over other technologies like lasers. As compared to laser diodes or IR sources

· LED’s offer advantages such as low cost and long service life. Moreover LED’s have very low power consumption and are easy to maintain.

Dis advantages of LEDs:
· LED’s performance largely depends on the ambient temperature of the operating environment.
· LED’s must be supplied with the correct current.
 KIEL SOFTWARE
 Many companies provide the 8051 assembler, some of them provide shareware version of their product on the Web, Kiel is one of them. We can download them from their Websites. However, the size of code for these shareware versions is limited and we have to consider which assembler is suitable for our application.
CREATING YOUR OWN APPLICATION IN UVISION2:

To create a new project in uVision2, you must:

· Select Project - New Project.

· Select a directory and enter the name of the project file.

· Select Project - Select Device and select an 8051, 251, or C16x/ST10 device from the Device
· Database

· Create source files to add to the project.

· Select Project - Targets, Groups, and Files. Add/Files, select Source Group1, and add the source files to the project.

· Select Project - Options and set the tool options. Note when you select the target device from the Device Database all-special options are set automatically. You only need to configure the memory map of your target hardware. Default memory model settings are optimal for most.

[image: image13.png]
APPLICATIONS:

· Select Project - Rebuild all target files or Build target.
DEBUGGING AN APPLICATION IN UVISION2:

To debug an application created using uVision2, you must:

· Select Debug - Start/Stop Debug Session.

· Use the Step toolbar buttons to single-step through your program. You may enter G, main in the Output Window to execute to the main C function.

· Open the Serial Window using the Serial #1 button on the toolbar.

· Debug your program using standard options like Step, Go, Break, and so on.

EVALUATION SOFTWARE:

· Code-Banking Linker/Locator

· Library Manager.

· RTX-51 Tiny Real-Time Operating System

DC MOTOR
PRINCIPLE:
 It is based on the principle that when a current-carrying conductor is placed in a magnetic field, it experiences a mechanical force whose direction is given by Fleming's Left-hand rule and whose magnitude is given by Force, F = B I l Newton

The force, current and the magnetic field are all in different directions. If an Electric current flows through two copper wires that are between the poles of a magnet, an upward force will move one wire up and a downward force will move the other wire down.

[image: image14.emf]
SPEED CONTROL:

There are two ways to adjust the speed of a wound-field dc motor. Combinations of the two are sometimes used to adjust the speed of a dc motor.
SELECTION:

Choosing dc motor and associated equipment for a given application requires consideration of several factors.
WORKING:

Motors convert electrical energy (from a battery or voltage source) into mechanical energy (used to cause rotation). This is accomplished by forcing current through a coil and producing a magnetic field that spins the motor. DC motors are fairly simple to understand. They are also simple to make and only require a battery or dc supply to make them run.

L293D

· 600ma output current capability per channel

· 1.2a peak output current (non repetitive) per channel

· Enable facility

· Over temperature protection

· Logical "0" input voltage up to 1.5 v (high noise immunity)

· Internal clamp diodes

· Wide Supply-Voltage Range: 4.5 V to 36 V

· Separate Input-Logic Supply

· Internal ESD Protection

· Thermal Shutdown

· High-Noise-Immunity Inputs

· Functionally Similar to SGS L293 and SGS L293D

· Output Current 1 A Per Channel (600 mA for L293D)

· Peak Output Current 2 A Per Channel (1.2 A for L293D)

· Output Clamp Diodes for Inductive Transient Suppression (L293D)
DESCRIPTION:

 The Device is a monolithic integrated high voltage, high current four channel driver designed to accept standard DTL or TTL logic levels and drive inductive loads (such as relays solenoids, DC and stepping motors) and switching power transistors. To simplify use as two bridges each pair of channels is equipped with an enable input. A separate supply input is provided for the logic, allowing operation at a lower voltage and internal clamp diodes are included
BLOCK DIAGRAM:

[image: image15.emf]
PIN CONFIGURATION:

[image: image16.emf]
4X3 KEYPAD

 A keypad is a set of buttons arranged in a block or "pad" which usually bear digits and other symbols and usually a complete set of alphabetical letters. If it mostly contains numbers then it can also be called a numeric keypad. Keypads are found on many alphanumeric keyboards and on other devices such as calculators, push-button telephones, combination locks, and digital door locks, which require mainly numeric input.

In order to detect which key is pressed from the matrix, we make row lines low one by one and read the columns. Let’s say we first make Row1 low, and then read the columns. If any one of the key in row1 is pressed it will make the corresponding column as low i.e. if second key is pressed in Row1, then the column2 will be low. So we come to know that key 2 of Row1 is pressed. This is how scanning is done.
[image: image17.png]
INTERFACING THE KEYBOARD TO THE MICROCONTROLLER:
 At the lowest level, keyboards are organized in a matrix of rows and columns. The CPU accesses both rows and columns through ports; therefore, with two 8-bit ports, an 8x8 matrix of keys can be connected to a microprocessor. When a key is pressed, a row and a column make a contact; otherwise, there is no connection between rows and columns. In IBM PC keyboards, a single microcontroller (consisting of a microprocessor, RAM and EPROM, and several PORTS all on a single chip) takes care of hardware and software interfacing of the keyboard, in such systems, it is the function of programs stored in the EPROM of the microcontroller to scan the keys continuously.
SCANNING AND IDENTIFYING THE KEY:

[image: image18.png]
 Fig shows a 4x4 matrix connected to two ports. The rows are connected to an output port and the columns are connected to an input port. If no key has been pressed, reading the input port will yield 1s for all columns since they are all connected to high (Vcc). If all the rows are grounded and a key is pressed, one of the columns will have 0 since the pressed provides the path to ground. It is the function of the microcontroller to scan the keyboard continuously to detect and identify the key pressed. How it is done is explained next.

GROUNDING ROWS AND READING THE COLUMNS:

To detect a pressed key, the microcontroller grounds all rows by providing 0 to the output latch, and then it reads the columns. If the data read from the columns is D3-D0=1111, no key has been pressed and the process continues until a key press is detected.

However, if one of the column bits has a 0, this means that a key press has occurred.
THE PROCESS OF SCANNING A KEY GOES THROUGH THE FOLLOWING 4 STEPS:

1. To make sense that the preceding key has been released, 0’s are output to all rows at once and the columns are read and checked repeatedly until all the columns are high. When all columns are found to be high, the program waits for a short amount of time before it goes to the next stage of waiting for a key to be pressed.

2. To see if any key is pressed, the columns scanned over and over in an infinite loop until one of them has a zero (0) on it. Remember that the output latches connected to rows still have their initial zero’s making them grounded. After the key press detection it waits 20ms for bounce and then scans the columns again. This serves two functions

· It ensures that the first key detection was not an erroneous one due to a spike noise and the 20ms delay prevents the same key press from being interpreted as a multiple key press .If after 20 ms delay the key is still pressed, it goes to the next stage to detect which row it belongs to ;otherwise it goes back in to the loop to detect a read key press.

3. To detect which row the key press belongs to, it grounds one row at a time reading the column search time .If it finds that all columns are high this means that the key press does not belongs to the row, therefore it grounds the next row and continues until it finds the row key press belongs to, it sets up the starting address for the look up table holding the scan codes for that row and goes to The next stage to identify the key.

4. To identify the key press, it rotates the column bits one bit at a time in to the carry flag and check to see if it is low. Upon finding the zero, it pulls out the (ASCII code) character for that key from the look up table. Otherwise it increments the pointer to point to the next element of the look up table.
ISP PROGRAMMER:

 In-System Programming (abbreviated ISP) is the ability of some programmable logic devices, microcontrollers, and other programmable electronic chips to be programmed while installed in a complete system, rather than requiring the chip to be programmed prior to installing it into the system. Otherwise, In-system programming means that the program and/or data memory can be modified without disassembling the embedded system to physically replace memory.
The RST pin is also used to enable the 3 pins (MOSI, MISO and SCK) to be used for ISP simply by setting RST to HIGH (5V), otherwise if RST is low (0V), program start running and those three pins, are used normally as P1.5, P1.6 and P1.7. After RST is set high, the Programming Enable instruction needs to be executed first before other operations can be executed. Before a reprogramming sequence can occur, a Chip Erase operation is required. The Chip Erase operation turns the content of every memory location in the Code array into FFH. [image: image19.emf]GND

I4A

GND

O4B

GND

1

2

3

4

5

6

7

8

9

10

CONNECTOR DB25

13

25

12

24

11

23

10

22

9

21

8

20

7

19

6

18

5

17

4

16

3

15

2

14

1

GND

I4B

GA

100K

GB

GND

I2B

0.1UF/35V

O1A

I1A

74HC244

20

19

18

17

16

15

14

13

12

11

1

2

3

4

5

6

7

8

9

10

O2A

VCC

I1B

O1B

O4A

I2A

VCC

O2B

03A

I3A

I3B

O3B

GND

I4A

GND

O4B

GND

12

34

56

78

910

CONNECTOR DB25

13

25

12

24

11

23

10

22

9

21

8

20

7

19

6

18

5

17

4

16

3

15

2

14

1

GND

I4B

GA

100K

GB

GND

I2B

0.1UF/35V

O1A

I1A

74HC244

20

19

18

17

16

15

14

13

12

11

1

2

3

4

5

6

7

8

9

10

O2A

VCC

I1B

O1B

O4A

I2A

VCC

O2B

03A

I3A

I3B

O3B

In the above figure we can see the ISP programmer connections using 74ls244
74LS244:

The 74LS244 is used to work between PRINT ports to the chips AT89S52. We cannot observe 74LS244 on the PCB which is AT89S52 located. It hid in the joint between PC and 6 transmission lines. The 74LS244 pin configuration, logic diagram, connection and function table is on the below.
[image: image20.png]
EXAMPLE: CONNECTING THE PROGRAMMER TO AN AT89S52
[image: image21.png]
 AT89S8252 microcontroller features an SPI port, through which on-chip Flash memory and EEPROM may be programmed. To program the microcontroller, RST is held high while commands, addresses and data are applied to the SPI port.

ATMEL ISP FLASH PROGRAMMER:

 This is the software that will take the HEX file generated by whatever compiler you are using, and send it - with respect to the very specific ISP transfer protocol - to the microcontroller.

Following are the main features of this software:

· Read and write the Intel Hex file

· Read signature, lock and fuse bits

· Clear and Fill memory buffer

· Verify with memory buffer

· Reload current Hex file

· Display buffer checksum

· Program selected lock bits & fuses

· Auto detection of hardware
 The software does not provide the erase command because this function is performed automatically during device programming. If you are required to erase the controller, first use the clear buffer command then program the controller, this will erase the controller and also set the device→ to default setting.

ISP PROGRAMMER PICTURE:

[image: image22.jpg]
CODING
/*HEADER FILES*/

#include<reg51.h>

#include<string.h>

/*LCD PIN CONNECTIONS*/

#define lcd P0

sbit rs=P0^1;

sbit en=P0^3;

/*LCD FUNCTIONS DECLARATIONS*/

void init_lcd(void);

void cmd_lcd(unsigned char);

void data_lcd(unsigned char);

void str_lcd(unsigned char *);

void Delay_ms(unsigned int);

/*KEYPAD PIN CONNECTIONS*/

sbit row0=P2^3;

sbit row1=P2^5;

sbit row2=P2^6;

sbit row3=P2^0;

sbit col0=P2^4;

sbit col1=P2^2;

sbit col2=P2^1;

/*MOTOR PIN CONNECTIONS*/

sbit M1=P1^0;

sbit M2=P1^5;

/*BUZZER PIN CONNECTION*/

sbit BUZZER=P1^2;

/*VARIABLES DECLARATION*/

unsigned char i,j;

unsigned char colval,rowval,pwdchange;

unsigned char pwd[15],str1[]="12345";

unsigned char keypad[4][3]={'1','2','3',

'4','5','6',

'7','8','9',

'*','0','#',};

/*PASSWORD FUNCTION DECLARATION*/

void password(void);

/*KEYPAD FUNCTION DECLARATION*/

unsigned char key(void);

/*MAIN FUNCTION*/

main()

{

 unsigned char k=0;

 BUZZER=0;

//BUZZER OFF

M1=M2=0;

//MOTOR OFF

init_lcd();

//LCD INITIALIZATION FUNCTION CALLING

str_lcd("ENTER PASSWORD:");

//DISPLAY STRING ON LCD

while(1)

{

cmd_lcd(0xc0);

//2ND LINE DISPLAY

password();

//PASSWORD FUNCTION CALLING

if(pwdchange)

{

pwdchange=0;

continue;

}

if(!strcmp(str1,pwd))

//COMPARING WITH 1ST PASSWORD

{

BUZZER=0;

//BUZZER OFF

cmd_lcd(0xc0);

str_lcd("DOOR OPEN");

M1=0;

//MOTOR RUNS IN FORWARD DIRECTION

M2=1;

Delay_ms(30);

//30 MILLISECONDS DELAY

cmd_lcd(0xc0);

str_lcd(" ");

M1=0;

//MOTOR OFF

M2=0;

Delay_ms(1500);

cmd_lcd(0xc0);

str_lcd("DOOR CLOSE");

M1=1;

M2=0;

Delay_ms(30);

cmd_lcd(0xc0);

str_lcd(" ");

M1=0;

//MOTOR OFF

M2=0;

k=0;

}

else

{

strcpy(temp,pwd);

cmd_lcd(0x01);

str_lcd("Confirm Password");

cmd_lcd(0xc0);

password();

if(!strcmp(temp,pwd))

{

strcpy(str1,temp);

cmd_lcd(0x01);

str_lcd("Password
 }

 ‘Changed");

Delay_ms(1000);

cmd_lcd(0x01);

str_lcd("Enter Password");

cmd_lcd(0xc0);

pwdchange=1;

return;

}

else

{

cmd_lcd(0x01);

str_lcd("Password Error");

Delay_ms(1000);

cmd_lcd(0x01);

str_lcd("Enter Password");

cmd_lcd(0xc0);

pwdchange=1;

return;

}

}

else

{

cmd_lcd(0x01);

str_lcd("Password Error");

Delay_ms(1000);

cmd_lcd(0x01);

str_lcd("Enter Password");

cmd_lcd(0xc0);

pwdchange=1;

return;

}

}

else goto label;

}

else goto label;

}

else

{

label:pwd[i++]=j;

 data_lcd('*');

}

}

pwd[i]='\0';

}

REFERENCE
TEXT BOOKS REFERED:

1. “The 8051 Microcontroller and Embedded Systems” by Muhammad Ali Mazidi and Janice Gillispie Mazidi, Pearson Education.
2.
8051 Microcontroller Architecture, programming and application by KENNETH JAYALA

3.
ATMEL 89s52 Data sheets

 4.
Hand book for Digital IC’s from Analogic Devices

WEBSITES VIEWED:

·
www.atmel.com
·
www.beyondlogic.org

·
www.dallassemiconductors.com
·
www.maxim-ic.com
·
www.alldatasheets.com
·
www.howstuffworks.com

 DOOR

KEYPAD

 L293D

A

T

8

9

S

5

2

LCD

[43]

