CHAPTER 1

INTRODUCTION

1. INTRODUCTION
 An arithmetic-logic unit (ALU) is the part of a computer processor (CPU) that carries out arithmetic and logic operations on the operands in computer instruction words. In some processors, the ALU is divided into two units, an arithmetic unit (AU) and a logic unit (LU). Some processors contain more than one AU - for example, one for fixed-point operations and another for floating-point operations.
 Generally arithmetic and logic unit (ALU) performs arithmetic operations like addition, subtraction, multiplication and division. This also performs logical operations like AND, OR, shift left and shift right etc.

 A floating-point unit (FPU) is a part of a computer system specially designed to carry out operations on floating point numbers. Typical operations are addition, subtraction, multiplication, division .

1.1 INTEGER ARITHMETIC
 Integer arithmetic supports operations on integers ie. It accepts integers as inputs and also gives integer as output. Generally the operations that are to be performed under integer arithmetic are addition, subtraction, multiplication, division, logical operations and shifting.

 Adders are usually implemented by combining multiple copies of simple components. The natural components for addition are half adders and full adders . The half adder takes two bits a and b as input and produces a sum bit s and a carry bit c as output. The half adder is also called a (2,2) adder, since it takes two inputs and produces two outputs. the full adder is a (3,2) adder and the logic equations are

 [image: image18.png]
 For example:

 Full adder truth table
	Carry in
	A
	B
	Sum
	Carry out

	0
	0
	0
	0
	0

	0
	0
	1
	1
	0

	0
	1
	0
	1
	0

	0
	1
	1
	0
	1

	1
	0
	0
	1
	0

	1
	0
	1
	0
	1

	1
	1
	0
	0
	1

	1
	1
	1
	1
	1

 A 0011
 +B +0001
[image: image1.png]
 Sum 0100

 it’s just like we do for decimal

 0 + 0 = 0

 1 + 0 = 1

 1 + 1 = 2 which is 10 in binary, sum is 0 and carry is 1.

 1 + 1 + 1 = 3 sum is 1, and carry is 1.

ADDITION:

Unsigned:
 just like the simple addition

 100001 00001010 (10)

 +011101 +00001110 (14)

 ………………………………………..

 111110 00011000 (24)
 Ignore (throw away) carry out of the msb.

 Why? Because computers always work with a fixed precision.

Sign magnitude:

 Rules:

 - add magnitudes only (do not carry into the sign bit)

 - throw away any carry out of the msb of the magnitude

 (Due to the fixed precision constraints.)

 - add only integers of like sign (+ to + or - to -)

 - Sign of result is same as sign of the addends

 Examples:

 0 0101 (5) 1 1010 (-10)

 + 0 0011 (3) + 1 0011 (-3)

………………………………………….
 0 1000 (8) 1 1101 (-13)

 0 01011 (11)

 + 1 01110 (-14)

 Don’t add, must do subtraction!

 One's complement:

 by example

 00111 (7) 111110 (-1) 11110 (-1)

 + 00101 (5) + 000010 (2) + 11100 (-3)

 ----------- ------------ ------------

 01100 (12) 1 000000 (0) wrong! 1 11010 (-5) wrong!

+ 1 + 1

 ---------- ----------

 000001 (1) right! 11011 (-4) right!

So it seems that if there is a carry out (of 1) from the msb, then the result will be off by 1, so add 1 again to get the correct result.(end around carry).
 Two's complement:

 Rules:

 - Just add all the bits

 - throw away any carry out of the msb

 - (same as for unsigned!)

 Examples:
 00011 (3) 101000 111111 (-1)

 + 11100 (-4) + 010000 + 001000 (8)

 ------------ ----------- --------------

 11111 (-1) 111000 1 000111 (7)

 After seeing examples for all these representations, you may see why 2's complement addition requires simpler hardware than sign mag. or one's complement addition.
Subtraction is same as addition, it simply known as 2’s complement addition.

MULTIPLICATION:

 0 x 0 = 0

 0 x 1 = 0

 1x 0 = 0

 1x 1 = 0

 .. Longhand, it’s just like decimal

 ……In 2’s complement we get the right answer with out any problem, sign extended both the multiplicand and multiplier as many bits.

DIVISION:

 Use the same algorithm as for decimal integers. For integers it works good for unsigned integers only. As output we get quotient and remainder.

 While doing division we must remember the algebra formulae

 Dividend=(divisor * quotient) + remainder.

1.2 FLOATING POINT ARITHMETIC :
 A simple representation of a floating point number (N) uses a fraction (F), base (B), and exponent(E), where N=F * BE . The base can be 2, 10, 16 or any other number . the fraction and exponent can be represented in many formats. For example they can be represented by 2’s complement format, sign magnitude form or ant other representation.

 In binary floating point format negative exponents and fractions are represented using the 2’s complement form. We will use 4 bits for the fraction and 4 bits for the exponent. The fractional part will have a leading sign bit and three actual fraction bits and the implied binary point is after the first bit. The sign bit is zero(0) for positive numbers and one(1) for negative numbers.

 As an example let us represent decimal 2.5 in this 8 bit 2’s complement floating point format,

 2.5 = 0010.1000

 =1.010 * 21 (standardized normal representation)

 =0.101 * 22 (4 bit 2’s complement fraction)

 Therefore

 F = 0.101 E = 0010 N = 5 / 8 * 22

If the number was -2.5 , the same exponent can be used but the fraction must have negative sign . so the 2’s complement representation for the fraction is 1.011. therefore

 F = 1.011 E = 0010 N = - 5 / 8 * 22
Other examples of floating point numbers using a 4 bit fraction and a 4 bit exponent are

 F = 0.101 E = 0101 N = 5 / 8 * 25
 F = 1.011 E = 1011 N = - 5/8 * 2(-5)
 F = 1.000 E = 1000 N = -1 * 2(-8)
 In order to utilize all the bits in F and have the maximum number of significant figures , F should be normalized so that its magnitude is as large as possible.

 Unnormalized: F = 0.0101 E = 0011 N = 5 / 16 * 23 = 5 / 2

 Normalized : F = 0.101 E = 0010 N = 5 / 8 * 22 = 5 / 2.

 In this representation ,the exponent can be any number between -8 and +7 .the fraction can be any number between -1 and +0.875. zero(0) cannot be normalized , so F= 0.000 when N = 0 . Any exponent could then be used ; however , it is best to have a uniform representation of zero(0).

1.3 SIMULATION AND SYNTHESIS:
Synthesis:
 Logic synthesis is the process of converting a high-level description of the design into an optimized gate-level presentation, given a standard cell library and certain design constraints.
 [image: image2.png]
Fig 1.1: Veriog Design Flow

[image: image3.png]
Fig 1.2: Logic Synthesis Flow
RTL description: Design at a high level using RTL constructs.
Translation: Synthesis Tool converts the RTL description to un-optimized internal representation.
Un-optimized Intermediate Representation: Represented internally by the logic synthesis tool in terms of internal data structure.
Logic Optimization: Logic is optimized to remove redundant logic.
Technology Mapping and Optimization: Here the synthesis tool takes the internal representation and implements the representation in gates, using the cells provided in the technology library.
Design Constraints
 It includes the following:
 -Timing

 -Area

 -Power

Simulation:
 -Simulation can be done on any suitably encoded specification (verilog/VHDL) to verify your concepts.
 - Specifications might outline the connectivity of primitives (structural specification) or outline the algorithmic working of your circuit (specification). Most commonly, simulated specifications are a mix of both.
Levels of simulation (more important for analog design engineers):
Device level (for technologists) - MOS transistors
Circuit level (analog domain) - Interconnection of resistors / capacitors
Timing and Macro Level - Approximate a set of capacitors / resistors to
 (analog domain) accommodate a huge design
Switch level (digital signals and MOS transistors)
Levels of simulation (more important for digital design engineers):

 Register Transfer Level(RTL)

 Gate Level or Logic Level - Interconnected Gates(NOR / NAND / XOR)

 System Level - mostly behavioral

Engineers generally prefer simulation because of

 - It works on large designs.

 - It requires the least amount of work from the users end. Tools do most of the work.

 - It uncovers majority of the bugs.
 - Understanding it is easy. Expertise is abundant by now.
 -Tools have been built around simulation for additional value (power/timing analysis).

Languages & Tools:
 Analog simulation - (VCS – AMS , Modelsim , Spectre , HSPICE)
· SPICE

· PSPICE

 Digital Simulation (VCS , NC - Verilog , Modelsim)

· Verilog / Systemverilog

· VHDL

· SystemC
CHAPTER 2

IEEE FLOATINGPOINT FORMATS
2. IEEE FLOATING POINT FORMATS:
 The IEEE 754 is a floating –point standard established by IEEE in 1985. It contains two representations for floating-point numbers , the IEEE single precision format and the IEEE double precision format. The IEEE 754 single precision representation uses 32 bits and the double precision system uses 64bits.

 Although 2’s complement representations are very common for negative numbers the IEEE floating point representations do not use 2’s complement foe either the fraction or the exponent. The designers of IEEE 754 desired a format that was easy to sort and hence adopted a sign – magnitude system for the fractional part and a biased notation for the exponent.

 The IEEE 754 floating – point formats need three subfields : sign , fraction , and exponent. The fractional part of the number is represented using a sign – magnitude representation in the IEEE floating – point formats.(i.e. there is an explicit sign bit(S) for the fraction). The sign is 0 for positive numbers and 1 for negative numbers. In a binany normalized scientific notation , the leading bit before the binary point is always 1 and hence the designers of the IEEE format decided to make it implied , representing only the bits after the binary point. In general , the number is of the form

 N=(-1)s * (1+F) * 2E
 Where S is the sign bit , F is the fractional part , and E is the exponent .The base of the exponent is 2 the base is implied . The magnitude of the number is 1+ F because of the omitted leading 1. The terms significand means magnitude of the fraction and is 1+F in the IEEE format.

 The exponent in the IEEE floating- point formats uses what is known as biased notation. A biased representation is one in which every number is represented by the number plus a certain bias. In the IEEE single precision format , the bias is 127 . hence , if the exponent is +1 , it will be represented by +1+127 =128 . if the exponent is -2 , it will be represented y -2+127=125.
 Thus , exponents less than 127 indicates actual negative exponents and exponents greater than 127 indicates actual positive exponents. The bias is 1023 in the double precision format.

 If the positive exponent is too large to fit in the exponent field , the situation is called overflow. And if a negative exponent is too large to fit in the exponent field, the situation is called underflow.

2.1 IEEE SINGLE PRECISION FORMAT:
 The IEEE single precision format uses 32 bits for representing a floating point number , divided into three subfields , as illustrated in figure.

	S
	 Exponent
	 Fraction

	1b it
	 8 bits
	 23 its

 Figure 2.1 : IEEE single precision floating –point format

 The first field is the sign bit for the fraction part. The next field consists of 8 its which are used for exponent the third field consists of the remaining 23 bits and is used for the fractional part.

 The sign it reflects the sign of the fraction . it is 0 for positive numbers and 1 for negative numbers. In order to represent a number in the IEEE single precision format , first it should be converted to a normalized scientific notation with exactly one bit before the binary point , simultaneously adjusting the exponent value.

 The exponent representation that goes into the second field of the IEEE 754 representation is obtained y adding 127 to the actual exponent of the number when represented in the normalized form.
 Exponents in the range 1 – 254 are used for representing normalized floating point numbers . exponents values 0 and 255 are reserved for special cases .

 The representation for 23 bit fraction is obtained from the normalized scientific notation by dropping the leading 1. Zero cannot e represented in this fashion ; hence it can be treated as a special case. Since every number in the normalized scientific notation will have a leading 1 , this leading 1 can be dropped so that one more it can be packed into the significand(fraction). Thus, a 24 – bit fraction can be represented using 23bits in the representation. The designers of the IEEE formats wanted to make highest use of all the bits in the exponent and fraction fields.

 In order to understand the IEEE format , let us represent 13.45 in the IEEE floating –point format. We can see that 0.45 is a recurring binary fraction and hence

 13.45 = 1101 .01 1100 1100 1100…….. with the bits 1100 to recur

Normalized scientific representation yields

 13.45=1.10101 1100 1100…*23
Since the number is positive , the sign bit for the IEEE 754 representation is 0.

 The exponent in the biased notation will be 127+3=130 , which in binary format is 10000010. The fraction is 1.10101 1100 1100 ….(with 1100 recurring). Omitting leading 1 , the 23 bits for the fractional part are

 10101 1100 1100 1100 1100 11

Thus the 32 bits are 0.10000010 10101 1100 1100 1100 1100 11

	S
	Exponent
	 Fraction

	0
	10000010
	10101110011001100110011

Figure 2.2: IEEE single precision floating point representation for 13.45

 The 32 bits can e expressed more conveniently in a hexadecimal (hex) format as 4157 3333

 The number -13.45 can be represented by changing only the sign bit(ie. the first it must be 1 instead of 0). Hence , the hex number C157 3333 represents -13.45 in IEEE 754 single precision.

2.2 IEEE DOUBLE PRECISION FORMAT

 The IEEE double precision format uses 64 bits for representing a floating -point number, as illustrated in figure

	S
	Exponent
	Fraction

	1 bit
	11 bits
	52 bits

Figure 2.3: IEEE double precision floating-point format

 The first bit is the sign bit for the fraction part. The next 11 bits are used for the exponent , and the remaining 52 bits are used for the fractional part. As in the single precision format , the sign bit is 0 for positive numbers and 1 for negative numbers.

 The exponent representation used in the second field is obtained by adding the bias value of 1023 to the actual exponent of the number in the normalized form. Exponents in the range 1- 2046 are used for representing normalized floating – point numbers. Exponents values 0 and 2047 are reserved for special cases.

 The representation for the 52 –bit fraction is obtained from the normalized scientific notation by dropping leading 1 and considering only the next 52 bits.

 As an example, let us represent 13.45 in IEEE double precision floating – point format. Converting 13.45 to a binary representation.

 13.45 = 1101. 01 1100 1100 1100 . ………. With the its 1100 continuing to recur

 In the normalized scientific representation,

 13.45 = 1. 10101 1100 1100 ….. * 23
 The exponent in biased notation will be 1023+3 =1026 , which in binary representation is 10000000010

 The fraction is 1.10101 1100 1100….. omitting the leading 1 , the 52 bits of the fractional part are

 10101 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 110

 Thus the 64 bits are

0 10000000010 10101 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 110

As illustrated in figure

	S
	Exponent
	Fraction

	0
	10000000010
	1010111001100110011001100110011001100110011001100110

Figure 2.4: IEEE double precision floating – point representation for 13.45

CHAPTER 3
IMPLEMENTATION OF FLOATING POINT ARITHMETIC UNIT

3. IMPLEMENTATION OF FLOATING POINT ARITHMETIC UNIT:
Floating point arithmetic operations like multiplication, addition, subtraction and division are implemented in this chapter. Initially we discuss about floating point multiplication.

3.1 FLOATING POINT MULTIPLICATION:
 In this section, we design multiplier for floating point numbers. We use 4 bit fractions and 4 bit exponents, with negative numbers represented in 2’s complement. Given two floating point numbers, the product is

 (F1 * 2E1) * (F2 * 2E2) = (F1 * F2) * 2(E1+E2) = F * 2E
 The fraction part of the product is the product of the fractions, and exponent part of the product is the sum of the exponents. Hence, a floating point multiplier consists of two major components: a fraction multiplier, and an exponent adder.
The general procedure for performing floating point multiplication is the following:
1. Add the exponents

2. Multiply the two fractions

3. If the product is zero, adjust the representation to the proper representation for zero.

a. if the product fraction is too big, normalize by shifting it right and incrementing the exponent.

b. if the product fraction is too small, normalize by shifting left and decrementing the exponent .

4. If an exponent underflow or overflow occurs, generate an exception or error indicator.

5. Round to the appropriate number of bits. If rounding resulted in loss of normalization, go to step 3 again.

 Now we discuss the design of floating point multiplier. We use 4 bit fractions and 4 bit exponents, with negative numbers represented in 2’s complement. The fundamental steps are to add the exponents and multiply the fractions. However, we must consider special cases also. If F is 0, we must set the exponent E to the largest negative value.

 A special situation occurs if we multiply -1 by -1 (1.000 * 1.000), the result should be +1. Since we cannot represent +1 as 2’s complement fraction with a 4 bit fraction this special case necessitates right shifting. To correct this situation, we right shift the fraction and increment the exponent. Therefore, we set F = 1 / 2 (0.1000) and add 1 to E. this results in the correct answer.
A flow chart for this floating point multiplier is as shown in figure.
[image: image4.png]
Figure 3.1: Flow chart for floating point multiplication with 2’s complement fractions / exponents

 After multiplying the fraction, all the special cases are tested for. The hardware required to implement the multiplier consists of an exponent adder, a fraction multiplier, and a control unit that provides the signals to perform the appropriate operation of right shifting, left shifting, exponent increment or decrement and so on.
EXPONENT ADDER:

 Since 2’s complement results with the sum in the proper format, the design of the exponent adder is straight forward. A five bit full adder is used as the exponent adder. When a fraction is normalized, the exponent will have to be correspondingly incremented or decremented. Also, in the special case when product is 0 , the register should be set to the value 1000. The register has control signals for incrementing, decrementing, and setting to the most negative value.

 The register which holds the sum is made into a 5 bit register to handle special situations. When the exponents are added, an overflow can occur. If E1 and E2 are positive and the sum (E) is negative, or if E1 and E2 are negative and the sum is positive, the result is a 2’s complement overflow. However, this overflow might be corrected when 1 is added to or subtracted from E during normalization or correction of fraction overflow. To allow for this case, we have made the X register 5 bits long. When E1 is loaded into X, the sign bit must be extended so that we have a correct 2’s complement representation. Since there are 2 sign bits, if the addition of E1 and E2 produces an overflow, the lower sign bit will get changed, but the higher order sign bit will be unchanged.

 7 + 6 = 00111 + 00110 = 13 (maximum allowable value is 7)

FRACTION MULTIPLIER:
 It implements a shift and add multiplier algorithm. Since we are multiplying 3 bits plus sign by 3 bits plus sign, the result will be 6 bits plus sign. After the fraction multiplication, a 7 bit result will be the lower 3 bits of A concatenated with B. The multiplier has its own control unit that generates appropriate shift and add signals depending on the multiplier bits.

[image: image5.png]
(a) main control unit

[image: image6.png]
(b) Exponent adder

[image: image7.png]
C. Fraction Multiplier
Fig 3.2 Major components of Floating point Multiplier
Main control unit:

 The SM chart for the main controller of the floating – point multiplier is based on the flow chart of figure 3.3. This controller is called main controller to distinguish it from the controller for the multiplier, which is a separate a state machine that is linked into the main controller.
 The SM chart uses the following inputs and control signals:

	St
	Start the floating point multiplication.

	Mdone
	Fraction multiply is done.

	FZ
	Fraction is zero.

	FV
	Fraction overflow (fraction is too big).

	Fnorm
	F is normalized.

	EV
	Exponent overflow.

	Load
	load F1 ,F2 , E1, E2 into the appropriate registers.

	Adx
	Add exponents; this signal also starts the fraction multiplier.

	SM8
	Set exponent to minus 8 (to handle special case of 0).

	RSF
	shift fraction right ; also increment E.

	LSF
	shift fraction left ; also decrement E.

	V
	Overflow indicator.

	Done
	Floating point multiplication is complete.

 The SM chart for the main controller has four states. In S0 , the registers are loaded when the start signals 1. In S1 , the exponents are added , and the fraction multiply is started. In S2 , we wait until the fraction multiply is done and then test for special cases and take appropriate action. In S3 , the Done is signal is turned on and the controller waits for st=0 before returning to S0 .

 The state graph for the multiplier control is as shown in figure 3.4. This is similar to the binary multiplier controller except that the load state is not needed because the registers are loaded by the main controller. The add and shift operations are performed in one state as seen in figure 3.2(c) , the sum wires from the adder are shifted by 1 before loading into the accumulator register. When Adx =1, the multiplier is started, and Mdone is turned on when the multiplication is completed.
[image: image8.png]
[image: image9.png]
 The SM chart for the main controller has four states. In So ,the registers are loaded when the start signal is 1. In s1 , the exponents are added , and the fraction multiply is started. In s2 , we wait until the fraction multiply is done and then test for special cases and take appropriate action.

It seems that the tests on FZ, FV and Fnorm can all be done in the same state. Since they are done in sequence on the flow chart. However, FZ, FV and Fnorm are generated by combinational circuits that operate in parallel and hence can be tested in the same state. However, we must wait until the exponent has been incremented or decremented at the next clock before we can check for exponent overflow in s3. In s3, the done signal is turned on and the controller waits for St=0 before returning to S0.
[image: image10.png]
 Fig 3.4 State graph for multiplier control
3.2 FLOATING POINT ADDITION:

 Now we consider the design of adder for floating point numbers. Two floating point numbers are added as shown.

 (F1 * 2E1)+ (F2 * 2E2) = F * 2E
 In order to add two fractions, the associated exponents must be equal. Thus, if the exponents E1 and E2 are different, we must unnormalize one of the fractions and adjust the exponents accordingly. The smaller number is the one that should adjusted so that if significant digits are lost, the effect is not significant. To illustrate the process, we add

 F1 * 2E1 = 0.111 * 25 and F2 * 2E2 = 0.101 *23

Since E2 = E1, we unnormalize the smaller number F2 by shifting right two times and adding 2 to the exponent.

 0.101 * 23 = 0.0101 * 24 = 0.00101 *25

Note that shifting right by one place is equivalent to dividing by 2, so each time we shift we must add 1 to the exponent to compensate. When the exponents are equal, we add the fractions.
 (0.111 *25) + (0.00101 *25)= 01.00001 * 25
 This addition caused an overflow in to the sign bit position, so we shift right and add 1 to exponent to correct the fraction overflow. The final result is

 F * 2E = 0.100001 * 26

In summary, the steps required to carry out floating point addition are as follows:

1. Compare exponents. If the exponents are not equal, shift the fraction with the smaller exponent right and add 1 to its exponent; repeat until the exponents are equal.
2. Add the fractions.

3. If the result is 0, set the exponents to the appropriate representation for 0 and exit.

4. If fraction overflow occurs, shift right and add 1 to the exponent to correct the overflow.

5. If the fraction is unnormalized, shift left and subtracts 1 from the exponent until the fraction is normalized.

6. Check for exponent overflow. Set overflow indicator, if necessary

7. Round to the appropriate number of bits. Still normalized?

 N

Y

 Y

 N

 N

Y

N

Y

 Y

N
 N

Y

Fig 3.5 Flow chart for Floating point addition
To add two floating –point numbers, the exponents of the two floating point numbers should be the same. This is done by shifting the fraction of the floating point number that has the smaller exponent. The number of bits positions to be shifted right is same as the difference of the two exponents.
The floating point adder operation can be explained as follows:

Initially, two floating point numbers are loaded into the respective registers. Now, compare the exponents, if they are equal, add the fractions and normalize to the appropriate fraction. If the exponents are not equal, shift right the fraction with the smaller exponent until they are equal. If the exponents are equal, add the fractions.

After adding the fractions, check the conditions as below:
a) If the addition result zero(0) value. Set the exponent to the appropriate representation. Some members following notation like set exponent to zero. And some other notations follow set exponent to maximum negative value in the representation.
b) Check condition for fraction overflow, it occurs due to overflow of fraction it into sign bit. This can be overcome by shifting the fraction right and increment the exponent.

c) Check if fraction is normalized or not?

If normalized, proceed to next step.

If not, shift the sum to left and decrement the exponent.

d) Check for exponent overflow.

If overflow occurs, set overflow indicator

e) Round the fraction to appropriate number of bits.

f) Again check normalization condition, if not repeat from step c.

The implementation of floating point adder requires the following hardware units.

-Adder (subtract or) to compare exponents

-Shift register to shift the small number to right

-ALU (adder) to add fractions

-Bidirectional shifter, Incrementer/ Decrementer

-Overflow detector

[image: image11.png]
Figure 3.6 : floating point adder hardware

3.3 FLOATING POINT DIVISION:
 In this section, we design divider for floating point numbers. We use 4 bit fractions and 4 bit exponents, with negative numbers represented in 2’s complement. Given two floating point numbers, the product is

 (F1 * 2E1) / (F2 * 2E2) = (F1 / F2) * 2(E1-E2) = F * 2E
 The floating point division is like a basic fixed point binary number division algorithm. For example, consider two eight bit numbers. 01011001-A(decimal 89) and 00001001-B(decimal 9).

 In the division, the dividend A is divided by divisor B. The result is called the quotient Q. The remainder R may not be zero if the divisor is not a factor of the dividend.

In the division, equation A=B*Q+R holds.

 Dividend
 00001001) 01011001 (1001 quotient
 1001

 Divisor 100
 000

 1000
 0000
 10001

 01001

 Remainder 1000

 Fig 3.7: Paper and pencil approach for division
 The above paper and pencil approach works well. However, our brains are calculating where to put the first 1 in the quotient. We may look at the dividend and the divisor. The most significant 4 bits of the divisor are 0. We figure that the first quotient bit that can be 1 is at least 4 bit positions from the left. It is harder for the hardware to figure this one out. The hardware is most adept at the systematic approach. One idea that we can take from the paper and pencil approach is to subtract the dividend by the divisor at the right bit positions. Since it is not easy for the hardware to figure out where the first 1 in the quotient should be, we can start from the very beginning.
 Figure 3.7 shows the division is left shifted bit by bit. The dividend is first 0 extended to double the width as the partial remainder. The division starts at bit position 7 which is the left most bit of the original divisor. The partial remainder is compared with the shifted divisor. If the partial remainder is no less than the left shifted divisor, the quotient has the 1 in the bit position; the partial remainder is subtracted from the left shifted divisor. Otherwise, the quotient bit position has 0 and the partial remainder remains the same. This process is repeated from bit position 7 down to bit position 0.
 Left shifted divisor start position
L(8) 0000100100000000 quotient

L(7) 0000010010000000 > 0000000001011001 0

L(6) 0000001001000000 > 0000000001011001 0

L(5) 0000000100100000 > 0000000001011001 0

L(4) 0000000010010000 > 0000000001011001 0

L(3) 0000000001001000 < 0000000001011001 1 subtract
L(2) 0000000000100100 > 0000000000010001 0
L(1) 0000000000010010 > 0000000000010001 0
L(0) 0000000000001001 < 0000000000010001 1 subtract
 0000000000001000 remainder
Fig 3.8: Hardware division approach for division
 The algorithm for floating point division is as follows:

 - Left shift divisor by the no. of bits and right shift dividend by no. of bits.

 - compare the divisor with the dividend.
 - If divisor is greater than dividend set the corresponding quotient bit to zero.

 - If divisor is less than dividend subtract the divisor from the dividend and place the

 result in the divisor place , and put one in quotient position.

 -After each comparison right shift divisor by one position.

 - Repeat the above steps by the number of bits time.
 - The number in the dividend place gives remainder and quotient place gives quotient.

 3.4 FLOATING POINT SUBTRACTION:

 Now we consider the design of subtractor for floating point numbers. Two floating point numbers are subtracted as shown.

 (F1 * 2E1) - (F2 * 2E2) = F * 2E
 In order to subtract two fractions, the associated exponents must be equal. Thus, if the exponents E1 and E2 are different, we must unnormalize one of the fractions and adjust the exponents accordingly. The smaller number is the one that should adjusted so that if significant digits are lost, the effect is not significant. To illustrate the process, we add

 F1 * 2E1 = 0.111 * 25 and F2 * 2E2 = 0.101 *23

Since E2 = E1, we unnormalize the smaller number F2 by shifting right two times and adding 2 to the exponent.

 0.101 * 23 = 0.0101 * 24 = 0.00101 *25

Note that shifting right by one place is equivalent to dividing by 2, so each time we shift we must add 1 to the exponent to compensate. When the exponents are equal, we add the fractions.

 (0.111 *25) - (0.00101 *25)= 0.110 * 25

 The final result is

 F * 2E = 0.100001 * 25

In summary, the steps required to carry out floating point subtraction are as follows:

1. Compare exponents. If the exponents are not equal, shift the fraction with the smaller exponent right and add 1 to its exponent; repeat until the exponents are equal.

2. subtract the fractions.

3. If the result is 0, set the exponents to the appropriate representation for 0 and exit.

4. If fraction overflow occurs, shift right and add 1 to the exponent to correct the overflow.

5. If the fraction is unnormalized, shift left and subtracts 1 from the exponent until the fraction is normalized.

6. Check for exponent overflow. Set overflow indicator, if necessary

7. Round to the appropriate number of bits. Still normalized? Go to back step4.

 N

Y

 Y

 N

 N

Y

N

Y

 Y

N

 N

Y

Fig 3.5 Flow chart for Floating point subtraction

 To subtract two floating –point numbers, the exponents of the two floating point numbers should be the same. This is done by shifting the fraction of the floating point number that has the smaller exponent. The number of bits positions to be shifted right is same as the difference of the two exponents.

 The floating point subtractor operation can be explained as follows:

 Initially, two floating point numbers are loaded into the respective registers. Now, compare the exponents, if they are equal, subtract the fractions and normalize to the appropriate fraction. If the exponents are not equal, shift right the fraction with the smaller exponent until they are equal. If the exponents are equal, subtract the fractions.

 After subtract the fractions, check the conditions as below:

a) If the subtraction result zero (0) value. Set the exponent to the appropriate representation. Some members following notation like set exponent to zero. And some other notations follow set exponent to maximum negative value in the representation.

b) Check condition for fraction overflow, it occurs due to overflow of fraction it into sign bit. This can be overcome by shifting the fraction right and increment the exponent.

c) Check if fraction is normalized or not?

 If normalized, proceed to next step.

 If not, shift the sum to left and decrement the exponent.

d) Check for exponent overflow.

 If overflow occurs, set overflow indicator

e) Round the fraction to appropriate number of bits.

f) Again check normalization condition, if not repeat from step c.

 The implementation of floating point subtractor requires the following hardware units.

 -Adder (subtract or) to compare exponents

 -Shift register to shift the small number to right

 -ALU (adder) to add fractions

 -Bidirectional shifter, Incrementer/ Decrementer

 -Overflow detector

CHAPTER 4
RESULTS

FLOATING POINT ADDER:
 SIMULATION:

1) Test data given is
 Fpinput1= 16’h 030C Fpinput2 = 16’h 0509

2) Test data given is

 Fpinput1= 16’h 0308 Fpinput2 = 16’h 03FC

[image: image12.png]
SYNTHESIS:

 Here we are using RTL complier by cadence for performing synthesis.

CELL REPORT:

==

 Generated by: Encounter(R) RTL Compiler v08.10-s108_1

 Generated on: Apr 11 2011 06:27:30 PM

 Module: f4add

 Technology library: UofU_Digital_v1_2

 Operating conditions: typical (balanced tree)

 Wireload mode: enclosed

 Area mode: timing library

==

 Gate Instances Area Library

--

AND3X1 8 64.000 UofU_Digital_v1_2

AOI21X1 22

110.000
 UofU_Digital_v1_2

AOI22X1 28

168.000
 UofU_Digital_v1_2

BUFX2 5

20.000 UofU_Digital_v1_2

DCBX1 38

684.000 UofU_Digital_v1_2

INVX1 2

 6.000
 UofU_Digital_v1_2

INVX2 40

120.000
 UofU_Digital_v1_2

INVX4 2

8.000
 UofU_Digital_v1_2

MUX2NX1 1

7.000
 UofU_Digital_v1_2

MUX2X2 3

27.000
 UofU_Digital_v1_2

NAND2X1 51

153.000
 UofU_Digital_v1_2

NAND2X2 19

114.000
 UofU_Digital_v1_2

NAND3X1 10

70.000
 UofU_Digital_v1_2

NOR2X1 28

112.000
 UofU_Digital_v1_2

NOR2X2 1

6.000
 UofU_Digital_v1_2

NOR3X1 1

9.000
 UofU_Digital_v1_2

OAI21X1 68

340.000
 UofU_Digital_v1_2

OAI22X1 3

18.000
 UofU_Digital_v1_2

XNOR2X1 6

48.000
 UofU_Digital_v1_2

XOR2X1 13

104.000
 UofU_Digital_v1_2

--

total 349

2188.000

 Type
Instances
 Area
 Area %

sequential 38

684.000 31.3

inverter 44

134.000 6.1

buffer 52

0.000 0.9

logic 262

1350.000 61.7

total 349

2188.000 100.0

TIMING REPORT:
==

 Generated by:

Encounter(R) RTL Compiler v08.10-s108_1

 Generated on:

 Apr 11 2011 06:27:30 PM

 Module:

f4add

 Technology library:
UofU_Digital_v1_2

 Operating conditions:
typical (balanced_tree)

 Wireload mode:
enclosed

 Area mode:

timing library

==

 Pin
Type
 Fanout
Load
Slew
Delay
Arrival

(fF) (ps) (ps) (ps)

(clock clk) launch

 0 R

f1_reg[1]/CLK 400

 0 R

f1_reg[1]/Q DCBX1
 5

149.5 669 +1799 1799 F

g7430/B

 +1 1800

g7430/Y NAND2X1 1

62.3
 304
 +674 2474 R

g7372/A

+3 2477

g7372/Y NAND2X2 2

114.7 188 +300 2776 F

g7341/B

+2 2779

g7341/Y NAND2X2 1

62.7
174
 +253 3031 R

g7325/B

+3 3034

g7325/Y NAND2X2 2

83.2
161
+227 3261 F

g7313/C

 +1 3263

g7313/Y OAI21X1 1

 62.7 373
+400 3663 R

g7306/B

+3
3666

g7306/Y NAND2X2 2

105.2
204
+349 4015 F

g7290/B

+2
4017

g7290/Y NAND2X2 1

62.7
179 +263 4280 R

g7283/B

+3 4283

g7283/Y NAND2X2 2

114.7 188 +264 4548 F

g7248/B

+2 4550

g7248/Y NAND2X2 1

62.7
176 +253 4803 R

g7238/B

+3 4806

g7238/Y NAND2X2 1

85.2 183 +230 5036 F

g7237/A

+4 5041

g7237/Y INVX4 2

104.9 108 +214 5255 R

g7194/A

+2 5 257

g7194/Y OAI21X1 2

104.8 348 +378 5635 F

g7188/B

+2 5638

g7188/Y XOR2X1 3

146.5 617 +799 6436 R

g7182/B

 +2 6438

g7182/Y XNOR2X1 2

105.3 481 +926 7364 R

g7176/B

+2 7366

g7176/Y NAND2X2 9

376.5 473 +708 8074 F

g7175/C

 +1 8075

g7175/Y NAND3X1 4

173.7 628 +888 8962 R

g7174/A

+2 8965

g7174/Y INVX4 5

184.4 255 +499 9464 F

g7169/C

+1 9464

g7169/Y AOI21X1 1

40.7 271 +348 9812 R

g7138/C

+2 9814

g7138/Y OAI21X1 1

62.6 269 +398 10212 F

g7119/B

+3 10216

g7119/Y NAND2X2 1

62.7 282 +305 10521 R

g7107/B

+3 10524

g7107/Y NAND2X2 1

45.7 185 +230 10754 F

e1_reg[3]/D DCBX1
+2 10757

e1_reg[3]/CLK setup

400 +237 10994 R

- -

(clock clk) capture 11000 R

Timing slack : 6ps

Start-point : f1_reg[1]/CLK

End-point : e1_reg[3]/D

POWER REPORT:

===

 Generated by: Encounter(R) RTL Compiler v08.10-s108_1

 Generated on: Apr 11 2011 06:27:30 PM

 Module: f4add

 Technology library: UofU_Digital_v1_2

 Operating conditions: typical (balanced tree)

 Wireload mode: enclosed

 Area mode: timing library

==

 Leakage Dynamic Total

Instance Cells Power(nW) Power(nW) Power(nW)

f4add 349 42.183 56747668.812 56747710.996

FLOATING POINT SUBTRACTOR:

 SIMULATION:

1)Test data given is

 Fpinput1 = 16’h 0304
Fpinput2=16’h0302

[image: image13.png]
2)Test data given is

 Fpinput1 = 16’h 0214
Fpinput2=16’h02F6

[image: image14.png]
SYNTHESIS:

CELL REPORT:

==

 Generated by:

Encounter(R) RTL Compiler v08.10-s108_1

 Generated on:

Apr 11 2011 06:36:16 PM

 Module:

fpsub

 Technology library:
 UofU_Digital_v1_2

 Operating conditions:
typical (balanced_tree)

 Wireload mode:
enclosed

 Area mode:

timing library

==
 Gate
Instances
 Area Library

--

AND3X1 6

48.000 UofU_Digital_v1_2

AOI21X1 32

160.000 UofU_Digital_v1_2

AOI22X1 28

168.000 UofU_Digital_v1_2

BUFX2 7

28.000 UofU_Digital_v1_2

DCBX1 38

684.000 UofU_Digital_v1_2

INVX1 3

9.000 UofU_Digital_v1_2

INVX2 50

150.000 UofU_Digital_v1_2

MUX2NX1 1
 7.000 UofU_Digital_v1_2

MUX2X2 2

18.000 UofU_Digital_v1_2

NAND2X1 69

207.000 UofU_Digital_v1_2

NAND2X2 6

36.000 UofU_Digital_v1_2

NAND3X1 11

77.000 UofU_Digital_v1_2

NOR2X1 29

116.000 UofU_Digital_v1_2

NOR3X1 3

27.000 UofU_Digital_v1_2

OAI21X1 52

260.000 UofU_Digital_v1_2

OAI22X1 3

18.000 UofU_Digital_v1_2

XNOR2X1 7

56.000 UofU_Digital_v1_2

XOR2X1 11

88.000 UofU_Digital_v1_2

--

total 358

2157.000

 Type
 Instances Area Area %

sequential 38 684.000 31.7

inverter 53 159.000 7.4

buffer 7 28.000 1.3

logic 260 1286.000 59.6

total 358 2157.000 100.0

TIMING REPORT:

===

 Generated by: Encounter(R) RTL Compiler v08.10-s108_1

 Generated on: Apr 11 2011 06:36:16 PM

 Module: fpsub

 Technology library: UofU_Digital_v1_2

 Operating conditions: typical (balanced_tree)

 Wireload mode: enclosed

 Area mode: timing library

==

 Pin
Type Fanout Load Slew Delay Arrival

 (fF) (ps) (ps) (ps)

(clock clk) launch 0 R

f2_reg[0]/CLK 400 0 R

f2_reg[0]/QB DCBX1 1 52.2 372 +816 816 R

g7674/A +3 819

g7674/Y INVX2 4 178.1 292 +505 1324 F

g7596/B +2 1325

g7596/Y NAND2X2 3 123.7 246 +402 1727 R

g7580/B +1 1728

g7580/Y NAND2X1 1 62.6 197 +315 2044 F

g7554/B +3 2047

g7554/Y NAND2X2 2 92.7 209 +297 2344 R

g7525/B +1 2346

g7525/Y NAND2X1 1 62.6 188 +296 2642 F

g7510/B +3 2645

g7510/Y NAND2X2 2 92.8 190 +291 2936 R

g7495/C +1 2938

g7495/Y OAI21X1 1 40.6 263 +307 3245 F

g7487/C +2 3247

g7487/Y OAI21X1 2 103.5 467 +580 3826 R

g7471/A +2 3828

g7471/Y AOI21X1 2 104.1 403 +640 4468 F

g7454/A +2 4470

g7454/Y OAI21X1 2 104.2 407 +632 5102 R

g7443/A +2 5104

g7443/Y AOI21X1 2 104.3 399 +605 5708 F

g7416/B +2 5710

g7416/Y XOR2X1 3 146.6 620 +832 6542 R

g7373/B +2 6544

g7373/Y XOR2X1 2 105.3 479 +939 7483 R

g7361/B +2 7485

g7361/Y NAND2X2 6 254.3 362 +575 8060 F

g7358/C +1 8061

g7358/Y NAND3X1 4 140.7 574 +723 8784 R

g7357/A +1 8785

g7357/Y INVX2 5 184.4 345 +629 9414 F

g7341/C +1 9415

g7341/Y AOI21X1 1 40.7 253 +399 9814 R

g7316/C +2 9816

g7316/Y OAI21X1 1 40.6 227 +339 10155 F

g7299/B +2 10157

g7299/Y NAND2X1 1 40.5 273 +319 10476 R

g7288/A +2 10478

g7288/Y NAND2X1 1 45.7 211 +267 10745 F

e1_reg[5]/D DCBX1 +2 10747

e1_reg[5]/CLK setup 400 +249 10996 R

- -

(clock clk) capture 11000 R

Timing slack : 4ps

Start-point : f2_reg[0]/CLK

End-point : e1_reg[5]/D

POWER REPORT;

==

 Generated by: Encounter(R) RTL Compiler v08.10-s108_1

 Generated on: Apr 11 2011 06:36:16 PM

 Module: fpsub

 Technology library: UofU_Digital_v1_2

 Operating conditions: typical (balanced_tree)

 Wireload mode: enclosed

 Area mode: timing library

==

 Leakage Dynamic Total

Instance Cells Power(nW) Power(nW) Power(nW)

fpsub 358 41.491 53820249.261 53820290.752
FLOATING POINT DIVIDER:
SIMULATION:
1)Test data given is

Fpinput1=16’h0632

Fpinput2=16’h030A

[image: image15.png]
2) Test data given is

Fpinput1=16’h03c8

Fpinput2=16’h0207

[image: image16.png]
SYNTHESIS:

CELL REPORT:

==

 Generated by: Encounter(R) RTL Compiler v08.10-s108_1

 Generated on: Apr 02 2011 11:19:24 AM

 Module: f4div

 Technology library: UofU_Digital_v1_2

 Operating conditions: typical (balanced_tree)

 Wireload mode: enclosed

 Area mode: timing library

==

 Gate
Instances
 Area Library

--

AOI21X1 26

130.000 UofU_Digital_v1_2

AOI22X1 36

216.000 UofU_Digital_v1_2

BUFX2 3

12.000 UofU_Digital_v1_2

DCBX1 50

900.000 UofU_Digital_v1_2

INVX2 73

219.000 UofU_Digital_v1_2

INVX4 1

4.000 UofU_Digital_v1_2

MUX2X2 3

27.000 UofU_Digital_v1_2

NAND2X1 74
 222.000 UofU_Digital_v1_2

NAND2X2 6
36.000 UofU_Digital_v1_2

NAND3X1 16
112.000 UofU_Digital_v1_2

NOR2X1 46

184.000 UofU_Digital_v1_2

NOR2X2 3

18.000 UofU_Digital_v1_2

NOR3X1 5

45.000 UofU_Digital_v1_2

OAI21X1 29

145.000 UofU_Digital_v1_2

OAI22X1 8

48.000 UofU_Digital_v1_2

XNOR2X1 36
288.000 UofU_Digital_v1_2

XOR2X1 14

112.000 UofU_Digital_v1_2

--

total 429

 2718.000

 Type
 Instances
Area
 Area %

sequential 50

 900.000 33.1

inverter 74

223.000 8.2

buffer 3

 12.000 0.4

logic 302

1583.000 58.2

total 429

2718.000 100.0

TIMING REPORT:

==

 Generated by: Encounter(R) RTL Compiler v08.10-s108_1

 Generated on: Apr 02 2011 11:19:24 AM

 Module: f4div

 Technology library: UofU_Digital_v1_2

 Operating conditions: typical (balanced_tree)

 Wireload mode: enclosed

 Area mode: timing library

==

 Pin
Type Fanout
Load Slew Delay Arrival

(fF) (ps) (ps) (ps)

(clock clk) launch

0 R

f1copy_reg[0]/CLK

 400
 0 R

f1copy_reg[0]/Q DCBX1 3

108.3 436 +1353 1353 R

addinc_add_34_32/A[0]

 g523/A

 +1 1354

 g523/Y NOR2X1 2

104.3 433 +751 2105 F

 g522/A

+2 2107

 g522/Y INVX2 1

40.5 162 +356 2463 R

 g484/A

 +2 2465

 g484/Y NAND2X1 1

 62.6 179
+261 2726 F

 g475/B

+3 2729

 g475/Y NAND2X2 3

135.8 256 +341 3071 R

 g461/A

 +1 3072

 g461/Y NAND2X1 1

 62.6 193 +297 3369 F

 g448/B

+3 3372

 g448/Y NAND2X2 5

215.4 346 +454 3827 R

 g438/C

 +1 3828

 g438/Y NAND3X1 1

62.6 237 +359 4186 F

 g437/B

+3 4190

 g437/Y NAND2X2 7

289.4 443 +580 4770 R

 g425/A

+1 4771

 g425/Y AOI21X1 4

173.3 603 +775 5546 F

addinc_add_34_32/Z[15]

g3585/B

 +2 5548

g3585/Y NAND2X2 3

146.1 302 +640 6187 R

g3555/B

+2 6190

g3555/Y NOR2X2 3

152.6 317 +451 6641 F

g3503/B

+2 6643

g3503/Y NAND2X2 3

 146.1 272 +448 7091 R

g3484/B

+2 7093

g3484/Y NOR2X2 3

130.6 294 +403 7496 F

g3447/B

 +1 7497

g3447/Y NAND2X1 3

146.1 486 +651 8149 R

g3402/B

+2 8151

g3402/Y NOR2X2 2

99.7 261 +482 8632 F

g3392/C

 +2 8634

g3392/Y NOR3X1 1

46.9 334 +355 8989 R

g3367/C

 +2 8992

g3367/Y AOI21X1 1 40.6 301 +455 9447 F

g3345/C

+2 9449

g3345/Y OAI21X1 1

45.6 289 +448 9898 R

q_reg[7]/D DCBX1 +2 9900

q_reg[7]/CLK setup 400 +35 9935 R

- -

(clock clk) capture 10000 R

Timing slack : 65ps

Start-point : f1copy_reg[0]/CLK

End-point : q_reg[7]/D
POWER REPORT:

==

 Generated by: Encounter(R) RTL Compiler v08.10-s108_1

 Generated on: Apr 02 2011 11:19:24 AM

 Module: f4div

 Technology library: UofU_Digital_v1_2

 Operating conditions: typical (balanced_tree)

 Wireload mode: enclosed

 Area mode: timing library

==

 Leakage Dynamic Total

 Instance Cells Power(nW) Power(nW) Power(nW)

f4div 429 54.092 72779416.134 72779470.226

addinc_add_34_32 121 10.128 15920179.145 15920189.273
FLOATING POINT MULTIPLIER

F1=8’d07 F2= 8’d07 E1=8’d01 E2=8’d08
[image: image17.png]
CONCLUSION
 We have designed floating point arithmetic unit consists of floating point adder ,floating point subtractor, floating point multiplier, floating point divider using ncsim simulator and is thoroughly verified by the test bench module.The synthesis reports are also developed using RTL Cadence Synthesis Tools, it gives detailed information about cells , power, timing analysis. This can be used as a part of any processor for performing floating point operations.
FUTURE SCOPE OF WORK

 With this design of arithmetic unit, we can implement high speed, low power consuming floating point processors. We can implement parameterized modules for floating point arithmetic unit. We can completely design ASIC flow of floating point

arithmetic unit.

BIBLIOGRAPHY

1. Advanced Digital Design with the VERILOG HDL by Michael D. ciletti , published by pearson education

2. PRINICIPLES OF DIITAL SYSTEMS DESIGN USING VHDL By Charles H.Roth , Jr. & Lizy Kurian John

3. DIGITAL SYSTEMS DESIGN WIYH VHDL AND SYNTHESIS

AN INTEGRATED APPROACH By John Wiley & Sons , inc.

4. Bhasker .J , A VHDL Primer , 3rd edition.1999

5. Bhasker .J , A GUIDE TO VHDL Syntax . 1995

6. Roth, Charles .H , fundamentals of logic design , 5th edition . 2004
7. COMPUTER ORGANIZATION AND DESIGN : the hardware/software interface By David A.Patterson ,John L.Hennessy
APPENDIX
 The codes for the arithmetic unit are given

FLOATING POINT ADDER:

VERILIOG MODULE:

`timescale 1ns/1ps

module f4add(clk,st,done,ovf,unf,fpinput1,fpinput2,fpsum);

input st,clk;

output done,ovf,unf;

input [15:0]fpinput1,fpinput2;

output [15:0]fpsum;

reg done,ovf,unf;

reg [15:0]fpsum;

reg [6:0]f1,f2;

reg [7:0]e1,e2;

reg [8:0]f1comp,f2comp,fsum;

reg s1,s2,fv,fu;

reg [2:0]state;

always@(f1 or s1 or s2 or f2 or f1comp or f2comp or fsum or e1)

begin

 if(s1)

 f1comp={2'b11,f1};

 else

 f1comp={2'b0,f1};

 if(s2)

 f2comp={2'b11,f2};

 else

 f2comp={2'b0,f2};

 fsum=f1comp+f2comp;

 fv=fsum[8]^fsum[7];

 fpsum={e1,s1,f1[6:0]};

end

always@(posedge clk)

begin

 case(state)

 3'b000:begin

 if(st) begin

 e1=fpinput1[15:8];

 s1=fpinput1[7];

 f1[6:0]=fpinput1[6:0];

 end

 done=1'b0; ovf=1'b0; unf=1'b0; state=3'b001;

 end

3'b001: begin

 e2=fpinput2[15:8];

 s2=fpinput2[7];

 f2[6:0]=fpinput2[6:0];

 state=3'b010; end

3'b010: begin if(f1==0 | f2==0)

 state=3'b011;

 else if(e1==e2)

 state=3'b011;

 else if(e1<e2)

 begin

 f1={f1[6],f1[6:1]};

 e1=e1+1'b1;

 state=3'b010;

 end

 else

 begin

 f2={f2[6],f2[6:1]};

 e2=e2+1'b1;

 state=3'b010;

end

 end

3'b011: begin

 s1=fsum[7];

 if(!fv)

 f1=fsum[6:0];

else

 begin

 f1=fsum[7:1];

 e1=e1+1'b1;

 end

 state=3'b100;

 end

3'b100: begin if(f1==0)

 begin

 e1=8'b0;

 state=3'b110;

 end

 else

 state=3'b101;

 end

3'b101: begin if(e1==8'b10000000)

 begin

 unf=1'b1;

 state=3'b110;

 end

 else if(fu==0)

 state=3'b110;

 else if(s1==f1[6]) begin

 f1={f1[5:0],1'b0};

 e1=e1+8'b11111111;

 state=3'b101;

end

 else state=3'b110;

 end

3'b110:begin if(e1==8'd127)

 ovf=1'b1;

 done=1'b1;

 state=3'b000;

 end

default:begin state=3'b000; end

endcase

end

endmodule

TEST BENCH:

`timescale 1ns/1ps

module f4addtest;

reg [15:0]fpinput1,fpinput2;

reg st,clk;

wire done,ovf,unf;

wire [15:0]fpsum;

f4add F1(clk,st,done,ovf,unf,fpinput1,fpinput2,fpsum);

always

begin

#30 clk=1'b0;

#30 clk=1'b1;

end

initial

begin

st=1'b0; fpinput1=16'h08fd;fpinput2=16'h08fb;

#100 st=1'b1;

#120 st=1'b0;

#1000 $finish;

end

endmodule

FLOATING POINT SUBTRACTOR:
VERILOG MODULE:

`timescale 1ns/1ps

module fpsub(clk,st,done,ovf,unf,fpinput1,fpinput2,fpsum);

input st,clk;

output done,ovf,unf;

input [15:0]fpinput1,fpinput2;

output [15:0]fpsum;

reg done,ovf,unf;

reg [15:0]fpsum;

reg [6:0]f1,f2;

reg [7:0]e1,e2;

reg [8:0]f1comp,f2comp,fsum;

reg s1,s2,fv,fu;

reg [2:0]state;

always@(f1 or s1 or s2 or f2 or f1comp or f2comp or fsum or e1)

begin

if(s1)

 f1comp={2'b11,f1};

else

 f1comp={2'b0,f1};

if(s2)

 f2comp={2'b11,f2};

else

 f2comp={2'b0,f2};

fsum=f1comp+(~f2comp)+1'b1;

fv=fsum[8]^fsum[7];

fpsum={e1,s1,f1[6:0]};

end

always@(posedge clk)

begin

case(state)

3'b000:begin

 if(st) begin

 e1=fpinput1[15:8];

 s1=fpinput1[7];

 f1[6:0]=fpinput1[6:0];

 end

 done=1'b0; ovf=1'b0; unf=1'b0; state=3'b001;

 end

3'b001: begin

 e2=fpinput2[15:8];

 s2=fpinput2[7];

 f2[6:0]=fpinput2[6:0];

 state=3'b010; end

3'b010: begin if(f1==0 | f2==0)

 state=3'b011;

 else if(e1==e2)

 state=3'b011;

 else if(e1<e2)

 begin

 f1={f1[6],f1[6:1]};

 e1=e1+1'b1;

 state=3'b010;

 end

 else

 begin

 f2={f2[6],f2[6:1]};

 e2=e2+1'b1;

 state=3'b010;

end

 end

3'b011: begin

 s1=fsum[7];

 if(!fv)

 f1=fsum[6:0];

else

 begin

 f1=fsum[7:1];

 e1=e1+1'b1;

 end

 state=3'b100;

 end

3'b100: begin if(f1==0)

 begin

 e1=8'b0;

 state=3'b110;

 end

 else

 state=3'b101;

 end

3'b101: begin if(e1==8'b10000000)

 begin

 unf=1'b1;

 state=3'b110;

 end

 else if(fu==0)

 state=3'b110;

 else if(s1==f1[6])

 begin

 f1={f1[5:0],1'b0};

 e1=e1+8'b11111111;

 state=3'b101;

 end

 else

 state=3'b110;

 end

3'b110:begin if(e1==8'd127)

 ovf=1'b1;

 done=1'b1;

 state=3'b000;

 end

default:begin state=3'b000; end

endcase

end

endmodule

TEST BENCH:
`timescale 1ns/1ps

module fpsubtest;

reg [15:0]fpinput1,fpinput2;

reg st,clk;

wire done,ovf,unf;

wire [15:0]fpsum;

fpsub F1(clk,st,done,ovf,unf,fpinput1,fpinput2,fpsum);

always

begin

#30 clk=1'b0;

#30 clk=1'b1;

end

initial

begin

st=1'b0; fpinput1=16'h0304;fpinput2=16'h0302;

#100 st=1'b1;

#1000 $finish;

end

endmodule

FLOATING POINT DIVIDER:
VERILOG MODULE:

`timescale 1ns/1ps

module f4div(ready,q,r,f1,f2,e1,e2,expo,sign,clk,st);

input clk;

input sign;

input st;

input [7:0]f1,f2;

input [7:0]e1,e2;

output [15:0]q,r;

output ready;

output [7:0]expo;

reg [7:0]q, qtemp;

reg [15:0]f1copy, f2copy, diff;

reg negoutput;

wire [7:0] r = f1copy[7:0];

reg [3:0]bit;

wire ready = !bit;

initial bit = 0;

initial negoutput = 0;

wire [7:0]expo= e1+(~e2)+1'b1;

 always @(posedge clk)

 if(st)

 begin

 if(ready) begin

 bit = 4'd8;

 q = 0;

 qtemp = 0;

 f1copy = (!sign || !f1[7]) ? {8'd0,f1} : {8'd0,~f1 + 1'b1};

 f2copy = (!sign || !f2[7]) ? {1'b0,f2,7'd0} : {1'b0,~f2 + 1'b1,7'd0};

 negoutput = sign &&((f1[7] && !f2[7]) ||(!f1[7] && f2[7]));

 end

 else if (bit > 0) begin

 diff = f1copy+(~f2copy)+1'b1;

 qtemp = qtemp << 1;

 if(!diff[15]) begin

 f1copy = diff;

 qtemp[0] = 1'd1;

 end

 q = (!negoutput) ? qtemp : ~qtemp + 1'b1;

 f2copy = f2copy >> 1;

 bit = bit+4'b1111;

 end

end

endmodule

TEST BENCH:

`timescale 1ns/1ps

module f4divtest;

reg sign;

reg clk;

reg st;

reg [7:0]f1,f2;

reg [7:0]e1,e2;

wire [7:0]q,r;

wire [7:0]expo;

wire ready;

f4div F1(ready,q,r,f1,f2,e1,e2,expo,sign,clk,st);

always

begin

#10 clk=1'b0;

#10 clk=1'b1;

end

initial

begin

#200 st=1'b0; f1=8'b00011010; f2=8'b00001010; sign=1'b0; e1=8'd6; e2=8'd3;

#230 st=1'b1;

#300 st=1'b0;f1=8'b00001111; f2=8'b0000111100010110; sign=1'b0; e1=8'd5; e2=8'd1;

#330 st=1'b1;

#2000 $finish;

end

endmodule

FLOATING POINT MULTIPLIER

Verilog Module:

`timescale 1ns/1ps

module f4mul(clk,st,f1,f2,e1,e2,f,v,done,X);

input clk,st;

input [7:0] f1,f2,e1,e2;

output reg [14:0] f;

output reg [8:0] X;

output reg v,done;

reg [1:0] PS1,NS1;

reg [3:0] State,Nextstate;

reg [8:0] addout;

reg [7:0] A,B,C;

reg [8:0] Y;

reg NC;

reg load,adx,mdone,sm8,rsf,lsf;

reg adsh,sh,cm,g;

wire m;

always@(PS1 or st or mdone or X or A or B)

begin

load=1'b0; adx=1'b0;sm8=1'b0;rsf=1'b0;lsf=1'b0; NS1=2'd0; f=15'd0;done=1'b0; v=1'b0;mdone=1'b0;

case (PS1)

2'b00:

begin

 done=1'b0;v=1'b0;

 if(st) begin

 load=1'b1; NS1=2'b01; f=15'd0;

 end

end

2'b01: begin

 adx=1'b1;NS1=2'b10;

end

2'b10:
begin

 if(mdone) begin

 if(A==8'd0) sm8=1'b1;

 else if(A==8'b01000000 && B==8'b00000000) rsf=1'b1;

 else if(A[6]==A[5]) lsf=1'b1;

 NS1=2'b11;

end

 else

NS1=2'b10;

 end

2'b11: begin

 if(X[8] != X[7]) v=1'b1;

 else v=1'b0;

 done=1'b1;

 f={A[6:0],B};

 if(!st) NS1=2'b0;

end

default:begin NS1=2'b0; end

endcase

end

always@(posedge clk)

begin

 State=Nextstate;

 PS1=NS1;

end

assign m=B[0];

always@(State or adx or m)

begin

 adsh=1'b0; sh=1'b0; cm=1'b0; Nextstate=4'd0;mdone=1'b0;

case(State)

4'b0000: begin

 mdone=1'b0;

 if(adx) begin

 if(m) adsh=1'b1;

 else sh=1'b1;

 Nextstate=4'b0001;

 end

 else Nextstate=4'b0000;

 end

4'b0001: begin

 if(m) adsh=1'b1;

 else sh=1'b1;

 Nextstate=4'b0010;

end

4'b0010: begin

 if(m) adsh=1'b1;

 else sh=1'b1;

 Nextstate=4'b0011;

 end

4'b0011: begin

 if(m) adsh=1'b1;

 else sh=1'b1;

 Nextstate=4'b0100;

end

4'b0100: begin

 if(m) adsh=1'b1;

 else sh=1'b1;

 Nextstate=4'b0101;

 end

4'b0101: begin

 if(m) adsh=1'b1;

 else sh=1'b1;

 Nextstate=4'b0110;

end

4'b0110: begin

 if(m) adsh=1'b1;

 else sh=1'b1;

 Nextstate=4'b0111;

 end

4'b0111: begin if(m) begin

 cm=1'b1; adsh=1'b1;

 end

else sh=1'b1;

Nextstate=4'b1000;

 end

4'b1000: begin

mdone=1'b1;

Nextstate=4'b0000;

end

default: Nextstate=4'b0000;

endcase

end

always@(posedge clk)

begin

 if(!cm) addout=A+C+8'd0;

 else addout=A+(~C)+8'b00000001;

if (load)

begin

 X= {e1[7],e1} ;

 Y= { e2[7], e2 };

 A=8'd0;

 B=f2;

 C=f1;

end

if(adx) {NC,X}= X+Y;

if(sm8) X=9'b110000000;

if(rsf)

begin

A= {1'b0, A[7:1]};

B= {A[0], B[7:1]};

{NC,X}= X+9'd1;

end

if(lsf)

begin

A={ A[6:0] , B[7] };

B={ B[6:0] , 1'b0 };

{NC, X}=X+9'b111111111;

end

if(adsh)

begin

 g=C[7]^cm;

 A={g,addout[7:1]};

 B={addout[0] , B[7:1]};

 end

if(sh) begin

 B= {A[0] , B[7:1] };

 A= {A[7] , A[7:1] };

end

end

endmodule

TEST BENCH:

`timescale 1ns/1ps

module f4multest;

reg clk,st;

reg [7:0] f1,f2,e1,e2;

wire [14:0] f;

wire v,done;

wire [8:0]X;

f4mul F1(clk,st,f1,f2,e1,e2,f,v,done,X);

always

begin

#10 clk=1'b0;

#10 clk=1'b1;

end

always

begin

 st=1'b0;

 f1=8'b00000111; f2=8'b00000111 ; e1=8'b00000001; e2=8'b00000010;

#100 st=1'b1;

#100 st=1'b0;

#1000 $finish;

end

endmodule

Figure 3.3: SM chart for floating point multiplier

1. b Shift the smaller number to the right and increment the exponent

1.a Compare the exponents of the 2 numbers

Start

Exponents equal?

2. Add the fractions

7.Round the fraction to the appropriate number of bits

Done

Still normalized?

Exponent overflow or underflow

Fraction normalized?

4. Shift the sum right and increment the exponent

Fraction overflow?

Is the result 0?

3Set the exponent to the appropriate value

Done

5.Shift the sum left and decrement the exponent

6.Indicate overflow or underflow

Exception

1. b Shift the smaller number to the right and increment the exponent

1.a Compare the exponents of the 2 numbers

Start

Exponents equal?

2.Subtract the fractions

7.Round the fraction to the appropriate number of bits

Done

Still normalized?

Exponent overflow or underflow

Fraction normalized?

4. Shift the sum right and increment the exponent

Fraction overflow?

Is the result 0?

3Set the exponent to the appropriate value

Done

5.Shift the sum left and decrement the exponent

6.Indicate overflow or underflow

Exception

