CHAPTER 1

INTRODUCTION

1. INTRODUCTION
                                      An arithmetic-logic unit (ALU) is the part of a computer processor (CPU) that carries out arithmetic and logic operations on the operands in computer instruction words. In some processors, the ALU is divided into two units, an arithmetic unit (AU) and a logic unit (LU). Some processors contain more than one AU - for example, one for fixed-point operations and another for floating-point operations.
                                Generally arithmetic and logic unit (ALU) performs arithmetic operations like addition, subtraction, multiplication and division. This also performs logical operations like AND, OR, shift left and shift right etc.

                           A floating-point unit (FPU) is a part of a computer system specially designed to carry out operations on floating point numbers. Typical operations are addition, subtraction, multiplication, division .

1.1  INTEGER ARITHMETIC
           Integer arithmetic supports operations on integers ie. It accepts integers as inputs and also gives integer as output. Generally the operations that are to be performed under integer arithmetic are addition, subtraction, multiplication, division, logical operations and shifting.

                           Adders are usually implemented by combining multiple copies of         simple components. The natural components for addition are half adders and full adders .   The half adder takes two bits a and b as input and produces a sum bit s and a carry bit c  as output. The half adder is also called a (2,2) adder, since it takes two inputs and produces two outputs. the full adder is a (3,2)  adder  and the logic equations are

                     [image: image18.png] 
     For example:  

      Full adder truth table
	Carry in
	A
	B
	Sum
	Carry out

	0
	0
	0
	0
	0

	0
	0
	1
	1
	0

	0
	1
	0
	1
	0

	0
	1
	1
	0
	1

	1
	0
	0
	1
	0

	1
	0
	1
	0
	1

	1
	1
	0
	0
	1

	1
	1
	1
	1
	1


                           A      0011
                         +B     +0001
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                          Sum      0100

           it’s  just like we do for decimal

     0 + 0 = 0

     1 + 0 = 1

     1 + 1 = 2       which is 10 in binary, sum is 0 and carry is 1.

     1 + 1 + 1 = 3  sum is 1, and carry is 1.

ADDITION:

Unsigned:                 
        just like the simple addition 

      100001           00001010 (10)

     +011101          +00001110 (14)

  ………………………………………..                                                        

      111110              00011000 (24)
     Ignore (throw away) carry out of the msb.

    Why?  Because computers always work with a fixed precision.

Sign magnitude:

   Rules:

           - add magnitudes only (do not carry into the sign bit)

           - throw away any carry out of the msb of the magnitude

                 (Due to the fixed precision constraints.)

          - add only integers of like sign ( + to +    or    - to -)

          - Sign of result is same as sign of the addends

  Examples:

     0  0101 (5)        1  1010 (-10)

  + 0  0011 (3)      + 1  0011 (-3)

………………………………………….   
    0  1000 (8)        1  1101 (-13)

     0  01011 (11)

  + 1  01110 (-14)

  ----------------

  Don’t add, must do subtraction!

   One's complement:

     by example

    00111 (7)         111110 (-1)            11110 (-1)

  + 00101 (5)       + 000010 (2)           + 11100 (-3)

        -----------       ------------           ------------

    01100 (12)      1 000000 (0) wrong!    1 11010 (-5) wrong!




+  1                  +  1



      ----------             ----------



      000001 (1) right!      11011 (-4) right!

So it seems that if there is a carry out (of 1) from the msb, then the result will be off by 1, so add 1 again to get the correct result.(end around carry).
  Two's complement:

    Rules:

              - Just add all the bits

              - throw away any carry out of the msb

              - (same as for unsigned!)

   Examples:
     00011 (3)         101000               111111 (-1)

  + 11100 (-4)      + 010000             + 001000 (8)

  ------------          -----------             --------------

    11111 (-1)        111000             1 000111 (7)

               After seeing examples for all these representations, you may see why 2's complement addition requires simpler hardware than sign mag. or one's complement addition.
Subtraction is same as addition, it simply known as 2’s complement addition.

MULTIPLICATION:

       0 x 0 = 0

       0 x 1  = 0

      1x 0 = 0

     1x 1  = 0

  .. Longhand, it’s just like decimal

     ……In 2’s complement we get the right answer with out any problem, sign extended both the multiplicand and multiplier as many bits.

DIVISION:

    Use the same algorithm as for decimal integers. For integers it works good for unsigned integers only. As output we get quotient and remainder.

  While doing division we must remember the algebra formulae 

         Dividend=(divisor * quotient) + remainder.

1.2    FLOATING POINT ARITHMETIC :
               A simple representation of a floating point number (N) uses a fraction (F), base (B), and exponent(E), where N=F * BE . The base can be 2, 10, 16 or any other number . the fraction and exponent can be represented in many formats. For example they can be represented by 2’s complement format, sign magnitude form or ant other representation. 

            In binary floating point format negative exponents and fractions  are represented using the 2’s complement form. We will use 4 bits for the fraction and 4 bits for the exponent. The fractional part will have a leading sign bit and three actual fraction bits and the implied binary point is after the first bit. The sign bit is zero(0) for positive numbers and one(1) for negative numbers.

 As an example let us represent decimal 2.5 in this 8 bit 2’s complement floating point format,

                                   2.5 = 0010.1000

                                          =1.010 * 21           (standardized normal representation)

                                          =0.101 * 22          ( 4 bit 2’s complement fraction)

  Therefore

                         F = 0.101             E = 0010            N = 5 / 8 * 22  

If the number was  -2.5 , the same exponent can be used but the fraction must have negative sign . so the 2’s complement representation for the fraction is 1.011. therefore     

                         F = 1.011            E = 0010              N = - 5 / 8 * 22
Other examples of floating point numbers using a 4 bit fraction and a 4 bit exponent are 

                        F = 0.101             E = 0101             N = 5 / 8 * 25
                        F = 1.011             E = 1011             N = - 5/8 * 2(-5)
                        F = 1.000             E = 1000             N = -1 * 2(-8)
                    In order to utilize all the bits in F and have the maximum number of significant figures , F should be normalized so that its magnitude is as large as possible.

       Unnormalized:     F = 0.0101       E = 0011        N = 5 / 16 * 23 = 5 / 2

       Normalized     :      F = 0.101        E = 0010        N = 5 / 8 * 22   = 5 / 2.

              In this representation ,the exponent can be any number between -8 and +7 .the fraction can be any number between -1 and +0.875.  zero(0) cannot be normalized , so F= 0.000 when N = 0 .  Any exponent could then be used ; however , it is best to have a uniform representation of zero(0).           

1.3 SIMULATION AND SYNTHESIS:
Synthesis:     
                       Logic synthesis is the process of converting a high-level description of the design into an optimized gate-level  presentation, given a standard cell library and certain design constraints.
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Fig 1.1: Veriog Design Flow
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Fig 1.2: Logic Synthesis Flow
RTL description: Design at a high level using RTL constructs.
Translation: Synthesis Tool converts the RTL description to un-optimized internal representation.
Un-optimized Intermediate Representation: Represented internally by the logic synthesis tool in terms of internal data structure.
Logic Optimization: Logic is optimized to remove redundant logic.
Technology Mapping and Optimization: Here the synthesis tool takes the internal representation and implements the representation in gates, using the cells provided in the technology library.
Design Constraints
      It includes the following:
                                          -Timing

                                          -Area

                                          -Power

Simulation:
                -Simulation can be done on any suitably encoded specification (verilog/VHDL) to verify your concepts.
                 - Specifications might outline the connectivity of primitives (structural specification) or outline the algorithmic working of your circuit (specification). Most commonly, simulated specifications are a mix of both.
Levels of simulation (more important for analog design engineers):
Device level (for technologists)       -      MOS transistors
Circuit level (analog domain)           -      Interconnection of resistors / capacitors
Timing and Macro Level                 -      Approximate a set of capacitors / resistors to
          (analog domain)                                  accommodate a huge design
Switch level (digital signals and MOS transistors)
Levels of simulation (more important for digital design engineers):

    Register Transfer Level(RTL)

   Gate Level or Logic Level     - Interconnected Gates(NOR / NAND / XOR)

   System Level                          -   mostly behavioral

Engineers generally prefer simulation because of 

        - It works on large designs.

        - It requires the least amount of work from the users end. Tools do most of the work.

        - It uncovers majority of the bugs.
        - Understanding it is easy. Expertise is abundant by now.
        -Tools have been built around simulation for additional value (power/timing analysis).

Languages & Tools:
    Analog simulation   - (VCS – AMS , Modelsim , Spectre , HSPICE )
· SPICE

· PSPICE

    Digital Simulation (VCS , NC  - Verilog , Modelsim )

· Verilog / Systemverilog

· VHDL

· SystemC
CHAPTER 2

IEEE FLOATINGPOINT FORMATS
2. IEEE FLOATING POINT FORMATS:
           The IEEE 754 is a floating –point standard established by IEEE in 1985. It contains  two representations for floating-point  numbers , the IEEE  single precision format and the IEEE  double precision format. The IEEE 754 single precision  representation uses 32 bits and the double precision system uses 64bits.

              Although 2’s complement representations are very common for negative numbers  the IEEE floating point representations do not use 2’s complement foe either the fraction or the exponent. The designers of IEEE 754 desired a format that was easy to sort and hence adopted a sign – magnitude  system for the fractional part and  a biased notation for the exponent.

             The IEEE 754 floating – point formats need three subfields : sign , fraction , and exponent. The fractional part of the number is represented using a sign – magnitude representation in the IEEE floating – point formats.(i.e. there is an explicit sign bit(S) for the fraction). The sign is 0 for positive numbers and 1 for negative numbers. In a binany normalized scientific notation , the leading bit before the binary point is always 1 and hence the designers of the IEEE format decided to make it implied , representing only the bits after the binary point. In general , the number is of the form

                               N=(-1)s * (1+F) * 2E
   Where S is the sign bit , F is the fractional part , and E is the exponent .The  base of the exponent  is 2 the base is implied . The magnitude of the number is 1+ F because of the omitted leading 1. The terms significand means magnitude of the fraction and is 1+F in the IEEE format.

              The exponent in the IEEE floating- point formats uses what is known as biased  notation.  A  biased  representation is one in which every number is represented  by the number plus a certain bias.  In the IEEE single precision format , the bias is 127 . hence  , if the exponent  is +1 , it will be represented by  +1+127 =128 . if the exponent is  -2 , it will be represented y -2+127=125.
            Thus , exponents less than 127 indicates actual negative exponents  and exponents greater than 127 indicates actual positive exponents. The bias is 1023 in the double precision format.

             If the positive exponent is too large to fit in the exponent field , the situation is called  overflow. And if a negative exponent is too large to fit in the exponent field, the situation  is called underflow.

2.1 IEEE SINGLE PRECISION FORMAT:
            The IEEE single precision format uses 32 bits for representing a floating  point number , divided  into three subfields , as illustrated in figure.

	S
	      Exponent
	                       Fraction

	1b it
	        8 bits
	                            23 its


              Figure 2.1 : IEEE single precision floating –point format

                   The first field  is the sign bit for the fraction part. The next field consists of  8 its which are used for exponent  the third  field consists of the  remaining 23 bits and is used for the fractional part. 

                    The sign it reflects the sign of the fraction . it is 0 for positive numbers and 1 for negative numbers. In order to represent a number in the IEEE single precision format , first it should be converted to a normalized  scientific notation with exactly  one bit before the binary point , simultaneously adjusting the exponent value.

                 The exponent representation that goes into the second field of the IEEE 754 representation is obtained y adding 127 to the actual exponent of the number when represented in the normalized form.  
           Exponents in the range 1 – 254 are used for representing  normalized floating  point numbers . exponents values 0 and 255 are reserved for special cases .

             The representation for 23 bit  fraction is obtained  from the normalized scientific notation by dropping the leading 1. Zero cannot e represented in this fashion ; hence it can be treated as a special case. Since every number in the normalized scientific notation will have a leading 1 , this leading 1 can be dropped so that one more it can be packed  into the significand(fraction). Thus, a 24 – bit fraction   can be represented using 23bits in the representation. The designers of the IEEE formats wanted to make highest use of  all the bits  in the exponent and fraction fields.

        In order to understand  the IEEE format , let us  represent 13.45 in the IEEE floating –point format. We can see  that  0.45 is a recurring binary fraction and hence

   13.45 =  1101 .01 1100 1100 1100…….. with the bits 1100 to recur

Normalized scientific representation yields

        13.45=1.10101 1100  1100…*23
Since the number is positive , the sign bit for the IEEE 754 representation is 0.

   The exponent in the biased notation will be 127+3=130  , which in binary format is   10000010.  The fraction is 1.10101 1100 1100 ….(with 1100 recurring).  Omitting leading  1 , the 23 bits for the fractional part are

              10101 1100 1100 1100 1100 11

Thus the 32 bits are            0.10000010 10101 1100 1100 1100  1100 11

	S
	Exponent
	      Fraction

	0
	10000010
	10101110011001100110011


Figure  2.2: IEEE single precision floating point  representation for 13.45

         The 32 bits can e expressed more conveniently in a hexadecimal (hex) format as  4157 3333

        The number  -13.45 can be represented by changing only the sign bit(ie. the first it must be 1 instead of 0). Hence , the hex number C157 3333 represents  -13.45  in IEEE 754 single precision.

2.2 IEEE  DOUBLE PRECISION FORMAT 

     The IEEE double precision format uses 64 bits for representing a floating -point number, as illustrated in figure

	S
	Exponent
	Fraction

	1 bit
	11 bits
	52 bits


Figure 2.3: IEEE double precision floating-point format

          The first bit is the sign bit for the fraction part. The next 11 bits are used for the exponent , and the remaining 52 bits are used for the fractional part.  As in the single precision format , the sign bit is 0 for positive numbers and 1 for negative numbers.

          The exponent representation used in the second field is obtained by adding the bias value of 1023  to the actual exponent of the number in the normalized  form. Exponents in the range 1- 2046 are used for representing normalized floating – point numbers. Exponents values 0 and 2047 are reserved for special cases.

       The representation for the 52 –bit fraction  is obtained from the normalized scientific notation by dropping leading 1 and considering only the next 52 bits.

      As an example, let us represent 13.45 in IEEE double precision floating – point format. Converting 13.45 to a binary representation.

            13.45 =  1101. 01 1100 1100 1100 . ………. With the its 1100 continuing to recur

  In the normalized scientific representation,

                       13.45 = 1. 10101 1100 1100 ….. * 23
   The exponent in biased  notation will be 1023+3 =1026 , which in binary representation  is 10000000010

  The fraction is 1.10101 1100 1100….. omitting the leading 1 , the 52 bits of the fractional part are

       10101 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 110

 Thus the 64 bits are

0 10000000010 10101 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 110   

As illustrated in figure

	S
	Exponent
	Fraction

	0
	10000000010
	1010111001100110011001100110011001100110011001100110


Figure 2.4: IEEE double precision floating – point representation for 13.45

CHAPTER 3
IMPLEMENTATION OF FLOATING POINT ARITHMETIC UNIT

3. IMPLEMENTATION OF FLOATING POINT ARITHMETIC UNIT:
Floating point arithmetic operations like multiplication, addition, subtraction and division are implemented in this chapter. Initially we discuss about floating point multiplication.

3.1 FLOATING POINT MULTIPLICATION:
                 In this section, we design multiplier for floating point numbers. We use 4 bit fractions and 4 bit exponents, with negative numbers represented in 2’s complement. Given two floating point numbers, the product is  

                 (F1 * 2E1) * (F2 * 2E2) = (F1 * F2) * 2(E1+E2) = F * 2E
            The fraction part of the product is the product of the fractions, and exponent part of the product is the sum of the exponents. Hence, a floating point multiplier consists of two major components: a fraction multiplier, and an exponent adder.
The general procedure for performing floating point multiplication is the following: 
1. Add the exponents 

2. Multiply the two fractions 

3. If the product is zero, adjust the representation to the proper representation for zero.

a. if the product fraction is too big, normalize by shifting it right and incrementing  the exponent.

b. if the product fraction is too small, normalize by shifting left and decrementing the exponent .

4.  If an exponent underflow or overflow occurs, generate an exception or error   indicator.

5. Round to the appropriate number of bits. If rounding resulted in loss of normalization, go to step 3 again. 

            Now we discuss the design of floating point multiplier. We use 4 bit fractions and 4 bit exponents, with negative numbers represented in 2’s complement. The fundamental steps are to add the exponents and multiply the fractions. However, we must consider special cases also.  If F is 0, we must set the exponent E to the largest negative value.

                 A special situation occurs if we multiply -1 by -1 (1.000 * 1.000), the result should be +1. Since we cannot represent +1 as 2’s complement fraction with a 4 bit fraction this special case necessitates right shifting. To correct this situation, we right shift the fraction and increment the exponent. Therefore, we set F = 1 / 2 (0.1000) and add 1 to E. this results in the correct answer.
A flow chart for this floating point multiplier is as shown in figure.
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Figure 3.1: Flow chart for floating point multiplication with 2’s complement fractions / exponents

            After multiplying the fraction, all the special cases are tested for. The hardware required to implement the multiplier consists of an exponent adder, a fraction multiplier, and a control unit that provides the signals to perform the appropriate operation of right shifting, left shifting, exponent increment or decrement and so on.
EXPONENT ADDER:    

                 Since 2’s complement results with the sum in the proper format, the design of the exponent adder is straight forward. A five bit full adder is used as the exponent adder. When a fraction is normalized, the exponent will have to be correspondingly incremented or decremented. Also, in the special case when product is 0 , the register should be set to the value 1000. The register has control signals for incrementing, decrementing, and setting to the most negative value.

                   The register which holds the sum is made into a 5 bit register to handle special situations. When the exponents are added, an overflow can occur. If E1 and E2 are positive and the sum (E) is negative, or if E1 and E2 are negative and the sum is positive, the result is a 2’s complement overflow. However, this overflow might be corrected when 1 is added to or subtracted from E during normalization or correction of fraction overflow. To allow for this case, we have made the X register 5 bits long. When E1 is loaded into X, the sign bit must be extended so that we have a correct 2’s complement representation. Since there are 2 sign bits, if the addition of E1 and E2 produces an overflow, the lower sign bit will get changed, but the higher order sign bit will be unchanged.  

                  7 + 6 = 00111 + 00110 = 13 (maximum allowable value is 7)

FRACTION MULTIPLIER:
                It implements a shift and add multiplier algorithm. Since we are multiplying 3 bits plus sign by 3 bits plus sign, the result will be 6 bits plus sign. After the fraction multiplication, a 7 bit result will be the lower 3 bits of A concatenated with B. The multiplier has its own control unit that generates appropriate shift and add signals depending on the multiplier bits.
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(a) main control unit
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(b) Exponent adder
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C. Fraction Multiplier
Fig 3.2 Major components of Floating point Multiplier
Main control unit:

              The SM chart for the main controller of the floating – point multiplier is based on the flow chart of figure 3.3. This controller is called main controller to distinguish it from the controller for the multiplier, which is a separate a state machine that is linked into the main controller.
 The SM chart uses the following inputs and control signals:

	St
	Start the floating point multiplication.

	Mdone
	Fraction multiply is done.

	FZ
	Fraction is zero.

	FV
	Fraction overflow (fraction is too big).

	Fnorm
	F is normalized.

	EV
	Exponent overflow.

	Load
	load F1 ,F2 , E1, E2 into the appropriate registers.

	Adx
	Add exponents; this signal also starts the fraction multiplier.

	SM8
	Set exponent to minus 8 (to handle special case of 0).

	RSF
	shift fraction right ; also increment E.

	LSF
	shift fraction left ; also decrement E.

	V
	Overflow indicator.

	Done
	Floating point multiplication is complete.


            The SM chart for the main controller has four states. In S0 , the registers are loaded when the start signals 1. In S1 , the exponents are added , and the fraction multiply is started. In S2 , we wait until the fraction multiply is done and then test for special cases and take appropriate action. In S3 , the Done is signal is turned on and the controller waits for st=0 before returning to S0 .

            The state graph for the multiplier control is as shown in figure 3.4. This is similar to the binary multiplier controller except that the load state is not needed because the registers are loaded by the main controller. The add  and shift operations are performed in one state as seen in figure 3.2(c)  , the sum wires from the adder are shifted by 1 before loading into the accumulator register. When Adx =1, the multiplier is started, and Mdone is turned on when the multiplication is completed.          
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              The SM chart for the main controller has four states. In So ,the registers are loaded when the start signal is 1. In s1 , the exponents are added , and the fraction multiply is started. In s2 , we wait until the fraction multiply is done and then test for special cases and take appropriate action.  

It seems that the tests on FZ, FV and Fnorm can all be done in the same state. Since they are done in sequence on the flow chart. However, FZ, FV and Fnorm are generated by combinational circuits that operate in parallel and hence can be tested in the same state. However, we must wait until the exponent has been incremented or decremented at the next clock before we can check for exponent overflow in s3. In s3, the done signal is turned on and the controller waits for St=0 before returning to S0. 
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                               Fig 3.4 State graph for multiplier control
3.2 FLOATING POINT ADDITION:

          Now we consider the design of adder for floating point numbers. Two floating point numbers are added as shown.

                         (F1 * 2E1 )+ (F2 * 2E2) = F * 2E
               In order to add two fractions, the associated exponents must be equal. Thus, if the exponents E1 and E2 are different, we must unnormalize one of the fractions and adjust the exponents accordingly. The smaller number is the one that should adjusted so that if significant digits are lost, the effect is not significant. To illustrate the process, we add 

                          F1 * 2E1 = 0.111 * 25   and     F2 * 2E2 = 0.101 *23

Since E2 = E1, we unnormalize the smaller number F2 by shifting right two times and adding 2 to the exponent.

                         0.101 * 23 = 0.0101 * 24 = 0.00101 *25 

Note that shifting right by one place is equivalent to dividing by 2, so each time we shift we must add 1 to the exponent to compensate. When the exponents are equal, we add the fractions.
                       (0.111 *25 ) + (0.00101 *25  )= 01.00001 * 25  
 This addition caused an overflow in to the sign bit position, so we shift right and add 1 to exponent to correct the fraction overflow. The final result is 

                        F * 2E = 0.100001 * 26 

In summary, the steps required to carry out floating point addition are as follows:

1. Compare exponents. If the exponents are not equal, shift the fraction with the smaller                   exponent right and add 1 to its exponent; repeat  until the exponents are equal.
2. Add the fractions. 

3. If the result is 0, set the exponents to the appropriate representation for 0 and exit.

4. If fraction overflow occurs, shift right and add 1 to the exponent to correct the overflow.

5. If the fraction is unnormalized, shift left and subtracts 1 from the exponent until the           fraction is normalized.

6. Check for exponent overflow. Set overflow indicator, if necessary

7. Round to the appropriate number of bits. Still normalized?  
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Fig 3.5 Flow chart for Floating point addition
To add two floating –point numbers, the exponents of the two floating point numbers should be the same. This is done by shifting the fraction of the floating point number that has the smaller exponent. The number of bits positions to be shifted right is same as the difference of the two exponents.
The floating point adder operation can be explained as follows:

Initially, two floating point numbers are loaded into the respective registers. Now, compare the exponents, if they are equal, add the fractions and normalize to the appropriate fraction. If the exponents are not equal, shift right the fraction with the smaller exponent until they are equal. If the exponents are equal, add the fractions.

After adding the fractions, check the conditions as below:
a)  If the addition result zero(0) value. Set the exponent to the appropriate representation.            Some members following notation like set exponent to zero. And some other notations follow set exponent to maximum negative value in the representation.
b) Check condition for fraction overflow, it occurs due to overflow of fraction it into sign bit. This can be overcome by shifting the fraction right and increment the exponent.

c) Check if fraction is normalized or not?

If normalized, proceed to next step.

If not, shift the sum to left and decrement the exponent.

d) Check for exponent overflow.

If overflow occurs, set overflow indicator

e) Round the fraction to appropriate number of bits.

f) Again check normalization condition, if not repeat from step c.

The implementation of floating point adder requires the following hardware units.

-Adder (subtract or) to compare exponents

-Shift register to shift the small number to right

-ALU (adder) to add fractions

-Bidirectional shifter, Incrementer/ Decrementer

-Overflow detector
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Figure 3.6 : floating point adder hardware

3.3 FLOATING POINT DIVISION:
                 In this section, we design divider for floating point numbers. We use 4 bit fractions and 4 bit exponents, with negative numbers represented in 2’s complement. Given two floating point numbers, the product is  

                 (F1 * 2E1) / (F2 * 2E2) = (F1 / F2) * 2(E1-E2) = F * 2E
          The floating point division is like a basic fixed point binary number division algorithm. For example, consider two eight bit numbers. 01011001-A(decimal 89) and 00001001-B(decimal 9). 

           In the division, the dividend A is divided by divisor B. The result is called the quotient Q. The remainder R may not be zero if the divisor is not a factor of the dividend.

In the division, equation A=B*Q+R holds.

                                                            Dividend
                          00001001 )  01011001 (1001              quotient
                                                 1001

                   Divisor                      100
                                                     000

                                                     1000
                                                     0000                                                
                                                       10001

                                                       01001       

                  Remainder                       1000 

                                      Fig 3.7: Paper and pencil approach for division
             The above paper and pencil approach works well. However, our brains are calculating where to put the first 1 in the quotient. We may look at the dividend and the divisor. The most significant 4 bits of the divisor are 0. We figure that the first quotient bit that can be 1 is at least 4 bit positions from the left. It is harder for the hardware to figure this one out. The hardware is most adept at the systematic approach. One idea that we can take from the paper and pencil approach is to subtract the dividend by the divisor at the right bit positions. Since it is not easy for the hardware to figure out where the first 1 in the quotient should be, we can start from the very beginning. 
                Figure 3.7 shows the division is left shifted bit by bit. The dividend is first 0 extended to double the width as the partial remainder. The division starts at bit position 7 which is the left most bit of the original divisor. The partial remainder is compared with the shifted divisor. If the partial remainder is no less than the left shifted divisor, the quotient has the 1 in the bit position; the partial remainder is subtracted from the left shifted divisor. Otherwise, the quotient bit position has 0 and the partial remainder remains the same. This process is repeated from bit position 7 down to bit position 0.
        Left shifted divisor                           start position      
L(8)  0000100100000000                                                        quotient

L(7)  0000010010000000       >        0000000001011001         0

L(6)  0000001001000000       >        0000000001011001         0

L(5)  0000000100100000       >        0000000001011001         0

L(4)  0000000010010000       >        0000000001011001         0

L(3)  0000000001001000       <         0000000001011001        1      subtract
L(2)  0000000000100100       >         0000000000010001        0
L(1)  0000000000010010       >         0000000000010001        0
L(0)  0000000000001001      <          0000000000010001        1      subtract
                                                            0000000000001000                remainder
Fig 3.8: Hardware division approach for division
  The algorithm for floating point division is as follows:

     - Left shift divisor by the no. of bits and right shift dividend by no. of bits.

     - compare the divisor with the dividend.
     - If divisor is greater than dividend set the corresponding quotient bit to zero.

     - If divisor is less than dividend subtract the divisor from the dividend and place the 

         result in the divisor place , and put one in quotient position.

     -After each comparison right shift divisor by one position.

     - Repeat the above steps by the number of bits time.
     - The number in the dividend place gives remainder and quotient place gives quotient.

       3.4 FLOATING POINT SUBTRACTION:

          Now we consider the design of subtractor  for floating point numbers. Two floating point numbers are subtracted as shown.

                         (F1 * 2E1 ) - (F2 * 2E2) = F * 2E
               In order to subtract two fractions, the associated exponents must be equal. Thus, if the exponents E1 and E2 are different, we must unnormalize one of the fractions and adjust the exponents accordingly. The smaller number is the one that should adjusted so that if significant digits are lost, the effect is not significant. To illustrate the process, we add 

                          F1 * 2E1 = 0.111 * 25   and     F2 * 2E2 = 0.101 *23

Since E2 = E1, we unnormalize the smaller number F2 by shifting right two times and adding 2 to the exponent.

                         0.101 * 23 = 0.0101 * 24 = 0.00101 *25 

Note that shifting right by one place is equivalent to dividing by 2, so each time we shift we must add 1 to the exponent to compensate. When the exponents are equal, we add the fractions.

                       (0.111 *25 ) -  (0.00101 *25  )= 0.110 * 25  

 The final result is 

                        F * 2E = 0.100001 * 25 

In summary, the steps required to carry out floating point subtraction are as follows:

1. Compare exponents. If the exponents are not equal, shift the fraction with the smaller                   exponent right and add 1 to its exponent; repeat  until the exponents are equal.

2. subtract  the fractions. 

3. If the result is 0, set the exponents to the appropriate representation for 0 and exit.

4. If fraction overflow occurs, shift right and add 1 to the exponent to correct the overflow.

5. If the fraction is unnormalized, shift left and subtracts 1 from the exponent until the           fraction is normalized.

6. Check for exponent overflow. Set overflow indicator, if necessary

7. Round to the appropriate number of bits. Still normalized?  Go to back step4.
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Fig 3.5 Flow chart for Floating point subtraction

                    To subtract two floating –point numbers, the exponents of the two floating point numbers should be the same. This is done by shifting the fraction of the floating point number that has the smaller exponent. The number of bits positions to be shifted right is same as the difference of the two exponents. 

 The floating point subtractor operation can be explained as follows:

             Initially, two floating point numbers are loaded into the respective registers. Now, compare the exponents, if they are equal, subtract the fractions and normalize to the appropriate fraction. If the exponents are not equal, shift right the fraction with the smaller exponent until they are equal. If the exponents are equal, subtract the fractions.

  After subtract the fractions, check the conditions as below:

a)  If the subtraction result zero (0) value. Set the exponent to the appropriate representation. Some members following notation like set exponent to zero. And some other notations follow set exponent to maximum negative value in the representation.

b) Check condition for fraction overflow, it occurs due to overflow of fraction it into sign bit. This can be overcome by shifting the fraction right and increment the exponent. 

c) Check if fraction is normalized or not?

         If normalized, proceed to next step.

         If not, shift the sum to left and decrement the exponent.

d) Check for exponent overflow.

    If overflow occurs, set overflow indicator

e) Round the fraction to appropriate number of bits.

f) Again check normalization condition, if not repeat from step c.

   The implementation of floating point subtractor requires the following hardware units.

               -Adder (subtract or) to compare exponents

               -Shift register to shift the small number to right

   -ALU (adder) to add fractions

   -Bidirectional shifter, Incrementer/ Decrementer

   -Overflow detector

CHAPTER 4
RESULTS

FLOATING POINT ADDER:
  SIMULATION:

1)  Test data given is
         Fpinput1= 16’h 030C         Fpinput2 = 16’h 0509


2)  Test data given is

         Fpinput1= 16’h 0308        Fpinput2 = 16’h 03FC

[image: image12.png]
SYNTHESIS:

             Here we are using RTL complier by cadence for performing synthesis.

CELL REPORT:

============================================================

  Generated by:                      Encounter(R) RTL Compiler v08.10-s108_1

  Generated on:                     Apr 11 2011  06:27:30 PM

  Module:                              f4add

  Technology library:           UofU_Digital_v1_2 

  Operating conditions:        typical (balanced tree)

  Wireload mode:               enclosed

  Area mode:                       timing library

============================================================                      

  Gate             Instances              Area                             Library       

--------------------------------------------------

AND3X1             8                      64.000                UofU_Digital_v1_2 

AOI21X1           22   

110.000   
       UofU_Digital_v1_2 

AOI22X1           28   

168.000    
       UofU_Digital_v1_2 

BUFX2               5    

20.000                    UofU_Digital_v1_2 

DCBX1             38   

684.000                  UofU_Digital_v1_2 

INVX1               2    

 6.000    
       UofU_Digital_v1_2 

INVX2              40   

120.000    
       UofU_Digital_v1_2 

INVX4               2     

8.000    
       UofU_Digital_v1_2 

MUX2NX1        1     

7.000    
       UofU_Digital_v1_2 

MUX2X2           3    

27.000    
       UofU_Digital_v1_2 

NAND2X1         51   

153.000    
       UofU_Digital_v1_2 

NAND2X2         19   

114.000    
       UofU_Digital_v1_2 

NAND3X1         10    

70.000    
       UofU_Digital_v1_2 

NOR2X1            28   

112.000    
       UofU_Digital_v1_2 

NOR2X2            1     

6.000   
       UofU_Digital_v1_2 

NOR3X1            1     

9.000    
       UofU_Digital_v1_2 

OAI21X1          68   

340.000    
       UofU_Digital_v1_2 

OAI22X1           3    

18.000    
       UofU_Digital_v1_2 

XNOR2X1         6    

48.000    
       UofU_Digital_v1_2 

XOR2X1          13   

104.000    
       UofU_Digital_v1_2 

--------------------------------------------------

total                 349  

2188.000                      

   Type    
Instances  
 Area  
   Area % 

-------------------------------------

sequential        38  

684.000    31.3 

inverter            44  

134.000     6.1 

buffer              52

0.000         0.9 

logic                262 

1350.000    61.7 

-------------------------------------

total                349 

2188.000    100.0

TIMING REPORT:
============================================================

  Generated by:           

Encounter(R) RTL Compiler v08.10-s108_1

  Generated on:          

 Apr 11 2011  06:27:30 PM

  Module:                 

f4add

  Technology library:     
UofU_Digital_v1_2 

  Operating conditions:   
typical (balanced_tree)

  Wireload mode:          
enclosed

  Area mode:              

timing library

============================================================

    Pin         
Type    
 Fanout  
Load 
Slew 
Delay 
Arrival   

                                 



(fF)       (ps)      ( ps)       (ps)    

-----------------------------------------------------------

(clock clk)     launch                                    



   0 R 

f1_reg[1]/CLK                          400             


               0 R 

f1_reg[1]/Q     DCBX1         
     5 

149.5     669    +1799     1799 F 

g7430/B                                      

 +1        1800   

g7430/Y         NAND2X1           1  

62.3  
   304  
 +674        2474 R 

g7372/A                                        

+3          2477   

g7372/Y         NAND2X2           2 

114.7     188       +300    2776 F 

g7341/B                                       

+2         2779   

g7341/Y         NAND2X2          1  

62.7  
174  
  +253       3031 R 

g7325/B                                       

+3        3034   

g7325/Y         NAND2X2           2  

83.2  
161  
+227         3261 F 

g7313/C                                      

 +1     3263   

g7313/Y         OAI21X1             1 

 62.7    373  
+400       3663 R 

g7306/B                                       

+3    
3666   

g7306/Y         NAND2X2          2 

105.2  
204  
+349        4015 F 

g7290/B                                       

+2    
4017   

g7290/Y         NAND2X2          1  

62.7  
179        +263    4280 R 

g7283/B                                       

+3       4283   

g7283/Y         NAND2X2          2 

114.7     188      +264    4548 F 

g7248/B                                       

+2       4550   

g7248/Y         NAND2X2          1  

62.7  
176        +253    4803 R 

g7238/B                                       

+3       4806   

g7238/Y         NAND2X2          1  

85.2     183       +230    5036 F 

g7237/A                                       

+4      5041   

g7237/Y         INVX4                2 

104.9  108        +214    5255 R 

g7194/A                                       

+2    5  257   

g7194/Y         OAI21X1           2 

104.8  348        +378    5635 F 

g7188/B                                      

+2    5638   

g7188/Y         XOR2X1            3 

146.5  617       +799    6436 R 

g7182/B                                      

 +2    6438   

g7182/Y         XNOR2X1         2 

105.3  481       +926    7364 R 

g7176/B                                       

+2       7366   

g7176/Y         NAND2X2           9 

376.5  473     +708      8074 F 

g7175/C                                      

 +1     8075   

g7175/Y         NAND3X1           4 

173.7  628     +888    8962 R 

g7174/A                                       

+2       8965   

g7174/Y         INVX4                 5 

184.4   255     +499    9464 F 

g7169/C                                       

+1     9464   

g7169/Y         AOI21X1             1  

40.7  271     +348       9812 R 

g7138/C                                       

+2    9814   

g7138/Y         OAI21X1             1  

62.6   269       +398   10212 F 

g7119/B                                       

+3   10216   

g7119/Y         NAND2X2          1  

62.7  282       +305   10521 R 

g7107/B                                       

+3   10524   

g7107/Y         NAND2X2          1  

45.7  185      +230   10754 F 

e1_reg[3]/D     DCBX1                         
+2   10757   

e1_reg[3]/CLK   setup                   

400  +237   10994 R 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

(clock clk)     capture                            11000 R 

-----------------------------------------------------------

Timing slack :       6ps 

Start-point  : f1_reg[1]/CLK

End-point    : e1_reg[3]/D

POWER REPORT:

===========================================================

  Generated by:                 Encounter(R) RTL Compiler v08.10-s108_1

  Generated on:                 Apr 11 2011  06:27:30 PM

  Module:                          f4add

  Technology library:        UofU_Digital_v1_2 

  Operating conditions:     typical (balanced tree)

  Wireload mode:             enclosed

  Area mode:                     timing library

============================================================

                                 Leakage            Dynamic                    Total    

Instance     Cells      Power(nW)     Power(nW)             Power(nW)  

---------------------------------------------------

f4add          349         42.183         56747668.812            56747710.996

FLOATING POINT SUBTRACTOR:

  SIMULATION:

1)Test data given is

 Fpinput1 =   16’h 0304 
Fpinput2=16’h0302

[image: image13.png]
2)Test data given is

 Fpinput1 =   16’h 0214
Fpinput2=16’h02F6

[image: image14.png]
SYNTHESIS:

CELL REPORT:

============================================================

  Generated by:           

Encounter(R) RTL Compiler v08.10-s108_1

  Generated on:           

Apr 11 2011  06:36:16 PM

  Module:                 

fpsub

  Technology library:    
 UofU_Digital_v1_2 

  Operating conditions:   
typical (balanced_tree)

  Wireload mode:          
enclosed

  Area mode:              

timing library

============================================================
  Gate   
Instances    
 Area          Library       

--------------------------------------------------

AND3X1            6    

48.000      UofU_Digital_v1_2 

AOI21X1          32   

160.000    UofU_Digital_v1_2 

AOI22X1          28   

168.000    UofU_Digital_v1_2 

BUFX2             7    

28.000      UofU_Digital_v1_2 

DCBX1            38   

684.000    UofU_Digital_v1_2 

INVX1              3     

9.000        UofU_Digital_v1_2 

INVX2             50   

150.000    UofU_Digital_v1_2 

MUX2NX1         1     
              7.000      UofU_Digital_v1_2 

MUX2X2           2    

18.000       UofU_Digital_v1_2 

NAND2X1         69   

207.000     UofU_Digital_v1_2 

NAND2X2         6    

36.000       UofU_Digital_v1_2 

NAND3X1         11    

77.000       UofU_Digital_v1_2 

NOR2X1            29   

116.000     UofU_Digital_v1_2 

NOR3X1            3    

27.000       UofU_Digital_v1_2 

OAI21X1          52   

260.000     UofU_Digital_v1_2 

OAI22X1           3    

18.000       UofU_Digital_v1_2 

XNOR2X1          7    

56.000       UofU_Digital_v1_2 

XOR2X1            11    

88.000       UofU_Digital_v1_2 

--------------------------------------------------

total          358  

2157.000                      

   Type   
 Instances   Area   Area % 

-------------------------------------

sequential        38           684.000     31.7 

inverter            53            159.000    7.4 

buffer              7               28.000      1.3 

logic               260          1286.000    59.6 

-------------------------------------

total            358          2157.000  100.0 

TIMING REPORT:

===========================================================

  Generated by:                  Encounter(R) RTL Compiler v08.10-s108_1

  Generated on:                  Apr 11 2011  06:36:16 PM

  Module:                          fpsub

  Technology library:       UofU_Digital_v1_2 

  Operating conditions:     typical (balanced_tree)

  Wireload mode:             enclosed

  Area mode:                    timing library

============================================================

    Pin         
Type     Fanout     Load     Slew     Delay     Arrival   

                                                       (fF)       (ps)       (ps)       (ps)    

-----------------------------------------------------------

(clock clk)     launch                                                               0 R 

f2_reg[0]/CLK                               400                                      0 R 

f2_reg[0]/QB    DCBX1         1     52.2      372    +816        816 R 

g7674/A                                          +3        819   

g7674/Y         INVX2           4      178.1      292    +505        1324 F 

g7596/B                                         +2         1325   

g7596/Y         NAND2X2       3    123.7      246     +402       1727 R 

g7580/B                                         +1          1728   

g7580/Y         NAND2X1       1    62.6       197       +315      2044 F 

g7554/B                                          +3        2047   

g7554/Y         NAND2X2       2   92.7         209        +297       2344 R 

g7525/B                                          +1        2346   

g7525/Y         NAND2X1       1    62.6        188          +296    2642 F 

g7510/B                                         +3         2645   

g7510/Y         NAND2X2       2    92.8        190            +291    2936 R 

g7495/C                                       +1         2938   

g7495/Y         OAI21X1       1      40.6        263            +307    3245 F 

g7487/C                                        +2        3247   

g7487/Y         OAI21X1       2     103.5      467        +580    3826 R 

g7471/A                                       +2         3828   

g7471/Y         AOI21X1       2     104.1     403         +640    4468 F 

g7454/A                                       +2         4470   

g7454/Y         OAI21X1       2    104.2        407       +632    5102 R 

g7443/A                                       +2        5104   

g7443/Y         AOI21X1       2    104.3          399     +605      5708 F 

g7416/B                                       +2        5710   

g7416/Y         XOR2X1        3   146.6         620      +832      6542 R 

g7373/B                                       +2       6544   

g7373/Y         XOR2X1        2  105.3        479      +939       7483 R 

g7361/B                                       +2       7485   

g7361/Y         NAND2X2       6  254.3       362    +575        8060 F 

g7358/C                                       +1        8061   

g7358/Y         NAND3X1       4    140.7       574       +723       8784 R 

g7357/A                                           +1       8785   

g7357/Y         INVX2             5      184.4       345        +629    9414 F 

g7341/C                                              +1      9415   

g7341/Y         AOI21X1       1         40.7    253        +399         9814 R 

g7316/C                                             +2    9816   

g7316/Y         OAI21X1       1          40.6    227        +339        10155 F 

g7299/B                                              +2   10157   

g7299/Y         NAND2X1       1        40.5     273      +319        10476 R 

g7288/A                                              +2   10478   

g7288/Y         NAND2X1       1         45.7      211      +267        10745 F 

e1_reg[5]/D     DCBX1                        +2   10747   

e1_reg[5]/CLK   setup                                    400        +249       10996 R 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

(clock clk)     capture                            11000 R 

-----------------------------------------------------------

Timing slack :       4ps 

Start-point  : f2_reg[0]/CLK

End-point    : e1_reg[5]/D

POWER REPORT;

============================================================

  Generated by:               Encounter(R) RTL Compiler v08.10-s108_1

  Generated on:               Apr 11 2011  06:36:16 PM

  Module:                         fpsub

  Technology library:      UofU_Digital_v1_2 

  Operating conditions:    typical (balanced_tree)

  Wireload mode:           enclosed

  Area mode:                  timing library

============================================================

                                 Leakage          Dynamic       Total    

Instance Cells      Power(nW)   Power(nW)      Power(nW)  

---------------------------------------------------

fpsub      358         41.491       53820249.261    53820290.752 
FLOATING POINT DIVIDER:
SIMULATION:
1)Test data given is

Fpinput1=16’h0632



Fpinput2=16’h030A

[image: image15.png]
2) Test data given is

Fpinput1=16’h03c8



Fpinput2=16’h0207

[image: image16.png]
SYNTHESIS:

CELL REPORT:

============================================================

  Generated by:           Encounter(R) RTL Compiler v08.10-s108_1

  Generated on:           Apr 02 2011  11:19:24 AM

  Module:                 f4div

  Technology library:     UofU_Digital_v1_2 

  Operating conditions:   typical (balanced_tree)

  Wireload mode:          enclosed

  Area mode:              timing library

============================================================

  Gate   
Instances    
   Area          Library       

--------------------------------------------------

AOI21X1         26   

130.000       UofU_Digital_v1_2 

AOI22X1         36   

216.000       UofU_Digital_v1_2 

BUFX2            3    

12.000        UofU_Digital_v1_2 

DCBX1           50   

900.000      UofU_Digital_v1_2 

INVX2            73   

219.000      UofU_Digital_v1_2 

INVX4             1     

4.000         UofU_Digital_v1_2 

MUX2X2          3    

27.000       UofU_Digital_v1_2 

NAND2X1        74   
             222.000     UofU_Digital_v1_2 

NAND2X2          6     
36.000      UofU_Digital_v1_2 

NAND3X1         16   
112.000     UofU_Digital_v1_2 

NOR2X1          46   

184.000     UofU_Digital_v1_2 

NOR2X2           3    

18.000      UofU_Digital_v1_2 

NOR3X1           5    

45.000      UofU_Digital_v1_2 

OAI21X1         29   

145.000    UofU_Digital_v1_2 

OAI22X1          8    

48.000      UofU_Digital_v1_2 

XNOR2X1         36   
288.000    UofU_Digital_v1_2 

XOR2X1          14   

112.000    UofU_Digital_v1_2 

--------------------------------------------------

total               429 

 2718.000                      

   Type   
 Instances   
Area   
    Area % 

-------------------------------------

sequential        50 

 900.000   33.1 

inverter          74  

223.000    8.2 

buffer             3  

 12.000    0.4 

logic            302 

1583.000   58.2 

-------------------------------------

total            429 

2718.000  100.0 

TIMING REPORT:

============================================================

  Generated by:           Encounter(R) RTL Compiler v08.10-s108_1

  Generated on:           Apr 02 2011  11:19:24 AM

  Module:                 f4div

  Technology library:     UofU_Digital_v1_2 

  Operating conditions:   typical (balanced_tree)

  Wireload mode:          enclosed

  Area mode:              timing library

============================================================

      Pin           
Type     Fanout  
Load    Slew    Delay    Arrival   

                                     


(fF)       (ps)        (ps)       (ps)    

---------------------------------------------------------------

(clock clk)         launch                                 



0 R 

f1copy_reg[0]/CLK                         

 400           
           0 R 

f1copy_reg[0]/Q     DCBX1         3 

108.3   436     +1353    1353 R 

addinc_add_34_32/A[0] 

  g523/A                                          

  +1    1354   

  g523/Y            NOR2X1        2 

104.3  433      +751    2105 F 

  g522/A                                          

+2      2107   

  g522/Y            INVX2         1  

40.5  162       +356    2463 R 

  g484/A                                         

 +2    2465   

  g484/Y            NAND2X1       1 

 62.6  179  
+261    2726 F 

  g475/B                                          

+3    2729   

  g475/Y            NAND2X2       3 

135.8  256      +341    3071 R 

  g461/A                                         

 +1    3072   

  g461/Y            NAND2X1       1 

 62.6  193      +297    3369 F 

  g448/B                                          

+3    3372   

  g448/Y            NAND2X2       5 

215.4  346     +454    3827 R 

  g438/C                                         

 +1    3828   

  g438/Y            NAND3X1       1  

62.6  237      +359    4186 F 

  g437/B                                          

+3     4190   

  g437/Y            NAND2X2       7 

289.4  443    +580    4770 R 

  g425/A                                          

+1    4771   

  g425/Y            AOI21X1       4 

173.3  603    +775    5546 F 

addinc_add_34_32/Z[15] 

g3585/B                                          

 +2    5548   

g3585/Y             NAND2X2       3 

146.1  302    +640    6187 R 

g3555/B                                           

+2    6190   

g3555/Y             NOR2X2        3 

152.6  317  +451    6641 F 

g3503/B                                           

+2    6643   

g3503/Y             NAND2X2       3

 146.1  272  +448    7091 R 

g3484/B                                           

+2    7093   

g3484/Y             NOR2X2        3 

130.6  294  +403    7496 F 

g3447/B                                          

 +1    7497   

g3447/Y             NAND2X1       3 

146.1  486     +651    8149 R 

g3402/B                                           

+2    8151   

g3402/Y             NOR2X2        2  

99.7  261      +482    8632 F 

g3392/C                                          

 +2    8634   

g3392/Y             NOR3X1        1  

46.9  334     +355    8989 R 

g3367/C                                          

 +2    8992   

g3367/Y             AOI21X1       1                40.6  301     +455    9447 F 

g3345/C                                           

+2    9449   

g3345/Y             OAI21X1       1  

45.6  289    +448    9898 R 

q_reg[7]/D          DCBX1                         +2    9900   

q_reg[7]/CLK        setup                  400   +35    9935 R 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

(clock clk)         capture                            10000 R 

---------------------------------------------------------------

Timing slack :      65ps 

Start-point  : f1copy_reg[0]/CLK

End-point    : q_reg[7]/D
POWER REPORT:

============================================================

  Generated by:               Encounter(R) RTL Compiler v08.10-s108_1

  Generated on:               Apr 02 2011  11:19:24 AM

  Module:                       f4div

  Technology library:      UofU_Digital_v1_2 

  Operating conditions:    typical (balanced_tree)

  Wireload mode:           enclosed

  Area mode:                 timing library

============================================================

                                                        Leakage         Dynamic         Total    

     Instance            Cells              Power(nW)   Power(nW)    Power(nW)  

-------------------------------------------------------------

f4div                        429               54.092        72779416.134     72779470.226 

addinc_add_34_32   121             10.128       15920179.145      15920189.273 
FLOATING POINT MULTIPLIER

F1=8’d07    F2= 8’d07    E1=8’d01    E2=8’d08
[image: image17.png]
CONCLUSION 
              We  have designed  floating  point arithmetic unit consists of floating point adder ,floating point subtractor, floating point multiplier, floating point divider using ncsim simulator and is thoroughly verified by the test bench module.The synthesis reports are also developed using RTL Cadence Synthesis Tools, it gives detailed information about cells , power, timing analysis. This can be used as a part of any processor for performing floating point operations.
FUTURE SCOPE OF WORK

             With this design of arithmetic unit, we can implement high speed, low power consuming floating point processors. We can implement parameterized modules for floating point arithmetic unit. We can completely design ASIC flow of floating point 

arithmetic unit.
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APPENDIX
      The codes for the arithmetic unit are given

FLOATING POINT ADDER:

VERILIOG MODULE:

`timescale 1ns/1ps

module f4add(clk,st,done,ovf,unf,fpinput1,fpinput2,fpsum);

input st,clk;

output done,ovf,unf;

input [15:0]fpinput1,fpinput2;

output [15:0]fpsum;

reg done,ovf,unf;

reg [15:0]fpsum;

reg [6:0]f1,f2;

reg [7:0]e1,e2;

reg [8:0]f1comp,f2comp,fsum;

reg s1,s2,fv,fu;

reg [2:0]state;

always@(f1 or s1 or s2 or f2 or f1comp or f2comp or fsum or e1)

begin

              if(s1)

                         f1comp={2'b11,f1};

               else

                          f1comp={2'b0,f1};

               if(s2)

                          f2comp={2'b11,f2};

                else

                             f2comp={2'b0,f2};

            fsum=f1comp+f2comp;

             fv=fsum[8]^fsum[7];

            fpsum={e1,s1,f1[6:0]};

end

always@(posedge clk)

begin

           case(state)

    3'b000:begin 

       if(st) begin

         e1=fpinput1[15:8];

         s1=fpinput1[7];

         f1[6:0]=fpinput1[6:0];

        end

      done=1'b0; ovf=1'b0; unf=1'b0; state=3'b001;

     end

3'b001: begin

        e2=fpinput2[15:8];

        s2=fpinput2[7];

        f2[6:0]=fpinput2[6:0];

        state=3'b010; end

3'b010: begin if(f1==0 | f2==0)

              state=3'b011;

        else if(e1==e2)

              state=3'b011;

        else if(e1<e2)

           begin

              f1={f1[6],f1[6:1]};

               e1=e1+1'b1;

               state=3'b010;

            end

        else


    begin



  f2={f2[6],f2[6:1]};



  e2=e2+1'b1;

                  state=3'b010;



end

         end

3'b011: begin

            s1=fsum[7];

          if(!fv)


      f1=fsum[6:0];


else

   
  begin


     f1=fsum[7:1];


     e1=e1+1'b1;


     end

 
 state=3'b100;

            end

3'b100: begin if(f1==0)

           begin


      e1=8'b0;


      state=3'b110;


    end

         else

          state=3'b101;

       end

3'b101: begin if(e1==8'b10000000)

                   begin

                     unf=1'b1;


 
     state=3'b110;



    end

          else if(fu==0)


        state=3'b110;

          else  if(s1==f1[6]) begin

                 f1={f1[5:0],1'b0};

    

 e1=e1+8'b11111111;

                 state=3'b101;



end

          else state=3'b110;


  end

3'b110:begin if(e1==8'd127)

             ovf=1'b1;


     done=1'b1;


    state=3'b000;

        end

default:begin  state=3'b000; end

endcase

end

endmodule

TEST BENCH:

`timescale 1ns/1ps

module f4addtest;

reg [15:0]fpinput1,fpinput2;

reg st,clk;

wire done,ovf,unf;

wire [15:0]fpsum;

f4add F1(clk,st,done,ovf,unf,fpinput1,fpinput2,fpsum);

always

begin

#30 clk=1'b0;

#30 clk=1'b1;

end

initial

begin

st=1'b0; fpinput1=16'h08fd;fpinput2=16'h08fb;

#100 st=1'b1;

#120 st=1'b0;

#1000 $finish;

end

endmodule

FLOATING POINT SUBTRACTOR:
VERILOG MODULE:

`timescale 1ns/1ps

module fpsub(clk,st,done,ovf,unf,fpinput1,fpinput2,fpsum);

input st,clk;

output done,ovf,unf;

input [15:0]fpinput1,fpinput2;

output [15:0]fpsum;

reg done,ovf,unf;

reg [15:0]fpsum;

reg [6:0]f1,f2;

reg [7:0]e1,e2;

reg [8:0]f1comp,f2comp,fsum;

reg s1,s2,fv,fu;

reg [2:0]state;

always@(f1 or s1 or s2 or f2 or f1comp or f2comp or fsum or e1)

begin

if(s1)

  f1comp={2'b11,f1};

else

  f1comp={2'b0,f1};

if(s2)

  f2comp={2'b11,f2};

else

  f2comp={2'b0,f2};

fsum=f1comp+(~f2comp)+1'b1;

fv=fsum[8]^fsum[7];

fpsum={e1,s1,f1[6:0]};

end

always@(posedge clk)

begin

case(state)

3'b000:begin 

       if(st) begin

         e1=fpinput1[15:8];

         s1=fpinput1[7];

         f1[6:0]=fpinput1[6:0];

        end

      done=1'b0; ovf=1'b0; unf=1'b0; state=3'b001;

     end

3'b001: begin

        e2=fpinput2[15:8];

        s2=fpinput2[7];

        f2[6:0]=fpinput2[6:0];

        state=3'b010; end

3'b010: begin if(f1==0 | f2==0)

              state=3'b011;

        else if(e1==e2)

              state=3'b011;

        else if(e1<e2)

           begin

              f1={f1[6],f1[6:1]};

               e1=e1+1'b1;

               state=3'b010;

            end

        else


    begin



  f2={f2[6],f2[6:1]};



  e2=e2+1'b1;

                  state=3'b010;



end

         end

3'b011: begin

            s1=fsum[7];

          if(!fv)


      f1=fsum[6:0];


else

   
  begin


     f1=fsum[7:1];


     e1=e1+1'b1;


     end

 
 state=3'b100;

      end

3'b100: begin if(f1==0)

           begin


      e1=8'b0;


      state=3'b110;


    end

         else

          state=3'b101;

       end

3'b101: begin if(e1==8'b10000000)

                   begin

                     unf=1'b1;


 
     state=3'b110;



    end

           else if(fu==0)


        state=3'b110;

          else if(s1==f1[6])

                begin



   f1={f1[5:0],1'b0};

    

   e1=e1+8'b11111111;

                   state=3'b101;

                end

            else

                 state=3'b110;


  end

3'b110:begin if(e1==8'd127)

             ovf=1'b1;


     done=1'b1;


    state=3'b000;

        end

default:begin  state=3'b000; end

endcase

end

endmodule

TEST BENCH:
`timescale 1ns/1ps

module fpsubtest;

reg [15:0]fpinput1,fpinput2;

reg st,clk;

wire done,ovf,unf;

wire [15:0]fpsum;

fpsub F1(clk,st,done,ovf,unf,fpinput1,fpinput2,fpsum);

always

begin

#30 clk=1'b0;

#30 clk=1'b1;

end

initial

begin

st=1'b0; fpinput1=16'h0304;fpinput2=16'h0302;

#100 st=1'b1;

#1000 $finish;

end

endmodule

FLOATING POINT DIVIDER:
VERILOG MODULE:

`timescale 1ns/1ps

module f4div(ready,q,r,f1,f2,e1,e2,expo,sign,clk,st);

input clk;

input sign;

input st;

input [7:0]f1,f2;

input [7:0]e1,e2;

output [15:0]q,r;

output ready;

output [7:0]expo;

reg [7:0]q, qtemp;

reg [15:0]f1copy, f2copy, diff;

reg negoutput;

wire [7:0] r = f1copy[7:0];

reg  [3:0]bit; 

wire ready = !bit;

initial bit = 0;

initial negoutput = 0;

wire [7:0]expo= e1+(~e2)+1'b1;

   always @( posedge clk) 

  if(st) 

  begin       

      if(ready) begin

        bit = 4'd8;

        q = 0;

        qtemp = 0;

        f1copy = (!sign || !f1[7]) ? {8'd0,f1} : {8'd0,~f1 + 1'b1};

        f2copy = (!sign || !f2[7]) ? {1'b0,f2,7'd0} : {1'b0,~f2 + 1'b1,7'd0};

        negoutput = sign &&((f1[7] && !f2[7]) ||(!f1[7] && f2[7]));

        end 

     else if ( bit > 0 ) begin

        diff = f1copy+(~f2copy)+1'b1;

        qtemp = qtemp << 1;

        if( !diff[15] ) begin

           f1copy = diff;

           qtemp[0] = 1'd1;

        end

        q = (!negoutput) ? qtemp : ~qtemp + 1'b1;

         f2copy = f2copy >> 1;

        bit = bit+4'b1111;

     end

end  

endmodule

TEST BENCH:

`timescale 1ns/1ps

module f4divtest;

reg sign;

reg clk;

reg st;

reg [7:0]f1,f2;

reg [7:0]e1,e2;

wire [7:0]q,r;

wire [7:0]expo;

wire ready; 

f4div F1(ready,q,r,f1,f2,e1,e2,expo,sign,clk,st);

always

begin

#10 clk=1'b0;

#10 clk=1'b1;

end

initial

begin

#200  st=1'b0; f1=8'b00011010; f2=8'b00001010; sign=1'b0; e1=8'd6; e2=8'd3;

#230 st=1'b1;  

#300 st=1'b0;f1=8'b00001111; f2=8'b0000111100010110; sign=1'b0; e1=8'd5; e2=8'd1;

#330 st=1'b1;

#2000 $finish;

end

endmodule

FLOATING POINT MULTIPLIER

Verilog Module:

`timescale 1ns/1ps

module f4mul(clk,st,f1,f2,e1,e2,f,v,done,X);

input clk,st;

input [7:0] f1,f2,e1,e2;

output reg [14:0] f;

output reg [8:0] X;

output reg v,done;

reg [1:0] PS1,NS1;

reg [3:0] State,Nextstate; 

reg [8:0] addout;

reg [7:0] A,B,C; 

reg [8:0] Y;

reg NC;

reg load,adx,mdone,sm8,rsf,lsf;

reg adsh,sh,cm,g;

wire  m;

always@(PS1 or st or mdone or X or A or B)

begin

load=1'b0; adx=1'b0;sm8=1'b0;rsf=1'b0;lsf=1'b0; NS1=2'd0; f=15'd0;done=1'b0; v=1'b0;mdone=1'b0;

case (PS1)

2'b00:

begin  

    done=1'b0;v=1'b0;

    if(st) begin 

                 load=1'b1; NS1=2'b01; f=15'd0; 

           end

end

2'b01:  begin 


     adx=1'b1;NS1=2'b10; 


end

2'b10: 
begin 


      if(mdone) begin







    if(A==8'd0) sm8=1'b1;




    else if(A==8'b01000000 && B==8'b00000000) rsf=1'b1;




    else if(A[6]==A[5]) lsf=1'b1;




    NS1=2'b11;




end


      else




NS1=2'b10;


 end

2'b11: begin


     if(X[8] != X[7]) v=1'b1; 


      else v=1'b0;


      done=1'b1;


      f={A[6:0],B};


      if(!st) NS1=2'b0;


end

default:begin NS1=2'b0; end

endcase

end

always@(posedge clk)

begin

     State=Nextstate;

     PS1=NS1;

end

assign m=B[0];

always@(State or adx or m )

begin

     adsh=1'b0; sh=1'b0; cm=1'b0; Nextstate=4'd0;mdone=1'b0;

case(State)

4'b0000: begin


   mdone=1'b0;


   if(adx) begin



       if(m) adsh=1'b1;



       else sh=1'b1;



      Nextstate=4'b0001; 



    end


     else Nextstate=4'b0000;


 end

4'b0001: begin


     if(m) adsh=1'b1;


     else sh=1'b1;


     Nextstate=4'b0010;


end

4'b0010: begin


    if(m) adsh=1'b1;


    else sh=1'b1;


    Nextstate=4'b0011;


 end


4'b0011: begin


     if(m) adsh=1'b1;


     else sh=1'b1;


     Nextstate=4'b0100;


end

4'b0100: begin


    if(m) adsh=1'b1;


    else sh=1'b1;


    Nextstate=4'b0101;


 end


4'b0101: begin


     if(m) adsh=1'b1;


     else sh=1'b1;


     Nextstate=4'b0110;


end

4'b0110: begin


    if(m) adsh=1'b1;


    else sh=1'b1;


    Nextstate=4'b0111;


 end


4'b0111:  begin if(m) begin  

                      cm=1'b1; adsh=1'b1; 

                     end



else sh=1'b1;



Nextstate=4'b1000;


  end

4'b1000: begin



mdone=1'b1;



Nextstate=4'b0000;


end

default: Nextstate=4'b0000; 

endcase 

end

always@(posedge clk)  

begin

        if(!cm) addout=A+C+8'd0;

          else addout=A+(~C)+8'b00000001;

if (load) 

begin 

    X= {e1[7],e1} ; 

    Y= { e2[7], e2 };

    A=8'd0; 

    B=f2;

    C=f1;

end

if(adx) {NC,X}= X+Y;

if(sm8) X=9'b110000000;

if(rsf)


begin


A= {1'b0, A[7:1]};


B= {A[0], B[7:1]};


{NC,X}= X+9'd1;


end

if(lsf)


begin



A={ A[6:0] , B[7] };



B={ B[6:0] , 1'b0 };



{NC, X}=X+9'b111111111;


end 

if(adsh)


begin


  g=C[7]^cm;


  A={g,addout[7:1]};


  B={addout[0] , B[7:1]};


  end

if(sh) begin


   B= {A[0] , B[7:1] };


   A= {A[7] , A[7:1] };


end

end      

endmodule

TEST BENCH:

`timescale 1ns/1ps 

module f4multest;

reg clk,st;

reg [7:0] f1,f2,e1,e2;

wire [14:0] f;

wire v,done;

wire [8:0]X;

f4mul F1(clk,st,f1,f2,e1,e2,f,v,done,X);

always

begin

#10 clk=1'b0;

#10 clk=1'b1;

end

always

begin

 st=1'b0; 

  f1=8'b00000111; f2=8'b00000111 ; e1=8'b00000001; e2=8'b00000010;

#100 st=1'b1;

#100 st=1'b0;

#1000 $finish;

end

endmodule

Figure 3.3: SM chart for floating point multiplier
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