Design And Implementation Of 64 Bit ALU Using VHDL

1. INTRODUCTION TO VHDL

1.1 OVERVIEW
VHDL is an industry standard language for the description, modelling and synthesis of digital circuits and systems. It arose out of the US government’s Very High Speed Integrated Circuits (VHISC) program. On the course of this program, it became clear that there was a need of a standard language for describing the structure, and function of integrated circuits (IC). Hence the VHSIC Hardware Description Language (VHDL) was developed. It was subsequently developed further under the auspices of the institute of Electrical and Electronics Engineers (IEEE) and adopted in the form of the IEEE standard 1076 standard HDL language reference manual in 1987.
VHDL is particularly well suited for designing with programmable logic devices. Designing with large capacity CPLDs and FPGAs of 500 to more than 100,000 gates, engineers can no longer use Boolean equations or gate level descriptions to quickly and efficiently complete a design. VHDL provides high level language constructs that enable designers to describe large circuits and being products to market rapidly. It supports creation of libraries in which to store components for reuse in subsequent designs. Because it is a standard language, it provides probability of code between synthesis and simulation tools, as well as device independent design. It also facilitates converting a design from a programmable logic to an ASIC implementation.
VHDL enables the description of a digital design ad different levels of abstractions such as logarithmic register transfer and logic gate level. A user can abstract a design or hide the implementation details of a design using VHDL. In a top-down design methodology, a designer usually represents the system in high-level abstraction first and latter convert it to a more detailed design.
A design description written in VHDL is usually run through a VHDL simulator to verify the behaviours of a modelled system. To simulate a design, the designer must be supplied the simulator with a set of stimuli. The simulation program applies the stimuli to the input description specified times and generates the responses of the circuit. The waveforms, timing diagrams or tabular listings may illustrate the result of the simulation program. The designer interprets these results to verify whether or not the designs are satisfactory. A simulator can be used at any stages of a design process.
At a higher level of design process, simulation provides information regarding the functionality of the system under the design. Normally, the simulation of this level is very quick, but doesn’t provide the detailed information about the circuit’s functionality and timing. As design process, goes down to the lower level, the simulation will take longer time. The simulation of the lower level of the design process, runs more slowly, but provides more detailed information about the timing and functionality of the circuits. VHDL allows mixed level design in which some of the modules are describe in a high level of abstraction and some in a lower level of abstraction. The advantage mixed level simulation is that designer can focus on the design of the timing critical modules, while leaving the non-critical modules to a later stage. To avoid the higher cost of low level simulation runs, simulator should be used to detect the design flow as early as possible.

1.2 HARDWARE ABSTRACTION
VHDL is used to describe a model for a digital hardware device. This model specifies the external view of the device and one or more internal views. The internal view of the device specifies the functionality or structure, while the external view specifies the interface of the device through which it communicates with the other models in its environment. Figure I.I shows the hardware device and the corresponding software model.
The device to device model mapping is strictly a one to many. That is, a hardware device may have many device models as shown infig4.2b. Even though entities 1 through N represent N different entities from the VHDL point of view, in reality they represent the same hardware device.

[image:]
[image:]

1.3 BASIC TERMINOLOGY
The building blocks of VHDL language along with some common terms are given below:
· Entity: All designs are expressed in terms of entities .An entity is the most basic building block in a design. The upppermost level of the is the top level entity.If the design is hierarchical then the top level description will have lower level descriptions containing it. These lower level descriptions will be lower level entities containing ht etop level entity description.
· Architecture: All entities that can be simulated have an architecture description. Architecture describes the behaviour of the entities. A single entity can have multiple architectures. One architecture might be behavioural, while another may be structural description of the design.
· Package: Package is a collection of commonly used data types and subprograms used in a design.
· Process: Process is the basic unit of execution in VHDL. All operations that are performed in a simulation of a VHDL description are broken into single or multiple processes.
1.3.1 ENTITY DECLARATION
A VHDL entityspecifies the name of the entity,the ports of the entityand entity related information.All designs arecreatedusing one or more entities.The entity describes the interface to the VHDL model. The syntax for an entity declaration is :
entity entity_name is
[generic (list_of_generics_and_their_types;]
[port(list_of_interface_port_names_and_their_types);]
[entity_item_declarations]
[begin
entity_statements]
end[entity][entity_name];
1.3.2 ARCHITECTURE BODY
The architecture body describes the internal view of an entity. It describes the functionality or the structure of the entity. The syntax of an architecture body is:
architecture architecture_name of entity_name is
[architecture_item_declarations]
begin
concurrent_statements—these are
process_statement
block_statement
concurrent_procedure_call_statement
concurrent_assertion_statement
concurrent_signal_assignment_statements
component_instantiation_statement
generate_statement
end [architecture] [architecture_name];

1.3.3 PROCESS STATEMENT
The process statement contains sequential statements that describe the functionality of a portion of an entity in sequential terms.
The syntax of process statement is:
[process _label:] process [(sensitivity_list)] [is]
[process_item_declarations]
begin
sequential_ statement
variable_assignment _ statement
signal_assignment_ statement
wait_ statement
if statement
case statement
loop statement
null statement
exit statement
next statement
assertion statement
report statement
procedure call statement
return statement
end process [process label];
A set of signals to which the process is sensitive is defined by the sensitivity list. The processs then suspends after executing the last sequential statement and wait for another event to occur on a signal in the sensitivity list. Items declared in the item declaration part are available for use only within the process.
1.3.4 COMPONENT DECLARATION
An architecture body can also make use of other entities described separately and placed in design libraries. In order to do this, the architecture must declare a component which can be thought of as a template defining a virtual design entity, to be instantiated within the architecture.Later, a configuration, specification can be used to specify matching library entity to use. The syntax of a component declaration is:
component identifier
[local_generic_clause]
[local_port_clause]
end component;

1.3.5 COMPONENT INSTANTIATION
A component defined in architecture may be instantiated using the syntax:
instantiation_label:
component_name
[generic_map_aspect]
[port_map_aspect];
This indicates that the architecture contains an instance of the named component, with actual values specified for generic constants, and with the component ports connected to actual signals or entity ports

1.3.6 PACKAGE DECLARATION
A package is a collection of types, constants, subprograms and possibly other things, usually intended to implement some particular service or to isolate a group of related items. In particular the details of constant values and subprogram bodies can be hidden from users of package, with only their interfaces made visible. A package may be split into 2 parts: a package declaration, which defines its interface and a package body which defines the deferred details. The body part may be omitted if there are no deferred details.
The declarations define things which are to be visible to users of the package, and which are allows visible inside the package body. A package declaration contains a set of declarations that may possibly be shared by many design units. It defines the interface to the package; it defines items that can be made visible to other design units. A package body in contrast contains the hidden details of a package. The syntax of a package declaration is:
package package_name is
package_item_declaration—these may be
subprogram declarations
type declarations
subtype declarations
constant declarations
signal declarations
variable declarations
file declarations
alias declarations
component declarations
attribute declarations
attribute specifications
disconnection specifications
use clauses
end [package][package_name];
1.3.7 VARIABLE ASSIGNMENT STATEMENT
Variables can be declared and used inside a process statement. A variable is assigned a value using the variable assignment statement that typically has the form

variable-object := expression;
The expression is evaluated when the statement is executed and the computed value is assigned to the variable object instantaneously, that is, at the current simulation time.
1.3.8 SIGNAL ASSIGNMENT STATEMENT

Signals are assigned values using a signal assignment statement The simplest form of a signal assignment statement is
signal-object <= expression [after delay-value];
A signal assignment statement can appear within a process or outside of a process. If it occurs outside of a process, it is considered to be a concurrent signal assignment statement. This' is discussed in the next chapter. When a signal assignment statement appears within a process, it is considered to be a sequential signal assignment statement and is executed in sequence with respect to the other sequential statements that appear within that process.

[bookmark: _GoBack]1.4 MODELLING STYLES
1.4.1 DATAFLOW STYLE OF MODELING

In this modelling style, the flow of data through the entity is expressed primarily using concurrent signal assignment statements. The structure of the entity is not explicitly specified in this modelling style, but it can be implicitly deduced.

1.4.2 STRUCTURAL STYLE OF MODELING

In the structural style of modelling, an entity is described as a set of interconnected components. The function of a module is described by defining how it is composed of sub-modules .Each of the sub modules is an instance of some entity, and the other ports of the instances are connected using signals. Each of these entities might also have a structural description.
1.4.3 BEHAVIORAL STYLE OF MODELING
In contrast to the styles of modelling described earlier, the behavioural style of modelling specifies the behaviour of an entity as a set of statements that are executed sequentially in the specified order. This set of sequential statements, that are specified inside a process statement, do not explicitly specify the structure of the entity but merely specifies its functionality.
1.5 SEQUENTIAL STATEMENTS
Sequential statement exists within a process statement as well as in subprograms. The commonly used sequential statements are:
1.5.1 IF STATEMENT
The if statement starts with a keyword if and ends with a keyword end if.There are two optional clauses else if and else clause. The else if claue is repeatable but only one else clause is allowed. The condition construct in all cases is Boolean expression. This is an expression that elevates into either true or false. Whenever a condition elevates to a true value, the sequence of statements following is executed. If no condition is true, then sequence of statements for the else clause is executed.
The syntax of if statement is:
if boolean-expressionthen
sequential-statements
[elsif boolean-expression then
 sequential-statements]
[else -- else clause.
sequential-statements]
end if;
1.5.2 CASE STATEMENT
The case statement selects one of the branches for execution based on the value of the expression. The expression value must be of a discrete type or of a one-dimensional array type. Choices may be expressed as single values, as a range of values, by using I (vertical bar: represents an "or"), or by using the others clause. The case statement consists of a keyword case followed by an expression and keyword IS. The expression either returns a value that matches one of the choices in when statement part, or matches an others clause.
The syntax of a case statement is
case expression is
when choices => sequential-statements
when choices => sequential-statements
-- Can have any number of branches.
[when others => sequential-statements]
end case;
1.6 WRITING A TEST BENCH

A test bench is a model that is used to exercise and verify the correctness of a hardware model. The expressive power of the VHDL language provides us with the capability of writing test bench models also in the same language. A test bench has three main purposes:
 1. to generate stimulus for simulation (waveforms),
 2. to apply this stimulus to the entity under test and to monitor the output responses,
 3. to compare output responses with expected known values.
Again, the language provides a large number of ways to write a test bench. In this section, we explore only some of these. A typical format of a test bench that drives an entity under test is

entity TEST_BENCH is
end;
 architecture TB_BEHAVIOR of TEST_BENCH is
component ENTITY_UNDER_TEST
 port (list-of-ports-their-types-and-modes);
end component;
Local-signal-declarations;
begin
 Generate-waveforms-using-behavioral-constructs;
Apply-to-entity-under-test;
 EUT: ENTITY_UNDER_TEST port map (port-associations);
 Monitor-values-and-compare-with-expected-values;
end TB_BEHAVIOR;

The application of stimulus to the entity under test is accomplished automatically by instantiating the entity in the test bench model and then specifying the appropriate interface signals. The next two subsections look at waveform generation and output response monitoring.

2. ARITHMETIC AND LOGIC UNIT

The ALU is a building block of any microprocessor or DSP that performs many arithmetic functions based on the control input selection. The ALU is the heart of a microprocessor and performs all the basic operations. Besides the main ALU there are separate units which work independent of the main ALU for performing secondary operations such as address computation. Such units are present in pipelined microprocessors wherein the extra hardware requirement is for achieving greater speed of operation. Most of the present day microprocessors are based on pipelining. The ALU can perform basic arithmetic functions such as addition, subtraction etc and logic functions including add, subtract, logic AND, logic OR, and logic XOR. These various functions of the ALU are implemented using a set of functional units each implementing a function, these may also be done using sharing of same hardware with use of certain additional units like multiplexers. The ALU has 3 set of input signals and one output signal. Operands A and B are both 64 bits each. These are fed to these functional units along with select lines which decide the operation to be performed. Each combination of the select lines corresponds to one particular function. There are also some other output signals in the ALU, such as overflow, zero and negative.
[image: H:\STUDY\S8 Project\alu block.jpg]

For executing an instruction in a microprocessor, the instruction is fetched in the first clock cycle using the instruction pointer and decoded. The control unit then calculates the memory addresses of the operands using ALU (or the additional unit as in pipelined architecture) using the offset obtained from the instruction, loads the address onto the address buses of the CPU and fetches the operands from their locations in memory (or registers or from instruction itself as in case of immediate addressing) and feeds them as inputs to the ALU through the system buses. Also the control unit sets the select lines of the ALU depending on the operation to be performed; this information is obtained from the instruction itself.
 During the next clock cycle the ALU operates on the operands which it receive on the data buses of the CPU and produce the result. Also depending on the result of the operation the flag register is set by the ALU. Next the result of operation is either stored to a register or written to the memory. Finally the address of next instruction is calculated and execution proceeds in a similar manner as above.

BLOCK DIAGRAM

[image:]

3. 64 BIT ALU DESIGN

	The ALU is implemented using parellel implementation of units which perform individual functions such as addition, subtraction etc. Operands are received and fed to the unit corresponding to the operation to be performed and resut is produced by that unit and fed to the output lines of the ALU. The select lines determine the operation to be performed. Also the flags are set by the ALU.

The various functions and the corresponding functional units are
LOGICAL OPERATIONS
1. AND
2. OR
3. XOR
4. NOT
5.SHIFT
6.ROTATE

ARITHMETIC OPERATIONS
7. INCREMENT
8. DECREMENT
9.ADDITION
10. SUBTRACTION
11. MULTIPLICATION
10. DIVISION

	
FUNCTION
	
SELECT LINES
	
OPERATION

	
	S3
	S2
	S1
	S0
	

	INCREMENT
ADC
SBB
DEC
AND
OR
XOR
NEG
SHIFT RIGHT
SHIFT LEFT
ROTATE RIGHT
ROTATE LEFT
MULTIPLICATION
DIVISION
	0
0
0
0
0
0
0
0
1
1
1
1
1
1
	0
0
0
0
1
1
1
1
0
0
0
0
1
1
	
0
0
1
1
0
0
1
1
0
0
1
1
0
0

	
0
1
0
1
0
1
0
1
0
1
0
1
0
1

	a + 1
a + b + cin
a – b - cin
a - 1
a AND b
a OR b
a XOR b
NOT a

TABLE SHOWING SELECT LINES

4. LOGICAL OPERATIONS

The logical funtions to be implemented are AND,OR,NOT and XOR. These are bit by bit operations and can be implemented quite easily.for example for a NOT gate, bit by bit reversal of input is done.similiarly for AND, OR and XOR gates bit by bit corresponding operation is done. logical operations may also be performed using the same hardware as that for arithmetical operations with certain modifications.For example OR maybe performed using the hardware for addition with carries deactivated.logical operations are performed for decision making.

[image: H:\STUDY\S8 Project\adder.jpg]

The fig shows the implementation of XOR function using 64 XOR gates.for implementing logical operations in this manner first a corresponding function is created in vhdl. Then this function is called separately for each bit.

5. ARITHMETIC OPERATIONS

5.1 ADDITION

In electronics, an adder is a digital circuit that performs addition of numbers. In modern computers adders reside in the arithmetic logic unit (ALU) where other operations are performed. Although adders can be constructed for many numerical representations, such as Binary-coded decimal or excess-3, the most common adders operate on binary numbers. In cases where two's complement is being used to represent negative numbers it is trivial to modify an adder into an adder- subtractor
Types of adders
For single bit adders, there are two general types. A half adder has two inputs, generally labelled A and B, and two outputs, the sum S and carry C. S is the two-bit XOR of A and B, and C is the AND of A and B. Essentially the output of a half adder is the sum of two one-bit numbers, with C being the most significant of these two outputs. The second type of single bit adder is the full adder. The full adder takes into account a carry input such that multiple adders can be used to add larger numbers. To remove ambiguity between the input and output carry lines, the carry in is labelled Ci or Cin while the carry out is labelled Co or Cout.
Half adder
[image:]
A half adder is a logical circuit that performs an addition operation on two binary digits. The half adder produces a sum and a carry value which are both binary digits.
[image:]

Following is the logic table for a half adder:
Input Output
A B C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Full adder

[image:]
Inputs: {A, B, Carry In} _ Outputs: {Sum, Carry Out}

 Schematic symbol for a 1-bit full adder
A full adder is a logical circuit that performs an addition operation on three binary digits. The full adder produces a sum and carries value, which are both binary digits. It can be combined with other full adders (see below) or work on its own.
[image:]
 Input Output
A 	B 	Ci 		C 	 S
0	 0 	0		 0	 0
0	 0	 1		 0	 1
0	 1	 0		 0	 1
0	 1	 1		 1	 0
1	 0	 0		 0	 1
1	 0 	1		 1	 0
1	 1 	0		 1 	0
1	 1	 1 		1	 1
Note that the final OR gate before the carry-out output may be replaced by an XOR gate without altering the resulting logic. This is because the only discrepancy between OR and XOR gates occurs when both inputs are 1; for the adder shown here, one can check this is never possible. Using only two types of gates is convenient if one desires to implement the adder directly using common IC chips. A full adder can be constructed from two half adders by connecting A and B to the input of one half adder, connecting the sum from that to an input to the second adder, connecting Ci to the other input and or the two carry outputs. Equivalently, S could be made the three-bit xor of A, B, and Ci and Co could be made the three-bit majority function of A, B, and Ci. The output of the full adder is the two-bit arithmetic sum of three one-bit numbers.

	The arithmetic functions are much more complex to implement than the logic functions. The addition function may be implemented using a cascaded combination of simple full adders.
[image: H:\STUDY\S8 Project\adder1.jpg]

However this is not an efficient algorithm for addition since it involves time delay (which is due to the delay involved in receiving carry from the previous stage, hence this adder is also called ripple carry adder). Thus it limits the speed with which two numbers can be added. This is so important since all operations in th ALU are implemented by repeated additions and thus speed of addition has an important role in determining the speed of operation of an ALU. Although the adder will always have some output at its output terminals, the output will not be correct unless the signals are given enough time to propagate connected from the inputs to outputs. One solution to this problem is to employ faster gates with reduced delays. However physical circuits have a limit to their capability. Another solution is to increase the complexity of the equipment in such a way as to reduce the carry delay time. Hence addition may be implemented using a look ahead carry adder which generates all carries initially itself thereby avoiding the time lag involve.
The carry generate, g, and carry propagate, p, functions are defined as follows.
· g(i) = a(i) AND b(i)
· p(i) = a(i) XOR b(i)

The output sum and carry can be expressed as
· d(i)=p(i) XOR c(i)
· c(i+1)=g(i) OR (p(i) AND c(i))

[image: H:\STUDY\S8 Project\laca.jpg]
	g(i) is called carry generate and it produces a carry of 1 when both a(i) and b(i) are1, regardless of the input carry c(i). p(i) is called carry propagate, because it determines whether a carry into stage (i) will propagate into stage (i+1), ie.whether an assertion of c(i) will propagate to an assertion of c(i+1). The output carries are propagated through the carry lookahead generator. Since the boolean functions for each output carry can be expressed with two levels of gates all output carries are generated ater a time delay through two level of gates. Thus c62 need not have to wait for c61 and c60 to propagate, infact c62 is propagated at the same time as the other two. Thus outputs d1 through d62 have equal propagation delay times. The gain in speed of operation is at the expense of additional hardware.

5.2 SUBTRACTION

The subtraction is performed using adder module by noticing that
a - b = a + (-b)
where -b is formed (in the 2’s complement representation) by inverting all of the b-bits and adding one to the lease significant bit. The circuit for subtractor consists of an adder with inverters placed between each data input b and the corresponding input of the full adder.The input carry C0 must be equal to 1 when subtraction is performed. For the ALU, we want to control when the b bits should be inverted, i.e.
• addition: do not invert b-bits, carry in is zero
• subtraction: invert b-bits, carry in is one
The result of subtraction will also be obtained in two’s complement’s form.

5.3 MULTIPLICATION

	The scheme for implementing multiplication is as shown. The multiplication is done through repeated additions, wherein the sum of all partial products are taken. The partial products depend on the multiplier bit being considered (partial product equals multiplicand if multiplier bit is 1 and partial product equals 0 if multippie bit is zero). Several schemes are available for implementing this algorithm out of which a refined version may be chosen and implemented.

The rules for binary multiplication can be stated as follows
1. If the multiplier digit is a 1, the multiplicand is simply copied down and
represents the product.
2. If the multiplier digit is a 0 the product is also 0.
The basic of array multiplication is as shown
a – multiplicand
b – multiplier
p – product
Binary multiplication
p=a×b
a: an−1 an−2…a1a0
b: bn−1bn−2…b1b0
p: p2 n−1 p2 n−2…p1 p0
 [image:]
Let us first consider the first algorithm for multiplication. Assume that the multiplier is in the 64-bit multiplier register and the product register (128 bit) is initialized to 0.Partial products corresponding to each of the multiplier bits are obtained by multiplying the corresponding multiplier bit with multiplicand. Partial sums and partial carrys are also calculated using previous partial sums and partial carrys. The first partial sum is taken as the first partial product itself and the first partial carry is initialised as zero. The final product (128 bit) is calculated bit by bit using the LSBs from each of the partial sums.
	
[image:]

5.4 DIVISION

In the first division algorithm we start with the 64-bit Quotient register set to zero. Each iteration of the algorithm needs to move the devisor to the right by one digit, so start with the devisor placed in the left half of the 128-bit devisor register and shift it right one bit each step to align it with the dividend. The remainder register is initialized with the dividend.

[image:]	The algorithm has three steps. In the first step divisor is subtracted from dividend stored in remainder register. If the result is positive, then the divisor is less than or equal to dividend, so we generate a1 in the quotient. If the result is negative we stop the process and generate the results. If not divisor is again subtracted from the remainder register and quotient incremented. This is repeated till remainder becomes less than the divisor. The remainder and the quotient will be found in their namesake registers after the iterations are complete.
The revised algorithm is shown below in which algorithm can be improved by using a 64 bit divisor register is used and quotient is kept in the LSB of the remainder register. This refinement halves the width of the adder and registers by noticing where there are unused portions of registers and adder. Figure shows the revised hardware

[image:]

6.XILINX

Xilinx Inc. (NASDAQ:XLNX) is the world's largest supplier of programmable logic devices, the inventor of FIELD PROGRAMMABLE LOGIC ARRAY (FPGA) and the first semi-conductor company with a fabulous manufacturing model. Founded in Silicon Valley in 1984 and head quartered in San Jose, California, USA, the company has corporate offices throughout North America and Europe. The programmable logic device market has been led by Xilinx since the late 1990s. Over the years, Xilinx has fuelled an aggressive expansion to India, Asia and Europe- regions.

[image:]

PROCESSES INVOLVED IN SIMULATION USING XILINX

Starting the ISE Software:
To start ISE, double-click the desktop icon,

 [image:]

or start ISE from the Start menu by selecting:
Start → All Programs → Xilinx ISE 8.1i → Project Navigator

Accessing Help
At any time during the tutorial, you can access online help for additional information about the ISE software and related tools.To open Help, do either of the following:

· Press F1 to view Help for the specific tool or function that you have selected or highlighted.
· Launch the ISE Help Contents from the Help menu. It contains information about creating and maintaining your complete design flow in ISE.

[image:]

Create a New Project

Create a new ISE project which will target the FPGA device on the Spartan-3 Startup Kit demo board.
To create a new project:
1. Select File > New Project... The New Project Wizard appears.
2. Type tutorial in the Project Name field.
3. Enter or browse to a location (directory path) for the new project. A tutorial subdirectory is created automatically.
4. Verify that HDL is selected from the Top-Level Source Type list.
5. Click Next to move to the device properties page.
6. Fill in the properties in the table as shown below:
♦ Product Category: All
♦ Family: Spartan3
♦ Device: XC3S200
♦ Package: FT256
♦ Speed Grade: -4
♦ Top-Level Module Type: HDL
♦ Synthesis Tool: XST (VHDL/Verilog)
♦ Simulator: ISE Simulator (VHDL/Verilog)
♦ Verify that Enable Enhanced Design Summary is selected.
Leave the default values in the remaining fields.
When the table is complete, the project properties will look like the following:
[image:]
7. Click Next to proceed to the Create New Source window in the New Project Wizard. At the end of the next section, new project will be complete.

Create an HDL Source
In this section, create the top-level HDL file for your design. Determine the language to use for the tutorial. Then, continue either to the “Creating a VHDL Source” section below, or skip to the “Creating a Verilog Source” section.

Creating a VHDL Source

Create a VHDL source file for the project as follows:
1. Click the New Source button in the New Project Wizard.
2. Select VHDL Module as the source type.
3. Type in the file name counter.
4. Verify that the Add to project checkbox is selected.
5. Click Next.
6. Declare the ports for the counter design by filling in the port information as shown below:
7. Click Next, then Finish in the New Source Information dialog box complete the new source file template.
8. Click Next, then Next, then Finish.

[image:]

7. Click Next, then Finish in the New Source Information dialog box to complete the new source file template.
8. Click Next, then Next, then Finish.
The source file containing the entity/architecture pair displays in the Workspace, and the counter displays in the Sources tab, as shown below:

[image:]

Checking the Syntax

When the source files are complete, check the syntax of the design to find errors and typos.
1. Verify that Synthesis/Implementation is selected from the drop-down list in the Sources window.
2. Select the counter design source in the Sources window to display the related processes in the Processes window.
3. Click the “+” next to the Synthesize-XST process to expand the process group.
4. Double-click the Check Syntax process.
5. Close the HDL file.

Design Simulation

Verifying Functionality using Behavioral Simulation

Create a test bench waveform containing input stimulus you can use to verify the functionality of the counter module. The test bench waveform is a graphical view of a test bench.

Create the test bench waveform as follows:
1. Select the counter HDL file in the Sources window.
2. Create a new test bench source by selecting Project → New Source.
3. In the New Source Wizard, select Test Bench WaveForm as the source type, and type
counter_tbw in the File Name field.
4. Click Next.
5. The Associated Source page shows that you are associating the test bench waveform with the source file counter. Click Next.
6. The Summary page shows that the source will be added to the project, and it displays the source directory, type and name. Click Finish.
7. You need to set the clock frequency, setup time and output delay times in the Initialize Timing dialog box before the test bench waveform editing window opens.
[image:]

8. Click Finish to complete the timing initialization.
9. The blue shaded areas that precede the rising edge of the CLOCK correspond to the Input Setup Time in the Initialize Timing dialog box. Toggle the DIRECTION port to define the input stimulus for the counter design as follows:

[image:]

10. Save the waveform.
11. In the Sources window, select the Behavioral Simulation view to see that the test bench waveform file is automatically added to your project.

[image:]

12. Close the test bench waveform.

7.VHDL CODES
TOP LEVEL

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

ENTITY TOP IS
GENERIC(SIZE: INTEGER :=64);
PORT(A,B : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
CIN : IN STD_LOGIC;
 S : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 RESET: IN STD_LOGIC;
 EN: IN STD_LOGIC;
 CLK: IN STD_LOGIC;
 COUT,V,N,Z : OUT STD_LOGIC;
 FINALOUT : INOUT STD_LOGIC_VECTOR (127 DOWNTO 0));

END TOP;

ARCHITECTURE BEHAVIORAL OF TOP IS

COMPONENT ALU IS
PORT(A,B : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
CIN,CLK : IN STD_LOGIC;
 S : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 G : INOUT STD_LOGIC_VECTOR(63 DOWNTO 0);
COUT,V,N,Z : OUT STD_LOGIC);
END COMPONENT;

COMPONENT DIVISION IS
GENERIC(SIZE: INTEGER :=64);
PORT(RESET: IN STD_LOGIC;
EN: IN STD_LOGIC;
CLK: IN STD_LOGIC;
NUM: IN STD_LOGIC_VECTOR((SIZE - 1) DOWNTO 0);
DEN: IN STD_LOGIC_VECTOR((SIZE - 1) DOWNTO 0);
RES: INOUT STD_LOGIC_VECTOR((SIZE - 1) DOWNTO 0);
RM: INOUT STD_LOGIC_VECTOR((SIZE - 1) DOWNTO 0)
);
END COMPONENT;
	
COMPONENT MULTIPLICATION IS
PORT (CLK:IN STD_LOGIC;
--RST:IN STD_LOGIC;
A : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
B : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
OUTPUT : INOUT STD_LOGIC_VECTOR(127 DOWNTO 0));
END COMPONENT;

COMPONENT MUX IS
PORT (S : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
ALUOUT : INOUT STD_LOGIC_VECTOR (63 DOWNTO 0);
QUOTIENT : INOUT STD_LOGIC_VECTOR (63 DOWNTO 0);
MULOUT : INOUT STD_LOGIC_VECTOR (127 DOWNTO 0);
REMAINDER : INOUT STD_LOGIC_VECTOR (63 DOWNTO 0);
FINALOUT : INOUT STD_LOGIC_VECTOR (127 DOWNTO 0);
CLK : IN STD_LOGIC);
END COMPONENT;

SIGNAL ABUS,QBUS,RBUS: STD_LOGIC_VECTOR (63 DOWNTO 0);
SIGNAL MBUS: STD_LOGIC_VECTOR (127 DOWNTO 0);

BEGIN
U1: MULTIPLICATION PORT MAP(CLK,A,B,MBUS);
U2: DIVISION PORT MAP(RESET,EN,CLK,A,B,QBUS,RBUS);
U3: ALU PORT MAP(A,B,CIN,CLK,S,ABUS,COUT,V,N,Z);
U4: MUX PORT MAP(S,ABUS,QBUS,MBUS,RBUS,FINALOUT,CLK);

END BEHAVIORAL;

MULTIPLEXER

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

ENTITY MUX IS
 PORT (S : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 ALUOUT : IN STD_LOGIC_VECTOR (63 DOWNTO 0);
 QUOTIENT : IN STD_LOGIC_VECTOR (63 DOWNTO 0);
 MULOUT : IN STD_LOGIC_VECTOR (127 DOWNTO 0);
 REMAINDER : IN STD_LOGIC_VECTOR (63 DOWNTO 0);
 FINALOUT : OUT STD_LOGIC_VECTOR (127 DOWNTO 0);
 CLK : IN STD_LOGIC);
 END ENTITY;

ARCHITECTURE BEHAVIORAL OF MUX IS

ALIAS MSB: STD_LOGIC_VECTOR(63 DOWNTO 0) IS FINALOUT(127 DOWNTO 64);
ALIAS LSB: STD_LOGIC_VECTOR(63 DOWNTO 0) IS FINALOUT(63 DOWNTO 0);
BEGIN

PROCESS(S,ALUOUT,MULOUT,QUOTIENT,REMAINDER,CLK)

BEGIN

	 CASE S IS
WHEN "1100" =>
FINALOUT<=MULOUT;

WHEN "1101" =>
MSB<=QUOTIENT;
LSB<=REMAINDER;

WHEN OTHERS =>

LSB <= ALUOUT;
MSB <=(OTHERS => '0');
END CASE;

END PROCESS;

END BEHAVIORAL;

ALU

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

ENTITY ALU IS
PORT(A,B : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
CIN,CLK : IN STD_LOGIC;
 S : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 G : INOUT STD_LOGIC_VECTOR(63 DOWNTO 0);
COUT,V,N,Z : OUT STD_LOGIC);
END ALU;

ARCHITECTURE BEHV OF ALU IS

SIGNAL BCOMP : STD_LOGIC_VECTOR(63 DOWNTO 0);
SIGNAL ACOMP : STD_LOGIC_VECTOR(63 DOWNTO 0);
SIGNAL UNIT : STD_LOGIC_VECTOR(63 DOWNTO 0);
SIGNAL B65 : STD_LOGIC_VECTOR(64 DOWNTO 0);
SIGNAL A65 : STD_LOGIC_VECTOR(64 DOWNTO 0);
SIGNAL G65 : STD_LOGIC_VECTOR(64 DOWNTO 0);

BEGIN
B65<='0' & B;
A65<='0' & A;
BCOMP <= NOT B;
ACOMP <= NOT A;
UNIT <= "0001";

PROCESS(CLK)
BEGIN

CASE S IS
WHEN "0000" =>
IF CIN = '0' THEN
G <=A;
ELSE
G65<= A65 + UNIT;
G<=G65(63 DOWNTO 0);
COUT<=G65(64);
END IF;
G<=G65(63 DOWNTO 0);
COUT<=G65(64);

WHEN "0001" =>
IF CIN = '0' THEN
 G65 <= A65 + B65;
ELSE
G65 <= A65 + B65 + UNIT;
END IF;
G<=G65(63 DOWNTO 0);
COUT<=G65(64);

WHEN "0010" =>
IF CIN = '0' THEN
G <= A + BCOMP;
ELSE
G <= A + BCOMP + UNIT;
END IF;

WHEN "0011" =>
IF CIN ='0' THEN
G <= A - UNIT;
ELSE
G <= A;
END IF;

WHEN "0100" =>
 G <= A AND B;

WHEN "0101" =>
 G <= A OR B;

WHEN "0110" =>
G <= A XOR B;

WHEN "0111" =>
G <= ACOMP;

WHEN "1000" =>
G(63 DOWNTO 0)<= '0'&A(63 DOWNTO 1);
COUT<=A(0);

WHEN "1001" =>
G(63 DOWNTO 0)<= A(62 DOWNTO 0)&'0';
COUT<=A(0);

WHEN "1010" =>
G(63 DOWNTO 0)<= A(0)&A(63 DOWNTO 1);
COUT<=A(0);

WHEN "1011" =>
G(63 DOWNTO 0)<= A(62 DOWNTO 0)&A(63);
COUT<=A(63);

WHEN OTHERS => NULL;
END CASE;

 IF(A(63) = B(63)) THEN
 IF(G(63) /= A(63)) THEN
 V <= '1';
 ELSE
 V <= '0';
END IF;
 END IF;

IF(G = "00") THEN
 Z <= '1';
ELSE
 Z <= '0';
END IF;

IF(G(63) = '1') THEN
 N <= '1';
ELSE
N <= '0';
END IF;

END PROCESS;
END BEHV;

MULTIPLICATION

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

ENTITY MULTIPLICATION IS
PORT (CLK:IN STD_LOGIC;
--RST:IN STD_LOGIC;
A : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
B : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
OUTPUT : INOUT STD_LOGIC_VECTOR(127 DOWNTO 0));
END MULTIPLICATION;

ARCHITECTURE BEHAVIORAL OF MULTIPLICATION IS
CONSTANT N:INTEGER :=64;
SUBTYPE PLARY IS STD_LOGIC_VECTOR(N-1 DOWNTO 0);
TYPE PARY IS ARRAY(0 TO N) OF PLARY;
SIGNAL PP,PC,PS:PARY;
BEGIN
PGEN:FOR J IN 0 TO N-1 GENERATE
PGEN1:FOR K IN 0 TO N-1 GENERATE
PP(J)(K)<=A(K) AND B(J);
END GENERATE;
PC(0)(J)<='0';
END GENERATE;
PS(0)<=PP(0);
OUTPUT(0)<=PP(0)(0);
ADDR:FOR J IN 1 TO N-1 GENERATE
ADDC:FOR K IN 0 TO N-2 GENERATE
PS(J)(K)<=PP(J)(K) XOR PC(J-1)(K) XOR PS(J-1)(K+1);
PC(J)(K)<=(PP(J)(K) AND PC(J-1)(K)) OR
(PP(J)(K) AND PS(J-1)(K+1)) OR
(PC(J-1)(K)AND PS(J-1)(K+1));
END GENERATE;
OUTPUT(J)<=PS(J)(0);
PS(J)(N-1)<=PP(J)(N-1);
END GENERATE;
PC(N)(0)<='0';
ADDLAST:FOR K IN 1 TO N-1 GENERATE
PS(N)(K)<=PC(N)(K-1) XOR PC(N-1)(K-1) XOR PS(N-1)(K);
PC(N)(K)<=(PC(N)(K-1) AND PC(N-1)(K-1)) OR
(PC(N)(K-1) AND PS(N-1)(K)) OR
(PC(N-1)(K-1)AND PS(N-1)(K));
END GENERATE;
OUTPUT(2*N-1)<=PC(N)(N-1);
OUTPUT(2*N-2 DOWNTO N)<=PS(N)(N-1 DOWNTO 1);
END BEHAVIORAL;
DIVISION

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

ENTITY DIVISION IS
GENERIC(SIZE: INTEGER :=64);
PORT(RESET: IN STD_LOGIC;
EN: IN STD_LOGIC;
CLK: IN STD_LOGIC;
--READY: INOUT STD_LOGIC_VECTOR(63 DOWNTO 0);
NUM: IN STD_LOGIC_VECTOR((SIZE - 1) DOWNTO 0);
DEN: IN STD_LOGIC_VECTOR((SIZE - 1) DOWNTO 0);
RES: INOUT STD_LOGIC_VECTOR((SIZE - 1) DOWNTO 0);
RM: INOUT STD_LOGIC_VECTOR((SIZE - 1) DOWNTO 0));
END DIVISION;

ARCHITECTURE BEHAV OF DIVISION IS
SIGNAL BUF: STD_LOGIC_VECTOR((2 * SIZE - 1) DOWNTO 0);
SIGNAL DBUF: STD_LOGIC_VECTOR((SIZE - 1) DOWNTO 0);
SIGNAL SM: INTEGER RANGE 0 TO SIZE;

ALIAS BUF1 IS BUF((2 * SIZE - 1) DOWNTO SIZE);
ALIAS BUF2 IS BUF((SIZE - 1) DOWNTO 0);
BEGIN
P_001: PROCESS(RESET, EN, CLK)
BEGIN
IF RESET = '1' THEN
RES <= (OTHERS => '0');
RM <= (OTHERS => '0');
SM <= 0;
ELSIF RISING_EDGE(CLK) THEN
IF EN = '1' THEN
CASE SM IS
WHEN 0 =>
BUF1 <= (OTHERS => '0');
BUF2 <= NUM;
DBUF <= DEN;
RES <= BUF2;
RM <= BUF1;
SM <= SM + 1;
WHEN OTHERS=>
IF BUF((2 * SIZE - 2) DOWNTO (SIZE - 1)) >= DBUF THEN
BUF1 <= '0' & (BUF((2 * SIZE - 3) DOWNTO (SIZE - 1)) - DBUF((SIZE - 2) DOWNTO 0));
BUF2 <= BUF2((SIZE - 2) DOWNTO 0) & '1';
ELSE
BUF <= BUF((2 * SIZE - 2) DOWNTO 0) & '0';
END IF;
IF SM /= SIZE THEN
SM <= SM + 1;
ELSE
SM <= 0;
END IF;
END CASE;
END IF;
END IF;
-- READY<=RES'STABLE(500NS);
END PROCESS;
END BEHAV;

[image:]8.SIMULATION OUTPUT
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
TOP LEVEL ARCHITECTURE

[image:]

[image:]MODULAR REPRESENTATION

9. CONCLUSION

The basic structure, and design procedure of VHDL are studied. Behavioural modelling and structural modelling are used for the implementation of 64 bit ALU. The design considerations of an ALU are also studied. Logical operations are bit by bit operations and are implemented using simple gates which operate independent of each other. All the mathematical operations in the ALU are performed by means of repeated additions. Along with the basic operations of ALU multiplication and division are incorporated and designed as a single unit. The design consists of three modules whose outputs are combined using a multiplexer at the top most level. The project is designed and implemented using VHDL and is simulated using Xilinx.

REFERENCES

1.Circuit Design With VHDL by Volnei A.pedroni
2.RTL Hardware design Using VHDL by Pong P. Chu
3.Computer Organisation and Design by David A.Patterson and John L.Hennessy

image3.jpeg

image4.emf

image5.jpeg

image6.emf

image7.emf

image8.emf

image9.png

image10.jpeg

image11.jpeg

image12.png

image13.png

image14.png

image15.png

image16.emf

image17.emf

image18.emf

image19.emf

image20.emf

image21.emf

image22.emf

image23.emf

image24.emf

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image1.emf

image2.emf

