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Abstract

Privacy is an important issue when one wants to make use of data
that involves individuals’ sensitive information. Research on protecting
the privacy of individuals and the confidentiality of data has received
contributions from many fields, including computer science, statistics,
economics, and social science. In this paper, we survey research work
in privacy-preserving data publishing. This is an area that attempts to
answer the problem of how an organization, such as a hospital, gov-
ernment agency, or insurance company, can release data to the public
without violating the confidentiality of personal information. We focus
on privacy criteria that provide formal safety guarantees, present algo-
rithms that sanitize data to make it safe for release while preserving
useful information, and discuss ways of analyzing the sanitized data.
Many challenges still remain. This survey provides a summary of the
current state-of-the-art, based on which we expect to see advances in
years to come.
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Introduction

I have as much privacy as a goldfish in a bowl.

— Princess Margaret

Privacy is an important issue when one wants to make use of data that
involve individuals’ sensitive information, especially in a time when
data collection is becoming easier and sophisticated data mining tech-
niques are becoming more efficient. It is no surprise that research on
protecting the privacy of individuals and the confidentiality of data
has received many contributions from many fields such as computer
science, statistics, economics, and social science. With the current rate
of growth in this area it is nearly impossible to organize this entire body
of work into a survey paper or even a book. Thus we have proceeded
with a more modest goal. This survey describes research in the area
of privacy-preserving data publishing. We are mainly concerned with
data custodians such as hospitals, government agencies, insurance com-
panies, and other businesses that have data they would like to release
to analysts, researchers, and anyone else who wants to use the data.
The overall intent is for the data to be used for the public good: in the
evaluation of economic models, in the identification of social trends,
and in the pursuit of the state-of-the-art in various fields. Usually, such

2
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data contain personal information such as medical records, salaries,
and so on, so that a straightforward release of data is not appropri-
ate. One approach to solving this problem is to require data users to
sign non-disclosure agreements. This solution will need significant legal
resources and enforcement mechanisms and may be a barrier to wide
dissemination of the data. Furthermore, this cannot protect against
data theft even when the victim takes reasonable precautions. Thus,
it is important to explore technological solutions which anonymize the
data prior to its release. This is the focus of this survey.

In Section 1, we begin by describing the information-protection
practices employed by census bureaus (Section 1.1), and we moti-
vate the importance of considering privacy protection in data pub-
lishing through a number of real-world attacks (Section 1.2). We then
use a simple example (Section 1.3) to introduce the problem and its
challenges (Section 1.4). Section 2 is devoted to formal definitions of
privacy, while Section 3 is devoted to ways of measuring the utility of
sanitized data or the information lost due to the sanitization process. In
Section 4, we present algorithms for sanitizing data. These algorithms
seek to output a sanitized version of data that satisfies a privacy def-
inition and has high utility. In Section 5, we discuss how a data user
can make use of sanitized data. Then, in Section 6, we discuss how an
adversary might attack sanitized data. In Section 7, we cover emerging
applications and their associated research problems and discuss difficult
problems that are common to many applications of privacy-preserving
data publishing and need further research.

Having explained what this survey is about, we will now briefly men-
tion what this survey is not about. Areas such as access control, query
auditing, authentication, encryption, interactive query answering, and
secure multiparty computation are considered outside the scope of this
paper. Thus we do not discuss them except in places where we deem
this to be necessary. We also focus more on recent work as many of
the older ideas have already been summarized in book and survey form
[4, 263, 264]. Unfortunately, we cannot cover every technique in detail
and so the choice of presentation will largely reflect the authors’ bias.
We have tried to cover as much ground as possible and regret any
inadvertent omissions of relevant work.
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1.1 Information Protection in Censuses, Official Statistics

The problem of privacy-preserving data publishing is perhaps most
strongly associated with censuses, official processes through which
governments systematically collect information about their popula-
tions. While emerging applications such as electronic medical records,
Web search, online social networks, and GPS devices have heightened
concerns with respect to collection and distribution of personal infor-
mation, censuses have taken place for centuries, and considerable effort
has focused on developing privacy-protection mechanisms in this set-
ting. Thus, we find it appropriate to begin this survey by describing
some of the diverse privacy-protection practices currently in place at
national census bureaus and affiliated statistical agencies around the
world.

1.1.1 Public-Use Data

Most related to the topic of this survey is the problem of releasing
public-use data sets. Worldwide, many (though not all) governmental
statistical agencies distribute data to the public [54, 58, 133, 234] to
be used, for example, in demographic research. However, it is also a
common belief that these public-use data sets should not reveal infor-
mation about individuals in the population. For example, in the United
States, Title 13 of the US Code requires that census information only
be collected to produce statistics, and that census employees be sworn
to protect confidentiality.

Thus, over the years, government statistical agencies have devel-
oped a variety of mechanisms intended to protect individual privacy
in public-use data. (This research area is commonly known as statis-
tical disclosure limitation or confidentiality, and it is a subset of the
broader field of official statistics.) Historically, this work has focused
on two main classes of data that are commonly released by governmen-
tal agencies:

e Aggregate count data (contingency tables) Contingency tables
contain frequency count information, tabulated on the basis of one
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of more variables.! For example, a contingency table might contain
a population count based on Zip Code, Age Range, and Smoking
Status; i.e., in each zip code and each age range, how many people
smoke?

e Non-aggregate data (Microdata) Microdata are simply conven-
tional (non-aggregate) data, where each row refers to a person in the
population.

In order to limit the possibility that an individual could be iden-
tified from the public-use data, statistical agencies commonly use a
combination of techniques [54, 58, 59, 95, 133, 234, 257]; however, sta-
tistical disclosure limitation experts at statistical agencies do not typ-
ically provide details of the mechanisms used for confidentiality, only
generic descriptions. A recent report [95] outlines, in general terms, the
practices of the various federal agencies in the United States. (We will
describe some of these techniques in more detail in Section 4.)

¢ Cell suppression and noise addition (for contingency tables)
In contingency tables, it is common to suppress cells with small
counts (primary suppression), as well as additional cells that can
be inferred using marginal totals (complementary suppression). Sim-
ilarly, it is common to make small perturbations to the counts.

¢ Data swapping (for microdata and contingency tables) Data
swapping is a method of making controlled changes to microdata;
modified contingency tables can also be re-computed from the results.
This technique was used in the United States during the 1990 and
2000 censuses [101].

e Sampling, geographic coarsening, and top/bottom-coding
(for microdata) For microdata, it is common to only release a
subset of respondents’ data (e.g., a 1% sample). In addition, it is
common to restrict geographic identifiers to regions containing at
least a certain population. (In the United States, this is typically
100,000 [257].) It is also common to “top-code” and “bottom-code”
certain values. For example, if there are sufficiently few respondents

LIn SQL, this is analogous to releasing the answer to a COUNT(*) query with one or more
attributes in the GROUP BY clause.
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over age 90, then a top-coding approach would replace all ages > 90
with the value 90.

e Synthetic data (for microdata) Finally, sometimes synthetic data
are generated. The idea is to produce data with similar distributional
characteristics to the original microdata. The US Census Bureau is
considering using a synthetic data approach to release microdata
following the 2010 census [272].

Many of the above-mentioned mechanisms for microdata and con-
tingency table sanitization, respectively, have been implemented in the
u- and 7- Argus software packages [127, 128]; these packages have also
been used extensively by Statistics Netherlands.

The US Census Bureau also provides an online (real-time) system
called the American FactFinder Advanced Query System [122], which
provides custom tabulations (count queries) from the census data. Dis-
closure control in this system is done primarily by applying queries
to the sanitized (e.g., swapped) microdata, and also by imposing cell
suppression and top-coding rules to the results.

1.1.2 Restricted-Use Data, Research Data Centers, and
Remote Servers

While many statistical agencies release sanitized public-use data sets,
there is also a commonly held belief that certain data (e.g., high-
precision geographical units) cannot be sanitized enough to release,
or that the process would yield the data useless for certain kinds
of research. For these reasons, federal agencies in the United States
[256, 225], Canada [46], and Germany [219] have also set up secure
research data centers to allow outside researchers to access more pre-
cise and detailed data. The idea is to provide a secure physical facility,
staffed by census personnel, in which vetted researchers can carry out
approved studies using computers with limited external access. In the
United States, there are approximately a dozen such locations. Before
conducting a study, a researcher must undergo a background check and
provide a sworn statement. Before removing results or data from the
center, the results must undergo a strict disclosure review, which is con-
ducted by Census Bureau personnel. Similarly, a variety of countries
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provide “virtual” secure research data centers (also known as remote
access servers) that serve a similar purpose [214].

While secure facilities and data centers are not the topic of this
survey, this example highlights the multifaceted nature of the privacy-
protection problem. Technical tools for privacy-preserving data publish-
ing are one weapon in a larger arsenal consisting also of legal regulation,
more conventional security mechanisms, and the like. In addition,
this example highlights a (perceived and sometimes formal) tradeoff
between privacy and wutility, a theme that has been repeated through-
out the literature and that will be repeated throughout this survey.

1.2 Real-World Attacks and Attack Demonstrations

A number of real-world attacks and demonstrations indicate the impor-
tance of taking privacy into consideration when publishing personal
data. In this section, our goal is to briefly recap some notable recent
events and attacks, which serve to illustrate the challenges in develop-
ing privacy-preserving publishing tools.

One published attack on (purportedly) de-identified data was
described by Sweeney [241]. The dataset in consideration was collected
by the Group Insurance Commission (GIC) and contained medical
records of Massachusetts state employees. Since the data did not con-
tain identifiers such as names, social security numbers, addresses, or
phone numbers, it was considered safe to give the data to researchers.
The data did contain demographic information such as birth date, gen-
der, and zip code. Unfortunately, it is not common for two individuals
to have the same birth date, less common for them to also live in the
same zip code, and less common still for them to also have the same
gender. In fact, according to the Massachusetts voter registration list
(available at the time for $20), no one else had the same combination
of birth date, gender, and zip code as William Weld, who was then the
governor. Thus, his medical records were easy to identify in the data
provided by GIC. This sort of attack, where external data are combined
with an anonymized data set, is called a linking attack.

Not all linking attacks are as simple as performing a join between the
GIC data and the voter registration list. This is especially true for text.
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As an example, consider the case of AOL. On Sunday, August 6, 2006,
AOL released a 2 GB file containing approximately 20 million search
queries from 650,000 of its users, which were collected over a period
of three months [24]. In addition to the queries themselves, the data
set contained information such as which URL from the search results
was clicked and what was its ranking. Although the data set was with-
drawn within a few hours, it had already been widely downloaded. The
anonymization scheme used to protect the data consisted of assigning a
random number (pseudonym) to each AOL user and replacing the user
id with this number. Three days later, two New York Times reporters
[28] found and interviewed user number 4417749 from the data set.
They tracked down this user based on the semantic information con-
tained in her search queries: the name of a town, several searches with a
particular last name, age-related information, etc. In the case of AOL,
there was no single authoritative table (such as a voter list) to link
against; instead, there were many scattered sources of information that
were used. The privacy breach occurred since AOL failed to reason
about these sources and about the semantic content of search queries.
We will return to a more detailed discussion of state-of-the-art privacy
protection tools for search logs in Section 7.2.

A few months later, Netflix, a movie rental service, announced the
Netflix Prize for the development of an accurate movie recommenda-
tion algorithm. To aid participants in their research efforts, Netflix also
released a data set of 100 million ratings for 18,000 movie titles collected
from 480,000 randomly chosen users. Personal information had been
removed, and user ids were replaced with pseudonyms, as in the AOL
data. This data set contained movie ratings and the dates when the rat-
ings were created [191]. The high-dimensionality of the data set proved
to be a tempting target and an attack on such a data set was anticipated
by Frankowski et al. [105], who showed that movie ratings can be linked
to posts in an online forum. The Netflix data were attacked shortly after
it came out by Narayanan and Shmatikov [186], who showed that exter-
nal information (such as IMDB reviews) can indeed be linked to the
Netflix data set using techniques that are commonly known as record
linkage. Record linkage was first formalized in the 1960s by Fellegi
and Sunter [96]; for a survey, see [270]. Record linkage techniques are
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frequently used to estimate re-identification probabilities: the probabil-
ities that users in a data set can be re-identified through auxiliary data
[268]. These techniques can often handle varying amounts of noise in
the auxiliary data, and are also commonly used for the purpose of data
cleaning.

Finally, even further illustrating the vulnerability of public personal
data sets, several recent attacks have been demonstrated on (purport-
edly) de-identified social network graphs. Social networks describe a
set of people (nodes) and the relationships between them (edges). As
in the cases of search logs and movies, a graph can be considered naively
anonymized if all identifying characteristics of the people (e.g., names,
etc.) have been removed and replaced with pseudonyms. Interestingly,
though by this point perhaps unsurprising, a series of attacks have
illustrated the fallacy of this approach. Using data from LiveJournal
(a blogging site), Backstrom et al. [26] demonstrated that it is often
possible for a particular user to re-identify himself in a social network
graph, and with minimal collusion, he can frequently re-identify a large
fraction of users. Hay et al. [123] and Narayanan and Shmatikov [187]
both took this observation a step further, observing that users can
often be re-identified using various forms of structural auxiliary infor-
mation; these results were demonstrated using a real e-mail graph from
Enron Corporation [123] and social network graphs from LiveJournal,
Twitter, and Flickr [187]. We will return to an in-depth discussion of
the state-of-the-art in privacy protection for social network graphs in
Section 7.1. In addition to these examples, attacks on purportedly de-
identified data sets have been illustrated in domains as diverse as GPS
traces [120, 145] and genomic records [125, 170, 171, 172].

Note that not all attacks need to involve linking. Some involve recon-
structing the original data to uncover pieces of information that are
considered confidential. One such example was discussed by Meyer and
Kadane [177] in relation to the 1990 decennial census. Two important
uses of census data are distribution of federal funds and reapportion-
ment (the assignment of seats in the House of Representatives to differ-
ent states). Thus, undercounting different segments of the population
(including minorities) is a serious political issue, and there is a debate
about whether to adjust the census data to control for undercounting.
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In 1991, the Commerce Department decided not to use the adjusted
census data. It also refused to release the adjusted data. Following a
congressional subpoena, a compromise was reached and the Commerce
Department released adjusted population counts for every other census
block and for all blocks whose adjusted population was at least 1,000
[177]. The leaders of the Florida House of Representatives asked Meyer
and Kadane to reconstruct these missing values based on the actual cen-
sus counts and on the released adjusted counts. Later, due to a lawsuit,
the rest of the adjusted data was released and Meyer and Kadane were
able to evaluate the accuracy of their reconstruction. Using relatively
simple techniques based on comparisons of unadjusted counts for vari-
ous blocks (see [177] for more details), they were able to obtain remark-
ably accurate results. For the 23 congressional districts of Florida that
existed at the time, their estimate of the adjusted population differed
from the official adjusted counts by at most 79 people. Meanwhile,
the difference between the adjusted and unadjusted counts was on the
order of several thousand people. Thus the Commerce Department’s
naive use of suppression ended up concealing less information than
they intended.

Algranati and Kadane [19] discuss another example of data recon-
struction. This time it involves the U.S. Department of Justice. In 2000,
the U.S. Department of Justice released a report [248] about death
penalty statistics for federal crimes. When a federal crime has been
committed, the U.S. Attorney in charge of the case must make a rec-
ommendation on whether or not to seek the death penalty. The case
is also reviewed by the Department of Justice, which also submits a
recommendation. Finally, the Attorney General reviews the case and
makes the final decision about this process (for more details about
the circumstance of the report and the nature of the decisions, see
[19, 248]). The Attorney General’s decision is made public but the
recommendations made by the U.S. Attorney and the Department of
Justice are confidential. Algranati and Kadane focused on the 682 cases
from 1995 to 2000 that are contained in this report. This report con-
tains eight measured variables: the federal district, defendant’s race,
victim’s race, the crime, whether or not there were multiple victims,
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and the recommendations made by the U.S. Attorney, the Department
of Justice, and the Attorney General. The data were released as a set
of lower-dimensional tables of counts. Using some simple combinato-
rial techniques, Algranati and Kadane were able to fully recover 386
out of 682 records. They were also able to recover the combination of
defendant race, federal district and all three recommendations for all
of the 682 cases. Again, a naive release of data allowed for the recovery
of most of the information that was considered confidential.

All of these examples serve to illustrate the challenges and impor-
tance of developing appropriate anonymization measures for published
data.

1.3 Running Example

To prevent privacy breaches, organizations that want to publish data
must resolve possible privacy issues before releasing data. We introduce
privacy issues in data publishing by the following example scenario.
A centralized trusted data collection agency, say Gotham City Hospi-
tal, collects information from a set of patients. The information col-
lected from each patient consists of identifying information like name;
demographic information like age, gender, zip code, and nationality;
and the patient’s medical condition. The data are put into a table
like Table 1.1. Researchers in Gotham City University, who study how

Table 1.1. Medical record table.

Name Age Gender Zip Code Nationality Condition

1 Ann 28 F 13053 Russian Heart disease
2 Bruce 29 M 13068 Chinese Heart disease
3 Cary 21 F 13068 Japanese Viral infection
4 Dick 23 M 13053 American Viral infection
5  Eshwar 50 M 14853 Indian Cancer
6 Fox 55 M 14750 Japanese Flu
7 Gary 47 M 14562 Chinese Heart disease
8 Helen 49 F 14821 Korean Flu
9 Igor 31 M 13222 American Cancer

10 Jean 37 F 13227 American Cancer

11 Ken 36 M 13228 American Cancer

12 Lewis 35 M 13221 American Cancer




12  Introduction

diseases correlate with patients’ demographic attributes, can benefit
substantially from analyzing these data and have made a request to the
hospital for releasing the table. Now, the question is whether releasing
Table 1.1 is safe. In fact, the hospital has a privacy policy that prevents
it from releasing patients’ identifying information. Obviously, releasing
Table 1.1, which contains names, would violate this policy. However,
does removal of names from Table 1.1 make the table safe for release?
Consider a researcher, say Mark, who is a friend of Eshwar and knows
that Eshwar is a 50-year-old Indian male having zip code 14853. He
also knows that Eshwar visited Gotham City Hospital several times.
If Mark saw this table with names removed, he would be almost sure
that his friend Eshwar got cancer, because the fifth record is the only
record that matches Mark’s knowledge about Eshwar. Age, gender, zip
code, and nationality are called quasi-identifier attributes, because by
looking at these attributes an adversary may potentially identify an
individual in the data set.

One way to prevent Mark from being able to infer Eshwar’s med-
ical condition is to make sure that, in the released data, no patient
can be distinguished from a group of k patients by using age, gender,
zip code, and nationality. We call a table that satisfies this criterion
a k-anonymous table. Table 1.2 is a modified version of the medical
record table that is 4-anonymous, where names have been removed, age
values have been generalized to age groups, gender values have been
generalized to Any, zip codes have been generalized to first few digits
and nationality values have been generalized to different geographical
granularities. Now, when Mark sees this generalized table, he only
knows that Eshwar’s record is in the second group and is not sure
whether Eshwar had flu or cancer. However, as will be seen later, this
table is still not safe for release.

For now, let us assume that Gotham City Hospital somehow decides
to consider 4-anonymous tables to be safe for release; but in addition
to Table 1.2, there are many 4-anonymous tables which can be derived
from the medical record table. Table 1.3 is another 4-anonymous table
derived from the original medical record table. Which one should
Gotham City Hospital choose to release? Intuitively, the hospital should
choose the one that is the most useful for the researchers who request
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Table 1.2. Generalized medical record table.

Age Gender Zip Code Nationality Condition

(Ann) 1 2029 Any 130** Any Heart disease
(Bruce) 2 2029 Any 130** Any Heart disease
(Cary) 3 2029 Any 130** Any Viral infection
(Dick) 4 2029 Any 130** Any Viral Infection
(Eshwar) 5  40-59 Any 14%** Asian Cancer
(Fox) 6  40-59 Any 14%* Asian Flu
(Gary) 7 40-59 Any 14*%* Asian Heart disease
(Helen) 8  40-59 Any 14%* Asian Flu
(Igor) 9 30-39 Any 1322* American Cancer
(Jean) 10 30-39 Any 1322* American Cancer
(Ken) 11  30-39 Any 1322* American Cancer
(Lewis) 12 30-39 Any 1322% American Cancer

aNo record can be distinguished from a group of four based on Age, Gender,
Zip Code, and nationality.

bNames are removed. Age values are generalized to age groups. Gender values
are generalized to Any. Zip codes are generalized to first few digits. Nationality
values are generalized to different geographical granularities.

Table 1.3.  Another generalized medical record table.

Age Gender Zip Code Nationality Condition

(Ann) 1 20-59 F L Any Heart disease
(Helen) 8 20-59 F i Any Flu
(Cary) 3 20-59 F e Any Viral infection
(Jean) 10  20-59 F e Any Cancer
(Eshwar) 5 20-59 M e Asian Cancer
(Fox) 6 20-59 M L Asian Flu
(Gary) 7 20-59 M T Asian Heart disease
(Bruce) 2 20-59 M L Asian Heart Disease
(Igor) 9 20-39 M 13%** American Cancer
(Dick) 4 20-39 M 13%** American  Viral infection
(Ken) 11  20-39 M 13+ American Cancer
(Lewis) 12 20-39 M 13%** American Cancer

2The second record has been swapped with the eighth record, and the fourth
record has been swapped with the tenth record.

for the data. Assume that the primary objective of the researchers is to
understand how diseases correlated with genders. Thus, the researchers
want as little replacement of a gender value by Any as possible. It
should be easy to see that Table 1.3 is a better choice than Table 1.2
in terms of the number of replacements of gender values by Any.
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1.4 Overview

Given a data set, privacy-preserving data publishing can be intuitively
thought of as a game among four parties:

e Data user, like the researchers in Gotham City University,
who wants to utilize the data.

e Adversary, like Mark in the running example, who wants
to derive private information from the data.

e Data publisher, like Gotham City Hospital, who collects
the data and wants to release the data in a way that satisfies
the data user’s need but also prevents the adversary from
obtaining private information about the individuals in the
data.

e Individuals, like Eshwar, whose data are collected by the
data publisher. In some cases, the individuals agree with
the data publisher’s privacy policy, trust the data publisher
and give the data publisher all the requested information. In
these cases, it is the data publisher’s responsibility to ensure
privacy preservation. In other cases, the individuals do not
trust the data publisher and want to make sure that the
data publisher cannot precisely identify their sensitive infor-
mation (e.g., by adding noise to their data records so that
the data publisher can only have accurate aggregate statis-
tics, but noisy individual data values). Although the primary
focus of this paper is on trusted data publishers, we will also
discuss untrusted data publishers in Section 4.2.

There is a fundamental tradeoff between privacy and utility. At
one extreme, the data publisher may release nothing so that privacy
is perfectly preserved; however, no one is able to use the data. At the
other extreme, the data publisher may release the data set without
any modification so that data utility can be maximized; however, no
privacy protection is provided. For the data publisher to release useful
data in a way that preserves privacy, the following three components
need to be defined.
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e Sanitization mechanism: Given an original data set, e.g.,
Table 1.1, a sanitization mechanism sanitizes the data set
by making the data less precise. This mechanism defines the
space of possible “snapshots” of the original data set that are
considered as candidates for release. We call such a snapshot
a release candidate. Generalization is an example sanitization
mechanism. Tables 1.2 and 1.3 are two release candidates of
such a mechanism when applied to Table 1.1. We will first
introduce some common sanitization mechanisms in Section
1.5 and have an in-depth discussion in Section 4.

e Privacy criterion: Given a release candidate, the privacy
criterion defines whether the release candidate is safe for
release or not. k-Anonymity is an example privacy criterion.
Privacy criteria are the focus of Section 2.

e Utility metric: Given a release candidate, the utility metric
quantifies the utility of the release candidate (equivalently,
the information loss due to the sanitization process). For
example, the researchers in Gotham City University use the
number of replacements of gender values by Any as their
utility measure. We survey utility metrics in Section 3.

Given the above three components, one approach to privacy-
preserving data publishing is to publish the most useful release can-
didate that satisfies the privacy criterion. An algorithm that takes an
original data set and generates a release candidate that satisfies a given
privacy criterion while providing high utility? is called an anonymiza-
tion (or sanitization) algorithm. The terms “anonymization” and “san-
itization” will be used interchangeably. A selected list of interesting
anonymization algorithms is presented in Section 4.

After the data publisher finds a good release candidate and makes
it public, the data user will use it for good and the adversary will
attack it. Because the sanitization mechanism has perturbed the data
to make it less precise and less sensitive, the data user may not be able

2Note that providing the maximum utility among all release candidates may not be algo-
rithmically feasible and may also be undesirable because it gives an adversary an additional
avenue of attack (see Section 6).
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to use the data in a straightforward manner. For example, suppose that
Table 1.3 is released, and the data user wants to know the fraction of
patients with ages between 20 and 30 who have heart disease. This
query cannot be answered precisely based on Table 1.3, but may be
answered probabilistically. A methodology is needed to answer such
queries in a meaningful and consistent manner. In addition to database
queries, the data user may also want to build machine-learning models
(for a prediction task) or conduct statistical analysis (to test whether
a finding from a sanitized data set is statistically significant). We will
discuss how to do so in Section 5 and point the readers to related
literature.

From the adversary’s point of view, although the released data
satisfy a privacy criterion (or a few criteria), it is still possible to
uncover some individuals’ sensitive information. This is because each
privacy criterion has its own assumption and sometimes only protects
data against a few types of attacks. For example, Table 1.2 satisfies
the k-anonymity criterion. However, it is vulnerable to a homogeneity
attack: although no one cannot distinguish Jean’s record from the other
three records (Igor’s, Ken’s, and Lewis’) based on the quasi-identifier
attributes, we are 100% sure that she has cancer (if we know her quasi-
identifier attributes and the fact that her data are in Table 1.2). Fur-
thermore, some anonymization algorithm have special behavior that
may allow the adversary to make further inference about the data, and
the adversary may have more background knowledge than a privacy
criterion assumes. We review interesting attacks against sanitized data
in Section 6.

We note that there can potentially be multiple data users with
different data needs, multiple adversaries with different purposes and
knowledge about individuals in the data, and multiple data publish-
ers (whose data sets may overlap with each other) who would like to
release versions of their data. A single data publisher may also want
to release different versions of the data at different times. Further-
more, the original data set may not be a single table; it may be a
relational database (that contains multiple tables), a market-basket
database (in which each record is a set of items), a search log (in which
each record is a search query with some metadata), a social network
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(relating individuals), and so on. These variations all add to the com-
plexity of the problem and will be addressed with different levels of
details (in proportion to the progress that has been made on these prob-
lems). In particular, we discuss social network privacy in Section 7.1,
search log privacy in Section 7.2, location privacy of mobile applications
in Section 7.3, and challenges for future research in Section 7.4.

1.5 Examples of Sanitization Mechanisms

Before proceeding to the next chapter, we will first briefly introduce a
number of common sanitization mechanisms to facilitate our discussion.
It is important to have a basic idea of such mechanisms because a
privacy criterion is defined on the output of such a mechanism, an
adversary breaches privacy by analyzing such an output, and a data
user studies such an output. However, we do not try to cover all of the
sanitization mechanisms here. An in-depth discussion of mechanisms
and algorithms will be presented in Section 4.

Recall that a sanitization mechanism defines the space of all pos-
sible release candidates in an application of privacy-preserving data
publishing. An anonymization algorithm finds a release candidate that
is both useful and safe (according to a given privacy criterion) from
this space. To simplify our discussion, we consider the original data set
to be a table (e.g., Table 1.1), in which each column is an attribute
and each row is the data record of an individual. Other kinds of data
(sets of items, text data, graph and network data, and others) will be
discussed later (primarily in Section 7).

Generalization: The generalization mechanism produces a release
candidate by generalizing (coarsening) some attribute values in the
original table. We have seen two examples of such release candidates
in Tables 1.2 and 1.3. The basic idea is that, after generalizing some
attribute values, some records (e.g., Ann’s record and Bruce’s record in
Table 1.2) would become identical when projected on the set of quasi-
identifier (QI) attributes (e.g., age, gender, zip code, and nationality).
Each group of records that have identical QI attribute values is called
an equivalence class.
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Suppression: The suppression mechanism produces a release candi-
date by replacing some attribute values (or parts of attribute values)
by a special symbol that indicates that the value has been suppressed
(e.g., “*” or “Any”). Suppression can be thought of as a special kind of
generalization. For example, in Table 1.2, we can say that some digits
of zip codes and all the gender values have been suppressed.

Swapping: The swapping mechanism produces a release candidate by
swapping some attribute values. For example, consider Table 1.1. After
removing the names, the data publisher may swap the age values of Ann
and Eshwar, swap the gender values of Bruce and Cary, and so on.

Bucketization: The bucketization mechanism produces a release can-
didate by first partitioning the original data table into non-overlapping
groups (or buckets) and then, for each group, releasing its projection
on the non-sensitive attributes and also its projection on the sensitive
attribute. Table 1.4 is a release candidate of the bucketization mech-
anism when applied to Table 1.1. In this case the Condition attribute
is considered to be sensitive and the other attributes are not. The idea
is that after bucketization, the sensitive attribute value of an individ-
ual would be indistinguishable from that of any other individual in the
same group. Each group is also called an equivalence class.

Table 1.4. Bucketized medical record table.

Age Gender Zip Code Nationality BID BID Condition

(Ann) 28 F 13053 Russian 1 1 Heart disease
(Bruce) 29 M 13068 Chinese 1 1 Heart disease
(Cary) 21 F 13068 Japanese 1 1 Viral infection
(Dick) 23 M 13053 American 1 1 Viral infection
(Eshwar) 50 M 14853 Indian 2 2 Cancer
(Fox) 55 M 14750 Japanese 2 2 Flu
(Gary) 47 M 14562 Chinese 2 2 Heart disease
(Helen) 49 F 14821 Korean 2 2 Flu
(Igor) 31 M 13222 American 3 3 Cancer
(Jean) 37 F 13227 American 3 3 Cancer
(Ken) 36 M 13228 American 3 3 Cancer
(Lewis) 35 M 13221 American 3 3 Cancer

2Three buckets are created and identified by their bucket IDs (BID).
b A patient’s condition in a bucket is indistinguishable from any other patient’s con-
dition in the same bucket.
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Table 1.5. Randomized medical record table.

Age Gender Zip code Nationality Condition
(Ann) 1 30 F 13073 Russian Heart disease
(Bruce) 2 28 M 13121 American Heart disease
(Cary) 3 22 M 13024 Japanese Cancer
4 20 M 13030 American Viral infection

(Dick)

2Names are removed. Random noise is added to each attribute value. For
numeric attributes (age and zip code), Gaussian noise is added. For cate-
gorical attributes (gender, zip code, and nationality), with some probabil-
ity, an attribute value is replaced by a random value in the domain.

Randomization: A release candidate of the randomization mechanism
is generated by adding random noise to the data. The sanitized data
could be sampled from a probability distribution (in which case it is
known as synthetic data) or the sanitized data could be created by ran-
domly perturbing the attribute values. For example, Table 1.5 is such
a release candidate for Table 1.1, where random noise is added to each
attribute value. We add Gaussian noise with mean 0 and variance 4
to age and also Gaussian noise with 0 mean and variance 500 to zip
code. For gender, nationality, and condition, with probability 1/4, we
replace the original attribute value with a random value in the domain;
otherwise, we keep the original attribute value. Note that, in general,
we may add different amounts of noise to different records and different
attributes. Several application scenarios of randomization can be distin-
guished. In input randomization, the data publisher adds random noise
to the original data set and releases the resulting randomized data, like
Table 1.5. In output randomization, data users submit queries to the
data publisher and the publisher releases randomized query results. In
local randomization, individuals (who contribute their data to the data
publisher) randomize their own data before giving their data to the
publisher. In this last scenario, the data publisher is no longer required
to be trusted.

Multi-view release: To increase data utility, the data publisher may
release multiple views of a single original data set, where the released
views are outputs of one (or more) of the above sanitization mecha-
nisms. For example, a release candidate could be a set of generalized
tables. As a special case of multiple generalized tables, we show an
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Table 1.6. An example of multi-marginal release.

(a) Marginal on gender, nationality (b) Marginal on gender, condition
Gender  Nationality Count Gender Condition Count
F Russian 1 F Heart disease 1
F Japanese 1 F Viral infection 1
F Korean 1 F Flu 1
F American 1 F Cancer 1
M Chinese 2 M Heart disease 2
M American 4 M Viral infection 1
M Indian 1 M Flu 1
M Japanese 1 M Cancer 4

example of multi-marginal release in Table 1.6, which consists of two
views of the original data Table 1.1. Each view is generated by project-
ing the original data table on a subset of attributes and computing the
counts. Such a view is called a marginal table or a histogram on the
subset of attributes.
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Privacy Definitions

All the evolution we know of proceeds from the vague
to the definite.

— Charles Sanders Peirce

Intuition and conventional wisdom have long indicated that the privacy
of individuals can be protected by coarsening personal data, adding
random noise (to the data themselves, or to the output of aggregate
queries), swapping attribute values amongst individuals’ records, or
removing small counts in published contingency tables. A large body of
recent work has begun to formalize this intuition, providing numerous
definitions of privacy, and characterizing the nature of the information
protected. In this section, we will describe formal privacy definitions
that, we believe, represent milestones in the literature. These definitions
include Samarati and Sweeney’s k-anonymity [226, 241], Machanava-
jjhala et al.’s {-diversity [166], Martin et al.’s (c, k)-safety [173] and
Chen et al.’s 3D privacy criterion [51] (against Boolean background
knowledge), Evfimievski et al.’s (o, 3)-privacy and y-amplification [92]
(against probabilistic background knowledge), Dwork’s differential pri-
vacy [85], and Shannon’s perfect secrecy [232] (equivalent to Miklau’s

21
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perfect privacy [179]). Beyond these milestones, a selected list of other
privacy definitions will be briefly summarized in Section 2.8. Then, we
conclude this section with a unified framework whose aim is to allow
one to compare different privacy definitions on the same basis.

2.1 Disclosure Risk

Before describing what we consider to be milestones in the recent devel-
opment of formal privacy definitions, we first discuss work on measuring
disclosure risk. Disclosure risk is a term frequently used in the official
statistics literature to refer to quantifiable estimates of the possibil-
ity of a privacy breach. It has long been known that publishing data
collected from individuals can potentially breach privacy even when
identifier attributes are removed from the data. Techniques like coars-
ening personal data, adding random noise, swapping attribute values,
removing small counts in published contingency tables, and generat-
ing synthetic data were proposed to address this problem. However, to
ensure privacy preservation, data publishers must at least be able to
measure the disclosure risk of the outputs from these techniques. Mea-
suring disclosure risk is a key step in defining privacy criteria. Many
privacy criteria are defined based on placing a threshold on a measure
of disclosure risk. It is, of course, important to distinguish measures
of disclosure risk and privacy definitions from the mechanisms used to
sanitize data since the quantity we measure (amount of privacy) should
not depend on how we choose to represent the data.

There is a large body of work on measuring and estimating disclo-
sure risk in data publishing. Since our main interest is in the resulting
privacy definitions, we will only briefly discuss a small number of stud-
ies to set up the background for the privacy definitions to be introduced
later in this section. A survey of disclosure risk measures is beyond the
scope of this paper, and the interested reader can consult [264, 263].

Small counts in contingency tables: Consider releasing a contin-
gency table; for each combination of attribute values in the table, we
release the number of individuals having that combination. One could
also release marginals of the table (i.e., the counts associated with var-
ious subsets of the attributes). One measure of disclosure risk is the
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smallest count in the table or in a marginal. A small count indicates
a rare combination of attributes and may lead to the re-identification
of the associated individuals. Fellegi [97] discussed this kind of disclo-
sure risk in the early 1970s and pointed out that, in the case of only
releasing marginals of the contingency table, even if all the marginal
counts are large, small counts in the contingency table may still be
reconstructed by solving a system of linear equations. Recent work on
bounding counts in contingency tables for marginal releases includes
[75, 77, 78, 235]. Also, models have been proposed for estimating pop-
ulation counts (number of individuals in the population having a com-
bination of attribute values) from the counts in a contingency table
[30, 103]. This allows one to distinguish between population uniques
and sample uniques.

Identification rules for microdata: Another way of measuring dis-
closure risk is by designing rules that can be used to identify individ-
uals in a sanitized data set and assessing the effectiveness of the rules
(for example, by counting how many individuals can be identified by
the rules with high confidence). Spruill [236], in the early 1980s, sug-
gested a distance-based method. For each sanitized record, compute the
Fuclidean distance between the sanitized record and each of the records
in the original data set. Spruill then defines the disclosure risk as the
sampling fraction (fraction of the original records released) times the
percentage of sanitized records whose nearest neighbors in the original
data set are their own original records.

Since then, there have been many studies based on identification
rules. For example, Lambert [148] discussed some definitions of dis-
closure risk using rules based on probabilistic models. Let r, 4, j, and
N denote a rule, a record in the sanitized data set, an individual in
the population, and the population size, respectively. She defined the
worst-case risk as

mjaxmiaxPr(record i is individual j’s record by rule r),
the average risk as
N
(1/N) ZmZaxPr(record i is individual j’s record by rule r),
j=1
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and a threshold-based risk as the fraction of individuals j in the pop-
ulation with

max Pr(record i is individual j’s record by rule r) > 7,
7

for a given threshold 7. For an overview of different identification rules,
see [268, 269, 270].

Decision-theoretic approach: To give disclosure risk a theoretic
foundation, Duncan and Lambert [83] in the late 1980s proposed the
use of the decision theory. Suppose the adversary’s “target” is ¢ (the
target could be the identity of an individual, an attribute value, or a
property of the original data set). Let x denote a possible value of the
target and py(z|D*) denote the probability density that the target ¢
has value x after observing the sanitized data set D*. In a very general
sense, one can define a loss function L;(d, ) that represents the adver-
sary’s loss if he/she decides the target ¢ has value d, and the true value
is x. Since the adversary does not know the true value, he/she would
take the decision ¢ that minimizes the expected loss; this minimum
expected loss is the adversary’s “uncertainty” U; about t after seeing
D* and is written as:

U(D*) = m(sin/Lt((S,m)pt(m\D*)dx.

Observe that when L;(d,7) = (6 — x)? (for a numerical target t), the
optimal decision is § = E[z|D*| and Uy(D*) is the variance of ¢ (given
D*). When L(6,x) = —logp (x| D*) (for a categorical target t), Uy(D*)
is the entropy of ¢ (given D*). Variance and entropy are two common
uncertainty functions which measure the disclosure risk for ¢ caused
by releasing D*. Small uncertainty represents high risk. For microdata,
Duncan and Lambert [83] provided two other appropriate loss func-
tions (hence two risk measures), which we omit. It is easy to see that
when there are multiple possible targets, the worst-case disclosure risk
can be measured by the inverse of min, Uy(D*). Interestingly, many
modern privacy criteria (that will be described later) can be viewed as
instantiations of this framework, requiring min, U;(D*) > 6, for some
threshold 6, with different loss functions, probabilistic models and, in
some cases, with background knowledge.
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2.2  k-Anonymity

Sweeney in [241] demonstrated that releasing a data table by simply
removing identifiers (e.g., names and social security numbers) can seri-
ously breach the privacy of individuals whose data are in the table.
By combining a public voter registration list and a released medical
database of health insurance information, she was able to identify the
medical record of the governor of Massachusetts. In fact, according to
her study of the 1990 census data [240], 87% of the population of the
United States can be uniquely identified on the basis of their five-digit
zip code, gender, and date of birth.

This kind of attack is called linking attack (see Section 1.2). Take
Table 1.1 for example. Suppose that we remove the Name attribute
and release the resulting table. It is common that the adversary has
access to several public databases. For instance, he can easily obtain a
public voter registration list as shown in Table 2.1. Assume the area of
zip code 13068 is a small town and Ann is the only 28-year-old female
living in that town. When the adversary looks at Table 1.1 with names
removed, he can almost be sure that the first record with Age = 28,
Gender = F, and Zip code = 13068 is Ann’s record by matching that
record with Ann’s record in the voter registration list. The goal of a
linking attack is to find the identity of an individual in a released data
set that contains no identifying attributes by linking the records in the
data set to a public data set that contains identifying attributes. This
linkage is performed with a set of quasi-identifier (QI) attributes that
are in both data sets. In the above example, Age, Gender, and Zip code
are QI attributes.

To protect data from linking attacks, Samarati and Sweeney
proposed k-anonymity [226, 241]. Let D (e.g., Table 1.1) denote the

Table 2.1. Example voter registration list.

Name Age Gender Zip code
Ann 28 F 13068
Bob 21 M 13068
Carol 24 F 13068
Dan 21 M 13068
Ed 52 M 13068
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original data table and D* (e.g., Table 1.2) denote a release candidate
of D produced by the generalization mechanism.

Definition 2.1 (k-Anonymity). Given a set of QI attributes
Q1,...,Qq, release candidate D* is said to be k-anonymous with respect
to Q1,...,Qq if each unique tuple in the projection of D* on Q1,...,Qq
occurs at least k£ times.

Table 1.2 is 4-anonymous. Now, no matter what public databases
the adversary has access to, he can only be sure that Ann’s record
is one of the first four. While k-anonymity successfully protects data
from linking attacks, an individual’s private information can still leak
out. For example, the last four individuals of Table 1.2 have cancer.
Although the adversary is not able to know which record belongs to
Jean, he is sure that Jean has cancer if he knows Jean’s age, gender,
and zip code from a public database. This motivated Machanavajjhala
et al., who propose the principle of /-diversity, which is presented in
the next section.

In practice, multiple criteria should be enforced at the same time in
order to protect data from different kinds of attacks. We note that, for
a given data publication scenario, the issues of setting the parameter k
and deciding which attributes to include in the set of QI attributes have
not been well-addressed in the literature. For the second question, a
simple approach that has often been taken is to conservatively include
all of the non-sensitive attributes in the set of QI attributes. However,
further research is still needed to develop principles to help determine
the right k£ value for a given scenario; we briefly return to this question
in Section 7.4.3.

2.3 ¢-Diversity

k-Anonymity ensures that individuals cannot be uniquely re-identified
in a data set and thus guards against linking attacks. However,
Machanavajjhala et al. [166, 168] showed that adversaries with more
background knowledge, also called adversarial knowledge, can infer sen-
sitive information about individuals even without re-identifying them.
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The following two attacks — homogeneity attack and background knowl-
edge attack — presented in that paper illustrate such adversaries.

We already encountered the homogeneity attack in the previous
section. Recall the case of Jean from Table 1.2. Her neighbor Alice
knows that Jean is a 37-year-old American woman from zip code 13227.
If Alice knows that Jean is in the table, then she knows that Jean’s
information resides in one of the last four tuples in the table. Though
Alice cannot uniquely identify Jean’s record, she knows that Jean has
cancer thus breaching Jean’s privacy.

Next suppose Alice knows that her pen friend Cary, who is a 21-year-
old Japanese living in zip code 13068, is also admitted to the hospital.
Unlike in the previous case, given only this information Alice can only
deduce that Cary has either the heart disease or the viral infection.
However, it is well-known in medical circles that 25-year-old Japanese
have a very low incidence of heart disease due to their diet. Thus Alice
can deduce that Cary is much more likely to have the viral infection
rather than the heart disease and breach her privacy. Machanavajjhala
et al. identified the importance of incorporating adversarial background
knowledge into a privacy metric and proposed the Bayes-Optimal pri-
vacy and the principle of /-diversity. More complex forms of background
knowledge attacks will be described in the later sections.

In order to guarantee privacy against such adversaries, Machanava-
jjhala et al. first propose a formal but impractical definition of privacy
called Bayes-Optimal privacy. The attributes in the input table are con-
sidered to be partitioned into non-sensitive QI attributes (called @) and
sensitive attributes (called S). The adversary is assumed to know the
complete joint distribution f of @ and S. Publishing a generalized table
breaches privacy according to Bayes-Optimal privacy if the adversary’s
prior belief in an individual’s sensitive attribute is very different from
the adversary’s posterior belief after seeing the published generalized
table. More formally, adversary Alice’s prior belief, a(q ), that Bob’s
sensitive attribute is s given that his non-sensitive attribute is ¢, is her
background knowledge:

f(s,9)

Qq,s) = Pr(t[S] = s | t[Q] = q) = ma
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where t[S] and ¢[Q] denote the sensitive value and the vector of QI
attribute values of individual ¢, respectively; P; denotes the probability
computed based on distribution f. On observing the published table
T* which is generalized from 7', and in which Bob’s quasi-identifier ¢
has been generalized to ¢*, her posterior belief about Bob’s sensitive
attribute is denoted by 3, 7+) and is equal to:

5(q,syT*) =Ps(t[S]=s|t[Q=qgand T* and t € T)

Given the joint distribution f and the output table T, Machanava-
jjhala et al. derived a formula for 5y s 7+)-

Theorem 2.1 (from [166]). Let T* be a published table which is
obtained by performing generalizations on a table T'; let X be an indi-
vidual with X[Q] = ¢ who appears in the table T (and also T%); let
q* be the generalized value of ¢ in T™; let s be a possible value of the
sensitive attribute; let n(g o) be the number of tuples t* € T where
t*[Q] = ¢* and ¢t*[S] = ¢'; and let f(s’ | ¢*) be the conditional proba-
bility of the sensitive attribute being s’ conditioned on the fact that
the non-sensitive attribute @ is some ¢’ which can be generalized to ¢*.
Then the posterior belief that X [S] = s after observing T is given by:
i) Fisieh

/(5'la)
2 wesMUat ) T

B(q,s,T*) = (21)

Publishing a table T™ satisfies Bayes-Optimal privacy if the distance
between v, ) and [, s 7+ is small for every ¢ € () and for every s € S;
where distance is measured either using the difference or ratio of the
two quantities.

However, Bayes-Optimal privacy has the following limitations.
First, the data publisher is unlikely to know the full distribution f.
Second, it is unlikely that the adversary knows the entire joint dis-
tribution either. Further, the data publisher may not know the exact
knowledge the adversary possesses. For instance, Alice knew that Cary
had a very low incidence of heart disease; but the data publisher may
not know this. Third, the above analysis captures only distributional
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knowledge and does not capture instance level knowledge. For instance,
Alice may know that Igor has heart disease by talking to his wife.
Next, there will be multiple adversaries, each with varying amounts of
knowledge about the individuals in the table and the joint distribu-
tion; the data publisher would have to be able to specify which of these
adversaries are guarded against. Finally, checking the Bayes-Optimal
condition for every (gq,s) combination in the domain might be compu-
tationally tedious.

To overcome the limitations of Bayes-Optimal privacy, Machanava-
jjhala et al. proposed the ¢-diversity principle, which is motivated by
the fact that Bayes-Optimal privacy is not satisfied (a) when there is
lack of diversity in the sensitive values within a group of tuples sharing
the same QI values (like in the homogeneity attack), and (b) when the
adversary is able to eliminate all but one of the sensitive values associ-
ated with the group (like in the background knowledge attack). A table
is said to satisfy the ¢-diversity principle if every group of tuples that
share the same QI values in the table have at least ¢ well-represented
sensitive values; i.e., there are at least /-distinct sensitive values that are
of roughly equal proportion. Table 2.2 is an example of a 3-diverse table.

This principle and the associated notion of well-representedness
can be instantiated in many ways. One instantiation is called entropy

Table 2.2. A 3-diverse generalized table.

Age Gender  Zip code  Nationality Condition

(Ann) 1 20-59 F Lo Any Heart disease
(Helen) 8 20-59 F Lo Any Flu
(Cary) 3 20-59 F L Any Viral infection
(Jean) 10 20-59 F e Any Cancer
(Eshwar) 5 20-59 M L Asian Cancer
(Fox) 6  20-59 M L Asian Flu
(Gary) 7 20-59 M L Asian Heart disease
(Ken) 11 20-39 M 13%** American Cancer
(Igor) 9 20-39 M 13%** American Cancer
(Dick) 4 20-39 M 13%x* American Viral infection
(Bruce) 2 20-59 M L Asian Heart disease
(Lewis) 12 20-39 M 13%** American Cancer

2Fach 4 anonymous group of tuples has at least three distinct sensitive values
of roughly equal proportions.
bThe above table is 1.5-entropy diverse, and is recursive (2,3)-diverse.



30 Privacy Definitions

(-diversity, where in each group of tuples with the same QI value,
the entropy of the sensitive attribute should be at least log/¢. Entropy
(-diversity was first proposed by Ohrn and Ohno-Machado [194] as a
way of defending against the homogeneity problem (without consider-
ing the role of background knowledge).

Another instantiation of the ¢-diversity principle is captured by
recursive (c,l) diversity. Let si,...,s, be the possible values of the
sensitive attribute .S in a group of tuples with generalized QI value ¢*,
henceforth called a ¢*-block (which is also called a equivalence class).

Assume that we sort the counts n( in descending order

q*,51)0 e ,n(q*7sm)
and name the elements of the resulting sequence rq,...,7,,. £-Diversity
can also be interpreted as follows: an adversary can breach the pri-
vacy of a (-diverse ¢*-block only if he/she can eliminate at least £ — 1
possible values of S. That is, in a 2-diverse table, none of the sen-
sitive values should appear too frequently. A ¢*-block is defined to be
(¢,2)-diverse if 1y < ¢(r2 + -+ + 7p,) for some user-specified constant c.
For ¢ > 2, we say that a ¢*-block satisfies recursive (c,?)-diversity if we
can eliminate one possible sensitive value in the ¢*-block and still have
a (c,f — 1)-diverse block. This recursive definition can be succinctly
stated as follows:

Definition 2.2 (Recursive (c,/)-Diversity). In a given ¢*-block,
let r; denote the number of times the i-th most frequent sensitive value
appears in that g*-block. Given a constant ¢, the ¢*-block satisfies recur-
sive (c,0)-diversity if my < c(ry + rep1 + --- + 7mm). A table T satisfies
recursive (c,f)-diversity if every ¢*-block satisfies recursive (-diversity.
We say that 1-diversity is always satisfied.

The recursive (¢, ¢)-diversity, thus, can be interpreted in terms of adver-
sarial background knowledge. It guards against all adversaries who pos-
sess at most ¢ — 2 statements of the form “Bob does not have heart
disease”. We call such statements negation statements.

At this point we would like to remind the readers the question we
raised in the previous section: “How does a data publisher decide which
attributes should be included in the set of QI attributes?” QI attributes
are just a special case of background knowledge. k-Anonymity only



2.4 Protection Against Boolean Background Knowledge 31

considered background knowledge quantified by the set of QI attributes.
£-Diversity considered adversaries possessing negation statements in
addition to QI attributes. In the next few sections, we will describe
formal models of adversarial background knowledge and progressively
more complex forms of background knowledge.

2.4 Protection Against Boolean Background Knowledge

{-Diversity highlighted the importance of a formal specification of the
background knowledge available to the adversary, and the fact that the
data publisher may not know the adversarial background knowledge
but may still be able to guard against it. Motivated by this, Martin et al.
[173] and Chen et al. [51] considered more general forms of background
knowledge. In general, one can describe background knowledge using
Boolean logic sentences and seek to provide privacy protection against
an adversary who knows a certain number of such sentences. Martin
et al. first introduced a privacy framework based on such an idea. Then,
Chen et al. provided a privacy criterion that is easily understandable
(i.e., can be explained precisely using plain English) and encompasses
k-anonymity and (c,£)-diversity as special cases.

Consider the running example. Let D denote the original medical
record table (Table 1.1). After applying a sanitization procedure, the
data publisher obtains a generalized view of D (Table 1.2), denoted
by D*. To understand whether D* is safe for release, we consider an
adversary whose goal is to predict (or infer) whether a target individ-
ual ¢ (say, Eshwar) has a target sensitive value s (say, cancer). In making
this prediction, the adversary would be assumed to have access to the
release candidate D*, as well as his own knowledge K. This knowledge
may include information from similar data sets released by other orga-
nizations, social networks relating individuals, and other instance-level
information. A robust privacy criterion should place an upper bound
on the adversary’s confidence in predicting any individual ¢ to have
sensitive value s. In other words, the criterion should guarantee that,
for any ¢ and s, Pr(t has s| K, D*) < ¢, for some threshold value c. It is
equivalent to say

n%axPr(t has s| K,D*) < c.
sS
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We call max; s Pr(t has s| K, D*) the breach probability, which repre-
sents the adversary’s confidence in predicting the sensitive value s of
the least protected individual ¢ when the adversary has knowledge K
and obtains release candidate D*.

Returning to the example, assume that each individual has only
one disease in D. In the absence of adversarial knowledge, intuitively
the adversary can predict Eshwar to have cancer with confidence
Pr(Eshwar has Cancer |D*)=1/4 because there are four individuals
in Eshwar’s equivalence class, only one of whom has cancer; without
additional knowledge, no one is more likely than the other. However,
the adversary can improve his confidence if he has some additional
knowledge. For example:

® The adversary knows Eshwar personally, and is sure that
he does not have heart disease. After removing the record
with heart disease, the probability that Eshwar has cancer
becomes 1/3.

e From another data set, the adversary determines that
Fox has Flu. By further removing Fox’s Flu record, the
probability that Eshwar has cancer becomes 1/2.

In defining a privacy criterion incorporating such background knowl-
edge, two key problems need to be addressed. First, one must provide
the data publisher with the means to specify adversarial knowledge K.
Second, one must compute the breach probability (in a computationally
efficient way).

2.4.1 Specification of Adversarial Knowledge

We will first discuss how the adversarial knowledge can be specified,
and then we will discuss how to compute breach probabilities. We note
that computation of breach probabilities under general Boolean logic
sentences is NP-hard [173]. That means our focus should be on spe-
cial logic sentences that are efficiently computable and represent useful
adversarial knowledge.

The problem of adversarial-knowledge specification is further com-
plicated by the fact that, in general, the data publisher does not know
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precisely what knowledge an adversary has. To address this, Martin
et al. proposed the use of a language for expressing such knowledge.
Because it is nearly impossible for the data publisher to anticipate
specific adversarial knowledge, they instead propose to quantify the
amount of knowledge an adversary could have, and to release data
that are resilient to a certain amount of knowledge regardless of the
specific content of this knowledge. Specifically, they define the language
Lpasic(k) to be the set of all possible conjunctions of k implications (i.e.,
k implications connected by “and”). Each implication is of the following
form:

[(u; has v1) and ... and (uy,, has v,,)]
implies [(f1 has s1) and ... and (¢, has s,)],

where u; and ¢; are individuals in D, v; and s; are sensitive values, and
m and n can be any positive numbers. An example logic sentence in

/:'basic(Q) is
[((Fox has Flu) and (Igor has Cancer)) implies (Ken has Cancer)]
and
[(Helen has Flu) implies ((Fox has Flu) and (Lewis has Cancer))]

Definition 2.3 ((c,k)-Safety). Given knowledge threshold k>0
and confidence threshold ¢ € [0,1], release candidate D* is (c,k)-safe
if
max Pr(t has s| K,D*) < ¢,
t€T, s€S, K € Lpasic (k)
where 7T is the set of individuals involved in D and S is the set of
sensitive attribute values.

Chen et al. argued that Lp,s(k) is not intuitive. It is difficult for
the data publisher to understand the practical meaning of a conjunc-
tion of k implications, thus making it hard to set an appropriate k
value in practice. Instead, they proposed to quantify possible adversar-
ial knowledge from three intuitive dimensions. Suppose that the adver-
sary’s target is to determine whether individual ¢ has sensitive value s.
They define the language L s(¢,k,m) to be the set of all logic sentences,
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each of which represents an adversary that knows: (1) £ sensitive values
that the target individual ¢ does not have, (2) the sensitive values of k
other individuals, and (3) m individuals in ¢’s same-value family for a
sensitive value s (meaning that we can be sure that ¢ has sensitive value
s if any one of those m individuals has s, especially if s is a contagious
disease).

Definition 2.4 (Basic 3D privacy criterion). Given knowledge
threshold (¢,k,m) and confidence threshold ¢ € [0,1], release candidate
D~ is safe if
max Pr(t has s| K,D*) < ¢,
teT,seS, KeLy s(L,k,m)
where T is the set of individuals involved in D and S is the set of
sensitive attribute values.

Note that, for simplicity, we slightly modified the definition of the
basic 3D privacy criterion of Chen et al. In the original definition, one
can have possibly different (¢,k,m) and ¢ values for different sensitive
values in order to give some sensitive values (e.g., AIDS as opposed
to Flu) more protection. We also note that Chen et al. extended the
basic 3D privacy criterion to a skyline privacy criterion, which provides
the data publisher further flexibility, and studied set-valued sensitive
attributes and different kinds of schema-level constraints.

To make the Boolean background knowledge used in k-anonymity
and (-diversity explicit, Chen et al. showed that k-anonymity is a spe-
cial case of the basic 3D privacy criterion where the identities of the
individuals in the data set are considered to be the sensitive values,
the knowledge threshold is (0, £ — 2, 0) and the confidence threshold
is 1, for all sensitive values. They also showed that (c,£)-diversity is
a special case of the basic 3D privacy criterion where the knowledge
threshold is (¢ — 2, 0, 0) and the confidence threshold is ¢/(¢ + 1), for
all sensitive values. In other words, k-anonymity provides privacy pro-
tection against any adversarial knowledge about the identities of &k — 2
individuals, and (¢, ¢)-diversity provides privacy protection against any
adversarial knowledge about £ — 2 sensitive values that an adversary’s
chosen target individual does not have.
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2.4.2 Computation of Breach Probabilities

Detailed discussion of how to compute breach probabilities is beyond
the scope of this paper. Here, we only provide key ideas. We first note
that one has to carefully pick the form of adversarial knowledge (i.e.,
kind of logic sentence); otherwise, computation of breach probabilities
under background knowledge is likely to be infeasible.

Pr(t has s| K, D*) is generally computed based on the random world
assumption. Intuitively, given a release candidate D*, each possible
original data D that can produce D* by applying the sanitization mech-
anism to D is called a possible world of D*. One commonly used assump-
tion that simplifies probability computation is that, without the given
adversarial knowledge, each possible world is equally likely. Notice that
“t has s” and K are logic sentences that can be evaluated on each
possible world and return either true or false. Let n(X | D*) denote the
number of possible worlds of D* on which logic sentence X is true. By
the definition of conditional probability, we obtain:

n((t has s) and K | D*)
n(K|D*)

Pr(t has s| K,D*) =

To compute maxser, ses, kecPr(t has s| K,D*), where L is a lan-
guage, it would be computationally infeasible if we try all possible (¢, s,
K) triples to find the maximum. The trick is to analyze the necessary
conditions of the maximum; i.e., find a small set of (¢, s, K) triples
that includes the maximum solution. Then, restrict the search to that
set of (t, s, K) triples. If this restricted set is significantly smaller than
the set of all possible (¢, s, K) triples, we can observe significant effi-
ciency improvement. After having this restricted set, Martin et al. used
dynamic programming to search for the maximum [173]. Chen et al.
further proposed a congregation property (saying when the breach prob-
ability is maximized, all the individuals involved in adversarial knowl-
edge K are in at most two equivalence classes) and showed that their
language L (¢, k,m) satisfies the property. Based on the congregation
property, they improved efficiency over dynamic programming by sev-
eral orders of magnitude [51].
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2.5 Protection Against Probabilistic Background
Knowledge

Until now, we have described privacy definitions based on adversaries
with only precise knowledge; ¢(-diversity [166, 168] guards against nega-
tion statements of the form “Bob does not have heart disease”, and in
addition Martin et al. [173] and Chen et al. [51] proposed algorithms to
guard against implications of the form “If Bob has the flu then Clara
has the flu”. However, as described in the case of Bayes-Optimal privacy
(in Section 2.3) adversaries may possess probabilistic knowledge about
parts of the domain. For instance, an adversary may know that the
incidence of cancer in Gotham City is only 10%, but is higher (about
50%) if only males in Gotham City are considered. In order to capture
such kinds of adversarial knowledge, Evfimievski et al. [92] proposed a
privacy criterion called («, 3)-privacy.

Consider an anonymization algorithm R with input domain Dy and
output domain Dy . Suppose R acts on a (secret) data item u € Dy and
outputs v € Dy . For example, R may add some random noise into u
to generate v. Evfimievski et al. say that R allows privacy breaches
if for some property ¢ about u, the adversary’s prior probability that
¢(u) = true is very different from the adversary’s posterior probabil-
ity that ¢(u) = true after seeing the output v. The adversary’s back-
ground knowledge is captured in terms of the prior probability, and
additional information due to the access to v represented by the pos-
terior probability.

Definition 2.5 ((a, 3)-Privacy). Let R be an algorithm that takes
as input v € Dy and outputs v € Dy. R is said to allow an upward
(o, B)-privacy breach with respect to a predicate ¢ if for some proba-
bility distribution f,

Ju € Dy,3v € Dy s.t. Pr(¢p(u)) <o and  Pr(o(u)|R(u) =v) >

Similarly, R is said to allow a downward («,3)-privacy breach with
respect to a predicate ¢ if for some probability distribution f,

Ju e Dy,3v € Dy s.t. Pr(p(u)) > and Pr(o(u)|R(u) =v) <
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R is said to satisfy («, 3)-privacy if it does not allow any («, 3)-privacy
breach for any predicate ¢.

Notice that, unlike the privacy criteria in previous sections which
define whether or not a release candidate is safe, («, 3)-privacy defines
whether an anonymization algorithm is safe. Specifically, (a, 3)-privacy
considers all possible inputs (no matter what the data publisher’s orig-
inal data set is) and all possible outputs (no matter what release candi-
date is actually published) of an anonymization algorithm. If there is an
input—output pair that allows a privacy breach, then the anonymization
algorithm is not safe.

Evfimievski et al. derived the necessary and sufficient conditions for
R to satisfy («,3)-privacy for any prior distribution and any property
¢ in terms of the amplification of R. An algorithm R is defined to be
~v-amplifying if
P(R(w) =v) _
P(R(ug) = v)

where the probabilities are measured using the random coins of the

Yv € Dy, Yuy,us € Dy, (2.2)

algorithm R.

Theorem 2.2 (From [92]). Let R be an algorithm that is 7-
amplifying. R does not permit an («, 3)-privacy breach for any adver-
sarial prior distribution if and only if

vl lze
a 1-0

(2.3)

Unlike the previous privacy definitions, the («, 3) condition does not
limit the information known to the adversary as it considers every possi-
ble adversarial prior belief. Consequently, the anonymization algorithm
is forced to satisfy the strict y-amplification condition. For instance, no
deterministic algorithm (which includes generalization and bucketiza-
tion schemes) can satisfy (o, 3)-privacy, unless R maps all the inputs
to the same output. If R deterministically maps two inputs uq and us
to two distinct outputs v1 and ve, its amplification is

P(R(u1) =v1) _ P(R(w1) =v1) _

P(R(UQ) = ’Ul) 0
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We will describe random perturbation-based techniques that satisfy
(ar, B)-privacy in Section 4.2.

2.6 Differential Privacy

Organizations are primarily interested in publishing information col-
lected from individuals in the form of relational tables. Each individual
contributes to only a few (say, at most c¢) tuples in the table. The
differential privacy criterion, proposed by Dwork [85], is designed to
guarantee the privacy of individuals and is motivated by the following
intuition. The sanitization process should guarantee that, for any indi-
vidual ¢, the sanitized output generated by including ¢’s data should
be nearly indistinguishable from that generated without i’s data. In
other words, an individual’s privacy is guaranteed if given access to the
sanitized data set and information about all but one individual, say 1,
in the table, an adversary cannot determine the value of individual i’s
tuple. For instance, in Table 1.1, even if the adversary knows the dis-
ease of all the individuals except Bruce, given access to the sanitized
table, the adversary should not be able to say whether Bruce has the
heart disease or the flu or even hepatitis.

Similar to (o, 8)-privacy, differential privacy defines whether or not
an anonymization algorithm is safe over all possible inputs and outputs.
Let Tup™ denote the set of all possible tables having n tuples.

Definition 2.6 ((c,¢)-Differential Privacy [85]). An algorithm A
that takes as input a table T € Tup”™ satisfies (c,€)-differential privacy
if for every output S, and every pair of input tables 77 and T5 that
differ in at most ¢ tuples,

<k,

where the probabilities are measured using the random coins in
algorithm A.

Differential privacy can be formally motivated in many ways; we
present one in terms of («,(3)-privacy. When considering relational
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tables, one can relax the («,3)-privacy condition by considering only
properties ¢ that pertain to individuals as follows.

Suppose ¢ = 1 like in Table 1.1; i.e., every tuple in the relation con-
tains the information about a unique individual. First, it is sufficient
to guarantee that the adversary’s prior and posterior are not very dif-
ferent for individual properties of the form “Does Bob have cancer” or
“Does Bob earn more than $50,000”. These properties can be captured
using the set of all functions ¢ whose domain is T'up (the domain from
which each tuple is picked) and whose range is {0,1}; each predicate
¢(t) = 1 represents a unique property.

Next, since we are only interested in safeguarding individual proper-
ties, we can relax the adversarial knowledge too. Assume, unlike in the
case of Martin et al. or Chen et al., that the adversary does not know
any information linking two individuals in the table. Now in the worst
case, an adversary may know the exact information about all the tuples
in the table, except one (the individual being the adversary’s target).
Moreover, the adversary may know an arbitrary probability distribu-
tion f for the target tuple. Dwork et al. [87] term such an adversary as
informed. The following definition (similar to the semantic privacy in
[87]) rephrases the («,(3)-privacy criterion with only individual prop-
erties and the “all but one” adversary model.

Definition 2.7 ((a, 3)-Individual Privacy). Consider an algorithm
A that takes a secret table T' € Tup™ and outputs S. A is defined to
satisfy («,3)-individual privacy against an informed adversary if for
every D € Tup™ !, denoting the exact information about n — 1 tuples
in the table, for every function ¢ : Tup — {0,1} and every probability
distribution f on the rest tuple,

Pr(6(t) = 1|D) < & — Py(6(t) = 1|D,S) <

B
and Pp(¢(t) =1|D) > a — Py(p(t) =1|D,S) > 8 (2.5)

We can use Theorem 2.2 to derive the necessary and sufficient condi-
tions for an algorithm to satisfy Definition 2.7. Note that the adversary
already knows the exact values of all but one of the tuples. Hence, it
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is enough to consider the amplification based on two tables T} and T5
that differ in only one tuple. For every such pair of 17, T5 and for every
output S, we need

P(A(T1) = 5)
P(A(Ty) = 9)

Sél_a
«

1-p

Now suppose we want the prior and posterior probabilities to always

(2.6)

be within a factor of €, for some e > 1. That is, we want («,€ - «)-
individual privacy for every value of o between 0 and 1. This would
force Equation (2.6) to become,

Vo PAT)=S5) e a 1l—a
’P(A(Tg):S) a l—€-«a
P(A(Ty) = S) 11—«
Yo A =9) = T—c-a
PAT)=S5) _
iff, P(A(Ty) = 9) < (2.7)

Equation (2.7) corresponds to (1,€)-differential privacy condition.

In summary, like (o, 3)-privacy, differential privacy defines whether
an anonymization algorithm is safe, and not whether a specific release
candidate is safe. Intuitively e-differentially privacy is guaranteed if
an adversary cannot sufficiently distinguish any two input tables that
differ in the data for a single individual based on any output of the algo-
rithm; the ¢ parameter denotes the extent to which an adversary can
distinguish the tables. Semantically, e-differential privacy is stronger
than (o, 8)-privacy, since the latter only considers adversarial knowl-
edge about a single individual, but the former considers adversarial
knowledge about all individuals in the table. However, by adding adver-
sarial knowledge of exact information about “all but one” individuals
in the table, we showed that the variant (o, ea)-individual privacy (for
all «) is equivalent to e-differential privacy.

2.7 Perfect Privacy

Until now we have considered privacy definitions that bound the dis-
closure of information sensitive to individuals. However, some data are
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so secret that an individual may not want any information to be dis-
closed. Such a stringent privacy requirement is termed perfect privacy
and is equivalent to Shannon’s notion of perfect secrecy [232]. More
formally, suppose the absolutely sensitive information is captured by
the answer to query Qg over a relational database. Then, publishing a
view V' (by answering query Q) of a relational table T violates perfect
privacy if for some prior probability distribution f over the domain of
all relational tables, and for some answer S to the secret query Qg,

Pp(Qs(T) = 5) # Pr(Qs(T) = S[Qv(T) =V) (2.8)

Again, this means that there is an adversary with prior background
knowledge that is captured by the probability distribution f, and whose
belief about the answer to the secret query changes after seeing the
published view.

Unfortunately, it can be shown that for any non-trivial query Qg,
publishing any view V violates Shannon secrecy. For example, consider
Table 1.1. Suppose Bruce does not want researchers from Gotham City
University to learn any information about his disease. So the sensitive
query here is

SELECT Disease FROM Hospital WHERE Name = Bruce.

Intuitively, one might expect that publishing the disease information
only about women in the hospital would not leak any information about
Bruce (who is male). However, there may be some adversary who knows
the information that only one of Cary and Bruce has the flu. Thus
publishing the information that Cary has the flu leaks the information
that Bruce does not have the flu. This changes the adversary’s belief
about Bruce’s disease, thus violating Shannon’s secrecy.

Since in most cases sensitive information about one individual does
not depend on other individuals, Miklau and Suciu [179] proposed a
perfect privacy definition that only guards against adversaries who con-
sider different tuples in a relation to be independent of each other. More
formally, let f be a probability distribution over all the possible tuples
f:Tup — [0,1], where f(¢) denotes the probability that tuple ¢ occurs
in a database instance. Hence, the probability of a table T" is given by
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the following product:

P(T) = [ r&) = [T (@ = &)

teT t'gT

Let 7 denote the set of all possible relational tables. Miklau et al. call
the pair (T'up, f) a dictionary, which defines a probabilistic table (i.e.,
a probability distribution over the set 7 of all possible realizations of
such a table). Let Py(Qgs = S) denote the probability that the query
Qg outputs S; i.e.,

PrQs=8)= Y  PyT)

TET : Qs(T)=8

Definition 2.8 (Perfect Privacy [179]). The query Qg is perfectly
private with respect to query Qv if for every probability distribution f
(which considers different tuples to be independent) and for all answers
S, V to the queries Qg, Qv , respectively,

Pr(Qs =) = P;(Qs = S|Qv = V). (2.9)

In other words, the query Qg is perfectly private with respect to Qv
if the adversary’s belief about the answer to Qg does not change even
after seeing the answer to )y, on all tuple-independent probability
distributions.

Miklau and Suciu presented an elegant characterization of the above
condition in terms of a logical condition on critical tuples. A tuple ¢ is
critical to a query @, denoted by ¢ € crit(Q), if AT € T, Q(T U {t}) #
Q(T). That is, a tuple is critical to a query if removing it from a table
changes the answer to the query.

Theorem 2.3 (Critical Tuple Privacy [179]). Let (Tup, f) be a
dictionary. Two queries Qg and (Qy are perfectly private with respect
to each other if and only if

crit(Qg) Nerit(Qy) = 0.
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However, checking whether a tuple is critical was shown to be hard
for the second level of the polynomial hierarchy (IT5-complete! in the
size of the query) even for conjunctive queries (simple SQL queries with-
out aggregation, recursion, or negation). Subsequently, Machanava-
jjhala and Gehrke [165] showed that the problem is indeed tractable
for sufficiently large subclasses of conjunctive queries.

2.8 Other Privacy Definitions

Until now, we have described a variety of definitions of privacy. Many
extensions and relaxations of these privacy definitions have been dis-
cussed in the literature. These may be broadly classified into extensions
of k-anonymity, extensions of /-diversity, relaxations of differential pri-
vacy, and relaxations of perfect privacy. We briefly discuss these vari-
ants in this section.

2.8.1 Extensions of k-Anonymity

k-Anonymity was proposed for deterministic sanitization mechanisms
(e.g., generalization). Aggarwal extended it to defining privacy for a
randomization mechanism [8]. Let D = {u1,...,u,} denote the original
data table, where p; is the vector of attributes for the i-th individ-
ual. Suppose that we want to release a sanitized version D* of D by
adding random noise. For simplicity, suppose each record pu; only con-
tains numeric values and we add Gaussian noise. We represent a release
candidate D* by {(z1,0%),...,(zn,02)}, where x; = y; + ¢ is the san-
itized record of individual i, and ¢; is drawn from the multivariate
normal distribution with mean 0 and covariance matrix 01-2 . Note that

2

o controls the amount of noise added to the data and needs to be

i
determined by an anonymization algorithm. Let p(z;u;,0?) denote the
probability density function of the normal distribution with mean pu;
and covariance matrix af, which is the probability that the randomized

version of the i-th record (i.e., x;) takes value x.

I The first level of the polynomial hierarchy contains the sets NP and co-NP. Problems in
Hg are conjectured to be harder than problems in NP. For more details we refer the reader
to Section 5 in Arora and Barak [23].
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Different from a deterministic sanitization mechanism (e.g., gener-
alization), when a randomization mechanism is used, the goal of an
anonymization algorithm is to determine the noise levels a?, instead
of the sanitized records x;, because each x; is simply generated from a
probability distribution defined by ¢? (and p;). Thus, a privacy crite-
rion is also defined on the noise levels 01-2, instead of the actual sanitized
records ;.

Definition 2.9 (k-Anonymity in expectation). Release candidate
D* is k-anonymous in expectation if, for each individual 7, the expected
number of individuals j whose original records j; are more likely to
generate ¢’s sanitized record than ¢’s own original record p; is at least k;
i.e., for each 1,

n

> Prlp(Xispg,07) > p(Xi i, 07)] > k, (2.10)
=Tt

where X; is a normal random variable with mean u; and covariance
matrix o, which represents i’s sanitized record.

To better understand the above definition, let Y;; € {0,1} be a
random variable representing whether p; is more likely to gener-
ate X; than p; does. Note that Y;; is a function of X;: Yj; =1 if
p(Xi;pj,02) > p(Xy; i, 02); otherwise, Y;; = 0. Then, Zj:#iYij is the
number of individuals whose original record is more likely to generate
1’s sanitized record X; than ¢’s own original record is. It can be easily
seen that requiring E[ ., Yi;] > k is equivalent to Formula (2.10).

We note that this definition has several properties that may not be
desirable. First, it is possible that the sanitized record x; is exactly the
same as or very close to the original record ;. Although the probability
that it happens to a given record is small, the probability that it hap-
pens to at least one record may be large, especially when the number of
records in the data set is large. Note that, when the data publisher does
publish an x; that happens to be the same as u;, he can always claim
that they are not the same. Although an adversary would not know the
fact that they are actually the same, the individual who contributes the
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record would not be happy about seeing his record published without
any protection. Second, notice that the larger (in terms of the number
of records) the original data set is, the smaller the amount of noise
is needed. To see this, consider any subset D; of records of D. When
we sanitize D, the amount of noise that is needed to be added into a
record that belongs to the subset D; is always smaller than the amount
of noise that is needed to be added into the same record if we just want
to sanitize the subset D;. This property is the consequence of hav-
ing the summation in Formula (2.10) and it is not clear whether this
is desirable. Third, k-anonymity in expectation does not guarantee k-
anonymity with high probability (e.g., probability 0.95). Note that the
latter provides a stronger safety guarantee than the former and can
be defined by the requirement that, for each i, Pr [Z#i Yij > k:] >c,
where ¢ is the confidence threshold.

While k-anonymity prevents an adversary from precisely identify-
ing individuals’ data records, it does not prevent the adversary from
knowing that an individual is in the data set. To address this, Nergiz
et al. [188] propose d-presence. Given an external public data table T
(that defines the set of the individuals to be considered, e.g., a voter
registration list) and two threshold values ¢ = (dmin,Omaz), a release
candidate D* of a original data set D is said to satisfy J-presence if,
for any individual t € T',

Smin < Pr(t € D|D*) < Smas.

2.8.2 Extensions of ¢-Diversity

Recall that ¢-diversity guarantees privacy (specifically, non-disclosure
of a sensitive attribute) by ensuring that within each equivalence class
(also called ¢*-block, which is a group of tuples with the same gen-
eralized value for the quasi-identifier attributes), the ¢ most frequent
sensitive values have roughly equal proportions. It has been shown that
recursive (¢, f)-diversity provides privacy guarantees when the adver-
sary’s knowledge is limited to ¢ — 2 negation statements of the form
“Bruce does not have the Flu”. Clearly, this formulation does not guar-
antee privacy in all scenarios. First, an adversary may have background
knowledge that cannot be captured by only negation statements; in
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Section 2.4 we discussed work by Chen et al. [51] and Martin et al.
[173] who formulated more complex forms of background knowledge.
Next, ¢-diversity considers sensitive attributes that are categorical,
and assumes that the adversary does not know any semantic informa-
tion about the relationships between attribute values. As an example,
consider a 3-diverse table having an equivalence class of 10 individuals
that is associated with the three diseases: stomach ulcer (three indi-
viduals), dyspepsia (three individuals), and gastroenteritis (four indi-
viduals). This table does not allow an adversary to deduce with high
probability whether an individual in the equivalence class has one of
these three specific diseases. However, the adversary can deduce with
certainty that every individual in this equivalence class has a stomach-
related disease, which might be considered a breach of privacy. Xiao
and Tao [274] proposed a privacy criterion that requires ¢-diversity
over such general concepts rather than individual values in the sen-
sitive attribute domain. More precisely, consider a hierarchy on the
domain of the sensitive attribute, where the leaf nodes are labeled by
specific values in the domain of the sensitive attribute, and internal
nodes are concepts that generalize all the leaf nodes in its subtree. Fig-
ure 2.1 shows one such hierarchy. Xiao and Tao allow users to specify
which nodes in the hierarchy are sensitive; i.e., a user could say that
the nodes cancer, stomach disease, and heat-related disease are sensi-
tive nodes. For privacy, they require ¢-diversity on sensitive nodes that
do not have sensitive parents; i.e., in Figure 2.1, ¢-diversity is required

Diseases

! Stomach-related ! ! ' Heart-related ! : !
1

1
) 1 Cancer 1 1 ’ Diabetes 1
| diseases | | | diseases |
r= bl B =_==1 == == .= il | —= --| r= | T =1
I Ulcer | 1Gastroenteritis! :Dyspepsia' i Breast | !Leukemial IAnginal ! Vglve 1
! | ! I 1Cancer; ! v 1D 1 failure

—_——— —_—m e e e e = e —— —_——— - -

Fig. 2.1 Hierarchy of concepts on the sensitive attribute Disease. Dashed boxes are consid-
ered sensitive.
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on “stomach-related diseases”, “cancer”, “heart-related diseases,” and
“diabetes”.

We should note that a variant of /-diversity (also proposed in [166])
is able to handle some form of semantic information about the degree
of sensitivity of a value of a sensitive attribute. In this case, a data
publisher decides on a subset Y of values of the sensitive attribute.
Values in Y are considered minimally sensitive so that “flu” might be
in Y but “AIDS” should not be; a frequently occurring value may also
be included in Y at the discretion of the data publisher. Thus Y is
called a don’t-care set [168]. With this set Y, a version of ¢-diversity
that is called positive disclosure (-diversity [166, 168] is designed to
protect the sensitive values that are not listed in Y. This modified
version of (-diversity addresses charges that were later made by Li
et al. [157] that ¢-diversity is unnecessary to achieve when some values
are much more sensitive than others. It also addresses their second
complaint that skewed data such as 49 AIDS patients with one healthy
patient in an equivalence class is treated the same as 49 healthy patients
and one AIDS patient. This problem is easily solved using recursive
(c,0)-diversity with don’t-care sets and a properly chosen constant c.
For more fine-grained control, each sensitive value could have its own
constant ¢, which essentially places a cap on the fraction of times a
sensitive value can appear inside an equivalence class. Fine-grained
control for each sensitive value was explored in [51].

Yet another set of extensions target privacy for numeric attributes.
Here again, ensuring the diversity of specific numeric values may not
be enough to guarantee conventional notions of privacy. For exam-
ple, a 3-diverse table may contain three salaries: 100K, 101K, and
99K, but an adversary can deduce that the salary is between 99 K and
101 K, which appears to be a breach of privacy. Several approaches
have been proposed to handling this problem [151, 155, 157]; most
recently, Li et al. proposed prozimity-aware privacy, which requires
that every equivalence class contain sensitive values from at least ¢ dis-
joint ranges (of width more than a pre-specified parameter) in roughly
equal proportions.

The above papers advance the state-of-the-art by correctly recogniz-
ing that semantic information about sensitive attributes is important,
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and potentially increases the risk of a privacy breach. However, the work
in this space has not yet been able to formalize the range of seman-
tic information that an adversary might possess. For instance, there
may not be a single hierarchy of concepts on the sensitive attribute
domain; it is thus difficult to reason about the attacker’s “mental tax-
onomy.” Similarly, ¢-diversity on numeric ranges is implicitly designed
to protect against an adversary with background knowledge captured
by negation statements of the form “Bruce’s salary is not $100,000” or
“Bruce’s salary is not between $99,000 and $101,000”. However, it is
also reasonable to consider inequality statements like “Bruce’s salary is
greater than $100,000”, which are not captured by the existing notion of
proximity-aware privacy. Further work is necessary to precisely char-
acterize the semantics of sensitive attribute values in relationship to
extended privacy definitions.

Finally, ¢-diversity only ensures that the posterior probability that,
say, Bruce has cancer given the published table and the adversarial
knowledge is less than ¢/(c + 1). However, in some cases, an adversary
may know statistical information that 70% of males in Gotham City
above the age of 40 have cancer; here, learning that Bruce has cancer
with probability of 75% may not violate his privacy. t-Closeness [157]
attempts to guarantee privacy against such adversaries by assuming
that the distribution of the sensitive attribute (say disease) in the whole
table is public information. Privacy is said to be breached when the
distribution of the sensitive attribute in an equivalence class is not close
to the distribution of the sensitive attribute in the whole table. For
instance, Table 2.3 satisfies t-closeness, since the disease distribution

Table 2.3. Table satisfying t-closeness.

Non-Sensitive Sensitive

Age Gender Disease Count

<40 M Flu 400
< 40 M Cancer 200
> 40 M Flu 400
> 40 M Cancer 200
> 40 Ia Flu 400
> 40 F Cancer 200
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in each equivalence class is the same as the disease distribution in the
whole table.

While t¢-closeness raises an important point that privacy should
be measured relative to the adversary’s prior information, its partic-
ular implementation is ad hoc. There is no clear characterization of
what kind of background knowledge an adversary might have. One
could argue that t-closeness guards against adversaries who know the
marginal distribution of the sensitive attribute in the table being pub-
lished. This means that t-closeness will never say that a table is too
sensitive for anything to be published, even if it only includes one indi-
vidual. Also, when the marginal distribution of the sensitive attribute
in the data is very different from the general belief and is indeed sensi-
tive, t-closeness may incorrectly assume that the adversary knows that
distribution and release it. We believe that a data publisher should not
automatically assume that the adversary knows the marginal distribu-
tion of the sensitive attribute in the table (a) when the total number
of individuals in the table is small, or (b) if there exists some public
information about the distribution that is different from the marginal
distribution in the table being published.

2.8.3 Relaxations of Perfect Privacy

Perfect privacy is breached when the adversary’s prior belief about the
answer to the secret query changes on seeing some published data. Due
to this, Miklau and Suciu showed that no aggregate information relat-
ing to the sensitive query can be published; e.g., if “Does Bruce have
Cancer” is the sensitive query, then any aggregate that includes Bruce’s
disease cannot be released. Dalvi et al. [61] propose a relaxation wherein
privacy is breached only if the adversary’s prior belief asymptotically
differs from his posterior belief as the size of the database increases
to infinity. The authors show that this relaxation allows some aggre-
gates to be published. Stoffel and Studer [237] propose certain answer
privacy wherein privacy is breached only if the adversary can say that
some tuple is certainly in the answer to the secret query, given the
published data.
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2.8.4 Relaxations of Differential Privacy

Variants of differential privacy have been discussed in [49, 86, 167]. The
basic idea is the following. Differential privacy requires that, given any
output of the algorithm, the adversary should not be able to distin-
guish between any two input tables D and Dy that differ in one tuple.
However, given D; and D, some of the outputs are very unlikely. For
instance, let D and D have 100 tuples; let Dy be a table with all
Os and Dy be a table with one 1 and rest 0s. Let the algorithm be
sampling with replacement 100 times. Consider an output that has 100
tuples, all of which are 1. This output is very unlikely (with probability
107299, So it might be acceptable to allow a privacy breach with such
a low probability. This is the motivation behind probabilistic differen-
tial privacy [167], where differential privacy may be violated by a set
of outputs whose total probability is less than a small constant 9.

2.9 Discussion and Comparison

In this section, we have described several distinct privacy definitions
and their extensions. All of these have different intuitions and operate
on different adversarial assumptions. While this state-of-the-art may
be good in terms of our understanding of the definition of privacy, it
poses the following problem to a data publisher: “Which privacy defini-
tion should be used for a specific application?” Unfortunately, there is
neither a mandate on how to define privacy for a new application, nor
a clear technique to compare the various privacy definitions prevalent
in the literature. The problem can be solved if all privacy definitions
can be expressed under one common framework. In this section we
describe initial work toward one such unification based on a framework
for privacy definitions presented by Machanavajjhala [164].

2.9.1 Semantic Privacy Definitions

In order to unify privacy definitions, we must first understand the com-
mon denominators underlying the definitions. Every privacy definition
must answer three important questions:

e What information should be kept private?
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® How is private information leaked; i.e., how does an adver-
sary learn private information?

o When does information disclosure lead to a privacy breach,
and how is disclosure measured?

Some privacy definitions, e.g., (¢, k)-safety, 3D privacy (and the related
privacy skyline), («,3)-privacy, and perfect privacy, explicitly answer
these questions. We follow Machanavajjhala [164] and term these def-
initions as semantic privacy definitions. Other privacy definitions like
recursive (c,f)-diversity, t-closeness, and differential privacy do not
explicitly state these assumptions; these algorithmic criteria are termed
syntactic definitions. Some of these syntactic criteria like /-diversity and
differential privacy are equivalent to semantic variants that explicitly
state the assumptions. Below we summarize all the privacy definitions
we described in terms of their semantic variants.

Any semantic privacy definition has the following structure. The
sensitive information can be described in terms of a set of sensitive
predicates. For instance, in (c,k)-safety the truth value of every pred-
icate of the form “Bruce has Cancer” is sensitive. In perfect privacy,
the truth value of the predicate “S is the answer to (Qg” is consid-
ered sensitive for every S. Next, the adversarial background knowledge
can be described by a set of adversarial distributions on the space of
input tables, and that is independent of any specific input table. Again,
in the case of (c,k)-safety, each adversarial distribution is captured
by a Boolean formula over statements about the sensitive attribute
of individuals in the population, and all adversarial distributions that
correspond to Boolean formulas expressed by at most k implications
are considered. Finally, the privacy metric is described in terms of the
prior and posterior probabilities in each adversarial distribution. In
(¢, k)-safety, privacy is breached if the posterior probability is greater
than or equal to ¢ for some adversarial distribution that is considered.

k-Anonymity [241]:

® Sensitive information: For every individual ¢, the actual asso-
ciation of the record of ¢ to the identity of i is sensitive. Let
the record ID attribute (which contains identifiers or keys,
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each of which uniquely identifies one record) be denoted by
RID. A predicate of the form “[RID]=n" (e.g., “This par-
ticular record belongs to Bob”) is sensitive.

e Adversarial background knowledge/belief: All input tables
are equally likely. Furthermore, the adversary may know
a conjunction of k — 2 statements of the form i[RID] =n'
(denote the set of all such conjunctions by Lys(k — 2)).

® Privacy metric: Publishing D* breaches privacy if Ji,3n €
RID,3K € Lyos(k — 2) such that

P(i[RID] = n| K, published data D*) = 1.

£-Diversity [166, 168]:

® Sensitive information: For every individual ¢ and every sen-
sitive value s € S, the predicate “i[S] = s” is sensitive. E.g.,
“Does Bob have cancer?”

e Adversarial background knowledge/belief: All input tables
are equally likely. Furthermore, the adversary may know a
conjunction of £ — 2 negation statements of the form [S] # s
(denote the set of all such conjunctions by Lyeq(¢ — 2)).

e Privacy metric: Publishing D* breaches privacy if di,ds €
S,AK € Lyeq(¢ — 2) such that

P(i[S] = s| K, published data D*) > ¢/(c + 1).

(c,k)-Safety [173]:

® Sensitive information: For every individual ¢ and every sen-
sitive value s € S, the truth value of predicate “i[S]=s" is
sensitive. E.g., “Does Bob have cancer?”

e Adversarial background knowledge/belief: All input tables
are equally likely. Furthermore, the adversary may know a
Boolean formula that can be expressed as a conjunction of
k implication statements (denote the set of all such conjunc-
tions by ['basic(k))'
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e Privacy metric: Publishing D* breaches privacy if 3i,ds €
S, 3K € Lpasic(k) such that

P(i[S] = s| K, published data D*) > c.

3D Privacy Criterion [51]:

® Sensitive information: For every individual ¢ and every sen-
sitive value s € S, the truth value of predicate “i[S] = s" is
sensitive. E.g., “Does Bob have cancer?”

e Adversarial background knowledge/belief: All input tables
are equally likely. Furthermore, the adversary may know (1) ¢
sensitive values an individual does not have, (2) the sensitive
values of k other individuals, and (3) an implication of the
form: if one of i1,...,7, have sensitive value s, then ¢ has
sensitive value s (denote the set of all such conjunctions of
(1)7 (2)7 and (3) by 'Ci,s(kagam))'

e Privacy metric: Publishing D* breaches privacy if 3i,3ds €
S,3AK € L; ¢(k,£,m) such that

P(i[S] = s| K, published data D*) > c.

(a, B)-Privacy and ~-Amplification [92]:

® Sensitive information: For every individual ¢, let D be the
domain of ¢’s tuple. For every D’ C D, the truth value of
predicate “i € D" is sensitive. E.g., “Does Bob have one of
cancer, heart disease, or the Flu?”, or “Does Bob not have
ulcer?”

e Adversarial background knowledge/belief: An arbitrary
probability distribution over the space of input tables.

e Privacy metric: An anonymization algorithm allows privacy
breaches if 3i, 3D’ C D, 3 output table D*, 3 probability
distribution P such that

P(ieD)<a AN P(ieD'|D*) > 8.

53
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e-Differential privacy [87, 85]:

® Sensitive information: For every individual 4, let D be the
domain of ¢’s tuple. For every D’ C D, the truth value of
predicate “i € D" is sensitive. E.g., “Does Bob have one of
cancer, heart disease, or the Flu?”, or “Does Bob not have
ulcer?”

e Adversarial background knowledge: The adversary knows
exact information about all individuals in the table except
for record 4, and the adversary also has an arbitrary proba-
bility distribution P over the value of record i. Let A denote
such an informed adversary.

e Privacy metric: An anonymization algorithm allows privacy
breaches if 3¢, 3D’ C D, 3 output table T*, 3 informed adver-

sary A such that
P ; / *
PAGEDIT)
PA(Z S D/)

Perfect Privacy [179]

® Sensitive information: Given a secret query (Qg, then for
every possible answer S to QQg, the predicate “S is the answer
to Qg” is sensitive. E.g., if Qg is the query “Names of co-
authors of Ashwin”, then the answer to the question “Is Dan
Ashwin’s co-author” is sensitive.

e Adversarial background knowledge: The adversary knows
an arbitrary probability distribution P over tuples in the
table. All tuples in a database instance are considered
independent.

e Privacy metric: Answering query Qv breaches privacy if
35,3 published view V', 3 tuple-independent probability dis-
tribution P such that

P(Qs=S|Qv=V)# P(Qs=S9).

Some other privacy definitions may look like semantic definitions,
but are not. For example, t-closeness does not have an equivalent
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semantic definition. t-Closeness can be seemingly rephrased in terms
of a semantic definition as follows:

® Sensitive information: For every individual ¢ and every sen-
sitive value s € S, the truth value of predicate “i[S]=s" is
sensitive. E.g., “Does Bob have cancer?”

e Adversarial background knowledge: All input tables are
equally likely. Furthermore, the adversary knows the exact
marginal distribution of the sensitive attribute in the data
that are input to the anonymization algorithm.

® Privacy metric: Privacy is breached if the distribution
P(i[S]| K, published data D*) is not close to the marginal
distribution of the sensitive attribute in D* (measured by a
distance function).

However, the above definition is not a semantic definition because
the adversary’s prior knowledge depends on the specific database being
sanitized. The above list of semantic definitions also point out a sig-
nificant difference of t-closeness from the rest of the privacy defini-
tions. While other privacy definitions guarantee privacy under a set of
adversarial distributions, ¢-closeness guarantees privacy against a single
adversary. This is because t-closeness assumes that the data publisher
exactly knows what the adversary know, while this is not true in other
privacy definitions.

2.9.2 Publishing Multiple Horizontal Partitions

In some data publishing scenarios, data are collected periodically and
also published periodically. Different privacy definitions behave differ-
ently in the scenario of multiple or periodic releases. In this section, we
consider a simple case of multiple releases, namely multiple releases of
horizontal partitions of a table, and point out a subtle issue for some
privacy definitions in this case. A general discussion of multiple releases
is in Section 7.4.2.

We illustrate the issue by applying ¢-closeness to multiple releases
of Table 2.3 in a straightforward way. If the data publisher wants to
publish the entire Table 2.3, then by the assumptions of ¢-closeness, the
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data publisher would assume that the adversary knows that the ratio of
Flu:Cancer is 2:1 over all the individuals in the table. Now, suppose the
data publisher acquires the data in Table 2.3 piece by piece: first the
information on males is collected and then the information on females
is collected. The data publisher also releases sanitized versions piece
by piece: first the information about males and then the information
about females. Note that one might believe the assumption that each
piece is independent of the other is reasonable because they share no
common individuals and their domains are disjoint. Thus it may seem
that there should not be any issues with multiple release of data over
time. However, in this scenario the data publisher would assume that
the adversary knows the distribution of sensitive values among males
(when publishing the first piece) and also the distribution of sensitive
values among females (when publishing the second piece). This is more
knowledge than if the both pieces had been released as one table and
could lead to trouble as follows.

In the extreme case, consider two data publishers A and B. Suppose
A decides to publish Table 2.4 and B publishes each equivalence class
in Table 2.4 in a separate table (i.e., B publishes four tables, the disease
distribution of males under 20, the disease distribution of males between
20 and 40, the disease distribution of males above 40, and the disease
distribution of females above 40). According to t-closeness, A should
not publish the data while B should. Data publisher A should not pub-
lish the data since the distribution of cancer among males between 20
and 40 years of age is very different from the overall distribution of can-
cer (in fact, A should publish Table 2.3 instead). On the other hand, B
is allowed to publish the four tables, since the ¢-closeness assumption

Table 2.4. 200-Anonymous table.

Non-Sensitive Sensitive

Age Gender Disease Count

<20 M Flu 400
20 — 40 M Cancer 200
> 40 M Flu 400
> 40 M Cancer 200
> 40 F Flu 400
> 40 F Cancer 200
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lets B assume that the adversary already knows the distribution of the
sensitive attribute in each table. However, A and B were indeed con-
sidering publishing the same information, thus leading to an apparent
inconsistency.

The solution to this dilemma is to realize that t-closeness assumes
that the tuples in the data are dependent. Two equivalence classes
are, in fact, not independent once we assume the adversary already
knows the overall distribution of sensitive values since the two equiv-
alence classes contribute to this distribution. Privacy definitions like
(¢, k)-safety and 3D privacy (and its more general version called skyline
privacy) also assume tuples are correlated (because the form of back-
ground knowledge that an adversary may have included relationships
between individuals across equivalence classes). Thus for these defi-
nitions one has to be careful about horizontally partitioning the data
and then reasoning about each partition separately. One may even have
to reason about the effect that future data may have (e.g., should we
assume the adversary knows the distribution of the sensitive attribute
among the males in the current sample, in which case this sample is
independent of future data; or should we assume the adversary knows
what the distribution of the sensitive attribute will be once we also
collect data on female patients, in which case the sample is dependent
on future data?). Without careful consideration of this issue, the pri-
vacy guarantee might end up being inconsistent; previously released
safe tables may become unsafe because of a new release that is safe on
its own. Thus, the publication of horizontal partitions of the data over
time is an important research problem for such privacy definitions. We
will discuss issues of other kinds of multiple releases in Section 7.4.2.

2.9.3 Summary

Different applications will need to keep different kinds of information
secret, and they will require different assumptions about the adver-
sary. For instance, a military application might require absolutely no
information to be leaked about some queries, forcing the use of perfect
privacy. Some applications may need to model adversaries using com-
plex distributions; in this case, one may want to use differential privacy
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or (a,f3)-privacy. In other applications, simpler adversary models and
generalization schemes might be sufficient, and ¢-diversity, (¢, k)-safety,
3D privacy criterion, and their variants might be sufficient. We believe
that it is better for data publishers to choose privacy definitions that
are themselves semantic (or provably equivalent to some semantic def-
inition); this helps to evaluate whether the definitions suit the needs of
the application, and allows the definitions to be adapted to new appli-
cations. Definitions that do not have a semantic equivalent may result
in subtle and unanticipated problems.



3

Utility Metrics

The temptation to form premature theories upon insuf-
ficient data is the bane of our profession.

— Sherlock Holmes (Sir Arthur Conan Doyle)

A data publisher seeks to release data that are not only safe, but also
useful. In this section, we discuss ways of measuring the amount of
useful information that is still in the data after sanitization. These
measures are needed by a data publisher to evaluate the utility of dif-
ferent release candidates, and they are also needed by the data recipient
to gauge how useful an analysis will be.

Collections of data about individuals provide two kinds of informa-
tion. The first kind is individual-level personal information. Consider
the medical record example. This is the kind of information a doctor
would need to treat a particular patient. It is also the kind of infor-
mation an attacker would need to run a convincing scam. The second
kind of information is statistical information about a population. This
is the kind of information that is of interest to medical researchers
and economists, and the kind of information that a data publisher
wants to publicize. When sanitizing a data set, some instance-level

59
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sensitive information is invariably removed. However, the unintended
consequence is that some aggregate or statistical information is also
lost. Thus, the utility of a sanitized data set is intuitively measured by
the extent to which it preserve aggregate and statistical information.

In general, there are two ways to evaluate the quality of sanitized
data. The first approach is to actually use the data as input to a query
or an analysis task, and to evaluate the quality of the results. We post-
pone discussion of this approach to Section 5. The second approach,
described in this section, is to develop one or more quantitative mea-
sures of information loss, which an anonymization algorithm could try
to optimize. Recent results indicate that this optimization approach
should be used with caution. The first reason is that a poorly cho-
sen measure of information loss could degrade the quality of the san-
itized data. For example, recent work by Nergiz and Clifton [190] has
shown experimentally that if the goal is to build a good classifier from
sanitized data, then optimizing for the LM, DM, CM, or AM metrics
(discussed in the following sections) may provide little benefit. The sec-
ond reason for caution is that in certain cases, the act of optimizing
an information loss measure subject to privacy constraints can itself
leak additional information [94, 271] (for more details, see Section 6).
With these caveats in mind, let us discuss some proposed measures of
utility.

Many utility measures have been proposed in the literature. Rather
than provide a laundry list of formulas, we will discuss a smaller set
that illustrates the key ideas that are in use.

Generalization/Suppression Counting: One of the earliest and
most intuitive measures of information loss involves counting the num-
ber of anonymization operations performed on a data set. For example,
one of the key operations in the k-anonymity framework is generaliza-
tion, which coarsens the value of an attribute (e.g., changing “age =
20” to “age € [10 — 30]”). If generalization is the only operation being
performed, then it is reasonable to measure information loss by the
number of generalization steps performed. Samarati used one version
called generalization height [226]. In their proof of the NP-hardness
of k-anonymity, Meyerson and Williams used another variation: they
measured the total number of attribute values that were suppressed
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[178]. One can even imagine weighted version of these methods since
some attributes may be more important than others.

One problem with this approach is that not all operations affect util-
ity in the same way. A generalization operation that maps “male” to “*”

“*7 effectively removes gender information from the

and “female” to
data while a generalization operation that turns age into an age range
of length 2 (i.e., [0 — 1],[2 — 3], etc.) seems much more benign. Iyengar
[132] addresses these issues with two measures of information loss: the

aptly named loss metric (LM) and the classification metric (CM).

Loss Metric (LM): LM is defined in terms of a normalized loss for
each attribute of every tuple. For a tuple ¢t and categorical attribute
A, suppose the value of t[A] has been generalized to z. Letting |A|
represent the size of the domain of attribute A and letting M represent
the number of values in this domain that could have been generalized
to x, then the loss for t[A] is (M — 1)/(|A| — 1). The loss for attribute
A is defined as the average of the loss t[A] for all tuples ¢. The LM for
the entire data set is defined as the sum of the losses for each attribute.

Classification Metric (CM): The classification metric (CM) is
designed to measure the effect of the anonymization on a hypothet-
ical classifier. In this scenario, there is a distinguished class attribute,
and tuples are placed into groups (usually they are grouped by quasi-
identifier value). Each tuple incurs a penalty of 1 if it is suppressed
or if its class attribute is not the same as the majority class attribute
in the group. The classification metric is defined as the average of the
penalties of all the tuples. Similar ideas were presented by Wang et al.
[259] and LeFevre et al. [151] as local measures of information loss to
guide anonymization algorithms.

Discernibility Metric (DM): Bayardo and Agrawal [29] proposed a
metric similar in spirit to Iyengar’s LM called the discernibility metric
(DM). DM assigns a penalty to each tuple based on how many other
tuples in the database are indistinguishable from it, and therefore it
works naturally in the k-anonymity framework. For a database of size n,
DM assigns a penalty of n for each suppressed tuple. If a tuple is not
suppressed, the penalty it receives is the total number of tuples in the
database having the same quasi-identifier values. Thus, when tuples are
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grouped by quasi-identifier, the DM for a data set is the sum of squared
group sizes plus n times the number of suppressed tuples. Average
group size (instead of sum of squared group sizes) has also been used
[166, 150].

Ambiguity Metric (AM): Nergiz and Clifton [190] proposed another
metric, called the ambiguity metric (AM), that is especially suitable for
the k-anonymity framework. For each tuple t* in the sanitized data, AM
considers the number of tuples in the domain of the data that could
have been mapped (generalized) to t*. This number is the ambiguity
of t*. The AM for the sanitized data set is then the average ambiguity
for all tuples in the sanitized data.

KL-Divergence: Most of the metrics discussed thus far are oblivious
to the distribution of actual attribute values in the data. If age was
uniformly distributed, and independent of all other attributes, then
replacing the age attribute with an age range would have little effect
since a data analyst is very likely to take the age range and, following
the principle of maximum entropy, assume a uniform distribution of
ages within the range. In this case the analyst’s assumption is accu-
rate. On the other hand, if the age distribution were skewed, then the
uniformity assumption could bias the analyst’s results. For this rea-
son, a utility metric commonly used in the statistics community and
known as KL-divergence would be more appropriate for measuring the
information loss of sanitized data [75, 142]. To use KL-divergence, the
original table is treated as a probability distribution p; as follows. p; ()
is the fraction of tuples equal to t. The sanitized data are also converted
to a probability distribution ps (possible ways of doing this will be dis-
cussed next). The KL-divergence between the two is ), pi(?) logg;—gg.
The larger this number is, the greater the information loss. There are
many ways of interpreting the sanitized data as a probability distribu-
tion. If the sanitized version of the data is a set of histograms, then
the histograms can be interpreted as constraints and the probability
distribution ps is the maximum entropy distribution consistent with
those constraints. Another way is to posit a statistical model such that
the sanitized data form the sufficient statistics [229] of the model. One
example of this is the fact that histograms (also known as marginals)
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form the sufficient statistics for a class of models known as loglinear
models [53]. When this approach is taken, then the KL-divergence has
the following nice interpretation. A model that overfits the original
data (i.e., a multinomial model with one parameter for every possible
tuple) has the maximum likelihood L; on this data set. A model using
the sanitized data as sufficient statistics has lower likelihood Ly. The
quantity log% is known as the log-likelihood ratio and it measures
the amount of likelihood that is not captured by the model built from
sanitized data (thus a value of 0 means that all of the likelihood is cap-
tured by such a model). It is well-known that the log-likelihood ratio
is formally equivalent to KL-divergence.

Another information theoretic metric was proposed by Gionis and
Tassa [115] and is applicable to anonymization algorithms that parti-
tion the data into groups. It is computed as the sum of the entropies of
each attribute for each group. Xu and Ye [277] proposed the use of the
difference in entropy of the quasi-identifier between the original data
and the sanitized data. The overall change in entropy was proposed by

Gomatam and Karr [116], and for uses of conditional entropy see [264].

L, norm: KL-divergence is not the only way to measure the distance
between the original probability distribution and the probability distri-
bution reconstructed from the sanitized data. Agrawal and Aggarwal
[15] used the L1 norm. The L; norm is an example of an L, norm, which
is defined as {)_, |p1(t) — pg(t)|p}1/p for p < oo and max; |p1(t) — pa(t)]
for p = co. Any L, norm (where p > 1) can also be used to measure the
distance between the original and reconstructed probability distribu-
tions. The total variation distance is equal to one-half of the L1 norm.
For numeric data it can make more sense to estimate the original values
(from the sanitized data) instead of directly computing probabilities.
This approach is used for sanitized streams [154, 198] where the Lo
norm between the original and reconstructed stream is used as a mea-
sure of the variance still remaining in the sanitized data.

Hellinger Distance: Another statistical measure of dissimilarity
between distributions is known as Hellinger Distance. It is defined as

\/zt <\/]T(t) - @)2/2 and is used in [116].
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Bivariate Measures: Gomatam and Karr [116] also discuss bivariate
measures of information loss. For a pair of attributes A and B, they
compute the x? statistic in both the original data and the sanitized
data. The x? statistic is then used to compute either the Cramer’s V
or Pearson’s contingency coefficient C. The information loss measure is
then the difference in Cramer’s V (or Pearson’s contingency coefficient
C) from the original data and sanitized data. For more details, see [116].

Workload-Aware Metrics: LeFevre et al. [151] argue that the util-
ity metric should depend on the intended uses of the sanitized data (in
cases where the use is known beforehand). The uses considered are clas-
sification, regression, and answering count queries over regions specified
by range queries. These metrics apply to algorithms that partition the
domain of the quasi-identifier into groups. For classification, the goal
is to be able to predict the value of a distinguished attribute called the
class attribute. The corresponding measure of information loss is the
weighted average of the entropy of the class attribute in each group. If
there are multiple class attributes, then the total information loss is the
sum of the information loss for each attribute. In regression problems,
the class attribute is continuous, so the information loss is measured as
the weighted average of the variance of the class attribute in each group.

In the case of count queries, the measure of information loss for each
query is called imprecision. Imprecision is measured as the number of
points in all groups that overlap with the selection region of the query
minus the true answer. The total imprecision is the sum of the impre-
cision of all the queries. Zhang et al. [282] measure the information
loss in a partition as the difference between the maximum and mini-
mum value of a distinguished numeric attribute (usually the sensitive
attribute) in the partition. The total information loss is measured as
either the maximum of these losses or the sum of these losses.

First- and Second-Order Statistics: Torres [254] used measures of
information loss that are minimized when the original data and the
sanitized data have the same first- and second-order statistics. Our
discussion here follows Sanchez et al. [227], and assumes that there are
p attributes (all numeric) and that the original data and sanitized data
both have the same number of tuples (n).
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A variety of different metrics can be defined by comparing descrip-
tive statistics computed on the original data with those computed on
the sanitized data. In the following, let x;; denote the value of attribute
7 for tuple 7 in the original data, and let :c;j be the corresponding value
for the sanitized data. Let p; (1)) denote the mean of attribute ¢ in the
original (sanitized) data, and let v;; (vj;) denote the covariance between
attributes ¢ and j in the original (sanitized) data. Similarly, let p;; and
p;j be the correlation between attributes 7 and j in the original and
sanitized data, respectively.

Some sample metrics described in [227] include:

e Assuming a one-to-one map between tuples in the origi-

nal and sanitize data sets, the mean variation is defined as
|z —a;

1 n p 1
wp 2i=1 25=1 ol
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® The variation of the means is defined as % v |“|ZHV‘|‘Z|.
T
!
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The variation of covariances is ;=575 D i1 2a1<j<i ol

e The wvariation of variances is % P %
e The mean absolute error of correlations is m
> Zl§j<i pij — P;j|'

Clearly countless variations of these measures can be produced by
replacing relative errors with absolute errors (and vice versa), replacing
absolute values with squares of absolute values, etc. These measures
can also be combined by taking weighted averages (for more details,
see [227]).

Analytical Validity: A similar, but less formal, approach can be seen
in the statistics literature (see for example [1, 143, 218]). The amount of
information present in the sanitized data is known as analytical valid-
ity, and is evaluated by building models over both the original data
and the sanitized data, and then comparing the learned parameters.
Usually this is done by computing confidence intervals for the param-
eters learned from the original data and observing how many times
the parameters from the sanitized model fall into the computed confi-
dence intervals. Karr et al. [139] initiate a formal study on this topic by
proposing to compute the average probability of overlap in confidence
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intervals and the average relative overlap. A utility measure can also
be defined without building a model by computing statistics over the
original and sanitized data and comparing the results [81].

Invariance: The ideas in these workload-aware methods can even be
taken to the following extreme. Bu et al. [40] suggest that anonymiza-
tion schemes should be devised so that they do not alter the output
of pre-selected data mining algorithms. This approach would typically
apply in situations where data are outsourced for the purposes of data
mining. The resulting model (built by an external expert on sanitized
data) could then be processed by the data owner to yield the same
model that would have been built over the original data.

Reconstructibility: The approaches discussed so far measure the util-
ity of the sanitized data that are actually produced. It is also possible
to measure utility in terms of the algorithm used to create the sanitized
data; in this case, the result is usually a probabilistic utility guarantee.

As one example, Agrawal et al. [17] define the utility associated
with a randomized anonymization algorithm in terms of the ability
to reconstruct statistics from the sanitized data. More formally, if f
is a real-valued function computed over the original data, and f’ is
the estimator of f computed over the sanitized data, then f is (n,€,d)
reconstructible if | f — f'| < max(e,ef) with probability at least (1 — §)
whenever the number of tuples in the original data is at least n. Thus
utility can be defined in terms of the class of functions that are (n, €, )
reconstructible.

Rastogi et al. [211] measure utility in terms of how likely it is that
the answer to a count query will be smaller than the sampling error.
Formally, a randomized anonymization algorithm is (p,€)-useful if for
any count query @, with probability (1 — €), the absolute difference
between the true answer to ) and the estimated answer (computed
from sanitized data) is at most py/n (where n is the number of tuples
in the data).

For anonymizations that can be expressed in terms of matrix mul-
tiplication, Agrawal and Haritsa [18] observed that reconstruction
accuracy depends on the condition number of the anonymization
matrix, and they used this condition number as a measure of infor-
mation loss.
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Mechanisms and Algorithms

An algorithm must be seen to be believed.
— Donald Knuth

Data publishing organizations usually face a fundamental tradeoff
between privacy and utility. They can choose not to publish any
release candidate in order to keep their data perfectly private.! Or,
they can choose to release the data without any modification to max-
imize data utility and provide no privacy protection. In this section,
we present algorithms that make good tradeoffs between the two
extremes. Intuitively, each algorithm tries to find the release can-
didate of a sanitization mechanism that satisfies a privacy criterion
and maximizes a utility metric. We first discuss algorithms based on
deterministic sanitization mechanisms (including suppression, gener-
alization, microaggregation, bucketization, and decomposition), and
then describe algorithms based on randomized sanitization mechanisms
(including local randomization, input randomization, and synthetic
data generation).

I Even the “perfect privacy” criterion cannot keep data perfectly private because the data
publisher may fail to recognize a secret or sensitive query.

67
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4.1 Deterministic Sanitization Techniques

Data recoding, generalization, suppression, and aggregation techniques
have been used for many years to provide support for identity and
privacy protection. Such techniques have the advantage of produc-
ing results that are semantically consistent with the input (sometimes
described as “truthful” output), and they have been used to implement
a variety of privacy requirements, including k-anonymity, ¢-diversity,
and variations incorporating more complex models of adversarial back-
ground knowledge.

In this section, we describe techniques and algorithms for data sup-
pression, microdata recoding, structured aggregation, microaggrega-
tion, and decomposition. These approaches share a number of clear
similarities, but there are also some subtle differences.

In the interest of clarity, we will use the term microdata to refer to
a non-aggregate data set (as found, for example, in a single relational
database table). We will use the term contingency table to refer to
a cross-tabulation of counts, as obtained, for example, using an SQL
GROUP BY query.

4.1.1 Suppression-Based Mechanisms

One of the simplest techniques that can be used to implement privacy
requirements such as k-anonymity is suppression of selected cells in the
input microdata set D. For example, the release candidate shown in
Table 4.1(b) replaces certain cells from the microdata in Table 4.1(a)

Table 4.1. Example of cell-suppression anonymization.

(a) Original table (b) Anonymized table
Zip code  Gender Disease Zip code  Gender Disease
94085 M HIV * * HIV
14085 M HIV * * HIV
14085 F None 14085 F None
94085 F HIV * * HIV
14085 F Flu 14085 F Flu
14085 F None 14085 F None
14085 F None 14085 F None
14085 F Flu 14085 F Flu




4.1 Deterministic Sanitization Techniques 69

with wildcard values, denoted “*”. In this case, for QI attributes Zip
code and Gender, this suppression is sufficient to obtain 3-anonymity.

If we view the number of cells suppressed from D as a rough indi-
cator of data utility, then the problem of optimal k-anonymization is
easily formulated in terms of the suppression function s() producing
k-anonymous output D* that suppresses the fewest cells.

This simple version of the problem has been widely studied. Mey-
erson and Williams [178] and Aggarwal et al. [13] both proved that
the problem is NP-hard. Meyerson and Williams provide an O(klogk)
approximation algorithm [178], meaning that the number of cells sup-
pressed by their algorithm is guaranteed to be within a factor of
O(klogk) of the optimal. Aggarwal et al. improve this result to obtain
an O(k) approximation [13], and Park and Shim further refined the
result to obtain an O(logk) approximation [200].

4.1.2 Generalization-Based Mechanisms

Rather than making a binary decision for each data value (i.e., to
suppress the data value, or preserve it in its original form), intuition
says that we should be able to obtain better data utility by allowing for
the generalization of certain values through a number of intermediate
states.

In the input microdata D, there is a domain (e.g., dates, five-digit
integers, etc.) associated with each attribute. We denote the domain of
attribute A as dom(A). Based on this original input domain, it is pos-
sible to construct a more “general” and semantically consistent domain
in a variety of ways. For example, the domain of attribute City can be
generalized by replacing city values with states, and integer values can
be replaced with ranges.

For categorical attributes, this idea of generalization can be imple-
mented through the user-defined generalization hierarchies proposed by
Samarati and Sweeney [226, 241]. Formally, such a hierarchy is defined
by a set of many-to-one value generalization functions. Each gener-
alization function v : dom(A) — dom(A’) maps each value in dom(A)
to a semantically consistent value in domain dom(A’). For example,
Figure 4.1 shows a value generalization hierarchy for the Nationality
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Asian European

e

Japanese Chinese Korean Russian French German

Fig. 4.1 Example generalization hierarchy for nationality.

attribute. Values of dom(Nationality) are shown at the leaves of the
tree. Notice that v(Japanese) = Asian and vy(Asian) = Any.

We will refer to the height of the generalization hierarchy as the
total number of generalizations that can be applied. (E.g., The height
of the hierarchy in Figure 4.1 is 2.) We will use the notation vy (a)
to refer to the generalization closure for input value a. For example,
vt (Japanese) = { Japanese, Asian, All}.

While user-defined generalization hierarchies are well-suited to un-
ordered categorical attributes, numeric attributes permit an additional
degree of flexibility. In this case, generalization can instead take the
form of a coarsened range of values. For example, we might replace the
age value 22 with the range [18-24]. Alternatively, we could choose a
different, yet still consistent, range [22-28]. This is also closely related
to the classical ideas of top-coding and bottom-coding, commonly used
in official statistics. For example, we might replace the age value 99
with the top-coded range [90-o0].

4.1.2.1 Local Recoding

Incorporating user-specified generalization hierarchies, it is possible to
generalize the basic cell-suppression problem described in Section 4.1.1.
We will refer to this new problem as local recoding, where each record
can be generalized at a different granularity from the other records,
even when they have the same attribute values.

In this case, it is easy to think of the generalization process as
applying the generalization functions () (often repeatedly) to the
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individual cells of input microdata D. One way to quantify the utility
of the resulting data is to count invocations of the () function. In this
case, the optimal k-anonymous generalization problem can be stated in
terms of the generalization function g() such that D* = g(D) satisfies
k-anonymity and g() minimizes invocations of (). Of course, minimum
cell suppression is a special case of this more general problem; thus, the
local recoding problem is also NP-hard. Sweeney’s DataFly system pro-
vides some simple heuristic algorithms for this problem [239, 241, 23§],
and Aggarwal et al. provide an O(k) approximation algorithm for the
local recoding problem as well [13].

4.1.2.2 Global Recoding and Structured Aggregation

Another class of techniques seeks to recode or generalize the domain
of each QI attribute in the input microdata D. This can be done by
treating each attribute independently (called single-dimensional recod-
ing), or by recoding the domain of n-vectors (called multidimensional
recoding). Note that the domain of n-vectors is the cross product of
the domains of individual attributes.

Definition 4.1 (Single-Dimensional Global Recoding). A single-
dimensional global recoding for input data set D with QI attributes
Q1,...,Q, is defined by a family of n generalization functions ¢; :
dom(Q;) — dom(Q%), such that the values in dom(Q}) are semantically
consistent generalizations of the values in dom(Q;).

For example, consider the input data in Table 4.2, with QI attributes
Nationality and Age. A 2-anonymous single-dimensional recoding is
shown in Table 4.3(a). Notice also that, for each single-dimensional
global recoding, there exists a corresponding (partially aggregated)
contingency table, expressed over the QI attributes, as shown in
Table 4.3(b). Note that, unlike local recoding, if two tuples share
the same value of an attribute, then after single-dimensional global
recoding, the two tuples will share the same generalized value of that
attribute.

The multidimensional recoding approach loosens the restrictions on
generalization functions.
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Table 4.2. Example input data.

Nationality Age Disease
Russian 20 HIV
Russian 21 Flu
Russian 24 Flu
German 21 Cancer
German 23 Hepatitis

French 25 Cancer
French 25 HIV
Japanese 20 Bronchitis
Japanese 24 Hepatitis
Japanese 25 Flu
Chinese 22 Hepatitis
Korean 21 Flu

Table 4.3. Single-dimensional global recoding.

(a) Expressed as microdata

Nationality Age Disease
European [20-22] HIV
European [20-22] Flu
European [23-25] Flu
European [20-22] Cancer
European [23-25]  Hepatitis
European [23-25] Cancer
European [23-25] HIV

Asian [20-22]  Bronchitis
Asian [23-25]  Hepatitis
Asian [23-25] Flu
Asian [20-22]  Hepatitis
Asian [20-22] Flu

(b) Expressed as a 2D aggregate contingency table

European Asian

French  German Russian Japanese Chinese Korean
[20-22] 3 3
[23-25] 4 2

Definition 4.2 (Multidimensional Global Recoding). A multi-
dimensional global recoding for input data set D with QI attributes
Q1,...,Qy is defined by a single generalization function ¢ : dom(Q1) X

- x dom(Qy) — dom(Q’'), where the values in dom(Q') are n-
dimensional vectors that are semantically consistent with values in

dom(Q1) X -+ x dom(Qy).
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For example, consider again the input data from Table 4.2. A mul-
tidimensional global recoding is shown in Table 4.4. Notice that, under
this less-restrictive variation, we can further refine the Age values of
Europeans beyond what was permitted under single-dimensional recod-
ing (Table 4.3), while still satisfying 2-anonymity.

A variety of algorithms have been proposed for single-dimensional
and multidimensional global recodings, including optimal search over
various restricted spaces of generalizations [29, 149, 226|, randomized
search [132, 267], and heuristic search [107, 150, 151, 261]. Many of
these algorithms can be applied to enforce more than one privacy
requirement (e.g., k-anonymity, ¢-diversity, etc.). For example, the
recoded data in Table 4.4(a) satisfy both 2-anonymity and entropy
2-diversity.

To give a concrete example, one such algorithm (Mondrian) is
based on greedy recursive spatial partitioning, and is shown in Algo-
rithm 1. As input, this algorithm takes the d-dimensional quasi-
identifier domain space (i.e., dom(Q1) X -+ x dom(Qy,)), which is

Table 4.4. Multidimensional global recoding.

(a) Expressed as microdata

Nationality Age Disease
European  [20-22] HIV
European [20-22] Flu
European  [23-24] Flu
European [20-22] Cancer
European  [23-24]  Hepatitis
European 25 Cancer
European 25 HIV

Asian [20-22]  Bronchitis
Asian [23-25]  Hepatitis
Asian [23-25] Flu
Asian [20-22]  Hepatitis
Asian [20—22] Flu

(b) Expressed as a 2D aggregate contingency table

European Asian

French  German  Russian Japanese Chinese Korean
[20-22] 3 3
[23-24] 2 )
25 2
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denoted G, a data set D, and a privacy requirement p. The algorithm
greedily partitions the domain space, at each step choosing the axis-
parallel split that optimizes some objective function without violating
privacy requirement p. (In the pseudo-code, the functions Choose Attr()
and ChooseThresh() denote the selection of a dimension upon which
to split, as well as the threshold point about which to split. Resulting
regions are captured using ranges maxz — min for numeric attributes,
and values in the generalization hierarchy for categorical attributes.)
In the case of nominal (unordered categorical) attributes, these splits
are further restricted by user-provided value generalization hierarchies.
The correctness of Mondrian (and many of the other algorithms)
relies on two properties of the privacy requirement p: monotonicity and
bucket independence, which are defined below. It is easy to think of the
recoding function ¢ as partitioning the input data set D into a set of
non-overlapping buckets, each with identical quasi-identifier values. In
the following, we define a partial order on the set of all partitionings
of input data D. We say that partitioning D} < D3 if and only if each
bucket in D3 is the union of one or more buckets in D7. In the following,
the notation p(D*) indicates that D* satisfies privacy requirement p.

Definition 4.3 (Monotonicity Property). Let D} and Dj be par-
titionings of input data D such that D} < D3. A privacy requirement
p satisfies the monotonicity property iff p(D7) — p(D3).

Definition 4.4 (Bucket Independence Property). Let D; and Do
be disjoint tuple sets, and let D] and D3 be partitionings of D; and
D5, respectively. A privacy requirement p satisfies bucket independence
iff p(D7) A p(D3) = p(D7 U D3).

The Mondrian algorithm can be used to implement privacy
requirements p satisfying the monotonicity and bucket indepen-
dence properties. Examples of such requirements include k-anonymity,
entropy (-diversity, and recursive (c,£)-diversity. The bucket indepen-
dence property allows for the recursive decomposition of the problem,
while the monotonicity property guarantees that the output is minimal
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Algorithm 1 Mondrian domain-space partitioning

Input: QI domain space G, data set D, privacy requirement p

Output: recoding function ¢
1. if no allowable split for G, D under p then

2. return ¢ :t € D — tuple representation of G,D

3

4. best <—ChooseAttr(D, {Q1,...,Qa}, p)

5. if numeric(best) or ordinal(best) then

6: threshold < ChooseThresh(best, D, p)

7 Dy« {t:te D, t.best <threshold}

8 Dy < {t:te D, t.best > threshold}

9: G1 < Update G by setting best.max = threshold
10: G <+ Update G by setting best.min = threshold
11: return Mondrian(G1,D1,p) U Mondrian(Ge,Da,p)
12:  else if nominal(best) then
13: recodings < {}

14: for all child v; of root(best.hierarchy) do
15: D; « {t:t € D,tbest descended from v; in best.hierarchy}
16: G; <+ Update G by setting best.value = v;

17: end for
18: Q' < Replace best.hierarchy with subtree rooted at v; in

{Q1,...,Qq}

19: recodings < recodings U Mondrian(G;, D;, Q’, p)
20: return recodings
21:  end if
22: end if

(i.e., no partition can be further divided without violating the pri-
vacy requirement). It is important to note that the algorithm does not
directly apply to privacy requirements that do not satisfy bucket inde-
pendence, including (¢, k)-safety (Definition 2.3) and the 3D privacy
criterion (Definition 2.4). However, Chen et al. adapted the algorithm
to the 3D criterion by incorporating a set of constant-sized global sum-
mary statistics [51]. Later work considered scaling variations of this
algorithm to large data sets [131, 152].
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4.1.3 Microaggregation

Another related technique for releasing microdata is called microag-
gregation. Microaggregation conceptually involves two different phases:
data partitioning and partition aggregation [79]. During the first phase,
the input microdata D is partitioned into subsets D1, ..., D,, such that
D; N Dj =0 (for i # j) and Dy U --- U D,, = D.? This involves [69] (a)
segmenting the set of attributes into s parts, where each segment
contains similar attributes, (b) partitioning each segment into groups
that satisfy a privacy constraint (like k-anonymity) and a homogeneity
constraint (e.g., minimizing a norm between the largest and smallest
elements) for utility. A variety of such partitioning and clustering algo-
rithms have been proposed [14, 69, 79, 253].

Following the partitioning phase, the data in each partition D;
are replaced with one or more aggregate values (e.g., sum, vari-
ance, median, etc.). For example, consider the input data shown in
Table 4.5(a) and a possible microaggregated version of this data set
shown in Table 4.5(b).

Alternatively, rather than replacing each cluster with one or more
aggregates, Aggarwal and Yu [10] proposed generating synthetic data
based on the aggregate properties of each partition.

Table 4.5. Example of microaggregation.

(a) Original Data (b) Aggregated data
Age Sex Mean(Age)  Mode(Sex)
25 M 22.67 M

23 M 22.67 M

20 F 22.67 M

27 F 23.33 F

19 F 23.33 F

24 F 23.33 F

40 F 35 F

30 F 35 F

2This phase is subtly different from the partition phase of global recoding algorithms such
as Mondrian [150], which are based on partitioning the domain space, rather than the
data.



4.1 Deterministic Sanitization Techniques 77

Table 4.6. Example bucketized data.

Bucket Nationality Age Bucket Disease
1 Russian 20 1 HIV
1 Russian 21 1 Flu
1 Russian 24 1 Flu
2 German 21 2 Cancer
2 German 23 2 Hepatitis
2 French 25 2 Cancer
2 French 25 2 HIV
3 Japanese 20 3 Bronchitis
3 Japanese 24 3 Hepatitis
3 Japanese 25 3 Flu
4 Chinese 22 4 Hepatitis
4 Korean 21 4 Flu

4.1.4 Bucketization

Also building on similar intuition, recent work has considered using a
bucketization technique to achieve ¢-diversity [273]. Like microaggre-
gation, bucketization partitions the input data D into non-overlapping
“buckets.” However, rather than summarizing each bucket, the bucketi-
zation approach simply breaks the connection between quasi-identifier
and sensitive attributes. For example, Table 4.6 shows a bucketized
representation of the input data from Table 4.2. The drawback of this
approach is that its application is limited to privacy definitions based
on clearly defined sensitive attributes (e.g., -diversity). Also, since the
quasi-identifier attributes are released without any modification, an
adversary is likely to be able to identify the records of some individuals
by a link attack. Although the predefined sensitive attribute values of
those individuals are not identified, allowing an adversary to pinpoint
your record in a published data set is sometimes considered to be unde-
sirable. Also, once a link is established it may be possible to re-establish
a probabilistic relationship between a tuple and its sensitive value by
building a statistical model over the sanitized data (see Section 6.1.3).

4.1.5 Decomposition and Marginals

Finally, a significant amount of work has focused on marginalization
and decomposition techniques for identity and attribute protection
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[75, 77, 78, 142, 235]. The idea of marginalization is, given a full joint
contingency table as input, “sum out” selected subsets of the attributes
to produce lower-dimensional (marginal) contingency tables (these can
be thought of as histograms on subsets of the attributes). Similarly,
in decomposition, the idea is to take a single table of microdata as
input, and project on selected attribute subsets. Past work is this area
has considered computing upper and lower bounds on cell counts in
the original contingency table, given marginals [75, 78, 235], as well as
techniques for probabilistically reasoning about disclosure of a sensitive
attribute [75, 142].

4.2 Randomized Sanitization Techniques

Generalization, aggregation, and suppression are attractive privacy
mechanisms since they only output truthful facts about the original
data. However, data collected by most organizations like the Census
Bureau are incomplete, imprecise, and sometimes uncertain. Moreover,
aggregation techniques do not satisfy very strict privacy criteria like dif-
ferential privacy. This led to the development of privacy mechanisms
based on random perturbations of the original data such that the per-
turbed data retain the statistical properties of the input data. As we
will see in this section, these techniques are reasonable since the input
data themselves are an approximation of the truth and, in addition,
these techniques are able to guarantee stronger privacy than aggrega-
tion techniques. We describe the following randomization techniques for
privacy — local randomization, input randomization, perturbing statis-
tics, statistics-preserving input randomization, and model-based syn-
thetic data generation.

4.2.1 Local Randomization Techniques

Data collectors including the Census Bureau do not obtain truthful
answers to all questions on their surveys. Respondents do not trust
the data collectors especially when answering sensitive questions (e.g.,
“Have you ever used illegal drugs?”). Local randomization techniques
have been used to elicit truthful answers. As the name suggests, in
these techniques each individual respondent randomly perturbs his/her
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data before sharing it with the the data collector. The randomization
operators are designed such that (a) they preserve the privacy of the
individuals, while (b) allowing the data collector to learn statistical
properties of the data if a sufficiently large amount of data is collected.

Warner’s randomized response technique [262] for answering sensi-
tive Boolean questions is the earliest local randomization technique.
Here each individual ¢ independently answers a yes/no question @ as
follows: 7 answers truthfully with probability p;, and lies with probabil-
ity (1 — p;). Given n such perturbed answers, the aggregate answer can
be estimated as follows (when all the respondents use the same prob-
ability p). Let 7 be the fraction of the population for which the true
response to @) is yes. Then the expected proportion of yes responses is

Plyes) =7 -p+ (1 —m)-(1-p) (4.1)
Hence, m = P<y682>p__(11 ) (4.2)

If m out of the n individuals answered yes, then the following 7 is an
estimator for 7.

(4.3)

Instead of lying with probability (1 — p), respondents could also
perturb their answers using a second scheme proposed by Warner. An
individual answers the question posed by the data collector (@) hon-
estly with probability p and answers a different innocuous question
(Qr) with probability (1 — p). For instance, with probability p, the
respondent truthfully answers if he/she had used illegal drugs, and
with probability (1 — p), the respondent flips a coin with bias a and
answers yes if the respondent got a head. In this case, the probability
that the answer to Q)7 is yes is a.. If m out of the n individuals answered
yes, an estimator for 7 is derived below.

P(yes) =m-p+a-(1-p) (4.4)
_ Plyes) —(1—p) -

T = ) (4.5)

—_w—(-p-a (4.6)

p
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7 has a smaller variance than @ when the probability of answering
the correct question p is not too small. Hence, typically the innocuous
question technique is better than naive randomized response.

Randomized response techniques can be proven to guarantee (o, 3)-
privacy using the v amplification condition (Section 2.5). Warner’s orig-
inal technique has an amplification of

D 1—%
1—-p p

max(
To maximize utility, the probability of lying should be smaller (p >

1 — p). Moreover, (o, 3)-privacy is guaranteed if p satisfies the following
condition,

p g 1-a«
1-p o 1-8

Bl - a)
Bl —a)+a(l-p5)

Subsequent work [92, 18] generalized the above randomized response

or if, p <

techniques to other domains. Each record u € U corresponds to the
sensitive information of a distinct individual. Each u is independently
randomized using a perturbation matrix A; the entry A[u,v] describes
the transition probability P(u — v) of perturbing a record u € Dy to
a value v in the perturbed domain Dy . The matrix A should satisfy
the following properties:

A>0, > Afuvl=1 VYueDy (4.7)

vE Dy,

Evfimievski et al. [92] studied the problem where individuals share
itemsets (e.g., set of movies rented) with an untrusted server (e.g., an
online movie rental company) in return for services (e.g., movie rec-
ommendations), and were the first to propose a formal definition of
privacy breaches using the (p1,p2)-privacy definition. Here, the pur-
pose of collecting itemsets is to identify those sets of items that occur
frequently across users (for example, movies that tend to be rented
together). Evfimievski et al. showed that itemsets randomized using
Algorithm 2, with parameters p and {p[j] ", both preserve privacy
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Algorithm 2 Select-a-Size Algorithm
Input: Itemset Z, C Dy, |Z,| = m.
Output: Randomized itemset Z/,.
1: Select an integer j € [1,m], with probability p[j].
2: 7! « simple random sample of size j of Z,,.
3. For every a € Dy \ Zy, add a to Z,, with probability p.

and allow a data collector to correctly estimate the frequent itemsets.
Later, Agrawal and Haritsa [18] improved on this by finding an optimal
perturbation matrix A.

Evfimievski et al. [92] proved sufficient conditions on the parame-
ters, p and {p[j]}72, in order to satisfy the y-amplification condition
and simultaneously maximize the utility of the randomization method
(e.g., maximizing |I,, N I],|, the number of original items retained in the
randomized itemset). Algorithms for recovering the original data from
the randomized itemsets and for producing unbiased estimators for the
mean and the covariance of these estimates are provided in [93].

4.2.2 Input Randomization Techniques

While local randomization techniques protect the privacy of individ-
uals right at the stage of data collection, there are many scenarios
where fairly accurate data are being collected from individuals. Exam-
ples include search queries collected by search engine companies and
movie ratings collected by companies like Netflix. These organizations
would like to extract user statistics from these collected data D without
disclosing personal information. One way to achieve this could be to
apply a local randomization technique on D; i.e., independently per-
gnd'
However, since the data collector has access to the complete data D

turb the records of each individual in D to get D/ , and use D

in this case, more interesting randomization operators could be used
to perturb groups of records. Intuitively, such a methodology should
provide strictly more utility since we are allowed to use a richer set
of perturbation schemes. We call the class of such methods as input
randomization techniques.
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Additive Perturbation A simple technique to perturb numeric
data, proposed by Agrawal and Srikant [16], is to independently add
0-mean noise to each record. Let V' be a noise matrix, then the per-
turbed data are U, = U + V. The random noise added to each record
(v € V) is usually either a uniform random variable in [—«,«] or dis-
tributed as a Gaussian with 0 mean and a known variance. The pri-
vacy of such a scheme is unclear; in fact, if the random noise variables
are uncorrelated, Kargupta et al. [138] and Huang et al. [126] showed
that very accurate estimates of the original data can be recovered from
such additively perturbed data due to dependencies inherent in U. For
instance, suppose an adversary knows that all the records in U have
the same value, say z. Then, additive randomization does not guaran-
tee any privacy; the mean of the perturbed data accurately estimates
z if there are enough records in U.

Additive randomization can be broken using Principal Component
Analysis (PCA). Suppose the data have m dimensions and are per-
turbed by adding noise independently to each dimension. Usually, dif-
ferent attributes in the data are correlated; hence, the data can be
projected onto a smaller number, p < m, of dimensions. The first prin-
cipal component (PC) of the data is the direction, e, along which the
data have the highest variance. The i-th PC, e;, is a vector orthogonal
to the first (¢ — 1) PCs with the largest variance. These vectors are the
eigenvectors of the covariance matrix of the data. In correlated data,
only the variances along p directions are large. However, for the random
noise, the variances are the same along all directions. The variances of
the perturbed data are roughly the sum of the variances of the origi-
nal data and the random noise. Hence, by dropping (m — p) directions
along which the perturbed data have the least variance, while much
information is not lost about the original data, a (1 — p/m) fraction of
the noise added is removed; this might lead to privacy breaches.

Post Randomization The post-randomization method (PRAM)
[117] is very similar in spirit to local randomization techniques. Suppose
every entry in the database takes values in 1... K. Then PRAM ran-
domly perturbs each entry in the database to some other value in [1, K].
Let pre denote the probability that value k € [1, K] is transformed to
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a value (. Let P = {pg¢} be a Markov K x K matrix with pgs as its
(k,1)-th entry. It is easy to see that the privacy guaranteed by PRAM is
identical to that of local randomization. Moreover, the original data can
be regenerated from the perturbed data using the following unbiased
estimator:

T= (P hT,

where T = {Ty,...,Tx}" is the vector of counts, such that T; is the
number of entries in the database with value ¢, and T is a similar
vector of counts on the perturbed database.

Since PRAM perturbs the data after collection, one could poten-
tially choose P based on the data distribution. For instance, in invari-
ant PRAM, P is chosen such that ||P'T — T|| < ¢, in particular € can
be 0. The advantage of such a perturbation matrix is that the perturbed
vector of counts is itself an unbiased estimator of 7. That is the per-
turbed database can be used directly instead of the original database
(without multiplying by P~1).

Note that P = I, the identity matrix, always satisfies this constraint
(equivalent to publishing the original data), but is uninteresting. A non-
trivial P can be constructed as follows. Let m € [1, K| be the category
appearing the smallest number of times in the database; i.e., T}, is the
smallest count. Then, for some 0 < 0 <1, let

T — /.
{1—9- T, k=1
Pkl =

0 T’Iﬂ
K—1 T(k)’ k#L

However, as K becomes very large, T, tends to 0. Hence, it becomes
very hard to find an invariant P. Hence, the authors [117] suggest
that it is probably best to apply PRAM such that some distribu-
tions/marginals are preserved while others are not.

4.2.3 Perturbing Statistics

Sometimes the desired sanitized data are just a set of statistics that
describe the original data (for example, the mean, median, etc.). In
these cases, there is a strong similarity between privacy-preserving
query answering (in statistical databases) [4] and privacy preserving
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data publishing. In this section we will review some of the most impor-
tant ideas from query answering that are applicable to data publishing.
These include negative results on which statistics can be published, and
positive results on how to publish them.

Adding noise to every tuple in the database may not guarantee pri-
vacy but may still cause a large distortion in the data. Recent work
has shown that it is possible to add noise directly to statistics of
interest while guaranteeing strong privacy [74, 37, 87, 192]. The gen-
eral framework is (a) list out the statistics of interest Q1,...,Qg, (b)
independently draw k samples 71,...,m, from a preferably heavy-tailed
distribution (such as the Laplace distribution, although a Gaussian dis-
tribution N(0,0?) is sometimes used), and (c) return the noisy statis-
tics Q1(D) + m,...,Qr(D) + n. The statistics of interest could be the
complete contingency table (where {1,...,k} represent the domain from
which all the values in the database are drawn, and each ); is the count
of records in the database with value i), or a set of marginals, or an arbi-
trarily complex set of aggregate queries (like in statistical databases).
Hence, we will use the term query instead of statistic in the rest of this
section. The key contribution of this line of work is that adding noise
proportional to the sensitivity of a query guarantees differential privacy.
We next describe how to add Laplacian noise to achieve differential pri-
vacy, then describe an extension of this technique to publish marginals
of a contingency table, and conclude with limits to this approach.

Laplacian Noise Addition and Query Sensitivity. Let @ :
dom(D) — R be a statistic. Define the sensitivity of query @ to be
the smallest number S(@Q), such that

VU;,Us that differ in one record, |Q(Ur) — Q(U2)| < S(Q)  (4.8)

Let Lap()\) denote the Laplace distribution which has a density function
h(y) o< exp(—|y|/A). Suppose a query Q(U) posed to a database U is
answered using Q(U) + Y, where Y ~ Lap(S(Q)/¢). This perturbation
scheme indeed satisfies e-differential privacy. For every Uy, Us that differ
in only one record u;,

PQWU) +Y =) _ hiz — Q)
PQU2) +Y =) _ ha - Q)

(4.9)
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exp(—|z — Q(U1)| x €/5(Q)
exp(—|z — Q(U2)] x €/5(Q)
(e x
Xp(e

; (4.10)

| /\

Q) — Q(UL)]/S(Q))  (411)
) (4.12)

exple
<e

For instance, consider publishing the entire contingency table of counts
(also called histogram query). The sensitivity of the histogram query is
2 — changing the value of one individual from i to j, reduces the count
Q; by 1, and increases the count ); by 1. Hence, one can publish the
entire contingency table by adding noise drawn from Lap(2/¢). There
are still a couple of problems — (a) we can get fractional or negative
counts and (b) for a sparse domain where most values have count 0, the
total noise added might be very large. We will describe Barak et al.’s
[27] techniques to handle (a).

Barak et al. [27] propose a solution to publish marginals of a con-
tingency table using the Laplacian noise-addition. Publishing a set
of noise-infused marginals is not satisfactory; such marginals may
not be consistent, i.e., there may not exist a contingency table that
could simultaneously generate all these marginals, and the resulting
“counts” in the the noise-infused marginals may even be negative.
Barak et al. solve this problem by adding noise to a small number
of Fourier coefficients; any set of Fourier coefficients correspond to a
(fractional and possibly negative) contingency table. They show that
only a “small” number of Fourier coefficients are required to generate
the required marginals, and hence only a small amount of noise (pro-
portional to the size of the marginal domain) is required. In order to
create non-negative and integral marginals, the authors employ a linear
program solution (in time polynomial in the size of multidimensional
domain) to generate the final non-negative integral set of noise-infused
marginals.

Instance Specific Noise. Nissim et al. [192] proposed a novel algo-
rithm where the noise added to a statistic is not only calibrated to
the sensitivity of the query, but also to the input database. The new
scheme, which allows for much less noise to be added in many cases,
has the following intuition. Suppose U is the input data. Let LS(Q,U)
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be the maximum value of |Q(U) — Q(U")| over all U’ that differ from
U in one tuple. Nissim et al. term LS(Q,U) as the local sensitivity of @
at U. Let us consider the impact of adding Lap(LS(Q,U)/€) on both
utility and privacy.

It is easy to see that S(Q) is the maximum local sensitivity of ) over
all inputs U. Hence, the local sensitivity of a function may be much
smaller than the (global) sensitivity of a query on some inputs. For
instance, let the database have five tuples, and suppose each tuple in
the database takes values between 0 and A. Let Q be the function that
returns the median of these tuples. The sensitivity of ) is A. Let U =
[0,0,A,A,A] and U’ = [0,0,0,A,A]; Q(U) =0, while Q(U’) = A. On the
contrary, the local sensitivity of the function is only max{zy — x3,23 —
x4}, where z; is the i-th largest tuple in the database; this could be as
small as 0. Hence, there will be many cases when Lap(LS(Q,U)/e) will
be much smaller than Lap(S(Q)/e) and thus guarantee more utility.

On the privacy front, one may be wrongly led to believe that adding
Lap(LS(Q,U)/e) noise satisfies differential privacy; after all, Equa-
tions (4.9)—(4.12) hold even if S(Q) is replaced with LS(Q,U;). Unfor-
tunately, privacy is not guaranteed since the amount of noise added
also leaks information to the adversary; especially when LS(Q,U;) is
much different from LS(Q,Us) for Uy and U, differing in one tuple. For
instance, when the local sensitivity is 0 (like in the previous example),
no noise will be added, and thus one cannot expect privacy. Nissim et al.
instead proposed adding noise proportional to a smooth upper bound of
LS(Q,U), and showed that this guarantees differential privacy.

Definition 4.5 (Smooth Upper Bound). A function S(Q,U) is
defined to be a S-smooth upper bound of LS(Q,U) if

* VU, S(Q,U) > LS(Q,U).
e YU,Us, that differ in one tuple, S(Q,U;) < S(Q,Us).

Note that S(Q) = maxy LS(Q,U) is one such smooth upper bound.
Nissim et al. [192] proposed techniques for computing smooth upper
bounds and provided noise distributions that could be used to protect
privacy.
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Impossibility results There are inherent limits to the amount infor-
mation that can be published by adding noise to statistics. For instance,
if multiple copies of the same statistic are published m times with
answers X1,..., X, where X; = Q(D) + €, ¢; ~ N(0,0%), then

D€ 2
:71 ~Y
€ - N(0,07/m)

Therefore, for a sufficiently large m, the average of all the X;s is a very
good estimator of the real answer Q(D). Motivated by this intuition,
Dinur and Nissim [74] showed the following stronger results.

Consider a database with n tuples, where each tuple is a bit, i.e., D €
{0,1}™. Consider an interactive algorithm® A that allows an adversary
to pose subset-sum queries. Each subset-sum statistic @ C [n] defines a
subset of tuples in the database, and Q(D) is the sum of these tuples.

A is defined to be within & perturbation if

V query Q € Q,|A(Q(D)) — Q(D)| < &

A is said to be non-private if an adversary can efficiently reconstruct
the entire database accurately.

Definition 4.6 (Non-Privacy). An A operating on database D €
{0,1}" is said to be t(n)-non-private if for every e > 0 there exists an
adversary M who runs in time ¢(n) and outputs a database C' such
that:

PrIMA(1™) outputs C s.t. dist(C,D) < en] > 1 — neg(n),

where M denotes the algorithm used by the adversary with access
to the output perturbation mechanism, n is the size of D, dist(C,D)
is the number of tuples C' and D differ in, neg(n) € o(ﬁ) for any
polynomial p(n), and the probabilities are taken over the coin tosses of

M and A.

3While the Dinur and Nissim’s, [74] results are in the context of the interactive setting
where queries can be posed adaptively by the adversary, there are obvious connections to
the data publishing scenario where a set of queries are answered by the data publisher up
front.
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Algorithm 3 Exponential time adversary
Input: Access to output randomizer A with perturbation within £.
Output: A database C.
1: [QUERY PHASE]
2: For all @ C [n], get perturbed answer A(Q(D)).
3: [WEEDING PHASE]
4: for all C' € {0,1}" do
5
6

if for all @ C [n], |Q(C) — A(Q(D))| <&, return C and halt.
: end for

Dinur et al. first show that for every A within o(n) perturbation, an
adversary can accurately reconstruct D using Algorithm 3, which runs
in time exponential in n. Since A is within £ perturbation, the database
D will never be weeded out; therefore, M always halts. One can show
that dist(C,D) < 4€ = o(n). Suppose on the contrary dist(C,D) > 4E.
Let Q1 be the query that sums the tuples that have the value 0 in D
and 1 in C. Let ()2 be the query that sums the tuples that have the
value 1in D and 0 in C. Clearly, |Q1| + |Q2| = dist(C, D) > 4E. With-
out loss of generality, let |Q1]| > 2€ + 1. Then, Q1(D) =0, Q1(C) > 2€&,
and A(Q1(D)) < €. However, Q1(C) — A(Q1(D)) > £ and hence C will
never be output by Algorithm 3.

The above attack algorithm can, in fact, be improved to accurately
reconstruct the database using ¢(n) = n(logn)? queries as long as A is
within a perturbation of o(y/n). In the improved attack, an adversary
first asks t(n) random queries @1, .. +»Qi(n)- In the weeding phase the
adversary uses the following linear program with unknowns cy,...,c,
that correspond to the entries in the reconstructed database C'

A(Qe(D)) — £ <Qu(C) < AQu(D)) + & 1<t <t(n)
0<¢ <1 1<i<n

The adversary rounds off each ¢; to 1 if it is greater than % Dinur et al.
show that the reconstructed C differs from D in only o(n) positions.
More recently, Dwork et al. [88] showed a much stronger result
that any privacy mechanism, interactive or noninteractive, providing
reasonably accurate (0y/n) answers to approximately 0.761 fraction
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of randomly generated weighted subset-sum queries, and arbitrary
answers on the remaining ~0.239 fraction, is non-private.

On the positive side, Dinur et al. also proposed a technique that
provably protects against a bounded adversary who is allowed to ask
only 7 (n) > polylog(n) queries by using additive perturbation of the
magnitude O(y/7 (n)). Building on this result, Blum et al. [37] propose
the SULQ framework that answers up to a sub-linear number of aggre-
gate queries by adding Laplacian noise while guaranteeing differential
privacy [85].

In summary, Laplacian noise addition guarantees strong privacy and
has been shown to provide researchers with useful data. However, the
problem of choosing the correct set of statistics for publication is still
an open question. Publishing the entire contingency table, for instance,
will lead to a lot of noise (especially in the portions of the domain with
no data). Also, too many statistics cannot be published without arbi-
trary perturbation. Hence, we describe next a model-based approach
to publishing data.

4.2.4 Statistics-Preserving Input Randomization

First proposed by Dalenius and Reiss [60], data swapping attempts to
preserve privacy of individuals by swapping values for one attribute
between different individuals. More precisely, consider a database with
n >t attributes. Let A = {A;,...,A:} be a subset of attributes whose
marginal distribution must be preserved in the published table. Two
individuals z and 2’ are said to be (t — 1, 4;)-equivalent if they agree
on every attribute in A except for possibly A;. The data swapping
algorithm first forms all equivalence classes of (¢ — 1, Aj)-equivalent
records, and within each equivalence class performs a primitive swap —
picks any two records and swaps the values for the attribute on which
they differ. This is then repeated for (t — 1, As)-equivalent records, etc.
Dalenius and Reiss state that privacy is preserved if for every attribute
of every record, there is at least one database with the same t¢-order
marginal statistics that assigns a different value to that attribute.
Greenberg and Moore present extensions to the original data swap-
ping algorithm for masking ordinal attributes. In an unpublished 1987
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manuscript, Greenberg proposed a data swapping algorithm for ordinal
attributes that works on one attribute at a time. First, the ordinal
attribute is sorted and for each value of the attribute, one computes
its rank (i.e., the number of values larger than it). Swapping can only
be performed between records whose ranks are within a pre-specified
threshold «. This algorithm was shown to preserve statistics with
acceptable error. Moore’s algorithm [181] enhances this rank-based
proximity swapping algorithm by intelligently choosing the threshold «
to approximately preserve multivariate correlations or univariate means
of large subsets of the data.

Takemura [242] presents an algorithm that combines local gen-
eralization and data swapping. The idea is to find, for every record,
its “nearest record” based on a schema specific distance metric
and swap/locally generalize the differing attributes. However, care
should be taken that the pairing is two-way; i.e., if x is paired to y,
then y should also be paired with x. Hence, Takemura proposes an
algorithm based on maximum weight matching using the Edmonds
Algorithm [89].

Primitive swaps were shown to be important also for the prob-
lem of generating entries in a contingency table given a fixed set of
multiple marginals. Diaconis and Sturmfels [72] proposed a general
algorithm for sampling from the set of tables that satisfy the fixed
marginals. Their technique is very powerful since it can be used irre-
spective of what the marginals are. However, the technique’s applica-
bility is limited since it requires access to a Markov basis, or a finite
set of “moves” such that any two tables that satisfy the marginal can
be connected via a finite set of moves. Diaconis and Sturmfels use a
Grobner basis to construct their set of moves, but computing it even for
tables with three dimensions is difficult. However, Dobra [75, 76] showed
that when the marginals satisfy a property called decomposability, then
Dalenius and Reiss’ primitive swaps precisely form the Markov basis;
i.e., every pair of tables satisfying a decomposable set of marginals
is connected via a sequence of primitive swaps. Fienberg and McIntyre
[101] present a great review of other work in data swapping and its vari-
ants. None of the above techniques are associated with formal privacy
guarantees.
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Controlled tabular adjustment (CTA) [48, 57, 63, 64] is another
technique for perturbing a contingency table while preserving marginal
statistics. The problem is formulated as an integer programming prob-
lem with linear constraints for the statistics to be preserved as well as
for privacy (e.g., lower and upper protection levels on the cell values),
and the objective function is a norm (L [57, 63|, Lo [48], or Lo, [48]).
Algorithms for CTA solve this integer problem either using an LP relax-
ation followed by rounding or using the interior point method. Privacy
is analyzed in terms of whether the adversary can solve for the noise
added to the cells of the table using a related integer program; but the
authors consider privacy to be breached only when the adversary can
determine the noise for a sufficient number of cells.

4.2.5 Model-Based Synthetic Data Generation

Another paradigm for releasing sanitized data sets is to generate a
statistical model from a noise-infused version of the existing data, and
to sample data points from this model to create the synthetic data
set. Noise is introduced into the synthetic data from two sources: the
noise infused prior to building the model and the noise due to random
sampling.

The use of multiple imputation [223] to create synthetic data was
first proposed by Rubin [221]. Under this proposal, a model is built
over the data and then multiple data sets are sampled from the model
(Liew et al. [159] had earlier proposed building a model of the data and
sampling one data set from it). A variant of this approach, using multi-
ple imputation to create partially synthetic data, has also been popular
[1, 2, 100, 140, 159, 161, 182, 218]. To create partially synthetic data,
a data publisher suppresses the sensitive attributes and then multi-
ply imputes them from a model. Both of these multiple imputation
approaches create multiple data sets which have the following benefits.
First, a statistical model can be built on each of the data sets using
standard software packages. These models can then be combined into
a single model (for more details, see Section 5.3). This allows for better
estimation of the variance of parameters of interest than if only one
data set was released.
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The choice of model is very important. An overly simplistic model
will create a severe bias in the data. A model should be as general as
possible and, ideally, nonparametric. For example, Reiter [218] stud-
ied the use of decision trees for creating partially synthetic data and
Machanavajjhala et al. [167] used a multinomial model with a Dirichlet
prior with one parameter for each element in the domain of the data.
Polettini [203] presented an approach where different parts of the data
were modeled differently. For each part, given a set of constraints on
a set of variables, the maximum entropy distribution is constructed.
Generalized linear models [175] are then used to model variables that
do not appear in any constraints. Another common approach is to
use algorithms like MICE [258] or Sequential Regression Multivariate
Imputation (SRMI) [206] which generally work as follows. First, select
an attribute whose values are to be imputed and learn a model for it
based on the other attributes. Then, replace the value of the attribute
with random samples from the predictive distribution according to the
model. Then, choose another attribute whose values are to be imputed
and learn a model for it based on the other attributes (including the
attribute whose values were imputed in the previous step). Again,
replace the true values with sampled values from the model. This pro-
cess can be repeated several times for each attribute. See [1, 218] for
more detailed examples of this process.

There are several reasons why multiply imputed data sets should be
released instead of the actual models. In the case of MICE and SRMI,
there are no explicit model parameters since the output data sets are
essentially created using Gibbs sampling. Thus in this case there is
no explicit model to release. In other cases, such as [167], the release
of model parameters will result in a privacy breach. Thus if there is
an explicit model and the parameters of the model cannot be used to
breach privacy, then releasing the model is preferable to releasing data
sampled from it.

An alternative approach to multiple imputation for creating par-
tially synthetic data uses the concept of sufficient statistics. A statistic
is a set of values computed from the data. A set of statistics is sujf-
ficient for a statistical model if that model can be built using only
those statistics and without access to the original data. More formally,
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a statistic is sufficient if the distribution of the data conditioned on
the statistic is independent of the model parameters. For more details
see [47]. To create sufficiency-based synthetic data, one first constructs
a model (that admits sufficient statistics) for predicting the sensitive
attributes given the non-sensitive attributes. Each sensitive attribute
value is replaced by sample from the predictive distribution in such a
way that the sufficient statistics are exactly preserved. For linear mod-
els, such constructions are given by [44, 183].

Franconi and Stander [104] present a different approach where a
sensitive value is replaced by the midpoint of its predicted confidence
interval if the original value was not one of the p% highest or p% lowest
values in the data. Otherwise, if the original value is one of the p%
lowest, it is replaced with a value higher than the predicted midpoint
and if the original value is one of the p% highest, it is replaced with a
value lower than the predicted midpoint.

Note that the sufficiency approach can also be used to replace the
entire data set instead of just the sensitive values. Mateo-Sanz et al.
[174] present a fast method for generating synthetic data that preserves
the mean and covariance matrix of the data. Dandekar et al. [65] use
ideas from Latin Hypercube Sampling to generate synthetic data with
the aim of preserving univariate statistics as well as the rank correlation
matrix.*

Different algorithms for generating synthetic data can be created by
varying the synthetic model that is built using the data. However, these
approaches in general do not have formal privacy guarantees because
they do not analyze the disclosure caused by the use of estimated model
parameters in the sampling process. For example, a single outlier can
have a large influence on these parameters and the existence of an
outlier in the original data may then be detected from the synthetic
data and thus information about the magnitude of the outlier can be
leaked. In some cases, the privacy guarantees require the assumption
that the actual data really were generated exactly from a statistical
model [182] even though it is widely recognized that “essentially, all

4Rank correlation [121] measures the correlation between the ranks of two variables instead
of their actual values. The rank correlation is less sensitive to outliers than the standard
covariance and correlation.
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models are wrong, but some are useful” [38, p. 424], (see also Polettini
and Stander’s [204] response to Muralidhar and Sarathy [182]).

One simple technique that does provide formal privacy guarantees
for synthetic data is the work of Machanavajjhala et al. [167] based
on Dirichlet resampling. Let U be a table with discrete attributes
and let Dy be its domain. Let H denote the histogram of U, i.e.,
H={f(v)|v e Dy, f(v) = multiplicity of v in U}, and let R denote
a histogram of noise. Synthetic data are generated as follows. First,
form the prior Dir(H + R), where Dir denotes the Dirichlet distri-
bution. Then, draw a vector of probabilities, X, from Dir(H + R),
and generate m points according to the probabilities in X. The above
process is mathematically equivalent to the following resampling tech-
nique. Consider an urn with balls marked with values v € Dy such that
the number of balls marked with v equals the sum of the frequency of
v in U and the frequency of v in the noise histogram. Synthetic data
are generated in m sampling steps as follows. In each sampling step,
a ball, say marked v, is drawn at random and two balls marked v are
added back to the urn. In this step, the synthetic data point is v.

Machanavajjhala et al. [167] characterized the privacy guaranteed
by this algorithm in terms of the noise histogram. Specifically, they
showed that in order to guarantee e-differential privacy, the frequency
of every v € Dy in the noise histogram should be at least m/(e€ — 1).
For large m and small € the noise required for privacy overwhelms all
of the signal in the data and renders the synthetic data completely
useless. Such a large requirement of noise is due to the following worst
case requirement of differential privacy. Consider a scenario where an
adversary knows that U contains exactly one record u; that can take
either the value v or v5. Now suppose that in the output sample, every
record takes the value vy. If m is large, then the adversary’s belief that
Ty, = v1 18 close to 1 (see [167] for details). In order to guard against such
scenarios, differential privacy requires large amounts of noise. However,
the probability that such synthetic data are output is negligibly small,
and so it may not always be necessary to guard against events which
almost certainly will never happen. Thus this situation can be reme-
died using a weaker (e,d)-probabilistic differential privacy definition,
where an algorithm is private if it satisfies e-differential privacy for all
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outputs that are generated with a probability at least (1 — ¢). Under
this weaker definition, the Dirichlet resampling technique is private
with much smaller noise requirements.

Rastogi et al. [211] propose another algorithm for synthetic data
called the a3 algorithm (also with privacy guarantees). It is similar to
the select-a-size randomization operator [93] for publishing itemsets.
Given an itemset I that is a subset of the domain of all items D, the
af algorithm creates a randomized itemset V' by retaining items in 1
with probability o + 3 and adding items in D \ I with probability £.
This algorithm satisfies a variant of e-differential privacy. Moreover, the
authors show that for queries Q : 2” — R, Q(I) can be estimated as
follows:

QU) = (Q(V) = Q(D))/a, (4.13)

where Q(V') and Q(D) are the answers to the query ) on the random-

ized itemset V' and the full domain D, respectively. Q(I) is shown to
provably approximate Q(I) with high probability.

4.3 Summary

Privacy researchers have developed a plethora of sanitization algo-
rithms; but, only a few of them satisfy provable guarantees of
privacy. Much early research focused primarily on generalization and
suppression-based techniques for privacy. However, these deterministic
mechanisms do not guarantee privacy against powerful adversaries with
probabilistic knowledge, thus increasing the significance of randomized
solutions to the privacy problem.
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Using Sanitized Data

Errors using inadequate data are much less than those
using no data at all.

— Charles Babbage

Once sanitized data are made public, if we are an attacker, then we
proceed to Section 6. Otherwise, we must resolve the question of how
to make good use of data, given that they have been sanitized. A recip-
ient of sanitized data generally needs to answer two important ques-
tions. The first question is how much information has been lost due
to the sanitization process, and the second question is how to perform
the intended analysis using sanitized data. Utility metrics discussed
in Section 3 aim to quantify the amount of information loss. In this
section, we discuss how to use the sanitized data. In Section 5.1, we
discuss how to answer queries over sanitized data. Since there is inher-
ent uncertainty in the published data, the queries will necessarily have
a probabilistic interpretation. In Section 5.2, we discuss data analysis
over sanitized data from the point of view of machine learning and
data mining, and in Section 5.3 we discuss statistical data analysis
techniques for understanding whether a finding in the sanitized data
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is statistically significant. We note that a detailed survey of privacy-
related query processing, machine learning, data mining, and statistical
techniques is beyond the scope of this paper. The purpose of this section
is only to motivate the problems and point the readers to the related
literature.

5.1 Query Processing

After applying sanitization techniques to the original data sets to
enforce privacy criteria, the resulting sanitized data sets are usually
imprecise (e.g., some attribute values have been generalized) or proba-
bilistic (e.g., attribute values have been perturbed with random noise).
For example, after we generalize Table 1.1 to enforce 4-anonymity and
obtain Table 1.3, we are no longer able to distinguish between indi-
viduals’ ages. On one hand, this imprecision is an unavoidable cost of
privacy protection. On the other hand, a data user still wants to be
able to answer queries about ages (e.g., the number of patients who
have cancer and are less than 40 years old) as accurately as possible.
In this section, we start with a brief introduction of general query pro-
cessing for imprecise and probabilistic data and then cover techniques
tailored to specific sanitization algorithms. Note that query processing
for imprecise and uncertain data is an active and extensive research
area in its own right; an exhaustive discussion is beyond the scope of
this article.

Probabilistic query processing: One approach to querying a san-
itized data set is to represent the data set in terms of a probabilistic
database. Query processing techniques have been well-studied, and can
be useful for answering queries on sanitized data sets interpreted in this
manner. For example, Table 1.4 is a bucketized version of Table 1.1.
A possible representation of such a table as a probabilistic database
is shown in Table 5.1. This table can be interpreted to mean that
each row appears with probability 0.5. Of course, this translation does
not preserve all information from the bucketization; for example, it
does not capture the fact that Ann has either heart disease or viral
infection, but not both. More complex probabilistic data models such
as those incorporating lineage can potentially be used to capture this
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Table 5.1. Probabilistic representation of Table 1.4.

Age Gender Zip code Nationality Condition Probability
Ann 28 F 13053 Russian Heart Disease 0.5
Ann 28 F 13053 Russian Viral Infection 0.5
Bruce 29 M 13068 Chinese Heart Disease 0.5
Bruce 29 M 13068 Chinese Viral Infection 0.5
Cary 21 F 13068 Japanese Heart Disease 0.5
Cary 21 F 13068 Japanese Viral Infection 0.5
Dick 23 M 13053 American Heart Disease 0.5
Dick 23 M 13053 American Viral Infection 0.5

2Records in Buckets 2 and 3 are omitted.

information if it is desired. After representing sanitized data sets in
terms of a probabilistic database, we can apply efficient query process-
ing techniques (e.g., [62]) to answer queries about information in the
sanitized data sets, possibly after linking them with other public data
(which can also be represented in the probabilistic database). Research
projects that extend database query processing capability to uncertain
or probabilistic data include [247, 249, 250, 251].

OLAP on uncertain and imprecise data: In a series of papers
[42, 41, 43], Burdick et al. studied how to perform OLAP (online ana-
lytic processing) aggregate queries on imprecise or probabilistic data,
where in the input data, each attribute of a data record to be aggre-
gated can be a node in a generalization hierarchy or a probability distri-
bution. Different records may be generalized to different granularities.
The goal is to answer aggregate queries (e.g., SUM, COUNT, AVER-
AGE, etc.) over groups of any granularity. Burdick et al. discuss the
desired properties of such aggregate queries and provide efficient algo-
rithms. We note that this work can be used to answer aggregate queries
and perform OLAP analysis over sanitized data sets generated by the
generalization mechanism.

Techniques specific to sanitization mechanisms: A number of
techniques have also been proposed to answer query based directly on
the mechanisms used for sanitization. Agrawal et al. [17] use a technique
similar to randomized response (see Section 4.2.1) to sanitize data and
then present algorithms for answering aggregate range queries. Rastogi
et al. [212] present a different sanitization mechanism in which a subset
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of the data is retained and additional fake data records are inserted.
They then show how to answer count queries over an arbitrary subset
of the domain (not just axis-parallel range queries). The complexity
of this algorithm depends on the complexity of the query (see [211]
for full details of the query processing algorithm). In the case of the
bucketization mechanism for sanitizing data (see Section 1.5), LeFevre
et al. [150] and Zhang et al. [282] discuss how to provide upper and
lower bounds on answers to aggregate queries.

5.2 Machine Learning and Data Mining

When the primary reason for data publication is to build machine learn-
ing or data mining models, the most direct measure of data utility is the
accuracy (error rate or application-dependent metrics) of such models
built on sanitized versions of data. In particular, one can compare the
accuracy of a model built on the sanitized data with the accuracy of
a model built on the original data to understand the amount of infor-
mation loss (for the target application) incurred by privacy protection
[107, 132, 151].

We also note that the sanitization process often destroys some struc-
ture of the original data, and sanitized data may have a different format
than the original data. Thus, learning or mining algorithms may need to
be adapted in order to be applied to the sanitized data. In this section,
we first describe a recommended methodology for evaluating the utility
of a sanitized data set for a specific purpose and then point the read-
ers to a number of techniques for building models on sanitized data.
A detailed discussion on how to build machine-learning models or how
to apply data mining techniques to sanitized data is beyond the scope
of this paper. In particular, we do not try to cover privacy-preserving
data mining. See [12] for a detailed survey of this area.

5.2.1 Evaluation Methodology

To avoid obtaining overly optimistic accuracy estimates, strict train-
ing/testing data separation is recommended [151]. Before applying any
sanitization technique to a data set D, one should first split the data
set into two parts: the training set D; and the test set Ds, and then
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apply a sanitization method to the training set without any access to
the test set. Then one should build a model using only the sanitized
training set D7. Finally, one should evaluate the accuracy of the model
using the test set Dy by comparing the predicted target value (also
called class label or response) with the actual target value of each
case in the test set. Accuracy may be replaced by any application-
dependent model-performance metric, and one can repeat this process
multiple times and average model-performance numbers over different
training/testing splits (e.g., an n-fold cross-validation). The important
point is that, before testing a model, the test set should not be touched
in any way. For example, any statistics computed from the entire origi-
nal data D should not be used in data sanitization, model construction
or parameter tuning, because the test set Dy is contained in D. This
strict training/testing data separation is a standard practice in machine
learning to prevent over-estimation of the performance of an algorithm.

5.2.2 Learning from Sanitized Data

We now review a number of useful techniques for building models on
sanitized data.

Learning from a generalized table: Suppose that the sanitized data
set D7 is produced by applying a generalization algorithm to D; and
the goal is to predict the target values of records in Dy (without gener-
alization). In this case, the training data Dj are encoded using nodes
in generalization hierarchies, but the attribute values in the test data
Dy are all at the leaf level of those hierarchies. One simple approach
to handle this mismatch is to sample leaf-level values for records in
D7 that have non-leaf values. For example, let Table 1.2 be the gen-
eralized table D7j. For the first record, we can randomly sample an
age value between 20 and 29, a gender value from {M, F}, a zip code
between 13000 and 13099, etc. By repeating this procedure for each
record, we can create a training set that has the same schema as D1.
This simple sampling method can serve as a baseline method for many
other sanitization mechanisms. In [151], LeFevre et al. studied a range-
encoding method. This idea is best-suited to numeric data, and simply
replaces each generalized value with two separate features representing
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the upper and lower bounds of the range. Other methods include deci-
sion tree learning [279], Naive Bayes learning [280], and rule learning
[130] for hierarchical attribute values.

Learning from noisy data: Suppose that the sanitized data set is
generated by adding noise to the attribute values of the records in the
original data set. Learning from such sanitized data is generally called
learning from noisy or uncertain data in the literature. Usually the
noise distribution is assumed to be known. For a general introduction
to this problem in linear regression, see Section 9.6 of [231]. Recent work
includes methods for decision tree induction [16], Bayesian regression
[252], support vector machine classifiers [34, 233], and nearest neighbor
classifiers [8].

Learning from group statistics: Suppose that the sanitized data set
is generated by first grouping or bucketizing records of the original data
set and then releasing summary statistics for each group. Here, the data
user can build a model using only these statistics. Learning methods
for this setting include [67, 185, 205]. This setting is also related to the
multiple instance learning problem, e.g., [22, 73].

Learning from multiple views: Suppose that the sanitized data set
D7 consists of multiple aggregate views of the original data set D,
each of which contains a subset of the attributes of records in D; and
summary statistics (e.g., COUNT, AVERAGE, etc.) for each distinct
combination of the values of these attributes. For count views, which
are commonly known as marginals (or marginal contingency tables),
iterative proportional fitting [35] is the classic method for estimating
information about the original data table D;. In recent work, Chen
et al. [50] developed an ensemble-based method for building classifiers
on D7i. For a Bayesian perspective, see [75].

5.3 Statistical Analysis

While the database, data mining and machine learning literature pro-
vide methods to answer queries over sanitized data and build models
from the data, these techniques usually do not address whether a find-
ing from the data is statistically significant or not. For example, one
may use a query processing technique to compute the sample mean;
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however, to determine whether this value is significantly different from
a null hypothesis, one also needs to estimate the variance and/or confi-
dence intervals. We will discuss a general model for statistical analysis
of sanitized data due to Little [160] in Section 5.3.1 and then we will
discuss specialized analysis for multiply imputed (partially) synthetic
data in Section 5.3.2.

5.3.1 A General Model

In this section we will use the words “masked” and “sanitized” inter-
changeably. Little [160] provided a general framework for performing
statistical analysis over masked (sanitized) data which builds upon sta-
tistical models for missing and coarsened data. In this model there is an
n X p data matriz X where each row represents a data item (such as an
individual) and each column represents an attribute, so that z;; repre-
sents the measured value of attribute j for individual 7. The output data
are represented with the help of two n x p matrices M and Z called the
masking indicator matrix and masking treatment matrix, respectively.
We will use the notation m;; and z;; to represent the value in row 7 and
column j for the matrices M and Z, respectively. The value of m;; is 1
if the value of z;; has been sanitized and 0 otherwise. The value of z;
is the masked value of x;; if m;; = 1 and is unobserved otherwise. Note
that z;; could be a number, a code indicating a missing value, etc. It
is helpful to partition X into two parts (Xops, Xmis) where Xps is the
subset of X that is observed in the output and X,,;s is the subset of
X for which the values are missing. It is also convenient to partition
Z into (Zops, Zimis) where Z,ps corresponds to values observed in the
output and Z,,;s corresponds to missing values Z. Note that M and Z
may not be known to the analyst and in this case they would need to
be treated as random variables.

The primary statistical interest is in estimation and hypothesis test-
ing for a parameter 6 which corresponds to a hypothetical model that
generated the data. Thus the data distribution is fx (X |6). The mask-
ing treatment matrix Z depends on the data matrix through the dis-
tribution fz(Z|X) and the masking indicator matrix depends on the
rest through the distribution fas (M |Zgps, X) (according to Little [160],
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the masking indicator matrix should not depend on the missing values
Z.is). Inference can be based on the likelihood function for 6 which is
obtained by integrating out the unobserved data:

L(6]M. X s, Zops) — / a1 (M| Zopss X) £2(Zops | X)

In case the masking indicator matrix M is unknown, one would also
have to integrate out the uncertainty in Z,,s and M.

Little [160] points out additional ways this likelihood can be sim-
plified. If fa;(M|X,Z) = far (M| Xops, Zops) then the masking selection
mechanism is said to be ignorable. If fz(Zys | X) = f2(Zops | Xops) then
the masking treatment mechanism is said to be ignorable. Using these
notions, Little derives simplified versions of the likelihood function. If
the masking selection mechanism is ignorable then we can use:

‘C(e’MaXobs,Zobs) - /fZ(Zobs|X)fX(X|0) dezs

If the masking treatment mechanism is ignorable then we can use:
E(e ‘ M7X0b57 Zobs) = /fM(M | Zob37X)fX (X ‘ 9) dezs

If both are ignorable then we can use:
‘C(e | M, Xobs, Zobs) = /fX(X ’ 0) dX mis

(in which case the analysis only depends on the values that have not
been sanitized). More details on how to apply this analysis can be found
in [160]. A detailed analysis for data perturbed by multiplicative noise
is presented by Hwang [129] and another measurement errors model is
also discussed by Fuller [106].

5.3.2 Statistical Analysis of Multiply Imputed
Synthetic Data

In this section we focus on a promising approach for the analysis of
synthetic data generated by multiple imputation (see Section 4.2.5).
Multiple synthetic data sets are generated from a model and ideas based
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on the theory of multiple imputation [223] are used to measure the vari-
ance of an estimator computed from the sanitized synthetic data. The
benefit of this approach is that off-the-shelf statistical analysis tools
can be used and then a correction defined in terms of a combination
rule outputs the desired result.

In order to describe how to analyze this kind of sanitized data, we
first provide a brief discussion of multiple imputation outside the con-
text of privacy. Multiple imputation (MI) is a tool developed by Rubin
[223] for handling data sets that contain missing values. The basic idea
of MI is to create multiple complete data sets by filling in missing val-
ues by sampling them from a model built from the rest of the data.
An alternative approach is to fill in each missing value with a single
value (for example, by using a maximum likelihood method). However,
this has the drawback of causing statistical software to underestimate
the variance in the data because each filled-in value is treated in the
same way as a value that is actually present in the data [223]. Multiple
imputation comes with a simple estimation procedure that helps avoid
this problem.

The estimation of parameters from a multiply imputed data set pro-
ceeds as follows. Suppose we have used multiple imputation to create
m data sets Di,...,D,,. On each data set we compute a population
statistic @; (say, the sample mean) and U; (the estimate of the vari-
ance of ;). We then compute the overall average Q = % Yo, Q;, the
average estimated variance U = %221 U;, and the between-sample
variance B = —1- Zi]\il(Qi — Q)% We then return Q as the estimated
population statistic (say, the mean of the population) and

_ 1
U+m—|—

B (5.2)

as the estimate of the variance of Q. This is known as the combination
rule. For confidence intervals, significance levels, and other statistical
computations over multiply-imputed data, see the book by Rubin [223]
and also [222, 228, 224, 20, 156, 209, 176].

In the context of privacy, the analysis of partially and fully syn-
thetic data (that are repeatedly sampled from a model) relies on com-
bination rules similar to the ones for multiple imputation (such as
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Equation (5.2)). These combination rules typically contain additional
additive terms that account for variability due to the sanitization pro-
cess, but these terms are based on large data assumptions and may
not give correct answers for small data sizes. Raghunathan et al. [207]
present a combination rule for purely synthetic data, and Reiter [217]
shows how to perform hypothesis testing. Reiter [213] also presents
combination rules for partially synthetic data. Finally, Reiter [215]
shows how to perform inference from data where multiple imputation
was used both to fill in missing data and to sanitize the data.

5.4 Summary

We believe that data analysis remains one of the key challenges in the
area of privacy-preserving data publishing. Related work in the areas
of probabilistic query processing, Machine Learning, and Statistics pro-
vides techniques that are useful for analyzing sanitized data. However,
in comparison to research in the production of sanitized data, work in
this field is relatively sparse. Thus, research that addresses the issues
specific to sanitized data using rigorous methodology appears to be a
fruitful area of future work.
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Attacking Sanitized Data

Hence that general is skillful in attack whose opponent
does not know what to defend.

— Sun Tzu (Art of War)

Data are sanitized prior to publication so that sensitive information
is not presented in the clear (according to some privacy criterion). In
some cases, however, an attacker can still glean sensitive information
from the sanitized data using varying amounts of skill, creativity, and
effort.

In practice, an organization assessing the sensitivity of data to
attacks needs to consider a variety of social issues. Elliot and Dale
[90] categorize these issues in terms of:

e Motivations/Goals — these include determining if an indi-
vidual is in a data set, publicizing sensitive values belonging
to an individual, embarrassing an organization, and using
sensitive information for fraud.

e Means available to an attacker — these include the attacker’s
statistical skills, external knowledge, and availability of com-
putational resources.
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e Opportunity — the ease of access to the data (is it pub-
licly available or are the data housed in a secure computing
facility?).

e Attack Type — this includes verifying information about
specific individuals (including verifying their presence in the
data), discovering information about individuals that are
outliers in the sanitized data, making a claim that a breach
is possible, or partially reconstructing the original data.

® Presence of Matching Variables — attributes that can be
used for linking with external data/knowledge need to be
identified.

e Target Variables — sensitive attributes like disease or salary
need to be identified. The degree of sensitivity of these
attributes also needs to be assessed.

e Effects of noise or errors in the data — noise may already
reduce the chance of a successful attack [36].

e Likelihood of attack and of achieving attack goal.

e Alternative means to achieving this goal — for example, by
using a subpoena or by physical surveillance.

e (Consequences to the organization of the attempted attack —
this includes loss of trust and potential lawsuits.

Here we are mainly interested in issues concerning attack type, i.e.,
identifying that an individual is in the data, reconstructing information
about individuals, etc.

An attack against a sanitized data set can be considered a success
if an attacker, through reasonable means, believes that he or she has
discovered sensitive information. This view is fairly common in the liter-
ature (see, for example [98, 106, 148]) and necessitates the modeling of
potential attackers. Although the attacker is required to use reasonable
means, the actual reasonableness of a procedure is subject to interpreta-
tion. For example, Kifer [141] has shown that random worlds reasoning
[25, 118], which is commonly used for modeling attackers, has some
unreasonable properties and that alternative models can yield more
accurate reconstruction of sensitive information. Nevertheless, random
worlds is an intuitive model that is likely to be used by less sophisti-
cated attackers.



108  Attacking Sanitized Data

The actual sensitive information that the attacker has deduced may
be a property of an individual (or tuple in a table) or it may be an
aggregate property of a subset of the data. An example of the for-
mer would be the statement “Cary has AIDS,” and an example of
the latter would be the statement “the average daily search volume
of internet giant Yagosoft is approximately 300 queries”. Note that
these statements can be problematic even if they are not correct. If
an attacker can convincingly reason that “Cary has AIDS” with 50%
confidence (even though Cary does not have AIDS), this may cause an
insurer to reject Cary’s application for health insurance. Similarly, an
advertiser may reconsider its relationship with Yagosoft, instead sign-
ing a contract with its rival Microhoogle, based on a perception of user
popularity.

We gave a short history of real-world attacks data in Section 1.2. In
this section, we will discuss attack strategies that have been proposed
in the literature. These strategies fall into roughly two categories: direct
attacks on the sanitization schemes (Section 6.1) and attacks that lever-
age external information (Section 6.2). We would like to clarify that
while some of the attacks we describe are designed for sanitization
algorithms that do not satisfy formal notions of privacy (for example,
see Section 6.1.1), other attacks are designed for sanitization algorithms
that do satisfy formal privacy definitions (in fact, they take advantage
of assumptions made by those definitions).

In section 6.1, we will discuss attacks due to (a) heuristic
notions of privacy (Section 6.1.1), (b) knowledge of algorithmic details
(Section 6.1.2), (c) alternate forms of reasoning (Section 6.1.3), (d)
latent structure in the data (Section 6.1.4), and (e) undesired uses of
the data (Section 6.1.5).

Since an attacker’s side information is also a concern, a data pub-
lisher needs to understand what kinds of knowledge attackers have
access to, and how this knowledge can be utilized to attack data. In
Section 6.2, we will discuss (a) how attackers use external data for
linking attacks (Section 6.2.1), (b) attacks due to composing multiple
sanitized data sets (Section 6.2.2), (c) attacks that derive knowledge
from similar data (Section 6.2.3), and (d) attacks due to instance level
background knowledge (Section 6.2.4).
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6.1 Attacks on Sanitization Schemes

In this section we discuss direct attacks on sanitization schemes.

6.1.1 Combinatorial Methods

One of the earliest attacks on a sanitization system was described by
Schlorer [230, 71] and is called a tracker. It was used to show the vul-
nerability of certain query answering systems. Although it was not an
attack against published data, per se, it developed ideas that were later
used to demonstrate attacks on published data. The query answering
system had a database of n records and a safety parameter k. It was
only allowed to answer COUNT and SUM queries (e.g., “What is the
total salary of female employees?” and “How many employees were
younger than 30 in 19977”) as long as the number of tuples used in the
computation of the answer was between k and n — k. Schlorer showed
that if an attacker knows some unique characteristics of a target indi-
vidual, then by posing a few carefully chosen queries and using linear
algebra, additional characteristics (such as salary) of the target indi-
vidual can also be determined. For example, if the attacker knows that
Shirley is the only female under 30 in the data set, the attacker can pose
the queries “what is the total salary of employees under 30” and “What
is the total salary of male employees under 30?” to determine Shirley’s
salary. In this case, the tracker was the query “what is the total salary
of male employees under 30” since it did not contain information about
Shirley but “helped track down additional characteristics” [70] of her
record.

The combinatorial flavor of the tracker attack can be seen in the
following data publishing problem. Suppose a data publisher who is
in charge of medical records with attributes {Age, Gender, Zip code,
Nationality, and Condition} is considering whether or not to publish
several histograms (also called marginals in the official statistics liter-
ature) of the data. For example, the data publisher might consider
publishing one histogram on Gender and Nationality and another
histogram on Gender and Condition (see Table 1.6 for example his-
tograms). Each bucket of each marginal histogram (e.g., (Male, US)
and (Male, AIDS)) may have a count of at least k, but at the same
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time there are dependencies between the different histograms due to
which some buckets in the complete table (e.g., (45, Male, 1480, US,
AIDS)) may have counts less than k.

Dobra [75] considered this scenario, and he showed, for each combi-
nation of attributes in the original table, how to compute combinatorial
upper and lower bounds on the number of tuples in the table with those
particular attributes. While this technique allows inference about the
number of people with a particular set of attributes, sometimes the data
publisher is interested in possible inferences about the sensitive values
of an individual. General probabilistic inference using Markov Chain
Monte Carlo [220] techniques was discussed by Diaconis and Sturmfels
[72] and Dobra [75]. These techniques use the notion of a Groebner
Basis, a fundamental tool in algebraic geometry [56]. Also, Yao et al.
[278] present a technique for analyzing multiple views of the same table
to determine how many values of a sensitive attribute can be ruled out
for an individual.

Another variation of this problem is to consider what inference is
possible given histograms and conditional distributions (e.g., P(Age |
Zip code)). Conditional distributions are useful for generating associa-
tion rules and sometimes may reveal less information about individuals
than a histogram. Based on such information, Slavkovic and Fienberg
[235] and Fienberg and Slavkovic [102] show, for each combination of
attributes in the original table, how to compute upper and lower bounds
on the number of tuples in the table with those particular attributes.

6.1.2 Optimality Attacks

A different class of attacks uses the following observation. Usually data
anonymization is framed as a constrained optimization problem: pro-
duce the table with the smallest distortion that also satisfies a given
set of privacy requirements. Wong et al. [271] (and independently Fang
and Chang [94]) presented the minimality attack to illustrate a danger
of this approach. To perform this attack, an attacker will usually need
to know the non-sensitive information of many individuals in the table,
the privacy policy, and the algorithm used for anonymization. Consider
Table 6.1(a), and suppose that the zip codes and genders of the patients
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Table 6.1. A table subject to the minimality attack.

(a) Original Table (b) Sanitized Table
Zip code  Gender Disease Zip code  Gender Disease
94085 M HIV * * HIV
14085 M HIV * * HIV
14085 F None * * None
94085 F HIV * * HIV
14085 F Flu * * Flu
14085 F None * * None
14085 F None * * None
14085 F Flu * * Flu

are not sensitive but that the diseases are. Further, suppose the follow-
ing privacy policy is desired: for each published combination of gender
and zip code, at most half the corresponding patients have HIV. Clearly
the original table cannot be published because of the male and female
patients in zip code 94085. Suppose the anonymization algorithm acts
by choosing a set of non-sensitive attributes and suppressing the values
of these attributes for all tuples. The only safe sanitized table is the
one shown in Table 6.1(b). An attacker who sees Table 6.1(b), and who
knows the non-sensitive attributes of every individual in the table, will
reason as follows: if all the HIV patients were female, or if exactly one
of the HIV patients were male, then the privacy requirement could have
been achieved by suppressing only the zip code. Therefore both male
patients must have HIV. Similarly, if at most one of the patients from
zip code 94085 had HIV, then the privacy requirement could have been
satisfied by suppressing only gender. Thus both patients from zip code
94085 must have HIV.

Note that if an attacker does not know the non-sensitive attributes
of every individual, there may be an external data set (such as a voter
list) that lists this information. However, such an external data set
may also contain information about many individuals not in the data
set. For example, if the attacker had no external information other
than a data set listing five males and five females from each zip code,
then it would be harder to draw any conclusions from Table 6.1(b).
This suggests that sampling may be a useful step in the anonymization
process. Wong et al. [271] propose a different approach to guard against
the minimality attack. The essential idea of this approach is to alter the
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sensitive values of certain tuples. While this can reduce the correctness
of the published data, it makes a minimality attack much more difficult.

Zhang et al. [281] present a general formal model for the minimality
attack which can work with many privacy definitions and deterministic
sanitization algorithms. Let x be the data set that needs to be sani-
tized. In this model, a disclosure schema T = (s1,...,5p, ) is a partition
of the domain of the original data set z. There are many candidate dis-
closure schemas T, ..., 7%, and the goal of a sanitization algorithm A
(on input z) is to first choose a disclosure schema (partitioning of the
domain) 7%, and then to output the partition 33'- € T that contains the
original data set x.

As an example, suppose that the domain of the data set is
{1,2,3,4,5,6,7,8,9}. Table 6.2(a) shows several possible disclosure
schemas. For example, T partitions the domain into three groups —
the first group consists of the three data sets 1,2,3, the second group
consists of 4,5,6, etc. A typical sanitization algorithm is shown in
Table 6.2(b). This particular algorithm behaves as follows. If the origi-
nal data set is 1, then it chooses the disclosure schema 7" and returns
the group from 7! that contains the input data set (i.e., it returns
(1,2)). If the original data set is 2, it chooses T and returns (1,2,3), etc.
For what follows, assume that the original data set is 2, in which case
the sanitization algorithm in Table 6.2(b) returns the output (1,2,3).

Now, an attacker may know a priori that the original data set x
can belong to only a subset D of the original domain. For example, in

Table 6.2. Sanitization algorithm and disclosure schemas for a data set
whose domain is {1,2,3,4,5,6,7,8,9}.

(a) Disclosure Schemas Sanitization Algorithm

1D Disclosure Schema Input  Disclosure Schema  Output

T {(1,2),(3,4),(5,6),(7,8,9)} 1 T! (1,2)

T2 {(1,2,3),(4,5),(6,7),(8,9)} 2 T2 (1,2,3)

™ {(1,2,3),(4,5,6),(7,8,9)} 3 T! (3,4)
4 T3 (4,5,6)
5 T3 (4,5,6)
6 T3 (4,5,6)
7 T3 (7,8,9)
8 T3 (7,8,9)
9 T3 (7,8,9)
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the real world, the attacker may know that males do not suffer from
ovarian cancer and, in our running example, the attacker may know
that the original data set is not 3. Thus the attacker knows that € D
and = € 33 In our running example, since the sanitization algorithm
in Table 6.2(b) returned (1,2,3), the attacker would know (from the
output) that the original data set is either 1, 2, or 3 and will use
background knowledge to rule out 3.

Additionally, given knowledge of a sanitization algorithm A, an
attacker would also know that the algorithm chose a particular dis-
closure schema 7% in the first place. Let L? denote the collection of
data sets y such that on input y, algorithm A chooses the disclo-
sure schema T?. Thus the original data set z must be an element of
L'n sé» N D. This subset of the original domain, which we denote by
DS, is known as the disclosure set for x. In our example, the algorithm
had chosen T2 and output (1,2,3). We are therefore interested in the
value L? = {2} which means that only input 2 could have caused the
sanitization algorithm to select T2. Therefore DSy = {2}, in which case
knowledge of the sanitization algorithm revealed the original data set.

To measure privacy, there is assumed to be safety predicate p whose
input is a subset of the original domain and whose output is true or
false. The algorithm A is p-safe if for all data sets y, p(DS,) = true (in
our example, any reasonable p would mark DS5 as unsafe because it
contained only one data set, and so the algorithm in Table 6.2(b) is not
p-safe). A p-safe algorithm will thus protect against an attacker who
believes that all data sets in a disclosure set are equally likely. Zhang
et al. [281] also provide p-safe algorithms that try to optimize utility.

6.1.3 Alternative Reasoning

Kifer [141] presented an attack based on the observation that the
sanitized data themselves can leak more information than the data pub-
lisher anticipated, even when an attacker does not have detailed knowl-
edge of the sanitization algorithm. This problem can arise when an
attacker reasons about the sanitized data in a way that is different (and
perhaps more realistic) from the reasoning used by the data publisher.
Thus it is important for a data publisher to reason about sanitized data
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in several ways to simulate attackers with varying degrees of sophistica-
tion. To illustrate the problem of only considering one approach, we will
briefly compare the random worlds model [25, 118], the independence
model, and reasoning based on exchangeability [229].

The random worlds model (as applied to data privacy) models an
attacker with no probabilistic preferences. Given a sanitized data set S,
there is a collection of input data sets Z that could have caused the
sanitization algorithm to output S. Using the principle of indifference,
the attacker considers each data set in S to be equally likely. Using
this probability distribution, the attacker then reasons about a target
individual using Bayes Theorem. This reasoning is used either explicitly
or implicitly by much of the literature, including [51, 142, 168, 173, 271,
273, 281]. Du et al. [82] use a form of maximum entropy reasoning which
is related to random worlds reasoning. In certain cases (such as unary
predicates [118] or decomposable marginals [75]) the two models are
exactly, asymptotically, or approximately identical, and the weakness
of random worlds (discussed below) also applies to maximum entropy.

In the independence model, the attacker believes that each tuple in
the database is generated independently by a some probability distri-
bution (each tuple can have its own distribution). This model is also
common [61, 91, 179, 212]. In some cases this is justified by the claim
that the attacker may know the true data-generating probability distri-
bution. Notice that this claim suffers from a weakness in that it makes
assumptions about the data in order to guarantee privacy (in particu-
lar, it assumes that the data are generated independently). Thus this
claim requires modeling both the data and the attacker. Note that
the independence assumption is clearly violated in the case of a fam-
ily member contracting a contagious disease and passing it along to
the rest of the family; tuples corresponding to such families are not
independent. Thus when modeling an attacker it is preferable to avoid
modeling the data.

FEzxchangeability is a concept that generalizes independence and is
one of the foundations of Bayesian reasoning. A sequence of random
variables is exchangeable if any permutation of finitely many elements
in the sequence results in a sequence that is equally likely. A deep
result due to Bruno de Finetti states that if one believes a sequence
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of random variables to be exchangeable then this is mathematically
equivalent to believing that points in the sequence were generated inde-
pendently given some unknown probability distribution that itself was
chosen randomly. Thus an attacker who believes the original data were
generated in this way does not have to treat the tuples independently;
the attacker may believe that the tuples are correlated and that this cor-
relation results from a shared, unknown distribution. For more details,
see [141, 229, 255].

To see these models in action, consider Table 6.3 (reproduced from
[141]). How would an attacker reason about the missing value for tuple
2007 Using random worlds, it turns out that the attacker would believe
that tuple 200 has cancer with probability 0.5 despite the fact that the
table appears to show a strong correlation between lung cancer and
smoking. In particular, the attacker’s belief about tuple 200 is unaf-
fected by the rest of the table. Similarly, an attacker using the inde-
pendence model will not change his or her belief about tuple 200 after
seeing the tuples 1-199. In fact, if the attacker believed that smoking
cured cancer, then the attacker would attribute the apparent correla-
tion (between smoking and cancer) displayed by Table 6.3 as a byprod-
uct of pure chance. On the other hand, an attacker who believed in
exchangeability would be able to learn about this correlation. Kifer
[141] shows how an attacker who believes in exchangeability but has

Table 6.3. A data set related to smoking.

Tuple ID Smoker? Lung Cancer?
1 n n
2 n n

98 n n
99 n n
100 n n
101 vy vy
102 vy v
198 y
199 vy vy
200 y ?
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Table 6.4. Dataset protected with bucketization.

Tuple ID Smoker? GID GID Disease
1 y 1 1 Cancer
2 y 1 1 Flu
3 n 2 2 Flu
4 n 2 2 None
5 vy 3 3 Cancer
6 n 3 3 None
7 y 4 4 Cancer
8 y 4 4 None
9 n 5 5 Flu

10 n 5 5 None
11 y 6 6 Cancer
12 n 6 6 None

no other preference about smoking and cancer will end up with an
increased belief that tuple 200 has cancer.

As a demonstration, Kifer [141] shows how reasoning based on
exchangeability can be used to attack bucketization schemes such as
Anatomy [273] (Section 4.1.4). Consider Table 6.4 (reproduced from
[141]), which is a possible output of Anatomy. In this table, the tuples
are partitioned into groups, a group id (GID) attribute was added, and
a second table that lists the diseases for each group was constructed.
Notice that the groups leak information about each other. For example,
no group consisting entirely of nonsmokers has cancer as one of the dis-
eases. Thus we may reason that tuple 12, which is a nonsmoker, belongs
to a group that has exactly one cancer patient. Since the other tuple
belongs to a smoker, we could conclude that tuple 12 is less likely to
have cancer (while random worlds reasoning would give a probability of
0.5). This attack is formalized in [141], which also sketches attacks on
several other sanitization schemes. Experimentally, it was shown that
reasoning using exchangeability provided better inference of sensitive
attributes than random worlds even when exchangeability was used to
model an attacker with no prior preferences [141]. In addition to higher
overall accuracy, this attack showed that some tuples are especially at
risk since their estimated probability of having a particular sensitive
value was very large (in those cases the predicted sensitive value is
generally the same as the true sensitive value).
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Finally, note that Evfimievski et al. [91] use very general classes of
probability distribution over data sets known as log-submodular and
log-supermodular distributions. These ideas are also investigated by
Rastogi et al. [210]. Although there are no published demonstrations of
how such a distribution can be chosen and successfully used to attack
sanitized data, this is an interesting direction to pursue.

6.1.4 Denoising

While the preceding attacks were designed for anonymization schemes
that produce “truthful” data (such as histograms), other attacks
have been used against schemes that add noise. In this scenario,
the attributes of the tuples are numeric. The simplest anonymization
scheme simply adds independent Gaussian random variables (with the
same variance) to each attribute of each tuple. Paass [195] found that
this generally does not offer much protection against re-identification
of individuals in the data as perturbed tuples can be linked to the orig-
inal tuples. Kargupta et al. [138] and Huang et al. [126] also show how
to remove noise from such data. Kim [143], Tendick [243], and Fuller
[106] proposed using noise with covariance structure similar to that of
the data (although this too can be attacked [80]), and many other new
data perturbation schemes and attacks have also been proposed. For a
survey of such attacks, see [162].

An important attack not covered in [162] is the use of linear pro-
gramming [74, 88]. In this setting, suppose the database is an ordered
list of n items {di,...,d,} where each item d; is either 0 or 1. A query
is represented as a set ¢ of indices, and the answer to the query is
the sum of the corresponding elements (i.e., >, d;). Dinur and Nis-
sim [74] consider the following question: suppose n(logn)? queries are
generated uniformly at random and the answer to each query is per-
turbed with arbitrary noise of magnitude o(y/n). How well can the
attacker reconstruct the original table? They showed that by using lin-
ear programming and rounding the result, an attacker can reconstruct
the database up to en mistakes with probability 1 — § (for any € > 0,
¢>0 and ¢ € o(1/n), and a large enough n). Dwork et al. [88] later
extended this work and showed that if weighted queries are allowed (i.e.,



118  Attacking Sanitized Data

Yic g a;d;), where the weights are generated according to the standard
Gaussian distribution, then the answer to O(n) queries cannot be pub-
lished even if pn (for p < 0.239) queries are arbitrarily wrong and noise
bounded by « is added to the rest of the answers. Otherwise, with high
probability (i.e., 1 — d, where ¢ € o(1/n) for all ¢ > 0), the original
database can be reconstructed with at most O(«) mistakes. Intuitively,
these results say that the amount of statistically meaningful informa-
tion in a data set is sub-linear in the size of the data. Note that in both
cases the results are asymptotic, so they require a large enough n in
order for § to be small.

For time series data, Papadimitriou et al. [198] propose using linear
filters and linear regression (on points known to an attacker) to remove
some of the variance caused by the addition of noise.

6.1.5 TUndesired Uses of Data

An interesting attack described by Palley and Simonoff [196] is based
on the notion that building a particular model over the data may be
considered a violation of privacy. For example, if data about a company
is released, an employee may build a statistical model on the data to
predict wages. This employee may then compare his wages with his
predicted wages, and would be upset if the true wages are less than they
should have been according to the model. The company may therefore
want to prevent anyone from building a regression model for wages
from the data (e.g., building a statistical model for an attribute would
be an undesired use of the data).

While this attack was described for a statistical (query answer-
ing) database, it can be extended to data publishing by considering
the query answers to be the published data. Palley and Simonoff [196]
demonstrated how to build a linear regression model from a database
that only allowed count, average, and sum-of-squares queries over sub-
sets of the data. The main idea is to first build a 1D histogram on
each attribute, to then use these histograms to identify regions of the
domain that should be queried, to construct artificial data sets that
would give the same answers to such queries, and finally to create a
linear regression model from such data sets. Palley and Simonoff [196]
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found that, in general, this technique provides fairly accurate regression
models compared to models built on the original data.

6.2 Attacks Using External Information

External information provides an attacker with additional tools for
attacking a sanitized data set. In fact, all the attacks in Section 1.2 and
the minimality attack in Section 6.1 heavily relied on external infor-
mation. This information can come in the form of data sets, specific
instance-level information about individuals in the data, or statistical
knowledge.

6.2.1 Linking Attacks

The most common form of attack, the re-identification attack, uses
record linkage techniques to link tuples in external data to sanitized
data. The literature on record linkage is vast and has been studied in
the statistics, artificial intelligence, and database communities. Winkler
has provided several overview papers on the use of record linkage in the
context of privacy [265, 268, 269, 270], and so we will briefly mention
some related results.

Given two files A and B containing lists of tuples, the main idea
of record linkage is to classify pairs (a,b) (where a € A and b € B) as
match or non-match with various levels of uncertainty [96, 244]. Linkage
is complicated by the fact that the files A and B may contain noise and
data entry errors. Since the data sanitization process can be thought of
as an infusion of noise and errors, the theory of record linkage fits very
well in this scenario. Here A can be treated as an external data set such
as a voter registry and B is the sanitized data set. The goal of a linkage
or re-identification attack would be to associate a tuple from A to a
tuple from B and later to use this information to derive better estimates
of sensitive information about the individual(s) corresponding to these
tuples. There are many techniques for performing this linkage, includ-
ing Bayesian methods [99, 216], discriminant analysis [195], bipartite
matching [153], and nearest neighbor methods [266, 269]. In some cases,
linking to synthetic data (Section 4.2.5) makes sense. If a model of the
data is built naively and the data contain outliers then sampling from
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this model may reproduce some of the outliers [98]. de Waal and Willen-
borg [68] have shown that including sampling weights® in released data
can increase re-identification risk if the sampling weights are computed
from attributes (like geographical information) that are not released in
the data because such attributes could be reconstructed with the help
of sampling weights.

An interesting re-identification study was performed by Blien et al.
[36] which studied the security of data in the face of a typical linkage
attack. The data in this study came from a microcensus conducted in
North Rhine-Westphalia in Germany in which 1% of the population was
surveyed. Blien et al. used a handbook of German scientists as external
file for the record linkage. They noted that linkage was affected by
various errors and ambiguities in the data. This included data entry,
attributes values that have changed over time, and multiple possible
values for an attribute (such as “primary” occupation). Overall, if an
attacker does not know that particular individuals are necessarily in
the data, Blien et al. concluded that re-identification rate was not very
high and many false positives (incorrect linkages) were found. They
reasoned that the combination of data errors and subsampling was
enough to thwart this particular attack.

While record linkage techniques generally try to link structured
records to the data, it may also be possible to link free text. Novak et al.
[193] show that it is possible to link posts on a message board to iden-
tify aliases. Text can also be linked to structured records: Frankowski
et al. [105] link posts in a MovieLens forum to the MovieLens rating
data set. The linkage can extend beyond simply matching based on
the name of the movie since opinions can also be extracted from text

66, 197].

6.2.2 Composition

Sometimes, a privacy breach can occur when the external data them-
selves are also sanitized. Ganta et al. named this a composition attack
[108]. This attack is possible when several data publishers own data sets

I These are weights associated with a tuple that tries to counteract selection bias by mea-
suring how likely an individual is to respond to a survey and therefore appears in the
data.



6.2 Attacks Using External Information 121

Table 6.5. Sanitized data released by two independent parties.

(a) Gotham Hospital’s sanitized data (b) Gotbacon Hospital’s sanitized data
Gender Age Zip Disease Gender Age Zip Disease
F [21-35] 10010  Cancer F [10-72] 10010  Allergy
F [21-35] 10010 Flu F [10-72] 10010 Flu
F [21-35] 10010 Allergy F [10-72] 10010 Cancer
F [21-35] 10010  Malaria F [10-72] 10010 HIV
M [40-60] 10010 HIV F [10-72] 10010 Flu
M [40-60] 10010  Allergy F [10-72] 10010 Allergy
M [40-60] 10010  Allergy M [11-60] 10024 Scurvy
M [40-60] 10010 Flu M [11-60] 10024 Allergy
M [21-35] 10024 Scurvy M [11-60] 10024 Cancer
M [21-35] 10024 Flu M [11-60] 10024 HIV
M [21-35] 10024 Varicella M [11-60] 10024 Allergy
M [21-35] 10024 HIV M [11-60] 10024  Allergy

that are not disjoint, but they still publish sanitized versions of their
data independently of each other. This can happen, for example, for
two hospitals in the same city. It would not be uncommon for patients
to have been in both hospitals.

An example of a composition attack is shown in Tables 6.5(a)
and 6.5(b). Gotham Hospital and Gotbacon Hospital, both in the same
city, independently release sanitized versions of their data. An attacker
might know that Bob just finished his Master’s degree, is living in
zip code 10024, and has been a patient at both hospitals for a recur-
ring condition. An attacker may reason that Bob’s age is likely within
the 21-35 range in Gotham’s data set and 11-60 range in Gotba-
con’s data set. By joining on the disease attribute, the attacker will
see that the only diseases associated with Bob’s demographic in both
data sets are scurvy and HIV infection. Thus the attacker obtains a
sharper inference about Bob’s medical condition. This attack general-
izes an observation of Sweeney’s [241] which warns against publishing
two different k-anonymous versions of the same data set. Similar prob-
lems have also been noted in the release of sanitized data over time
[45, 131, 201, 260, 275].

6.2.3 Attacks using similar data

In many cases, it is possible to attack one sanitized data set with
the help of a second data set even if they are disjoint. Lakshmanan
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et al. [147] consider the following scenario, in which similar data can
be a problem. Suppose a company sells items I;,. .., I, and maintains a
database which is a list {T1,...,7T,} of transactions. Each transaction is
the set of items purchased by the same customer at the same time. The
company applies a perfect hash function (i.e., there are no collisions)
to each item in each transaction in the data set and publicly releases
the result. For each item I4,...1I,,, the attacker has a belief function
which gives upper and lower bounds on the frequency of an item in the
company’s data set (the belief function may have mistakes). This belief
function can be formed from similar data (for example, by a competing
company). The goal of the attacker is to match each item to its hashed
value. Every correct match is a crack. Lakshmanan et al. [147] show
that computing the expected number of cracks has a #P-complete sub-
problem and explore algorithms for generating approximate answers.

While Lakshmanan et al. [147] focus on frequency computation to
break the anonymization, it is possible to use co-occurrence informa-
tion as well. Malin [169] investigated the case when Websites share IP
addresses of their users and also separately share the identities of their
users. Co-occurrence information (which users went to a Website, and
which IP addresses were recorded at a Website) can be used to match
names with TP addresses.

Kumar et al. [146] investigated how co-occurrence information can
reverse the anonymization of search query logs. The anonymization
technique they studied was similar to [147]. Each word in each query
was hashed with the same perfect hash function so that the final data
set was a collection of multisets of integers. Since an attacker can get
access to different, un-encoded search logs (such as the infamous AOL
data set described in Section 1.2), it is important to make sure that
the attacker cannot use such data to reverse the hash function. Kumar
et al. [146] demonstrated the following negative result: frequency and
co-occurrence information from the un-encoded search logs can be used
to recover many of the hashed tokens from the hashed data set. The
privacy risk comes from tokens that are frequent individually but infre-
quent in combination. For example, tokens such as “Cage” and “Den-
zel” may be easily recoverable from the names of famous actors, and
if a person named “Denzel Cage” searched for his name, this query
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would also be identified. The unsuitability of hashing as a primary
means of anonymization has been demonstrated even further in the
context of social networks. If a social network is published as simply
a graph with no other information (such as attributes of a node) then
re-identification attacks are still possible. Backstrom et al. [26] showed
that if an attacker (or set of attackers) participates in the social net-
work, then in many cases it is possible for the attacker to identify
nodes corresponding to accounts under his control. We will describe
anonymization techniques for social networks, search logs, and other
emerging applications in more detail in Section 7.

6.2.4 Instance Level Background Knowledge

Finally, as described earlier in Section 2.4, it is often important to
consider the role of instance-level background knowledge, or the type
of knowledge that might be available to an acquaintance. In the context
of k-anonymity, logical instance-level background knowledge has been
studied by Machanavajjhala et al. [166, 168], Martin et al. [173], and
Chen et al. [51]. (For more details, refer to the extended discussion in
Section 2.4.)

While these ideas were based on logic, Du et al. [82] showed how to
incorporate statistical knowledge. The statistical knowledge comes in
the form of linear constraints and linear inequalities on probabilities.
The inference of an attacker is modeled using maximum entropy. When
background knowledge is expressed in the form of linear constraints, the
use of maximum entropy has theoretical justifications [199]. When lin-
ear inequalities are introduced, the picture is not as clear. To see this,
suppose we have a biased coin and we believe P(heads) > 0.5. If we use
maximum entropy, we will assign P(heads) = 0.5. A reasonable alter-
native would posit that the bias of the coin is uniformly distributed
in the interval [0.5,1] leading to the assignment P(heads) = 0.75. The
choice, of course, depends on the attacker. To simulate and quantify
the amount of knowledge an attacker may have, Du et al. [82] propose
to mine the original data for positive and negative association rules.
Freitas and Kuck [67] present a different approach to learning from
population statistics based on a sparse probabilistic model. Li and Li
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[158] propose to mine negative association rules and then use them to
guide the anonymization processes. Ramesh [208] proposes to use sam-
ples to mine background knowledge and evaluates what can be learned
from samples. Johnsten and Raghavan [135] propose to mine classifica-
tion rules to evaluate the security of suppressing sensitive values, while
Aggarwal et al. [9] present a defense against this. An additional reason
for mining the original data is that an attacker may have knowledge
about a small subset of these data. Xiong et al. [276] show how to use
ideas from semi-supervised learning to make inferences from a sanitized
data set if a subset of the original data are available.
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Challenges and Emerging Applications

It may well be doubted whether human ingenuity can
construct an enigma ... which human ingenuity may
not, by proper application, resolve.

— Edgar Allan Poe

The problems of privacy preservation, re-identification, and inference
control are not limited to non-aggregate microdata and contingency
tables. In an increasingly data-driven society, these issues are becoming
important in a wide variety of emerging applications, where personal
data are collected automatically. In many of these new applications,
the privacy goal is generally de-identification, that is, the removal of
personally identifiable information.

For example, in 2006 AOL made headlines when it released the pur-
portedly de-identified search logs of many of its users. While the users’
names were removed, many were easily identified based on the contents
of their searches [28]. Similarly, it has been shown that individuals may
be identified simply by the structure of social network graphs [26].

While the nature of the problems are similar, existing privacy crite-
ria and definitions (e.g., k-anonymity, differential privacy, etc.) do not
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necessarily directly apply to the privacy problems in these emerging
domains, nor do existing sanitization mechanisms. This is still the sub-
ject of ongoing work in the research community, but in this section we
give a series of example problems. Then, in Section 7.4, we summarize
challenges for future research.

7.1 Social Network Privacy

Social networks describe entities (often people) and the relationships
between them. Social network analysis is often used to understand the
nature of these relationships, such as patterns of influence in commu-
nities, or to detect collusion and fraud.

Collections of social network data have become pervasive on the
World Wide Web. For example, e-mail messages implicitly define rela-
tionships between people. Social networking sites (e.g., Facebook and
MySpace) and instant-messaging programs allow users to explicitly
define such “friend” or “buddy” relationships. Making such data avail-
able can be invaluable to researchers, who seek to understand the
dynamics of these communities. However, the release of data is often
prevented by concerns about the privacy of individuals. In this section,
we give an overview of various attacks that have been used to reveal pri-
vate information from social network data, as well as counter-measures
that have been proposed to reduce the risk of such attacks.

7.1.1 Naive De-Identification and Attacks

We will model a social network as a simple, undirected graph G =
(V,E). Nodes correspond to entities and edges represent connections
between entities. Each entity has an associated unique name (e.g.,
Raghu or Johannes).

In designing a privacy-preserving publication scheme, the goal is to
remove information pertaining to individual identities, while retaining
the topological structure of the graph. To do this, one might consider a
naive de-identification approach, whereby each node’s name is replaced
with a meaningless unique value (a pseudonym). For example, consider
the social network in Figure 7.1(a). The naive solution would replace
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(a) Original data (b) De-identified data

Fig. 7.1 Social network example.

this network with the graph in Figure 7.1(b). We will refer to this
de-identified graph as G' = (V', E’).

Unfortunately, there are various ways in which this naive solution
can be compromised. Backstrom et al. [26] described two such attacks,
one of which is active and the other is passive. In the family of active
attacks, an attacker actively manipulates the structure of the graph
before the data are released. For example, in online social networks,
an attacker is able to create additional user accounts (corresponding to
new nodes), and to create social connections among these accounts (new
edges). These new nodes and edges form a subgraph H of the social net-
work G and can make it difficult for a data publisher to release a truly
de-identified version of G. For example, suppose Dan creates the fake
accounts Fi,...,Fy; and attaches them to the original network graph
as shown in Figure 7.2(a). Provided that H is sufficiently unique, the
attacker may be able to locate H in the naively de-identified graph G’,
and then use this information to re-identify additional nodes that are
connected to H in the original graph G. For example, in Figure 7.2(b),
once Dan locates the structure H, he is able to identify the nodes cor-
responding to himself and to Ashwin.

In contrast to active attacks, the family of passive attacks does
not require any manipulation of the graph structure. Instead, these
attacks can be launched based on background knowledge related to
the graph’s structure. It has been observed that many nodes belong to
small, uniquely identifiable subgraphs [26, 123, 187]. Thus, with mini-
mal background knowledge about the surrounding graph structure, it
is often easy for an attacker to locate a target node in G’. For exam-
ple, suppose Raghu knows that he has four connections in the original
graph; he is able to locate himself easily in the de-identified graph shown
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(b) De-identified data

Fig. 7.2 Active attack example.

in Figure 7.1(b). Now, suppose that Raghu would like to locate Dan.
Simply knowing that Dan has one neighbor is not sufficient; however,
if he learns that Dan’s neighbor (Ashwin) has three connections in the
graph, then he is able to locate Dan.

7.1.2 Prevention Techniques

While many questions remain, several techniques have been proposed
recently, each with the goal of preventing attacks on published social
network data. The proposed solutions differ in terms of the assumed
threat models (specifically, the quantity information available to the
attacker) and also in terms of the mechanisms used to prevent attack.

In one such work, Hay et al. presented an interesting framework for
reasoning about (and preventing) passive structural re-identification
[123]. The framework is based on the two key ideas of a knowledge
query and candidate set. When attempting to locate a target individual
t in G’, an attacker may use various forms of structural background
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knowledge. This is nicely abstracted in terms of a generic knowledge
query Q(t), which can also be evaluated over nodes in G’. If the attacker
knows the answer to Q(t), he can narrow the set of nodes that could
possibly be t to a candidate set cand(t) = {t' € V'|Q(t) = Q(¢')}.

In one of the simplest cases, we might consider knowledge queries
that return the degree of node t. For example, an attacker may know
that deg(Ashwin) = 3. Thus, looking at the de-identified graph in Fig-
ure 7.1(b) we have cand(Ashwin) = {5}.

Of course, the idea of knowledge queries is general enough to express
far more than degree information. A significantly stronger form of
knowledge is formalized through the idea of strong structural knowl-
edge as follows. Two nodes vy,vy € V' are said to be automorphically
equivalent if there exists an isomorphism from G’ onto itself that maps
v1 to vy. Intuitively, this corresponds to a strong knowledge query Q(t)
that returns the entire graph topology surrounding ¢. In this case, the
candidate set of ¢ is restricted to the set of nodes in V' to which ¢
is automorphically equivalent. For example, in Figure 7.1(b), nodes 1
and 2 are automorphically equivalent. Suppose that an attacker wants
to locate Bee-Chung in this graph. Even if the attacker knows the entire
graph topology surrounding Bee-Chung (i.e., the attacker has strong
structural knowledge), he is still unable to determine whether node 1
or 2 represents Bee-Chung in G.

Using this general framework, Hay et al. [123] formulated a logical
privacy requirement which, given a particular language for expressing
knowledge queries @, requires that all candidate sets be of a required
minimum size (i.e., Vt,|cand(t)| > k, where k is an input parameter)
They also proposed a mechanism for satisfying this privacy require-
ment under strong structural knowledge. The mechanism is based on
clustering. Informally, the idea is to partition the graph G’ into groups
containing at least k£ nodes each, and then to replace each group with
a summary. Because of the strong adversarial model, this approach is
sufficient to prevent a large class of passive re-identification attacks,
including the attacks described by Narayanan and Shmatikov [187].

While the framework described by Hay et al. provides a semantic
definition of privacy, including a precise characterization of background
knowledge, the only information protected under this definition is the
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Fig. 7.3 De-Identified social network with sensitive attribute.

association between pseudonyms and true node identities. In some
cases, this may not be enough. For example, even though an attacker
does not know whether node 1 or 2 in Figure 7.1(b) corresponds to
Bee-Chung, both of these nodes have precisely the same neighbors.
Thus, if the information we truly mean to hide is not the association
between names and pseudonyms, but instead some information about
Bee-Chung’s position or connections in the graph, then it does not mat-
ter whether the attacker believes Bee-Chung is node 1 or 2 because, in
either case, the surrounding structure is the same.

Similarly, this framework does not explicitly provide support for
limiting attribute disclosure, although we observe that the extension
is straightforward. For example, consider a de-identified social network
that includes not only a graph topology, but also certain attributes
(e.g., Political Ideology) describing the nodes (see Figure 7.3). An
attacker may be unsure whether node 1 or 2 is Bee-Chung, but in
either case, the political ideology is “liberal.” In much the same way as
(-diversity, this problem can be addressed by requiring sufficient diver-
sity of attribute values within each automorphic equivalence class (set
of nodes that are automorphically equivalent to one another).

Other work has also considered preventing identity disclosure in
social network graphs, but for less-powerful adversaries. Zhou and Pei
[285] assume that an adversary is able to isolate a node v only amongst
the set of nodes in G’ sharing the same neighborhood structure; a neigh-
borhood consists of a node’s immediate neighbors and the connections
between them. Liu and Terzi [163] assume that an adversary is able to
isolate a node v only amongst the set of nodes in G’ having the same
degree. In contrast to Hay et al., these works propose mechanisms based
on adding edges [285] or adding and deleting edges [163].
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Of course, node re-identification based on graph structure is not
the only threat to social network data. Recent work by Zheleva and
Getoor [284] observed that, for real social network data, in which each
node carries some associated attribute information, it is often possible
to accurately predict missing (hidden for privacy purposes) attribute
values. Other recent work by the same authors identifies the problem
of link re-identification in published social networks [283].

7.2 Search Log Privacy

On July 29, 2006, AOL published three-month Web search queries of
around 600 thousand users. For a given user, this data set contained
the queries submitted by the user to the AOL search engine. To protect
users’ privacy, AOL replaced the AOL user names with randomly gen-
erated ID numbers. However, soon after the data set was released, many
users together with their private queries were identified. As an exam-
ple, the New York Times identified user No. 4417749 because this user
searched for her family name, her hometown, and something about her
age [28]. By combining this information, it was not difficult to create
a very short list of candidates that matched the information. Several
Websites even provided tools for anyone to look at the released search
log, find user identities, and make comments about those AOL users.
Several lawsuits were filed against AOL, and nine days after the release,
AOL made an apology and terminated several employees involved in
the data release, including the CTO.

The AOL case signifies the need for appropriate search log
anonymization. Existing privacy definitions do not apply directly to
search logs. In 2007 and 2008, several research studies analyzed pri-
vacy issues in search log publishing. However, to our knowledge, sat-
isfactory solutions to search log publishing are still yet to be found.
While Poblete et al. [202] believe that “... query log anonymization
does not look promising in the near future, especially from the user
privacy perspective ...,” it is nonetheless an important direction for
further research with some interesting on-going work. In the rest of
this section, we first discuss the challenges of search log anonymization
in Section 7.2.1, and then review a number of interesting proposals in
Section 7.2.2.
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7.2.1 Challenges

Table 7.1 shows an example search log of a search engine. Fach time
when a user submits a query or clicks a URL on the search result
page, the user 1D, the query, the clicked URL, if any, and some con-
text information (e.g., time and the position of the URL) are logged
by the Web server. This kind of search log is very useful for search
engines to improve their search services and for the research commu-
nity to advance the state-of-the-art in Web search. However, without
appropriate sanitization, releasing such data could allow an attacker to
identify individuals in the data and reveal their private queries. Possible
attacks include:

® Obtaining sensitive information directly from queries: Some
people (like userl) enter their social security numbers, credit
card numbers, etc., in the search box.

e Identifying users by demographic attributes: Some people
(like user2) search for information about their hometown,
their age, and even their names. Note that, in the example
search log, Arlington, WI, is a small town with less than
1,000 residents. It would not be difficult for an attacker to
find the identity of user2.

o [dentifying users by following URLs: Sometimes, the Web
page that a user (like user3) searched for and clicked on can
reveal the user’s identity when combined with his/her other
queries. For example, user3 is likely to be a pastor of a church,

Table 7.1. Example search log.

User ID Query Time Rank URL
1 Userl Tax ssn 111223333 2008-01-05 08:10
2 User2 Restaurant arlington wi 2008-01-03 10:20 1 local.yahoo.com/. ..
3  User2 Restaurant arlington wi 2008-01-03 10:22 4  www.gorestaurants.net/. ..
4 User2 70 single men 2008-01-05 14:30
5 User2 chen family tree 2008-01-06 20:01 1 chenfamilytree.com
6 User2 Nude pictures 2008-01-10 21:42
7 User3d  www.some-church.com 2008-01-08 10:35 1 www.some-church.com
8 User3 Tax for pastor 2008-01-13 22:50 8 answers.yahoo.com/. . .

#Rank and URL indicate the position and the URL on the search result page that the user
clicked. Empty means no click.
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and his/her name is likely to be found on the church’s Web-
site www.some-church.com.

e Discovering users’ private queries: After identifying a user, an
adversary can easily discover the user’s private queries (e.g.,
“nude pictures” by user2) by looking at the entire search
history of the user.

We note that other attacks are possible. The above list just provides
a few examples showing potential threats. The challenges in search log
anonymization include the following:

No well-defined identifying or sensitive attributes: Any search
term (or phrase) used by a user is potentially sensitive, and the sensi-
tivity depends on the semantics of the search term and context. Even
if we can define and remove sensitive terms, they sometimes can still
be predicted. Jones et al. [136] showed that, even if we are able to com-
pletely remove age, gender, zip code from a search log, the age, gender
and zip code of a user can still be predicted based on his/her other
queries. Another negative result obtained by Kumar et al. [146] shows
that, even if we replace every search term with a secure hash num-
ber (so that the hash numbers do not reveal any information about
the search terms), some frequent terms can still be identified based
on co-occurrence analysis using another previously released search log
(e.g., the AOL search log). They also showed that combinations of such
terms can reveal private information about a number of users. Adar [5]
proposed to sanitize a search log by removing queries with frequencies
less than or equal to k. However, no formal result shows that removing
infrequent queries guarantees privacy. For example, consider a search
log in which all users searched for local information about a town also
searched for pornography. Even if the number of such queries is large,
by knowing a user lives in that town, we can still say with high confi-
dence that he searched for pornography.

Uniqueness of user searches: A user search history is the set of
all the queries submitted by the user. User search histories are almost
all unique. Even a small set of queries from a user’s search history
is still likely to be unique, especially if the set contains less popular
terms. To make a user search history less unique (or less identifiable),
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anonymization techniques for set-valued data [246] may be used to
generalize individual queries (or terms) in a user search history along
some query hierarchy. However, it is not clear how one can build a query
hierarchy and how useful the generalized queries would be. Adar [5] also
proposed an approach for splitting a user search history into sessions
(non-overlapping subsets of the history that cover the entire history)
and only reveal sessions, not user search histories. He studied splitting
by time of a query and splitting by text similarity (so that, for a given
user, similar queries in terms of their text content are put in a session,
while dissimilar queries are put in different sessions) and empirically
showed that splitting by text similarity is “safer” than splitting by time.
However, no formal privacy guarantee was provided.

Possible adversarial manipulation: An adversary can create multi-
ple accounts and generate many queries using those accounts to create
special query patterns, so that, when the search log is sanitized and
released, the adversary can use those patterns to obtain private infor-
mation about other users. For example, an adversary can generate a lot
of queries to make an infrequent query frequent, or generate distinc-
tive signatures to allow him/her to break the sanitization mechanism.
To our knowledge, no research has addressed these issues in search log
publishing. In related work, Backstrom et al. [26] studied a family of
such attacks in the context of social network anonymization.

Finally, we note that, in addition to user privacy, Poblete et al.
[202] studied Website privacy. Instead of users, they seek to protect
the privacy of Websites whose URLs appear in the search log. For
example, a Website may not want its competitors to know the terms
used by users when searching for the Website. Several methods were
proposed. However, no formal privacy guarantee was provided.

7.2.2 Interesting Proposals

We now review a number of interesting proposals for search log
anonymization that try to formally define privacy criteria for user
search queries. For a survey of practical techniques (i.e., deleting
or hashing queries, deleting or hashing identifiers, removing known
identifiers, deleting infrequent queries, shortening sessions) from the
perspective of search company data retention policies, see [55].
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Differential privacy on search queries: In order to give search
log privacy a formal definition, Korolova et al. [144] apply a variant
of differential privacy (discussed in Section 2.6) to search queries and
develop an anonymization algorithm based on “noisy counts.” For any
statistic  of a search log (e.g., number of times a given query appears
in the search log), the noisy count of x is = + €, where € is random
noise drawn independently from the Laplace distribution with mean
zero and scale parameter b, for some carefully chosen b. Intuitively,
their algorithm works as follows.

(1) Limit user activities: For each user, retain only the first d
queries by the user and the first d. URL clicks.

(2) Process queries: For each query, add noise to the number
of times the query appears in the search log. If this noisy
count exceeds a specified threshold, output the query with
its noisy counts.

(3) Process URLs: For each query that has a noisy count
exceeding the threshold, output the noisy count of the num-
ber of times each URL was clicked for that query.

The output from the algorithm consists of frequent queries together
with noisy counts of the queries and clicked URLs. Korolova et al.
showed that the sanitized search log can be used for applications such
as keyword generation and studying people’s fears (using queries con-
taining the words “fear of”) with reasonable performance. However,
they also note that whether it can be useful for other applications is
“far from being answered and is an interesting avenue for future work.”

Plausibly deniable search: Murugesan and Clifton [184] address
search query privacy by a client-side approach and propose the notion
of plausibly deniable privacy. When a user wants to submit a query ¢*
to a search engine, a client-side tool generates a set Q = qi,...,qr of
“cover” queries and submit all the cover queries to the search engine
instead of ¢* (¢* may or may not in Q). The idea is that there must
exist a query ¢; € @ that is very similar to (or the same as) ¢*, so
that the user can get the desired search results (by filtering out results
returned from the search engine for queries g;, for j #1i). Also, the

set () must be sufficiently diverse, the probability that the client-side



136  Challenges and Emerging Applications

tool generates () from any one of {¢*,q1,...,q;} should be the same,
and each query ¢*,q1,...,qr should have equal probability of being the
user’s actual query, so that the user can deny his actual query ¢* (or ¢;).
Murugesan and Clifton then define similarity and diversity using meth-
ods (cosine similarity and latent semantic indexing) developed in the
information retrieval (IR) literature, and provide an algorithm to gen-
erate a desirable set () of cover queries. This work is an interesting
step toward client-side privacy preservation of search queries. However,
the exact privacy guarantee is defined based on the performance of the
IR techniques used, which may not be desirable. Also, how useful the
sanitized data are and how to protect privacy for query sequences are
questions that need further research.

Sketch-based anonymization: Finally, we discuss the work by
Aggarwal and Yu [11] on text data anonymization that can also be
applied to search logs. The idea is to replace a user’s search history by
a set of sketches [21]. The goal is to prevent an attacker from identify-
ing the query terms used by an individual but to still allow a researcher
to compute similarities between the sanitized queries (for example, by
using cosine similarity) with reasonable accuracy.

Suppose each user’s search history is represented by a bag of terms.
Let x,, = [Ty1,...,Tyuq) denote the search history of user u, where x,; is
the number of times that term ¢ occurs in u’s search history, and d is the
total number of terms in the entire search log. Note that we enumerate
all the terms in the entire search log and represent each term as its
sequence number. This term-to-number mapping is public. Also note
that metadata like time, rank, and URL is lost, and that z,, is a sparse
vector in which most of the elements are zero. Our goal is to sanitize z,,
by replacing it with a vector of sketch components s, = [sl,..., sum(u)],
where each s, is a number and m(u) is the number of sketch compo-
nents for user u. The number m(u) controls the amount of privacy in
the sanitized data and needs to be chosen according to a privacy cri-
terion such as d-anonymity or k-variance (which are discussed below).
Note that each user may have a different number of sketch components.
Let M denote the largest number of sketch components considered by
the algorithm.
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To sanitize the search log, we first generate M sequences of
4-wise independent pseudo-random numbers, where each sequence rl =
[r{, rd] has length d and each r] is either 1 or —1. Then, for each
user u, we sanitize x, by replacing it with s, where

d
_ J
sl = g Tt - T
t=1

It can be easily shown that &, (s,), defined as follows, is an unbiased
estimator of x;.

with mean E[Z,(sy)] = zu and variance

Note that the more sketch components (m(u)) we have, the more accu-

Var[Zu(sy)] =

rately we can recover the original data (x,:), because the variance of
the estimator Var[Z,:(s,)] reduces as m(u) increases.

The inner product x, - x, is a commonly used measure of similarity
between two bags of words x, and x,. An unbiased estimator for this
inner product is sim(s,,s,), defined as follows:

sim(Sy, Sy) = g s]

where p = min{m(u),m(v)}. It has mean E[sim(sy,S,)] =z, - x, and
variance

) 1
Var([sim(sy,sy)] = ; [quH2”$vH2 — (T - wv)Q]

(where ||lz,/|* = Zle 22,). Here p controls the precision of the
estimator.

Two privacy criteria associated with this technique are d-anonymity
and k-variance (defined below). Assume m(u) is given for each user u.
Let D = {z,} denote the original search log and D* = {s,} denote the
sanitized version of the search log that results from this sketch-based
technique.
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Definition 7.1 (J-Anonymity). The release candidate D* is J-
anonymous if Var[Z,:(s,)] > 9, for every user u and term ¢.

d-Anonymity ensures that the uncertainty in the reconstructed value
Tyt of each term frequency component x,; is at least . As noted by
Aggarwal and Yu, a disadvantage of d-anonymity is that it treats each
user independently regardless of whether there are other users similar
to him/her. They argued that it is desirable to give outliers (users who
use unique terms) more protection than users who are similar to many
others. Thus, they define the k-variance criterion.

Definition 7.2 (k-Variance). Release candidate D* satisfies k-
variance if, for any two users u and v such that z, is among z,’s
k-nearest neighbors, Var[sim(sy,sy)] > |zu| - |2o] — |2 - Tyl

The aim of k-variance is to ensure that any user u’s sanitized search
history cannot be easily distinguished from its k-nearest neighbors.
Note that if we divide each vector x,, by a constant ¢ then the variance
of sim(sy,s,) decreases by a factor of ¢* while |z,| - |2y — |2y - 0|
decreases by a factor of ¢2. Thus normalization of the data is extremely
important. Aggarwal and Yu recommend rescaling each x, so that
|xy| = 1.

Aggarwal and Yu described algorithms for d-anonymity and k-
variance in [11] and noted that some of the vectors z,, may need to be
suppressed in order to achieve §-anonymity or k-variance. It is interest-
ing to see how useful the sketch-based method would be when applied
to real search logs, whether or not the attacks described in Section 7.2.1
would succeed, and what kinds of search log analysis can still be con-
ducted with acceptable accuracy when we only have sanitized search
logs. One should also be careful of releasing the (pseudo)randomly
generated 77 that were used in the sanitization process since this
may allow linear programming techniques to reconstruct the original
data [74, 88].
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7.3 Location Privacy and Mobile Applications

Privacy protection is also increasingly important in emerging mobile
and location-aware applications. For example, many modern cellular
phones and cars now come equipped with global positioning system
(GPS) devices. Thus, cellular service providers and car companies are
able to collect location trace data from many mobile users. The owners
of these repositories may wish to publish, distribute, or sell these data
to enable a new set of applications called location-based services (LBS),
including highway traffic and safety analysis, and strategic placement
of outdoor advertisements (e.g., billboards).

At an intuitive level, the nature of these applications suggests a
potential threat to individual privacy. However, the privacy threat can
vary by application, and is not always crisply stated, so it can be dif-
ficult to judge whether a particular protocol is successful in protect-
ing personal privacy and sensitive information. In this section, we give
an overview of the threat models (formal and informal) described in
the literature, as well as an overview of privacy-protection mechanisms
developed in response to these threats.

7.3.1 Spatial Cloaking for LBS

Early work in location privacy took much the same approach as work in
anonymization for static microdata. Using location data from a single
point in time, this work proposed replacing the locations of individual
users with cloaking regions, such that each cloaking region contains at
least k — 1 other users [109, 110, 119, 137, 180].

In the context of location-based services, several different system
architectures have been proposed [112, 180], each allowing users to
replace their specific locations with k-anonymous cloaking regions when
making location-based requests. For example, consider a user named
Jennifer who would like to use her cellular phone to find the organic
coffee shop closest to her current location in Redmond. Instead of pro-
viding her exact location to the service provider, her location can be
replaced with a region containing at least k& — 1 other users. Of course,
the service may not be able to answer the request precisely using the
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cloaking region [180]. In this example, the service may instead return
multiple coffee shops, and Jennifer’s phone must filter the answers to
find the one that is closest.

Informally, the cloaking approach is used in response to several,
slightly different, threats. Consider requests of the form (id, ¢, q), where
id uniquely identifies the user (e.g., Jennifer), ¢ is the user’s location
(e.g., a street corner in downtown Redmond), and ¢ is the content of
the query (e.g., organic coffee shop). Using the cloaking approach, ¢ is
often replaced with a k-anonymous cloaking region, £*. In each of the
following cases, the service provider is considered untrusted.

e The identity of the user is considered sensitive. This threat
is most analogous to the traditional record linkage attack.
In this case, the user removes her identity, and submits a
request of the form (—,¢*,¢).! The adversary (malicious ser-
vice provider) is assumed to have access to auxiliary informa-
tion associating individuals with particular locations (e.g.,
telephone directories), so the location variable constitutes
a quasi-identifier. Replacing the precise location with a k-
anonymous cloaking region introduces uncertainty about the
identity of the individual issuing the request.

® The association between identity and query is considered sen-
sitive. This threat is analogous to the sensitive-value attack
addressed by f-diversity [166]. Again, the user removes her
identity, and submits a request of the form (—,¢* q), and
the adversary is able to associate individuals with particular
locations. However, in this case, rather than hiding her iden-
tity, the user wants to hide the content of her query (e.g.,
adult bookstores). Replacing the precise location with an
{-diverse cloaking region introduces uncertainty about the
association between identity and the value of the query.

e The location of the user is considered sensitive. Finally, sup-
pose the user submits a request of the form (id,¢*,q). The
request includes the user’s identity, but suppose that the user
does not want to reveal his precise location. This threat is

I In location-based service systems, this typically requires the use of an anonymous routing
protocol or trusted third party.
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not specifically addressed by k-anonymous cloaking because
the size of £* is dictated by the density of users. Rather, in
this case, it is useful to allow the user to specify a minimum
region size [180].

There are a variety of interesting extensions to these basic problems
and threats. One that is particularly interesting is the set of unique
problems posed by continuous queries. In this case, static (one-time)
spatial cloaking may not be sufficient to protect individual anonymity,
since users may be tracked using unique queries. Thus, additional pre-
cautions must be taken [32, 52].

Finally, spatial cloaking is just one way to address privacy in
location-based services. For example, departing from the cloaking
approach entirely, Ghinita et al. developed techniques based on private
information retrieval (PIR) to hide the content of users’ location-based
queries from an untrusted service provider [111].

7.3.2 Anonymity for Location Traces and Trajectories

In addition to providing location-based services, mobile devices present
an opportunity to collect, analyze, and distribute location data. This
can be done offline (i.e., compile a database of trajectories to sell later)
or online (i.e., continuously collect and distribute location information
from a population of users). As an example of the former, a cellular
phone company may wish to collect location trace information, and
then sell this information to an advertising agency to assist in the
placement of billboards. As an example of the latter, it may be valu-
able for a public-safety administration to monitor traffic patterns in
real-time. Of course, location-tracking applications often raise privacy
concerns among users, so considerable effort has focused on developing
tools to help balance the goals of providing useful data while protecting
individual privacy.

7.3.2.1 Offline Anonymization for Trajectory Data

Recent work has developed variations of k-anonymous cloaking that
can be applied (offline) to databases of fully-specified trajectories
[3, 189, 245].
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Consider, for example, the framework proposed by Abul et al. [3].
In this work, a trajectory 7 is defined by a set of spatio-temporal points
(z1,91,t1)s- -, (Tn,Yn,tn) where t; < --- < t,, as well as an additional
parameter o, which describes the degree of uncertainty for each point in
the trajectory. A set S of trajectories is said to satisfy (k,d)-anonymity
if (1) |S| > k and (2) for each pair of trajectories 71,72 € S, the distance
between each time-corresponding pair of locations is less than § (i.e., for
each time t covered by the trajectories, dist((z1,y1),(z2,y2)) < d). For
example, the two trajectories shown in Figure 7.4 satisfy this property.

Given this adapted privacy requirement, the challenge is to trans-
form a database D of trajectories into a database D’ such that for
each 7 € D', there exists S C D’ such that 7 € S and S satisfies (k,0)-
anonymity. This should be done, ideally, in such a way that the trans-
formation minimally affects the quality of the data. One proposed
mechanism involves clustering the trajectories in D, and then cloak-
ing (increasing the uncertainty) for the trajectories in each cluster [3].

7.3.2.2 Online Anonymization for Trajectory Data

The online case presents a further challenge. In the offline case, a
finite database of fully specified traces is compiled, anonymized, and

Time
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Fig. 7.4 Uncertainty-based trajectory cloaking.
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released. In the online case, however, location trace information must
be collected, anonymized, and distributed in (near) real-time. Existing
offline anonymization tools do not directly apply because, after the ini-
tial anonymized trajectories are published, it is not clear how to safely
publish future location information.

This is still very much an active area of research. In the remainder
of this section, we seek to provide intuition for how online trajectory
anonymization has evolved and developed over the past several years.

Strawman 1: Consider a finite population of n users, each with a
unique identifier in the set (uy,...,uy). For the sake of illustration, con-
sider a strawman protocol that replaces each identifier with a unique
pseudonym (e.g., a hash value) in the set (p1,...,p,). Unfortunately,
this simple strawman is vulnerable to attacks based on auziliary infor-
mation.? In particular, we expect to encounter an adversary with access
to some source of information that allows him to associate individuals
with particular locations at particular points in time. (For example,
an adversary might use the Yellow Pages to locate Jennifer’s home,
and then reason that she is likely to be at her home during the night.)
Worse, in this simple strawman, once the adversary “unmasks” a user
(e.g., determines that ps is Jennifer), he can learn Jennifer’s location
at other points in time.

Strawman 2: To overcome the shortcomings of the strawman, one
might consider eliminating the use of time-consistent pseudonyms. For
simplicity, assume that users’ locations are reported in discrete time
steps tg,%1,.... In this second strawman approach, at each time t;, we
would replace user identifier u; with a pseudonym pé- such that there
is no discernible relationship between pseudonyms p;- fori=0,1,....
Unfortunately, this approach has also been shown ineffective. Using
multi-target tracking tools, several recent works have demonstrated
that it is still often possible to track a particular user across time [120,
145]. Fundamentally, this attack stems from the fact that motion is (at
least partially) predictable. As a simple example, consider a set of three
users, as shown in Figure 7.5. Suppose that at 8:30 AM, the locations

2This can be equated with the idea of location as a quasi-identifier in the microdata
anonymization and k-anonymity literature [32].
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8:30 AM

2 3

Fig. 7.5 Inference as the result of motion prediction.

of users (1, 2, 3) are published. Using auxiliary information, we already
know that an adversary may be able to identify some of the users (in
this case, Alice). Now, suppose that the users change locations, and at
8:35 AM, suppose that we publish the locations of users again (locations
4,5, 6). By this time, Alice is on her way to work. However, it may still
be possible to determine that Alice is at location 4 using a basic model
of user motion. This is possible, for example, if the other locations
(5 and 6) are too far away from location 1 to have been reached in the
intervening five minutes.

Temporal Unlinkability and Proposed Mechanisms: Based on
these observations about the expected threat model, the idea of using
temporal unlinkability as a privacy requirement has developed. (This
principle was formalized in [134], but the same intuition has also driven
past work [31, 124].)

Definition 7.3 (Temporal Unlinkability Principle [134]). Sup-
pose an adversary is able to correctly associate a user id w; with m
sequential pseudonyms, pé»,..., p;-+m during times 4,...,7 + m. Under
reasonable inference assumptions, the adversary should not be able to
determine, with high confidence, the pseudonym p;? corresponding to

uj at some other point in time h ¢ {i,...,7i + m}.
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Various mechanisms have been proposed with the (formal or infor-
mal) goal of enforcing temporal unlinkability. Examples include mix-
zones [31], location-sampling [124], and clustering [134]. Jin et al. [134]
also present a formal framework for reasoning about temporal linkabil-
ity in the presence of motion prediction.

7.4 Additional Challenges

While emerging applications of privacy provide their own set of chal-
lenges, there are some challenges that are application independent. In
the remainder of this section, we will discuss some of these fundamental
challenges.

7.4.1 The Curse of Dimensionality

One of the challenges in the area of privacy-preserving data publishing
is caused by the ease with which data are collected. With improving
technology it is becoming easier to measure and record more informa-
tion about each individual. Thus, the number of attributes is growing,
causing the size of the domain to increase exponentially. When this
happens, the curse of dimensionality starts to cause information loss
in sanitized data sets.

This effect can be explained by the following observations of Beyer
et al. [33] about nearest neighbor queries. Under general circumstances,
as dimensionality increases, the ratio of distances to nearest neigh-
bor and farthest neighbor of a random query point approaches 1. This
implies that in many cases, the distance between any two points in
a fixed-size data set is very large. Thus for example, when grouping
together data points for k-anonymity using local or global recoding, we
will generally be putting very dissimilar points in the same partition,
which would require many generalizations to be performed, causing
much information loss. On the other hand, when adding random noise
to the data, we will need to add quite a bit of noise to each data point to
make it nearly indistinguishable from its nearest neighbors since those
neighbors will generally be far away. Similar issues occur with syn-
thetic data [167]. These results have been noted in theory [6, 7] as well
as practice [39, 186], but have also been part of folklore for some time.
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Some current approaches to mitigating the curse of dimensionality
include using local recoding [150] or clustering [14] instead of global
recoding, performing a lossy join decomposition between the quasi-
identifiers and the sensitive attributes [273], publishing multiple views
of the data [75, 142, 278] and publishing low-dimensional approxima-
tions of the data [113]. There has also been recent focus on anonymiz-
ing sparse high-dimensional data [11, 114]. This is a promising direction
since the sparseness of the data indicates that it has a lower-dimensional
signal, which may be used to help avoid the typical excessive informa-
tion loss in high-dimensional data sanitization.

7.4.2 Sequential Releases and Composability

Privacy of sequential releases is another important piece in the pri-
vacy puzzle. The US Census Bureau publish data from the decennial
census every 10 years; other data sets from the Census Bureau and
related statistical agencies are published at more frequent (e.g., annual)
intervals. Web applications collect data incrementally and would like
to use the most current information; for instance, Netflix and Ama-
zon frequently update their recommendations based on new transac-
tions. These sequential releases pose an additional privacy threat since
user information can be linked across different releases. For example,
consider again the sanitized data shown in Table 2.2, which achieves
3-diversity through generalizations. An adversary cannot tell whether
Bruce has cancer, heart disease, or the flu. Suppose another table is
published by the same hospital and Bruce is in a 4-anonymous group,
where two of the individuals have cancer, one has hepatitis, and one
has stomach ulcer. Since Bruce has the same disease in both the tables,
an adversary can deduce that Bruce has cancer despite he being in a
3-diverse group in both tables.

The main reason such an attack is possible is that even though
(-diversity guarantees privacy against adversaries with background
knowledge, it restricts adversarial background knowledge to only con-
sist of £ — 2 negation statements. However, in a sequential release, the
adversary has access to prior releases; this knowledge cannot be cap-
tured in terms of ¢ — 2 negation statements. Hence, definitions like
{-diversity do not automatically guarantee the privacy of sequential
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releases. Reasoning about posterior probabilities of sensitive attributes
from data consisting of a set of generalized tables generally requires the
construction of graphical models, which is NP-hard in general. Conse-
quently, checking a privacy condition like ¢-diversity, (c,k)-safety, or
privacy skyline would also be hard.

An alternate approach to handling sequential releases is using com-
posable privacy definitions.

Definition 7.4 (Composable Privacy Definition). Let P be a pri-
vacy definition that takes a parameter ©. For any release R;, let
O(R;) be the value of the parameter © associated with R;. Assume
that any sequence of releases g = (R1,Ra,...,R,) also satisfies P with

some privacy parameter O(R). We say that P is f-composable if
O(R) = f(O(R1),0(R3),...,O(Ry,)) for any R = (R1,Rs,...,R,).

Composability essentially means that the privacy guarantees degrade
gracefully as more sanitized data sets, describing the same individ-
uals, are released. Recently, Ganta et al. [108] initiated a formal
study of composable privacy definitions. They showed that differen-
tial privacy is composable; i.e., if one release Ry satisfies €;-differential
privacy and a second release Ry satisfies ex-differential privacy, then the
combined sequential release satisfies (e; + €2)-differential privacy. The
above property is true even when the two releases are generated by dif-
ferent sanitization schemes. Ganta et al. also identify two relaxations
of differential privacy, namely, (e,d)-probabilistic differential privacy
[167] and d-approximate e-differential privacy [86], as composable pri-
vacy definitions. However, differential privacy is very strict, and iden-
tifying weaker composable privacy definitions is an important research
direction. Additional perspectives on sequential releases are presented
in [45, 131, 201, 260, 275], but note that data released by two different
data publishers can also be a case of sequential release.

7.4.3 Obtaining Privacy Preferences and
Setting Parameters

Though a system for sharing private data is useful, and recent proposals
provide rigorous mathematical guarantees, there still exist usability
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obstacles that, unless resolved, may stand in the way of widespread
adoption.

One interesting usability question concerns expression of privacy
preferences. For instance, consider a system like delicious.com that
lets users tag Web pages, and allows them to share their tags with
friends in an underlying social network. Suppose that Dan tags
http://www.abc.net as junk. Currently, Dan can either choose to
share this tag with Tony, in which case Tony knows for sure that Dan
tagged the page as junk, or not share the tag, in which case Tony has
no information about whether Dan tagged the page. However, notice
that this sharing is binary, and Dan has no way of specifying that
his tags should be shared anonymously with Tony. In order to anony-
mously share information, simple binary notions of sharing will not
suffice. While technology supports sharing with provable guarantees of
partial disclosure (e.g., ¢-diversity, differential privacy, etc.), we do not
know how to elicit from users their preferences for allowable limits on
disclosure in a way that the users understand, and about which they
feel comfortable.

Another usability challenge arises from parameter setting. While
mathematically rigorous privacy definitions have emerged, they are
often fraught with user-specified parameters. In some cases, these
parameters have interpretable meaning (e.g., the number of pieces of
Boolean background knowledge necessary to breach privacy in the
3D privacy criterion, or the number of individuals whose informa-
tion has to be held out to make a difference in (c,¢)-differential pri-
vacy). However, in practice, it is still not necessarily clear how to set
these parameters. One recent proposal suggested using game-theoretic
information-sharing models as a means of reasoning about the avail-
ability of Boolean background knowledge to attackers, which in turn
helps in parameter setting for privacy definitions based on quantities
of background knowledge [84]. However, this problem is not solved in
general and significant challenges remain.



8

Conclusions

In an increasingly data-driven society, personal information is often
collected and distributed with ease.

In this survey, we have presented an overview of recent technological
advances in defining and protecting individual privacy and confidential-
ity in data publishing. In particular, we have focused on organizations,
such as hospitals and government agencies, that compile large data
sets, and must balance the privacy of individual participants with the
greater good for which the aggregate data can be used.

While technology plays a critical role in privacy protection for per-
sonal data, it does not solve the problem in its entirety. In the future,
technological advances must dovetail with public policy, government
regulations, and developing social norms.

The research community has made great strides in recent years
developing new semantic definitions of privacy, given various realis-
tic characterizations of adversarial knowledge and reasoning. However,
many challenges remain, and we believe that this will be an active and
important research area for many years to come.
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