
Privacy-Aware Location Data Publishing

Haibo Hu, Jianliang Xu, Sai Tung On, Jing Du, Joseph Kee-Yin Ng

Department of Computer Science

Hong Kong Baptist University

This paper examines a new problem of k-anonymity with respect to a reference dataset in privacy-
aware location data publishing: given a user dataset and a sensitive event dataset, we want to
generalize the user dataset such that by joining it with the event dataset through location, each
event is covered by at least k users. Existing k-anonymity algorithms generalize every k user
locations to the same vague value, regardless of the events. Therefore, they tend to overprotect
against the privacy compromise and make the published data less useful. In this paper, we propose

a new generalization paradigm called local enlargement, as opposed to conventional hierarchy- or
partition-based generalization. Local enlargement guarantees that user locations are enlarged just
enough to cover all events k times, and thus maximize the usefulness of the published data. We
develop an O(Hn)-approximate algorithm under the local enlargement paradigm, where n is the
maximum number of events a user could possibly cover and Hn is the Harmonic number of n.
With strong pruning techniques and mathematical analysis, we show that it runs efficiently and
that the generalized user locations are up to several orders of magnitude smaller than those by the
existing algorithms. In addition, it is robust enough to protect against various privacy attacks.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS; H.2.0 [Database Management]: General—Security, integrity, and
protection

Additional Key Words and Phrases: k-anonymity, location privacy

1. INTRODUCTION

With the advent of location-positioning technologies, such as the global positioning
system (GPS) and CDMA network-based positioning, mobile telephone subscribers
can now be continuously tracked by mobile operators or service providers whenever
they are making calls, enjoying value-added services, or even when they are just
idle. With the surging market growth in this industry, we foresee that it will not
be long before the operators or service providers begin to publish their archived
user location data for researchers and commercial organizations to carry out aca-
demic and market research (e.g., customer data mining), just as several years ago
when supermarkets and internet portals started to analyze their customer shopping
records or web browsing logs. In addition, to protect the public’s right to know,
governments will also recommend or require that data of this kind be published,
just as the public records of medical treatments, marriages or voter registration are
made public today.

However, how to publish such data without compromising user privacy is always
a critical problem. In relational databases, k-anonymity (and its variants l-diversity
and t-closeness) has been advocated as the predominant measure for privacy pro-
tection [Sweeney 2002; Machanavajjhala et al. 2006; Li et al. 2007]. The main idea
is to group users based on the values of quasi-identifier attributes, and generalize
these values on a group basis so that the users in each group are indistinguish-

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001, Pages 1–0??.

2 ·

able from one another. This idea has also been adapted to location-based services
where location is considered the quasi-identifier attribute. Specifically, the loca-
tions of k users are generalized (or more accurately, cloaked) to the same region
so that a service provider cannot distinguish the requesting user from other k − 1
users (hereafter called single-dataset k-anonymity) [Gedik and Liu 2005; Mokbel
et al. 2006; Ghinita et al. 2007b].

In this paper, we study a new problem of location data publishing. Consider
a service provider (e.g., a department store) that administrates certain territories
and monitors the locations of subscribing users (e.g., customers). For research or
publicity purposes, the service provider wants to or needs to publish both the user
location data and records of services provided to these users. For example, the
store may want to publish customers’ location data to study their shopping behav-
ior (e.g., how customers’ profiles such as age and education affect their interest in
different shopping categories, such as food and clothing, or interest in a particular
product of consumer electronics). Similarly, for market basket analysis, the store
also wants to publish the purchase records. Figure 1 shows an example of the two
published datasets.1 Thus, the identities of the service records can be discovered
by joining the location attributes of the two published datasets and hence finding
spatiotemporal coincidence of a user and a service record. Once the identities are
discovered, sensitive information can be deduced from them. For example in Fig-
ure 1, there is a purchase record of drug “diazepam” for insomnia (e1) and Michael
(o1) happened to be the only customer at the drug counter when this drug was
purchased (his location overlaps with the event location). Then, an adversary can
infer that Michael must have bought diazepam and therefore was likely to have
insomnia. Similarly, the adversary can infer that “Sara (o3) probably smokes be-
cause she bought cigarettes (e2)”. We argue that this is not a standalone case, and
there are many service providers or government administrators who are publishing
or about to publish records of services or incidents for various purposes. Typical
examples include clinics publishing their medical consultation records, and traffic
authorities publishing records of traffic violations. In this paper, we use the general
term event to denote such a record. As shown above, to prevent against privacy
attacks, we should anonymize the spatiotemporal coincidence of user locations and
sensitive events, so that the genuine users of these events cannot be inferred. For-
tunately, similar to location anonymity, such anonymization can also be performed
by generalizing the user locations. In Figure 1, if the locations of Philip and Lincoln
are generalized (i.e., enlarged) to overlap with e1 and e2, respectively, then either
Michael or Philip might have bought diazepam, and either Lincoln or Sara might
have bought cigarettes.

In general, in this paper we are interested in the following problem: given a user
dataset which records user IDs (or quasi-IDs) and locations, and a sensitive event
dataset which records events and their locations, how can we generalize the user
dataset with respect to the event dataset in such a way that by joining these two
datasets through location, every event is covered by at least k users? In this way, an
adversary who has no background knowledge can only infer that each of the k users

1Although the Purchases dataset may not explicitly contain the locations, they can be inferred
since the purchases are made at publicly-known locations, e.g., drugs are sold at the drug counter.

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 3

U
s
e
r

L
o
c
a
t
i
o
n
s

O
1
:

M
i
c
h
a
e
l
 e
1
:
D
i
a
z
e
p
a
m

O
2
:
L
i
n
c
o
l
n

P
u
r
c
h
a
s
e
s

(
E
v
e
n
t
s
)

e
2
:
C
i
g
a
r
e
t
t
e
s

J
o
i
n

M
i
c
h
a
e
l
:

D
i
a
z
e
p
a
m

o
1

o
2

e
1

e
2
o
3

o
4

O
3
:
S
a
r
a

O
4
:
P
h
i
l
i
p

S
t
o
r
e

F
l
o
o
r
p
l
a
n

F
o
o
d

Z
o
n
e

T
o
b
a
c
c
o

&

B
e
v
e
r
a
g
e
s

P
e
r
s
o
n
a
l

C
a
r
e

S
a
r
a

:

C
i
g
a
r
e
t
t
e
s

Fig. 1. Anonymize Spatiotemporal Coincidence

has the same 1/k probability of being the genuine user. This problem is termed as
k-anonymity with respect to a reference dataset, in contrast to the previous single-
dataset k-anonymity problem. The criterion of the published dataset, as in the
single-dataset k-anonymity problem, is the generalization cost (in terms of the area
or the perimeter of generalized locations). This cost is essentially the reverse of the
utility — another commonly-used metric — of the published dataset. The lower
the cost, the higher the utility, and thus the more details are preserved for analysis.
Note that the generalization cost should not be confused with the CPU or I/O cost
used for generalization operations. It is also noteworthy that in the presence of
multiple event datasets, the problem can be recursively decomposed and reduced
to the aforementioned standard form with only one event dataset, thanks to the
associative and commutative properties of the join operation.

To solve the problem, the existing k-anonymity generalization algorithms (e.g.,
[LeFevre et al. 2005; Sweeney 2002; Samarati 2001; Fung et al. 2005; Wang et al.
2004; Iyengar 2002; Bayardo and Agrawal 2005]) can be applied. However, as these
algorithm are not aware of event datasets, they may overprotect users’ privacy
and, hence, make published data less useful. According to generalization flexibility,
the existing hierarchy-based or partition-based algorithms can be categorized as
single-dimension or multi-dimension recoding[LeFevre et al. 2005]. The former
means that generalization in one attribute is independent of the values in other
attributes. For example, if the generalization rule of an attribute zipcode is “3317x”,
then any zipcode with the prefix “3317” must be generalized to “3317x”, whatever
the values of other attributes in this record. On the contrary, multi-dimension
recoding allows more complex generalization rules across several dimensions. As a
result, it might produce a better anonymization in terms of the generalization cost,
but at the cost of higher computational complexity [LeFevre et al. 2006; Du et al.
2007; Ghinita et al. 2007b].

As complex generalization rules are shown to lead to a better anonymization, in
this paper, we propose an innovative generalization paradigm called local enlarge-
ment, which goes one step further to allow each individual data record to have its
own generalization rule. In the spatial context, this means that the location of
each individual user is enlarged accordingly. Local enlargement can achieve higher
flexibility and better generalization in many aspects than existing single- or multi-

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

4 ·

o
r
i
g
i
n
a
l

u
s
e
r

e
v
e
n
t

e
n
l
a
r
g
e
d

u
s
e
r

p
a
r
t
i
t
i
o
n

o
1

o
2

e
1

e
2

o
3

o
4

(a) Single-Dimension Recoding

o
1

o
2

e
1

e
2

o
3

o
4

(b) Multi-Dimension Re-

coding

o
1

o
2

e
1

e
2

o
3

o
4

(c) Local Enlargement

Fig. 2. Local Enlargement vs Single- and Multi-Dimension Recoding

dimension recoding. First, the size (i.e., the cost) of the generalized location is
much smaller. Figures 2(a), 2(b) and 2(c) show the original and generalized user
locations for the motivating example in Figure 1, using single-dimension recoding,
multi-dimension recoding, and local enlargement, respectively. Each achieves 2-
anonymity with respect to events e1 and e2. In both single- and multi-dimension
recoding, the generalization is based on space partition, where each partition that
contains an event must contain two users and this partition becomes the generalized
location of these two users. The difference between single- and multi-dimension re-
coding is the method of partition — whether to treat each attribute (i.e., dimension)
independently or dependently. On the other hand, local enlargement guarantees
that user locations are enlarged just enough to cover each event by two users.
Therefore, it incurs a smaller generalization cost. In the figures, local enlargement
has the smallest sum of areas of generalized user locations. Although this is at
the cost of a higher computation overhead, with carefully designed algorithm and
pruning techniques, the overhead can be significantly reduced and is thus justified
for offline data publishing. Second, the existing generalization algorithm has no
control of the generalized location of an individual user. However, as was pointed
out in [Gedik and Liu 2005; Mokbel et al. 2006; Xiao and Tao 2006b], different
people may have different degrees of privacy tolerance. Local enlargement allows
user locations to enlarge according to their personalized privacy profiles and still
achieves a low-cost generalization that conforms to both k-anonymity and these
profiles. For example in Figure 2(c), if user o1 is privacy-conservative and prefers a
larger generalized location, it can be enlarged to cover both e1 and e2, and as a cost
relief, o2 can be shrunk to its original location if his or her privacy profile allows.
Lastly, local enlargement handles updates efficiently. In case of a new user or event
insertion, or an existing user or event removal, the update of enlargement is always
restricted to the local area. However, in the existing generalization algorithms the
events and users have to be re-partitioned, which means a single change may be
propagated throughout the space.

Our contributions made in this paper are summarized as follows:

— We introduce a new problem of user location k-anonymity with respect to
a reference event dataset, which arises from the observation that a join of the
two datasets may associate users with sensitive events, leading to severe privacy
compromise.

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 5

— We show that applying conventional single-dimension or multi-dimension k-
anonymity algorithms on a user dataset only is inefficient in solving this problem.
As such, we propose a new generalization paradigm, called local enlargement, that
minimizes the generalization cost of the resulting dataset.

— We present an efficient and close-to-optimal algorithm for local enlargement.
Furthermore, we formally prove its Hn approximation ratio, where n is the maxi-
mum number of events a user could possibly cover and H is the Harmonic number
of n, that is, Hn =

∑n
i=1

1
i .

— We propose advanced pruning techniques for this algorithm. Furthermore,
their pruning power is shown through analytical cost models and extensive experi-
ment results, which exhibit their efficiency and feasibility.

— We extend the location k-anonymity problem to allow additional background
knowledge of user-event correspondence. In particular, we formalize the privacy loss
using entropy and prove that certain privacy threats can be prevented by further
restricting each user to cover the same number of events. As such, we present a
coverage adjustment algorithm as a post-generalization procedure in face of such
threats. Our experimental results show that our algorithm can sustain various
privacy attacks.

The rest of the paper is organized as follows. Section 2 reviews existing work on
privacy-aware data publishing. Section 3 formally introduces the problem, followed
by the local enlargement algorithm and the proof of its approximation ratio in
Section 4. Section 5 proposes the pruning algorithms and Section 6 presents their
cost models in terms of pruning power. Section 7 extends the problem by also
allowing the adversary to have background knowledge and proposes a coverage
adjustment algorithm. The experimental results are shown in Section 8.

2. RELATED WORK

Privacy-aware data publishing has been recently studied in RDBMS [Samarati 2001;
Sweeney 2002; Machanavajjhala et al. 2006; Li et al. 2007; Xiao and Tao 2006b;
2006a]. Samarati and Sweeney studied the phenomenon of the quasi-identifier, a
set of attributes that can distinguish any record from the others in the table. As
a classic example, the zipcode and birthdate together may already identify every
patient of a patient table within a hospital. They therefore proposed k-anonymity
to generalize the values of quasi-identifier attributes in each record so that it was
indistinguishable from at least k−1 other records with respect to the quasi-identifier
[Samarati 2001; Sweeney 2002]. However, k-anonymity only prevents adversary A
from associating an identity (e.g., a patient) with a complete record in the table. It
cannot prevent A from associating the identity with the value of some attribute(s),
which might be sensitive. For example, if all k indistinguishable records (which
are called an equivalence class) in the patient table have a value of “cancer” in
their “disease” attribute, then A can infer that a patient who falls in this class
has cancer with 100% confidence, even though A may not know which record this
patient is associated with. This privacy compromise is called attribute disclosure, as
opposed to identity disclosure, which is solved by k-anonymity. To solve attribute
disclosure, Machanavajjhala et al. proposed a new measure of privacy, called l-

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

6 ·

diversity [Machanavajjhala et al. 2006], which requires any equivalence class to
have at least l well-represented values in the sensitive attribute (e.g., disease).

However, l-diversity treats each value of the sensitive attribute equally and thus
only prevents adversary A from associating an entity with any specific sensitive
value. Li et al. pointed out that even A cannot make associations, A still gains ad-
ditional information from the generalized table, as long as the value distribution of
the sensitive attribute in an equivalence class is different from that in the global ta-
ble [Li et al. 2007]. As a typical example, suppose that there are only two values for
the disease attribute, “cancer” and “heart disease”. If in the global table, only 1%
of patients develop cancer while in an equivalence class 2 out of 4 patients develop
cancer, then the posteriori probability of a patient in this equivalence class devel-
oping cancer is significantly higher than the prior probability (50% vs. 1%), which
severely compromises the patient’s privacy. As such, they proposed a t-closeness
privacy measure. This requires the value distribution in any equivalence class to
differ by at most t from that in the global table. t-closeness can be considered as
the generalization of l-diversity as it measures the loss of privacy by the increment
of the posteriori probability instead of the number of distinct values.

The same limitation of k-anonymity and l-diversity was also studied by Xiao and
Tao, who proposed an alternative solution that allows each individual to specify the
granularity of value(s) he or she tolerates to reveal in the sensitive attribute [Xiao
and Tao 2006b]. For example, a user may feel alright if adversary A associates
him/her with cancer, but he/she may feel his/her privacy is violated if A can asso-
ciate him with “prostate cancer,” a sub-category of “cancer.” With this fine-tuned
privacy measure in addition to k-anonymity or l-diversity, the user can reserve the
privacy that is of concern to him/her while revealing the rest for data analysis. To
satisfy this additional privacy measure, Xiao and Tao suggested a second sensitive
attribute generalization step after the traditional quasi-identifier generalization.

Apart from elaborating the input privacy measures that apply to more general
and practical privacy-preserving scenarios, researchers also attempted to elaborate
the format of output — the published data table. Xiao and Tao recommended that
instead of publishing one generalized table, it is advisable to anatomize it into two
tables, one quasi-identifer table and another sensitive table, with an equivalence
class ID (group ID as they call it) being the foreign key to join them [Xiao and Tao
2006a]. They showed that while preserving the same amount of privacy, the anat-
omized tables reserve more detailed facts from the original table for data analysis,
especially in terms of aggregate queries.

Many generalization algorithms have been devised to achieve k-anonymity in a
single table [LeFevre et al. 2005; Sweeney 2002; Samarati 2001; Fung et al. 2005;
Wang et al. 2004; Iyengar 2002; Bayardo and Agrawal 2005]. Early attempts as-
sume a generalization hierarchy on each quasi-identifier attribute. Some even re-
quire that all values of this attribute must be generalized to values of the same
level in the hierarchy (full-domain generalization, as opposed to full subtree gen-
eralization) [LeFevre et al. 2005]. Sweeney proposed Datafly, a greedy algorithm
that generates frequency lists and iteratively generalizes those combinations with
less than k occurrences [Sweeney 2002]. She also proposed an exhaustive algorithm
that examines all possible generalizations to find the optimal one. However, this

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 7

approach is shown to be impractical even on a medium table. Samarati proposed
another optimal algorithm by exploiting binary search and pruning the search space
with the monotonicity property on the generalization lattice, but the algorithm re-
mains exponential in the worst or even average case [Samarati 2001]. LeFevre et al.
proposed the Incognito framework, the core of which is a dynamic programming
algorithm with a priori pruning [LeFevre et al. 2005]. The idea is to construct all
possible n + 1-attribute generalizations (which form a lattice) from the n-attribute
lattice. Since those nodes in each lattice that cannot be the optimal generalization
are pruned, the size of the lattice should not grow exponentially as n increases.

As for full-subtree generalization algorithms, greedy top-down and bottom-up
generalization techniques were devised by Fung et al. [Fung et al. 2005] and Wang
et al. [Wang et al. 2004]. To remedy the “localness” of the search space, Iyengar
proposed using a genetic algorithm [Iyengar 2002]. It is noteworthy that this work
belongs to another family of k-anonymity generalization algorithms that is based
on partition instead of hierarchy [LeFevre et al. 2005]. In these algorithms, the
domain of an attribute is a set of total order, and generalizations are defined by
partitioning the set into disjoint ranges. Apart from [Iyengar 2002], Bayardo and
Agrawal obtained the optimal partition-based generalization by providing a branch-
and-bound search strategy in the power-set of all partition possibilities [Bayardo
and Agrawal 2005]. In general, partition-based algorithms are most suitable for
continuous or numeric-valued attributes, and the hierarchy-based algorithms are
better suited for categorical values [LeFevre et al. 2005].

Location anonymity is regarded as the spatial equivalence of k-anonymity in
RDBMS, and location is usually a quasi-identifier in a spatial dataset. General-
ization on user locations is called location cloaking. The generalized location of
a user, called a cloaked region, is usually a circle or a rectangle that encloses the
genuine position of this user as well as at least other k − 1 users. Gruteser and
Grunwald[Gruteser and Grunwald 2003] were the first to propose spatio-temporal
cloaking, where a trusted middleware generalizes (i.e., cloaks) the spatial and tem-
poral extents of the location for the requesting user to achieve k-anonymity. More
specifically, the middleware indexes all user locations using a Quadtree. Upon re-
ceiving a request, the middleware traverses the Quadtree until it finds a quadrant
containing the user of this request and other k − 1 users. This quadrant is the
cloaked region for this user. Gedik and Liu considered a personalized k-anonymity
model and proposed “Clique-Cloak,” which constructs a clique graph to combine
clients that can share the same cloaked region[Gedik and Liu 2005; 2008]. A grid-
based cloaking algorithm was suggested in the Casper framework[Mokbel et al.
2006]. Iwuchukwu and Naughton proposed to leverage classical spatial indexing to
achieve efficient k-anonymity[Iwuchukwu and Naughton 2007]. Ghinita et al. stud-
ied cloaking in a distributed environment and proposed hilbASR to sort all users
and store this ordering in a distributed annotated B+-tree index [Ghinita et al.
2007b]. In hilbASR, all users are sorted by Hilbert space-filling curve ordering
according to their locations, and then every k users are grouped together in this
order. They have also extended this framework to a Chord peer-to-peer environ-
ment and used distributed hash tables, instead of the hierarchical B+-tree to store
user locations[Ghinita et al. 2007a].

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

8 ·

Our paper addresses a new problem of achieving k-anonymity in a dataset with
respect to a reference dataset. Moreover, instead of being based on hierarchy or
partition, the algorithm we propose belongs to a new generalization paradigm,
which is called local enlargement.

3. PROBLEM DEFINITION

Definition 1. A location dataset is a collection of identifier-location pairs <
o.obj id,o.b box>, where o.obj id is the identifier of an object o (e.g., a user or an
event) and o.b box is the bounding box of o’s location.

Definition 2. Given a location dataset D of users and a reference location
dataset R of events, a k-anonymous dataset of D with respect to R is a location
dataset D′ of the same users as D such that: 1) for any user o, o.b box′, the bound-
ing box in D′, fully contains o.b box, the bounding box in D, i.e., o.b box ⊆ o.b box′;
and 2) for any event e ∈ R, there are at least k users in D′ whose bounding boxes
overlap with e.b box.

In other words, D′ is obtained by enlarging the bounding boxes of some (or all)
users in D so that there are always k or more users whose bounding boxes overlap
with that of an event, or more formally, k or more users cover an event. Obviously,
an intuitive solution to this problem is to pick k users independently for each event
e and enlarge their b box to cover e.b box. However, this may make the bounding
boxes of the published dataset D′ too large to be useful. To quantify the usefulness
of the published data, we define the generalization cost of a bounding box as a
monotonic increasing function over its dimensions, or more formally, cost(α box) ≤
cost(β box) if α box ⊆ β box, and the generalization cost of the entire dataset is
the summation of the cost over the bounding boxes of all users, that is, cost(D′) =
∑

o∈D′ cost(o.b box′). A typical cost function could be the area/volume/perimeter
of the bounding box. Therefore, our objective in the sequel is to find a k-anonymous
D′ with the minimum generalization cost.

There are four remarks that should be noted about the above definition. First,
the threat model in this definition assumes an adversary knows only the published
k-anonymous dataset D′ and event dataset R. Without any background knowledge,
the adversary can only infer that each of the k covering users has the same 1/k
probability of being the genuine user. This threat model is stricter than what is
assumed in the traditional k-anonymity model, where the adversary also knows
the input dataset D. This stricter model enables more flexibility in the design of
generalization algorithm than the k-anonymity model and can thus achieve better
utility (i.e., lower generalization cost) for the published dataset. On the other hand,
however, this model does not fit to applications where some information about the
input dataset D is known to the adversary. For example, if the input locations
are known to be points or in fixed precision, the adversary might be able to guess
the genuine user with confidence higher than 1/k. We have a detailed analysis in
Section 7 on the implication of such background knowledge.

Second, while two or more users may have the same b box, two or more events
may also share their b box’s. This usually happens when the location precision is
coarse. For example, two patients have medical consultations at the same time
but in different doctor’s offices; and their b box’s are both “the clinic.” In this

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 9

paper, we treat them as two distinct events because they have different genuine
users. Third, the input datasets of users and events share the same context. That
is, the user dataset is the exact population who carried out the events in the event
dataset. As such, every event is already covered by at least one user — the genuine
user of this event and possibly some more users; so actually the problem is to find
some other users to have a total of k covering users. Note that this context is
unique, so no other user or event dataset can join with the input datasets. Also
note that each event may have a different k value, which is predetermined by factors
such as the privacy preference of the genuine user and the sensitivity of this event.
However, for ease of presentation, throughout the paper we use a unified notation
k to denote the number of covering users required to find for each event. Fourth,
normally “overlap” means intersection; that is, two boxes share some common area.
However, in order to minimize the generalization cost, at the border the enlarged
bounding box of a user should just “touch” the box of an event; that is, they
only share their borders. As such, in the sequel we use “overlap” and “touch”
interchangeably. It is noteworthy, however, that the adversary may exploit this by
considering any user whose enlarged bounding box just touches an event as a non-
genuine user of this event. Nonetheless, this exploit can be solved by a post-process
that randomly expands those enlarged bounding boxes that touch events. More
specifically, these boxes are expanded to intersect the events such that on average
they will intersect the events by the same proportion of event area as the boxes of
the genuine users do. Since this process is inexpensive and introduces very little
increase of the generalization cost, we ignore this in the rest of the paper.

4. LOCAL ENLARGEMENT ALGORITHM

As mentioned above, the bounding box b box of a user o should be enlarged to cover
a number of events. Given a reference dataset R, in each dimension there are at
most 2 ∗ |R| (|R| is the cardinality of R) coordinates from which the borders of the
enlarged box o.b box′ can be selected. Figure 3 illustrates a 2D scenario with three
events, e1, e2 and e3. Given the bounding box o, in the x-dimension, the border on
the right can be selected from x3, x4 and x5 only, while the border on the left can
be selected from x1 and x2 only. Similarly, the border on the top can be selected
from y1, y2 and y3 only, while the border on the bottom can be selected from y4

and y5 only.
By selecting from different x and y coordinates, we obtain a set of enlarged

bounding boxes for o, which is subsequently called the candidate set of o and each
is called a candidate box.2 Therefore, the k-anonymity problem is equivalent to
finding an extended bounding box Ω for each user so that each event is covered by
at least k such Ω’s and their total size is minimized.

This problem is similar to a set cover problem if we regard each event as an
element, the entire event set R as the universe U , and each candidate box as a
subset of U which contains the events it covers. The weight of a subset S is the
generalization cost of the corresponding candidate box. Our problem is equivalent
to finding a set of subsets that cover each event k times while the sum of weights is

2The candidate set also contains the current bounding box of the user, i.e., his or her original
location before generalization.

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

10 ·

e
2

x
1
 x
2
 x
3
 x
4
 x
5

y
1

y
2

y
3

y
4

y
5

e
1

e
3

o

Fig. 3. At Most 2 ∗ |R| Coordinates in Each Dimension

minimized. More accurately, this is a set multi-cover problem because each event
must be covered multiple times. Furthermore, this problem is a unique variation of
set multi-cover because there is a further restriction that at most one candidate box
from each object’s candidate set can be selected for the object to enlarge. That is
to say, each candidate set serves as a superset in the set multi-cover problem from
which at most one subset can be selected. We therefore call this problem as the
superset multi-cover problem, which is formally defined as follows.

Definition 3. (Superset Multi-Cover Problem) Given a universe U of el-
ements, a collection of supersets O, O = {O1, ..., Om}, each Oi is a collection of
subsets of U ; that is, Oi = {Si

1, S
i
2, ...}, where Si

j denotes the j-th subset in Oi, and

a cost function c : Si
j → Q+ (Q+ is the domain of positive real numbers), choose

at most one subset from each superset to form a collection {Si1
j1

, Si2
j2

, ...} such that:
1) each element e is covered at least k times, and 2) the sum of costs is minimal.

It is possible that none of the candidate boxes in a superset Oi is selected. In this
case, the bounding box of the corresponding user o is simply not extended; that is,
o.b box′ = o.b box.

4.1 The Greedy Algorithm

For set cover and set multi-cover problems, a greedy algorithm can achieve an
Hn approximation ratio to the optimal solution [Vazirani 2001], where n is the
maximum cardinality of any subset Si

j, and Hn is the Harmonic number of n; that

is, H(n) =
∑n

i=1
1
i . The greedy algorithm chooses one subset at a time until each

element is covered k times. In particular, it always chooses the subset Ω∗ with the
lowest amortized cost, i.e., the cost divided by the number of “living” elements that
are covered by the subset. Element e is alive if so far the selected subsets cover it
fewer than k times. Let C denote the set of elements that are no longer alive; then

the amortized cost of subset Si
j is

cost(Si
j)

|Si
j
−C|

, and is hereafter called the c/s value.

In our superset multi-cover problem, we can apply the same greedy algorithm,
i.e., we repeatedly choose a subset (i.e., a candidate box) Si

j with the minimum
c/s value and let Ω∗ denote it. The difference is that once this Ω∗ is selected,
only some candidate boxes in Ω∗’s corresponding superset O∗ can continue to be
selected while the rest should be removed from O∗. These candidate boxes are

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 11

those of which Ω∗ is a subset; that is, each of them fully contains Ω∗. Therefore,
whichever box is selected subsequently, it must cover the elements covered by Ω∗,
which can thus be replaced by this new box. This modification guarantees that the
algorithm always conforms to the restriction of at most one candidate box from each
superset. Algorithm 1 shows the pseudo-code of this revised greedy algorithm. In
each iteration, Ω∗ is obtained in two steps. The algorithm first finds the candidate
box with the minimum c/s value in each candidate set Oi (denoted by Ωi), and
then obtains Ω∗ from all Ωi’s.

Algorithm 1 Algorithm for Set Multi-Cover Problem
Input: Oi: 1 ≤ i ≤ m, m supersets

k: coverage requirement
Output: Si: 1 ≤ i ≤ m, the selected subset in Oi

Procedure:

1: initialize S = C = ∅;
2: while C 6= U do

3: for each Oi do

4: Ωi = the subset with the lowest c/s value in Oi;
5: Ω∗ = the subset with the lowest c/s value in all Ωi’s;
6: S∗ = Ω∗; // select this subset for superset O∗

7: remove all subsets in O∗ of which Ω∗ is not a subset;
8: for each element e in Ω∗ − C do

9: if e is covered k times then

10: C = C ∪ {e}; // e is no longer alive
11: update c/s values of all subsets that cover e;
12: return all Si;

4.2 Proof of Approximation Ratio

We now prove that the greedy Algorithm 1 is an Hn-approximation algorithm
for the superset multi-cover problem. The following proof is based on the linear
programming (LP) duality theory [Vazirani 2001] but addresses our unique require-
ment of the superset. Let us assign a variable xS for each set S ∈

⋃

Oj , 1 ≤ j ≤ m.
xS = 1 if and only if set S is selected by the superset multi-cover; xS = 0 if and
only if it is not selected. Then the superset multi-cover problem is reduced to an

integer programming problem which minimizes the cost:
∑

S∈
S

Oj

c(S)xS .

minimize
∑

S∈
S

Oj

c(S)xS

subject to
∑

S: e∈S

xS ≥ k, ∀e ∈ U

−
∑

S∈Oj

xS ≥ −1, ∀1 ≤ j ≤ m

xS ≥ 0, S ∈
⋃

Oj

Note that the constraints xS ≤ 1 are redundant because any set S must be

contained in some Oj . These constraints are implicit in constraints −
∑

S∈Oj

xS ≥ −1.

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

12 ·

According to the LP-duality, the dual problem is

maximize
∑

e∈U

kye −
∑

1≤j≤m

zj

subject to (
∑

e: e∈S

ye) − zj ≤ cS , S ∈ Oj

ye ≥ 0, e ∈ U
zj ≥ 0, 1 ≤ j ≤ m

Then we construct a solution to this dual problem based on the greedy algorithm.
Let the cost of selecting set S be evenly distributed among the living elements it
covers, and let price(e, t) denote the cost distributed to e when e is covered for the t-

th time; that is, price(e, t) = c(S)
|S−C| , where S is the set to cover e, and C still denotes

the set of elements that are no longer alive at that time. Obviously, according to the
greedy algorithm, price(e, t) is non-decreasing; that is, price(e, t1) ≤ price(e, t2) if
t1 ≤ t2. Therefore, the solution to the dual problem is set as follows: for each

e ∈ U , ye = 1
Hn

price(e, k), and zj = 1
Hn

∑

e covered by S∈Oj

(price(e, k) − price(e, te)),

where te is the copy of e that is covered by S ∈ Oj ; zj = 0 if no S ∈ Oj is selected
by the greedy algorithm. The following lemma proves that ye and zj form a feasible
solution to the dual problem.

Lemma 1. ye and zj is a feasible solution to the dual problem.

Proof. For any set S ∈ Oj , let l denote the cardinality of S. Without loss of
generality, we further assume the elements in S are in the order of being covered
for the last (i.e., k-th) time. There are three cases for S in the algorithm:

— S is not selected by the algorithm, and none is any set in Oj . Then when
the algorithm is about to cover ei for the k-th time, S contains at least l − i + 1
elements to be covered. Since S is not selected, we have

price(ei, k) ≤
c(S)

l − i + 1

(

l
∑

i=1

yei
) − zj =

1

Hn

l
∑

i=1

price(ei, k)

≤
c(S)

Hn
(
1

l
+

1

l − 1
+ · · · +

1

1
) ≤ c(S)

— S is selected by the algorithm. Then,

(

l
∑

i=1

yei
) − zj =

1

Hn
[

l′
∑

i=1

price(ei, k) + c(S)],

where e1, ..., el′ have already been covered k times before S is selected. Therefore,

for 1 ≤ i ≤ l′, price(ei, k) ≤ c(S)
l−i+1 . So,

(

l
∑

i=1

yei
) − zj ≤

c(S)

Hn
(
1

l
+ · · · +

1

l − l′ + 1
+ 1) ≤ c(S)

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 13

— S is not selected by the algorithm but another set S′ ∈ Oj is selected by the
algorithm. Let ǫ1, ..., ǫl′ denote the elements in S′. Then,

(

l
∑

i=1

yei
) − zj =

1

Hn
[

l
∑

i=1

price(ei, k) −
l′

∑

u=1

price(ǫu, k) + c(S′)]

According to the definition of price,

l
∑

i=1

price(ei, k) − c(S) is the gain of cost re-

duction if S is selected after S′ to cover all ei’s; similarly,

l′
∑

u=1

price(ǫu, k)− c(S′) is

the gain of cost reduction if S′ is selected after S to cover all eu’s. Since the greedy
algorithm always selects the set with lowest cost, the former gain must be lower

than the latter gain; that is,

l
∑

i=1

price(ei, k) − c(S) ≤
l′

∑

u=1

price(ǫu, k) − c(S′). So,

(

l
∑

i=1

yei
) − zj =

1

Hn
[

l
∑

i=1

price(ei, k)−

l′
∑

u=1

price(ǫu, k) + c(S′)] ≤
c(S)

Hn
≤ c(S)

Next, we present the following theorem about the approximation bound.

Theorem 2. For the superset multi-cover problem, the greedy algorithm achieves
an approximate bound of Hn.

Proof. Putting the dual solution ye, zj to its objective function, we have

∑

e∈U

kye −
∑

1≤j≤m

zj =
1

Hn

∑

e∈U

k
∑

t=1

price(e, t) =
GRD

Hn
,

where GRD is the total cost for the greedy algorithm. According to the LP-duality
theorem, the above value must be a lower bound for the original superset multi-
cover problem. That is, GRD

Hn
≤ OPT ; that is, GRD ≤ Hn · OPT .

4.3 Fast Scan: Enhancing the Greedy Algorithm

The most time-consuming portion of the greedy algorithm involves finding Ωi, the
candidate box with the lowest c/s value in each candidate set. To simplify the
notations in the sequel, we omit subscript i if Ωi is unambiguous in the context.
Intuitively, we have to compute the c/s values for all candidate boxes. These boxes
can be enumerated by gradually scanning (and incorporating) the events from the
user’s bounding box to the top, left, bottom, and right in an iterative manner.
Figure 4(a) shows the basic scanning algorithm. The initial locations of the top, left,
bottom, and right scanning lines are the respective borders of the user’s bounding
box (white box). The enumeration is performed in a four-level loop, each of which

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

14 ·

y
1

y
2

(a) Basic Scan

x
1
 x
2

y
1

y
2
 e

x
3

(b) Fast Scan

Fig. 4. Implementation of the Greedy Algorithm

corresponds to one scanning line. Since the scanning lines pass through the borders
of all events, all candidate boxes are enumerated, which justifies the correctness of
the algorithm.

The basic scan algorithm examines all candidate boxes, whose number is (|R|/2)4

in the worst case. On the other hand, since we are only interested in finding Ω, the
one with the lowest c/s value, not all of them qualify. For example, the grey box
in Figure 4(a) cannot be Ω because its bottom border y2 does not touch any event
and moving this border up to y1, the bottom of the user’s bounding box, results
in a lower c/s value. In general, a possible candidate box must have each of its
borders touch at least one event. Note that two borders may touch the same event;
for example, the event in the top left corner of the grey box in Figure 4(a).

On the basis of this observation, we further propose a fast scan algorithm. This
idea is illustrated in Figure 4(b). The improvement over the basic scan is that
instead of resetting the corresponding scanning line to its initial location (the user’s
bounding box) in the beginning of each loop, the line is reset according to the
scanning line of its immediate outer loop. Figure 4(b) shows the scenario when the
algorithm is executed in the third loop, which corresponds to the bottom scanning
line, and this line is moving from y1 to y2. Then the starting position for the
right scanning line in the fourth loop should be x2 rather than x1 because any
box scanned in between x1 and x2 is larger than it was in the previous loop when
the bottom scanning line was at y1, but it covers the same events as before. x2 is
the right-hand border of e, the event touched by the bottom scanning line when it
moves to y2. In general, the starting position of a scanning line is determined by the
event that is touched by the scanning line in its immediate outer loop. The pseudo-
code of the fast scan algorithm is described in Algorithm 2. Note that to scan
sequentially, the algorithm should first sort the set of events R according to both
the x- and y-axes. In addition, during the scan the algorithm always maintains the
set of events covered by the current scanned area (i.e., the area formed by current
scanning lines), so that when a candidate box B is formed, its c/s value is available
immediately. It is noteworthy that each time a scanning line skips from the user
bounding box to the location determined by e, a range query is needed to find the
events covered by the skipped area, for example, the grey area in Figure 4(b), and
add them to the set of events covered so far. This can be done by performing a

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 15

binary search first on either the x- or y-axis-sorted events, and then filtering those
not inside this area.

Algorithm 2 Fast Scan Algorithm
Input: R: the set of events

o: the user
Output: Ω: the candidate box with the lowest c/s value
Procedure:

1: initialize scan lines Stop, Sleft, Sbottom, Sright to o.b box;
2: while Stop has not reached the end do

3: Sleft = min{e.right, o.b box.left}
4: while Sleft has not reached the end do

5: Sbottom = min{e.top, o.b box.bottom};
6: while Sbottom has not reached the end do

7: Sright = max{e.left, o.b box.right};
8: while Sright has not reached the end do

9: current scan lines form candidate box B;
10: if B.cs < Ω.cs then

11: Ω = B;
12: move Sright;
13: move Sbottom and get e;
14: move Sleft and get e;
15: move Stop and get e;
16: return Ω;

The time complexity of the greedy algorithm (Algorithm 1) depends on that of
the fast scan algorithm (Algorithm 2). A single run of Algorithm 2 or the basic scan
algorithm costs O(|R|4) in the worst case. Therefore, it takes O(|R|4|D|) time to
find Ω’s for all candidate sets in D. In addition, each time an event e is covered for
the k-th time and is thus removed from R, all Ω’s need to be checked for whether
they cover e, and those that do cover e have to be updated using Algorithm 2.
Since there are |R| event removals, and each removal incurs at most |D| runs of
Algorithm 2, the total worst-case time complexity is O(|R|5|D|). However, as will
be shown in the next section, by applying appropriate pruning, the Ω’s needed to
be updated during each event removal can be restricted to a small number and
can even be independent of |R| or |D|. Therefore, the practical time complexity is
bounded by O(|R|4(|D| + |R|)).

5. ADVANCED PRUNING TECHNIQUES

Recall that a single run, even of the fast scan algorithm (Algorithm 2), still costs
O(|R|4) in the worst case. To further reduce the total time cost, in this section we
propose two pruning techniques: plane-sweep and index-based pruning. The former
reduces the number of events (|R|) to be scanned during the fast scan algorithm;
that is, during computing of a single Ωi. The latter reduces the number of Ωi’s to
compute to obtain Ω∗.

5.1 Plane-Sweep Pruning

In a given candidate set, not all candidate boxes can possibly be Ω (i.e., the can-
didate box with the lowest c/s value) because some events are too far away from

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

16 ·

the user (i.e., too costly) to cover. We can therefore restrict the boundaries for the
candidate boxes. However, we must assume the cost of a candidate box S is linear
or hyper-linear to its area, or, more formally, there are constant values c > 0, t ≥ 1
such that cost(S) = c ∗ Area(S)t, for any box S. Linearity or hyper-linearity
guarantees the following lemma, which forms the ground of plane-sweep pruning.

Lemma 3. Suppose that a candidate box S is partitioned into several disjoint
subspaces called “parts”, p1, p2, · · · , pi, · · · . If the c/s value of any pi is larger than
µ, then the c/s value of S is larger than µ.

Proof. According to linearity or hyper-linearity, cost(S) ≥
∑

i cost(pi). And
since the c/s value of any pi is larger than µ, we have

µ ≤
cost(pi)

|pi − C|
=⇒ |pi − C| ≤

cost(pi)

µ
.

Summing up over all pis, we obtain

∑

i

|pi − C| = |S − C| ≤

∑

i cost(pi)

µ
≤

cost(S)

µ
.

Finally, we have cost(S)
|S−C| ≥ µ.

This lemma immediately enables further pruning in our existing fast scan algo-
rithm. In Figure 4(b), as mentioned above, when the scanning line moves from y1

to y2, we can restrict the start location of the right scanning line to x2. Now with
Lemma 3, we can further restrict the stop location of this line to x3, where x3 is
the solution to (x3 −x1)∗ (y2− y1) = µ and µ is the c/s value of the best candidate
box scanned so far. More formally:

Pruning Condition 1: In each loop of the fast scan algorithm, the stop
location of the scanning line is x1 + µ/(y2 − y1).

Proof. When the right scanning line is at x, the difference between the two
candidate boxes scanned in loop y1 and loop y2 is the shaded area whose width is
x−x1 and whose height is y2−y1. This area covers 1 event (event e only) and thus
the c/s value of this area is at least (x− x1) ∗ (y2 − y1). If this value is larger than
µ (i.e., x > x3), then according to Lemma 3, the c/s value of the whole candidate
box must exceed µ. This guarantees that no better candidate will be found beyond
x3.

In the rest of this subsection, we propose a more powerful plane-sweeping tech-
nique that prunes those events that are ineligible for fast scan. The idea is to first
compute Ω with the lowest c/s value among all candidate boxes for a sub-area
(with less computational cost) and then prune the search space which cannot con-
tain a candidate box with a c/s value lower than that of Ω. The pruning process
is executed in each dimension repeatedly. Figures 5(a) and 5(b) illustrate the first
two iterations. In each iteration, we compute Ω for a strip area (marked grey in
the figures) centered at the user with height L. L is a parameter that depends on
the current boundaries for candidate boxes and distribution of the events inside it.
The optimal choice of L will be analyzed in Section 6.1. Let µ denote the c/s value
of this Ω. Then we contract the x-axis boundaries (see Figure 5(a)) for candidate

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 17

L

u
s
e
r

e
v
e
n
t

c
u
r
r
e
n
t

b
o
u
n
d
a
r
y

n
e
w

b
o
u
n
d
a
r
y

s
t
r
i
p

(a) First Iteration

L

(b) Second Iteration

Fig. 5. Pruning through Iterations

boxes (the dotted line) by applying the plane-sweep algorithm (to be detailed in
the next paragraph) from the user toward the west and east, respectively. The
same procedure is repeated in the second iteration (see Figure 5(b)), except that
the strip is of width L and the contraction is on y-axis boundaries. The process is
repeated until either the strip spans the entire interior of the current boundaries or
none of the boundaries can be contracted anymore. If it terminates for the latter
reason, Ω should be re-computed by enumerating the candidate boxes within the
final boundaries.

In the plane-sweep algorithm, the sweeping line P limits the set of events seen so
far. Each time P scans a new event, the algorithm updates the boundary B, which
is parallel to P and guarantees that the lowest-c/s-value box of the events seen so
far will not cross it. The area between B and P is always external to this box,
so we call it the external area (see Figure 6). Initially, both B and P are located
at the borders of the user’s bounding box, so the external area is empty. Then
P sweeps event-by-event until it reaches the end of the current boundary. Since
all events are seen, the final external area can be pruned. To update B according
to P , Figure 6 shows an example where P sweeps towards the west. Each time
P sweeps to a new event, the algorithm checks if the new external area is still
valid; that is, if there might be a lower-c/s-value box than Ω whose the left side is
between B and P . To check this, let w denote the number of events in the external
area; if the lower-bound cost of the part of any box in the external area, which is
L/2 ∗ d (d is the distance between B and P), is larger than or equal to w ∗ µ, the
c/s value of this part must always be larger than µ. Then, according to Lemma 3,
the lowest-c/s-value box cannot overlap with the external area because removing
that part would lead to an even lower c/s value. Now that the external area is still
valid, B need not move. In contrast, if condition L/2 ∗ d ≥ w ∗µ does not hold, we
move B to P to reset the external area to empty. The following pruning heuristic
summarizes the plane-sweep technique.

Pruning Condition 2: No candidate box that overlaps with the external
area, specified by L/2 ∗ d ≥ w ∗ µ, needs to be scanned.

Algorithm 3 shows the pseudo-code for the plane-sweep algorithm towards the
west, where x1 and x2 denote the coordinates of the left and right borders of a box,
respectively.

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

18 ·

s
w
e
e
p

d
i
r
e
c
t
i
o
n

d

B
:

n
e
w

b
o
u
n
d
a
r
y

P
:

c
u
r
r
e
n
t

s
w
e
e
p
i
n
g

l
i
n
e

w
=
2

u
s
e
r

e
x
t
e
r
n
a
l

a
r
e
a

Fig. 6. Example of Plane Sweep Algorithm

Algorithm 3 Plane-Sweep Algorithm (westward)

Input: R: the set of events
o: the user
L: the L parameter
B0: current boundary for candidate boxes

Output: B: new boundary for candidate boxes
Procedure:

1: initialize B = P = o.b box.x1;
2: d = w = 0;
3: while P has not reached B0 do

4: move P to the next event;
5: d = B.x − L.x;
6: w = w + 1;
7: if L/2 ∗ d < w ∗ µ then

8: B = P ; // move new boundary to P
9: w = 0; // reset w

10: return B;

Algorithm 4 shows the complete procedure that finds Ω for a candidate set.
The algorithm integrates both fast scan and plane-sweep pruning. The while-loop
iteratively applies the plane-sweep algorithm to the x-axis and the y-axis. As for
the time complexity, the plane-sweep algorithm costs only O(|R|) in each iteration.
Therefore, the dominant complexity still lies in line 4 where the fast-scan algorithm
is invoked in a strip, but the cost is much lower as there are fewer events in the
strip. Therefore, Algorithm 4 is expected to be more efficient than Algorithm 2.

5.2 Index-Based Pruning

In this subsection, we study pruning in the presence of a spatial index. Without
loss of generality, we use an R-tree as the running example throughout this paper,
although the same algorithm can be applied to any hierarchy-based index, such as
quad-tree or k-d tree.

The key observation is that, for a given user o and a given node n in the R-tree,
if a candidate box covers any event contained in n, the minimum size (i.e., the
lowest cost) this box can achieve is when it just touches the bounding box of n.
Furthermore, the touching point must be the closest point on n’s box to this box.

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 19

Algorithm 4 Finding Ω in One Candidate Set
Input: R: the set of events

o: the user
Output: Ω: candidate box with the lowest c/s value
Procedure:

1: initialize boundaries B;
2: while make strip AND strip spans the entire interior of B do

3: Ω = argminc/s{fast scan(strip),Ω};
4: µ = c/s value of Ω;
5: B = plane sweep(o,L, µ);
6: remove events in R that are outside B;
7: if strip is the same as the last in any dimension then

8: Ω = argminc/s{fast scan(B), Ω};
9: return Ω;

10: return Ω;

On the other hand, the highest |S −C| value this box can achieve for node n is the
number of events in n, denoted by |n|. Therefore, a lower bound of the c/s value
for such a candidate box is obtained by imagining all events in n to concentrate at
the touching point, and we call it a super-event.

Definition 4. A super-event corresponds to a node n in the spatial index of
event dataset R. It is located at the point where the bounding box of node n is
closest to that of user o. If the super-event is covered, all events in node n are
covered.

Definition 5. A super-event dataset R′ of event dataset R consists of events
Ei that are either an event or a super-event in R, and furthermore, R′ is equivalent
to R in terms of the events they contain; that is, ∪iEi = R and Ei∩Ej = ∅, ∀i 6= j.

The aforementioned observation on a single super-event can be generalized to a
super-event dataset: the lowest c/s value of a candidate box that covers event(s)
in R is bounded by (i.e., always larger than) the lowest c/s value of a candidate
box that covers event(s) in R′ . The following lemma proves the correctness of this
generalization.

Lemma 4. Let Ω denote the candidate box with the lowest c/s value of event set
R = {e1, e2, ..., ek}, and let Ω′ denote the candidate box with the lowest c/s value
of super-event set R′ = {E1, E2, ..., El} of R. Then c/s(Ω) ≥ c/s(Ω′).

Proof. Prove by mathematical induction.
1. Assume that R′ contains only one element E∗; then there are two cases about

Ω: (i) Ω covers no event in E∗; or (ii) Ω covers some or all event(s) in E∗. For case
(i), Ω is also a candidate box for R′ with the same c/s value. Since Ω′ is the one
with the lowest c/s value, we have c/s(Ω) ≥ c/s(Ω′). For case (ii), Ω is a candidate
box for R′ with a c/s value less than c/s(Ω) because now it covers all events in E∗.
Since Ω′ is the one with the lowest c/s value, we have c/s(Ω) ≥ c/s(Ω′).

2. Assume the lemma holds when R′ contains k elements; then if now there is
one more element E∗ ∈ R′, there are two cases about Ω: (i) Ω covers no event
in E∗; or (ii) Ω covers event(s) in E∗. From (1), we know that in either case,
c/s(Ω) ≥ c/s(Ω′). Therefore, this lemma holds when R′ contains k + 1 elements.

From (1) and (2), we conclude that the lemma holds in any case.

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

20 ·

u
s
e
r

e
v
e
n
t

c
h
i
l
d

n
o
d
e
s

r
o
o
t

n
o
d
e

s
u
p
e
r

e
v
e
n
t

l
e
v
e
l

1

l
e
v
e
l

0
 A

a
 b

1
 2
 3
 4
 5
 6
 7
 8
 9
 1
0

n
o
d
e

i
n

R
'

n
o
d
e

n
o
t

i
n

R
'

1

2

3

4

5

6

7
 8

9

1
0

a

b

A

*

Fig. 7. Index-Based Pruning

Lemma 4 indicates that by computing Ω′, which is significantly faster than com-
puting Ω due to fewer events, we obtain a lower bound of the c/s value for Ω. For
each user o, we can obtain a lower bound Ω′

o for its Ωo, and intuitively Ω∗ is more
likely to come from the user with the lowest bound value. Furthermore, since the
greedy algorithm only needs Ω∗, once the lower bound of a user is higher than the
c/s value of the current best box, Ω∗ can no longer come from this user, who can
thus be safely pruned. Thus, the index-based pruning is summarized as follows.

Pruning Condition 3: Find Ω∗ for the user whose c/s value of Ω′
o is the

lowest. Prune those users whose c/s values of Ω′
o are higher than that of

the current best candidate box.
In essence, index-based pruning uses as many super-events (i.e., intermediate R-

tree nodes) as possible and uses as high-level tree nodes as possible. To achieve this,
during the execution of the greedy algorithm, we use a priority queue to store triples
of <o, R′

o, Ω
′
o>, where R′

o is the super-event set based on which Ω′
o is computed.

The key to sort in the priority queue is the c/s value of Ω′
o. Initially, all users start

from the root node r of the index; that is, R′
o = {r} for any o, and Ω′

o = o.b box.
Then the algorithm pops up the top <o, R′

o, Ω
′
o> triple and breaks all super-events

in R′
o contained by Ω′

o into “smaller” super-events by replacing each such node
with its child nodes. The Ω′

o of this new R′
o is then computed and a new triple

<o, R′
o, Ω

′
o> is inserted back in the queue with the updated key value.

When the Ω′
o of the popped-up triple contains no super-event in it, it is converged

to Ωo. Since its c/s value is the lowest in the priority queue, this Ω′
o can be returned

as Ω∗. Figure 7 illustrates the execution of this algorithm. Initially, R′
o = {A}.

Later, when this triple pops up from the priority queue, A is broken into super-
events a and b; that is, R′

o = {a, b}. Then next time this triple pops up, super-event
a is broken into events 1, 2, 3, 4, and 5, R′

o = {1, 2, 3, 4, 5, b}; and Ω′
o is computed

as the grey box. Next time this triple pops up again, Ω′
o contains no super-event,

so it converges to Ωo and is returned as Ω∗.
Furthermore, a spatial index usually preserves the spatial locality well, that is,

events that are close to each other are likely to reside in the same subtree. In
addition, the closer they are, the deeper the root of this subtree can be. As such, a
bottom-up manner of finding Ω′

o in the super-event set R′
o can do further pruning

by leveraging this same R-tree. The idea is to start finding Ω′
o in one of the lowest-

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 21

level subtrees (i.e., R-tree leaf nodes) and continues to move upwards the R-tree if
this Ω′

o cannot be guaranteed for the entire super-event set R′
o. Since events that

are closer to user o should be accessed earlier, we should pick the initial subtree as
the R-tree node that is the closest to o. The right-hand side of Figure 7 illustrates
this idea when R′

o = {1, 2, 3, 4, 5, b} (the black dots). Ω′
o is first computed with

(super-)events in node a (level 1) only, i.e., {1, 2, 3, 4, 5}. Then the plane-sweep
algorithm (Algorithm 3) is invoked to test if this Ω′

o is also for the entire R′
o. The

test is passed if the new boundary found by the plane-sweep algorithm is completely
contained by node a. Otherwise, a new Ω′

o will be computed with (super-)events in
the parent node of a, i.e., A, and the same test will be conducted. The correctness
is guaranteed because ultimately, the search for Ω′

o will reach the root node, where
the set of (super-)events becomes R′

o itself.

Algorithm 5 Complete Local Enlargement Algorithm
Input: r: root node of the R-tree index

k: coverage requirement
Output: S: the selected subsets
Procedure:

1: initialize S = C = ∅;
2: initialize priority queue H with <o, {r}, o.b box> for all users;
3: while C 6= U do

4: <o, R′

o,Ω′

o> = H.pop();
5: if Ω′

o does not overlap with any super-event in R′

o then

6: S = S ∪ Ω′

o;
7: for each element e in Ω′

o do

8: if e is covered k times then

9: C = C ∪ {e}; // remove e
10: update each Ω′ in H that covers e;
11: else

12: replace nodes contained by Ω′

o with their child nodes;
13: node n = the deepest subtree that is the closest to o;
14: while Ω′

o is not for R′

o do

15: Ω′

o = find Ω(o, R′

o ∩ n);
16: n = n.parent;
17: insert <o, R′

o, Ω′

o> into H;
18: return S;

Finally, the pseudo-code of our local enlargement algorithm that integrates all
pruning techniques is listed in Algorithm 5. Like Algorithm 1, the algorithm termi-
nates when C = U ; that is, when all events are fully covered. During the execution,
when an event that has been fully covered is added to C, the algorithm needs to re-
compute those Ω′

o’s in the queue that cover this event and update their key values.
Note that as well as line 15, Algorithm 4 is invoked implicitly in line 10.

6. COST MODELS OF PRUNING ALGORITHMS

In this section, we study the optimal value of L in the plane-sweep pruning (i.e.,
Algorithm 4), as well as its pruning power. Obviously, the objective is to maximize
α, the ratio of pruned candidate boxes to the total number of boxes in the candidate
set. To simplify the analysis, we assume that the number of events covered by a

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

22 ·

S

t
r
i
p

L

g

C
o
n
t
r
a
c
t
e
d

B
o
u
n
d
a
r
y

H

G

B
1
 B
2

Fig. 8. One Iteration of Algorithm 4

candidate box is proportional to its area, and so is the cost of the box. This
assumption is particularly reasonable when events are indexed by an R-tree, which
groups them in such a way that they are distributed evenly in a node. Let β denote
the ratio of events pruned by Algorithm 4 to the total number of events in R. The
following lemma first shows that maximizing α is equivalent to maximizing β.

Lemma 5. Maximizing α is equivalent to maximizing β.

Proof. The pruning of β portion of events reduces β portion of coordinates for
the candidate boxes. The remaining (1 − β) portion of coordinates only generates
(1 − β)2 portion of candidate boxes. As such, the reduction of β area leads to a
reduction of 2β − β2 candidate boxes, that is, α = 2β − β2. Since 2β − β2 is an
ever-increasing function in the range 0 ≤ β ≤ 1, maximizing α is equivalent to
maximizing β.

To derive β, we then analyze the area pruned by the plane-sweep algorithm.
Figure 8 shows one iteration of Algorithm 4 where the current boundary of events
is a G-by-H rectangle, and the L strip is horizontal. B1 and B2 are the resulting
boundaries after this iteration. Therefore, the pruned area in this iteration is the
four grey rectangles at the corners. Let Ai denote this area in the i-th iteration.
Obviously, the total pruned area is the sum of Ai in all iterations, and maximizing
β is equivalent to maximizing this sum. Furthermore, since the choice of L in each
iteration solely depends on the settings in that iteration, we simplify the problem
by finding the L that maximizes A in each iteration.

6.1 Derivation of L

According to Figure 8, A = (H−L)∗ (G−g), where only g depends on L. Figure 9
shows the execution of the plane-sweep algorithm where events are projected to
the x-axis. Since events are assumed to be uniformly distributed, their projections
should also be evenly distributed on the axis with interval t = G

N (N is the car-
dinality of the event dataset). However, no area can be pruned under a perfectly
uniform distribution, therefore, we model each projected event to have a probabil-

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 23

B
'
:

n
e
w

b
o
u
n
d
a
r
y

w
i
t
h

p
r
o
b

p

t

e
v
e
n
t

u
s
e
r

G
-
g

B
:

c
u
r
r
e
n
t

b
o
u
n
d
a
r
y

g

Fig. 9. Compute g

ity p of fluctuating from its position under uniform distribution. Without loss of
generality, we assume that any fluctuation is rightward and does not change the
order of projected events on the axis.

Then according to Algorithm 3, the plane-sweep pruning contracts the current
boundary B to the farthest fluctuating event from the user and forms the new
boundary B′. Figure 9 illustrates this contraction on the right-hand side of the
user. The reason why all events on the right-hand side of B′ can be pruned is that
they do not fluctuate and therefore extending Ω to cover them only makes the low
c/s value of Ω diluted by the high c/s value in this part. Then the probability of
B′ being at the event immediately to the left of B, denoted by P (G − g = t), is p;
likewise, the probability of B′ being at the next left event, denoted by P (G−g = 2t),
is p(1 − p); and so on. Therefore, the expected G − g is

G − g =

N
∑

i=1

p(1 − p)(i−1)it =
G

pN
[1 − (1 − p)N (1 + pN)] ≈

G

pN
(1)

The above approximation is allowed because pN > 1 (fluctuating events must exist)
and (1 − p)N ≈ 1/(epN) (p ≪ 1).

On the other hand, according to Algorithm 3, Equation (1) holds only if the
following inequality holds.

L/2 ∗ d > w ∗ µ, (2)

where d = G− g, w = N(G−g)
G , and µ is the c/s value of current Ω. To rewrite µ in

terms of L and thus solve Inequality (2) about L, we first obtain the first derivative
of µ with regard to L, µ′(L).

Without loss of generality, we set the width of the current Ω to G. Suppose
that now a ∆L is added to this G-by-L strip; then two conditions must both hold
in order for Ω to be extended to the enlarged strip and thus to have a lower µ.
First, Ω must be adjacent to ∆L; that is, the height of Ω is L. Second, there
must be an event in the enlarged G-by-∆L area so that including it reduces µ.
The probability of satisfying the first condition is p(1 − p)LN/H , using the same
rationale as in Figure 9 where each event has a probability p of fluctuating. The
probability of satisfying the second condition is N∆L

H according to the assumption

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

24 ·

of even distribution. Therefore,

µ′(L) =
dµ(L)

dL
=

µ(L + ∆L) − µ(L)

∆L
=

1

∆L

G(L + ∆L) − GL

N × L
H

∗ p(1 − p)LN/H

=
µ

L
p(1 − p)LN/H ≈

pµ

L
(1 − pLN/H) =

pµ

L
− Gp2, (3)

where µ = GH
N is the average c/s value in the strip. The above approximation is

allowed because p is small and LN/H ≫ 1. With Equation (3) and µ(H) = µ, we
obtain

µ(L) = pµ lnL − Gp2L + C, (4)

where C = (Np2−p lnH +1)µ. Using Equations (3) and (4), we can solve Inequal-
ity (2) as L > L0, where L0 is the solution to the following equation:

(
µ

H
+ 2Gp2)L = 2(pµ lnL + C) (5)

Finally, we conclude with the following theorem:

Theorem 6. The optimal L for the plane-sweep algorithm is the solution to
equation (µ

H + 2Gp2)L = 2(pµ lnL + C).

6.2 Pruning Power

We continue to derive Ai and β, the pruning ratio of Algorithm 3. In the sequel, we
use subscript i to denote the value of a parameter in the i-th iteration, for example,
Ni, Li; in particular, N0, G0 denote the initial values prior to the first iteration.
With Equations (1) and µ = GH

N , we have

Ai = (Hi − Li) ∗ (Gi − gi) =
Gi

pNi
(Hi − Li) =

µ

p
−

GiLi

pNi
(6)

Let Bi denote the portion (in terms of area) of strip L to the initial unpruned area;
that is, Bi = GiLi

G0H0
= GiLi

µN0
. Then

Ai =
µ

p
−

µBi

p
=

µ

p
(1 −

N0

Ni
Bi), (7)

Then we have

Ni − Ni+1 = Ni ∗ (Gi − gi)/Gi = Ni/pNi = 1/p,

which means the number of events pruned in each iteration is a constant; that is,
Ni = N0 − i/p. Summing up Equation (7) for all i with Ni = N0 − i/p, the total
pruned area A is

A =

I
∑

i

Ai =
µ

p
(I − N0

I
∑

i=0

Bi

N0 − i/p
),

where I denotes the number of iterations. And β is simply A divided by µN0

β =
A

µN0
=

I

pN0
−

I
∑

i=0

Bi

pN0 − i
(8)

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 25

If we further assume Li is proportional to Hi, that is, Li = θHi, we can obtain a
closed form β from Equation (8), which is β = I

pN0
(1 − θ). Finally, we have the

following theorem on the pruning power of the plane-sweep algorithm (Algorithm 3).

Theorem 7. If strip Li is proportional to height Hi, the ratio of pruned events,
β, is proportional to I, 1/p, and 1/N0, respectively.

This theorem also backs our choice of L in Theorem 6 from a different aspect,
because it shows that simply choosing an L proportional to H leads to an ever-
decreasing pruning power β as the number of events (N0) or fluctuated events (pN0)
increases. This trend is undesirable in practice when such a number is usually large.

6.3 Derivation of p

In previous cost models, we heavily use p, the probability of a projected event
fluctuating away from its aligned location, that is, where it should be under a
perfectly uniform distribution. However, in practice, every projected event deviates
(even just a little) from its aligned locations, making p = 1. A possible remedy
would be setting a threshold value for the deviation — only if the deviation is more
significant than a threshold, is this event counted as fluctuating. However, this
solution cannot handle scenarios where events are partially uniform in some local
area but not globally, because aligned locations are calculated globally. In this
subsection, we propose a more robust method to obtain p.

The idea is to calculate the deviation of a projected event from its local neighbors
only, instead of the fixed aligned location. An event does not fluctuate if it is evenly
located among its neighbors. To define evenness, we adopt the concept of a spatial
index “quad-tree.” In a 2D quad-tree, the space is recursively partitioned into
four equal sub-spaces until there is no more than one event in the (sub-)space.
Events in a denser area are indexed at a deeper level in the quad-tree, and vice
versa. Furthermore, neighboring events can be accessed together, with an inorder
traversal of the tree. Based on these properties of the quad-tree, we define an event
as located evenly among its neighbors (i.e., in an area of uniform density) if it is
indexed at the same level in the tree as its immediate next event during the inorder
traversal.

The detailed algorithm to count fluctuating events is as follows. First, the events
are projected onto the x-axis (or the y-axis if the strip is vertical). Then a 1D
quad-tree is constructed to index them. Next the algorithm performs an inorder
traversal of the quad-tree. Each tree node that indexes an event is compared with
the first immediately following node that indexes an event: if they are of the same
level, the former event is considered to be not fluctuating, and vice versa. As for
the time complexity, the construction of a quad-tree costs only O(n) time (n is
the number of events); and the inorder traversal also costs O(n) time because the
quad-tree tree has at most O(n) nodes. As such, this algorithm to obtain p only
costs O(n) time.

7. SECURITY ANALYSIS

In previous sections, we assumed that the adversary knows no more than the pub-
lished location datasets of users and events. As such, the k-anonymity location
publishing guarantees for each event, the probability of each covering user being

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

26 ·

the genuine user equals to 1/k. However, in reality the adversary may have other
information sources about users and events, and even about the underlying gener-
alization algorithms. The followings are several examples.

Example 1. User o cannot have made a purchase (event) in an ice-cream shop
alone because he has diabetes.

Example 2. User o must have made at least one purchase (event) as he drew
money from an ATM.

Example 3. User o, whose centroid is the closest to a purchase p (event), is the
most likely to make this purchase, because some compromised user location dataset
by the same generalization algorithm shows the genuine user tends to be closer to
p than other covering users.

Since such background knowledge is unknown to data publishers, it severely com-
promises the k-anonymity privacy. A formal and theoretical language that expresses
and quantifies background knowledge about relational attributes was proposed by
Martin et al. [Martin et al. 2007]. In addition, a more intuitive multidimensional
formulation of similar background knowledge was proposed by Chen et al. [Chen
et al. 2007]. In this section, however, we focus on the forms of background knowl-
edge specific to our k-anonymity problem and study its privacy threat.

We assume the adversary possesses the published user location dataset D′ (which
already satisfies k-anonymity) and the reference event dataset R. The adversary’s
knowledge about the genuine users of events is modeled by an undirected and
weighted graph G, which is called the knowledge graph. The vertices in G are the
W users in D and N events in R. There is an edge between two vertices in the
graph if and only if: (1) one is a user and the other is an event, and (2) the user
location covers the event. As such, the knowledge graph is a bipartite graph where
users and events form two disjoint vertex sets. To simplify subsequent analysis, we
assume every event is covered by exactly k users in D′. The weight of this edge
denotes the adversary’s knowledge on the probability of this user being the genuine
user of this event. If the adversary has no background knowledge, each edge has
the same default weight, i.e., 1/k. We differentiate three categories of background
knowledge, namely, deterministic, constraint and probabilistic knowledge. The
deterministic knowledge confirms or dismisses that a user is a genuine user of an
event, or equivalently, sets the weights of corresponding edges to 0 or 1. On the other
hand, the probabilistic knowledge sets the weights to other intermediate values.
And constraint knowledge sets constraints for those events of which a specific user
is the genuine user. Figure 10 shows an example of G where D′ is a 3-anonymity
dataset, W = 5 and N = 3. The adversary has deterministic knowledge that “o3

did e3 but not e2”, so the corresponding edge weights differ from the default edge
weight 1/3.

A knowledge graph possesses several unique properties.

Property 8. The degree of every vertex of event is k.

Property 9. The total number of edges is kN .

Property 10. The degree of every vertex of the user ranges from 0 to N .

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 27

1
/
3

1
/
3

1
/
3

1
/
2

1
/
2

0

0

0

1

e
1

e
2

e
3

o
1

o
2

o
3

o
4

o
6

u
s
e
r

e
v
e
n
t

o
5

Fig. 10. An Example of a Knowledge Graph

Property 11. The sum of weights of all edges that are adjacent to an event is
1.

Property 12. The girth, i.e., the number of edges of the shortest cycle, is at
least 4.

To quantify the adversary’s gain of confidence through the background knowl-
edge, we take a similar approach as in [Machanavajjhala et al. 2006] and adopt
the entropy measure. More specifically, the entropy of an event is the uncertainty
of its genuine user. Without background knowledge, each of the k covering users
of an event has an equal probability of being the genuine user, so the entropy of
this event is k ∗ 1

k log k = log k. The entropy of the knowledge graph is the sum
of entropy of all events. In what follows, we study how the background knowledge
affects the entropy of the knowledge graph.

7.1 Deterministic Knowledge

Without loss of generality, we categorize a piece of deterministic knowledge into two
types, event-based knowledge and user-based knowledge, depending on whether it
originates from an event or a user. For example, “event e must be done by user
o” is event-based, and “user o must have done events e1 and e2” is user-based.
A piece of event-based (or user-based) knowledge can further be categorized into
confirmative, which confirms genuine edge(s), for example, “user o must have done
event e”, or dismissive, which dismisses false edge(s), e.g., “user o cannot have done
event e.”

7.1.1 Event-Based Knowledge. If the adversary has a piece of confirmative event-
based knowledge, the loss of entropy is the entire entropy of this event, which is
log k. If the adversary has a piece of dismissive knowledge of m (1 ≤ m ≤ k − 1)
edges, the loss of entropy is log k − log (k − m). In both cases, the loss is inde-
pendent of the k-anonymity algorithm used for D′. Furthermore, the maximum
entropy loss for a single event is log k, when the genuine user is confirmed.

7.1.2 User-Based Knowledge. If the adversary has a piece of confirmative user-
based knowledge of m edges, the loss of entropy is the entropy of the m events, which
is m log k. If the adversary has a piece of dismissive knowledge of m edges, the loss of
entropy is the sum of the entropy loss of the m events, which is m(log k−log (k − 1)).

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

28 ·

Furthermore, the maximum entropy loss for a single user occurs when all edges
adjacent to this user are either confirmed or dismissed. The loss of entropy is the
sum of the entropy loss of each adjacent event, i.e., c∗ log k+d∗(log k− log (k − 1)),
where c and d are the numbers of edges confirmed and dismissed, respectively. By
summing up this value over all users, we derive the maximum entropy loss for an
average user as

1
W

∑W
i=1 [ci ∗ log k + di ∗ (log k − log (k − 1))]

= 1
W [N ∗ log k + (kN − N) ∗ (log k − log(k − 1))].

From the above, the entropy loss increases as the number of users decreases
or the number of events increases. In addition, this value is independent of the
k-anonymity algorithm.

7.2 Constraint Knowledge

Besides confirming or dismissing a specific edge adjacent to a user, the adversary
may know some constraints on the events that this user has carried out. Specifically,
the adversary may know the maximum (M) or minimum (m) number of events.
For example, credit card records may show that a user has used his credit card,
so the minimum number of purchase events is m = 1. In this subsection, we
study this special form of constraint knowledge, which is called user-based max-
min knowledge.

With max-min knowledge, different events are correlated and so are different
users; the privacy compromise of one event (user) may has chain effects that prop-
agate to the rest part of the graph. For example, in Figure 10, if the m values
of users o1 and o2 are both 1, then o2 must carry out e2 as this is the only event
adjacent to o2. This deduction in turn infers that o1 carries e1.

To analyze the entropy loss of user-based max-min knowledge, we make the
following simplifications:

— The m and M values of each user are the same, and they are much smaller
than k.

— Each edge has p+ probability of being confirmed and p− probability of being
dismissed by the adversary.

— Both p+ and p− values are small; that is, the adversary has fair but not
significant min-max knowledge.

Our objective is to prevent any event from being compromised, i.e., from losing
all its entropy. To compromise an event, the adversary must know either that
there are k − 1 adjacent users each of whom already confirms M events, or there
is one user who already dismisses s − m adjacent edges, where s is the degree
of this user. To reduce the probability of the former case, we must reduce the
probability of an arbitrary user i confirming M events out of si − 1, which is
(

si − 1
M

)

pM
+ (1 − p+)(si−1−M) ≈ (sip+)M

M ! , assuming si ≫ m > 1. Taking the

average over all users, this probability is

1

W

∑

i

(sip+)M

M !
=

pM
+

WM !

∑

i

si
M .

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 29

Since
∑

i si = kN ,
∑

i si
M achieves the lowest value when si = kN/W, ∀i. That

is, the degrees of users should be as even as possible; or in other words, in the k-
anonymity location dataset D′, each user should cover the same number of events.

To reduce the probability of the latter case, we must reduce the probability
of an arbitrary user i dismissing exactly si − m edges out of si − 1, which is
(

si − 1
si − m

)

p
(si−m)
− (1 − p−)(m−1) ≈ (1 + m2

si
)psi−m

− , assuming si ≫ m > 1. Tak-

ing the average over all users, this probability is

1

W

∑

i

(1 +
m2

si
)p

(si−m)
− =

∑

i

p
(si−m)
− + m2

∑

i

p
(si−m)
−

si
.

Both terms achieve the minimum value when si = kN/W, ∀i. Therefore, the con-
ditions to minimize the probabilities in both cases are consistent, which is formally
shown as the following theorem.

Theorem 13. The probability of a privacy compromise from user-based max-
min knowledge is minimized when all users cover the same number of events.

Our previous k-anonymity algorithm (Algorithm 5) only minimizes the general-
ization cost and cannot guarantee even distribution of event coverage. As such,
we propose a post-processing algorithm which aims at adjusting the event coverage
difference among all users. Algorithm 6 shows the pseudo-code of this algorithm. It
maintains two priority queues, QH and QL, of users with higher and lower coverage
than kN/W (the average coverage), respectively. In each iteration, the algorithm
selects the top user o with the highest coverage from QH , and selects another user o′

from QL to cover the farthest event e that is currently covered by o. Consequently,
the bounding box of o shrinks to “uncover” e while that of o′ expands to cover e.
To reduce the generalization cost, this algorithm selects o′ from QL that incurs the
lowest increment of cost. It is noteworthy that such o′ may not exist if all users in
QL already cover e, in which case o is skipped from adjustment. Since the sizes of
both QH and QL are non-increasing in each iteration, the algorithm is guaranteed
to terminate when QH becomes empty.

7.3 Probabilistic Knowledge

Besides the specific knowledge regarding individual users or events, an adversary
may learn some distinguishing feature of the genuine user among all covering users
of an event. For example, the genuine user tends to locate closer to the event than
others. Such knowledge is called “probabilistic knowledge” because the adversary
can leverage this to speculate the genuine user with a probability higher than the
default 1/k. In practice, probabilistic knowledge may be deduced from information
about the input dataset (e.g., user locations are points or in fixed precision), the
property of a specific generalization algorithm (which is known to the public), or
from those compromised events (whose genuine users are known).

In this paper, we model the adversary’s probabilistic knowledge by a feature
metric M of user. Typical examples of M include: (1) the distance between the
centroids of the user and a covered event, (2) the size of the generalized user lo-
cation, and (3) the number of covered events. The M distribution (frequency) of

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

30 ·

Algorithm 6 Coverage Adjustment

Input: D′: the k-anonymity user location dataset by Algorithm 5
R: the event dataset

Output: D′: the updated dataset
Procedure:

1: compute event coverage of each user in D′;
2: build priority queue QH of users with coverage > kN/W ;
3: build priority queue QL of users with coverage < kN/W ;
4: while QH is not empty do

5: o = QH .pop();
6: find e as the farthest event covered by o;
7: find o′ ∈ QL that incurs the lowest cost increment to cover it;

8: if such o′ exists then

9: expand o′ to cover e;
10: shrink o to un-cover e;
11: if the coverage of o > kN/W then

12: QH .push(o);
13: if the coverage of o′ < kN/W then

14: QL.push(o′);
15: return D′;

all users, denoted by freq, is already available to the adversary because the gen-
eralized user location dataset D′ is published. The M distribution (frequency) of
genuine users (denoted by freq′), on the other hand, is the adversary’s probabilistic
knowledge.

With probabilistic knowledge, the adversary can compute the probability of a
user o being the genuine user of an event e by the Bayesian theorem. Recall that
Bayesian theorem computes the posterior probability P (H |E) of a hypothesis H
given evidence E as follows.

P (H |E) =
P (E|H)P (H)

P (E)
,

where P (E|H) is the conditional probability of seeing E if H is true, and P (H)
and P (E) are the a priori probability of H and E, respectively. Consider evidence
E as an observation of a covering user o having metric value M(o), and consider
hypothesis H as o is the genuine user of event e. Then the posterior probability
P (H |M(o)) is

P (H |M(o)) =
freq′(M(o))P (H)

freq(M(o))
=

freq′(M(o))

k · freq(M(o))
(9)

For event e, the adversary can compute the posterior probability for each covering
user o by Equation (9). Since this probability represents the adversary’s knowledge
of o being the genuine user of e, it is assigned as the weight of the corresponding
edge in the knowledge graph. Note that a scaling factor will be appended so that
the sum of weights for each event is normalized to 1.

From Equation (9), the adversary can speculate the genuine user as the one
with the highest freq′(M(o)) to freq(M(o)) ratio. Furthermore, the overall loss
of entropy due to this probabilistic knowledge depends only on this ratio. Specif-
ically, the more widely this ratio distributes, i.e., the more freq′(M(o)) deviates

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 31

from freq(M(o)), the more the entropy loss is. This observation suggests that a
secure and robust generalization algorithm should exhibit no feature metric whose
distribution among all users differs significantly from that among the genuine users.

Since an exhaustive enumeration of all feature metrics is impossible, in what
follows we focus on the three typical metrics mentioned above, namely, the distance
between the centroids of the user and a covered event, the size of the generalized
user location, and the number of covered events. As a counterexample, a naive
k-nearest neighbor (KNN) generalization algorithm which always covers each event
with the k-closest user locations has biased metric distributions of its genuine users.
Specifically, the genuine user is closer to the event (because farther-away users are
more likely to be KNNs that are chosen by the algorithm); the genuine user also
covers fewer events (because it is less likely to be close to other events) and thus
has a smaller size.

However, we argue that our local enlargement algorithm does not exhibit any
biased distributions of these metrics: while KNN considers each event indepen-
dently, our algorithm considers all events as a whole. Specifically, the genuine user
of an event is still equally likely to be enlarged to cover other events, as long as
this enlargement leads to the minimum c/s value. While this directly explains the
metrics of user location size and number of covered events, the metric of centroid
distance follows the same rationale. When the genuine user of an event is enlarged
to cover other events, its centroid moves away from this event. By contrast, some
other covering user of this event may have its centroid move towards this event by
being enlarged to cover more events in the same direction. As such, the genuine
user has no bias in terms of its centroid distance to the event. These arguments
are verified in Section 8.2, where the distributions of the three metrics among both
the genuine users and all covering users are shown.

Besides the generalization algorithm, information about the input dataset is also a
cause of biased distributions of M metrics. As an extreme example, imagine there is
only one event and input user locations are known to be points. Then the adversary
can exclude any user whose generalized location is not a point to be the genuine
user. Such biased distribution might be alleviated by a generalization algorithm
that appends a postprocessing step to disguise any unenlarged user location by
a random enlargement. Fortunately, in practice it is hard for the adversary to
know all input user locations, which have different sizes and depend on factors
such as the precision of user positioning device and user privacy preference. The
unknownness of the input dataset, in turn, alleviates the biased distribution caused
by the generalization algorithm. For example, even if the algorithm alone leads to a
biased distribution on the generalized location size, by combining the fact that the
input location size is unknown to the adversary, he/she will have less confidence on
attributing the biased distribution to the algorithm alone.

8. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed local enlargement
(denoted by Local) and coverage adjustment algorithms (denoted by Adjust) under
various datasets and parameter settings. To conduct a comparative study, we design
several non-naive competitive algorithms for Local. The first is based on Incognito,

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

32 ·

proposed by LeFevre et al., the state-of-the-art k-anonymity framework on a single
data table [LeFevre et al. 2005; LeFevre et al. 2006]. We adopt their latest recursive
greedy partitioning algorithm Mondrian [LeFevre et al. 2006] that splits a partition
at the median value in one preferred dimension until the partition is empty or has
less than k users in it. Note that this algorithm is multi-dimension recoding, so it
achieves a fairly low generalization cost in RDBMS. The second competitor is the
PRIV E framework, which is the latest k-anonymity partition algorithm for spatial
databases [Ghinita et al. 2007b]. The PRIV E framework uses a Hilbert curve to
sort the users and then groups them into partitions, each of which contains k users.
Note that both Incognito and PRIV E are designed for only a single dataset,
i.e., the user location dataset. To be fair, we adapt them to take advantage of
the event dataset as well — only the partitions that contain event(s) need to be
anonymized. The third and fourth competitors handle both datasets; in particular,
they follow the same local enlargement paradigm as Local. They differ from Local
in what user locations to enlarge to cover each event with at least k users. Both the
k-nearest neighbor (KNN) and incremental KNN (IKNN) algorithms enlarge the
k-closest user locations to cover each event. “Incremental” means the enlargement
is effective immediately before the next event is considered and its kNN is searched.
As such, IKNN is sensitive to the processing order of events, and in order to be
neutral, we adopt the natural order, namely, their sequence numbers.

The main performance metrics are the total generalization cost of the published
dataset and the clock time for running the algorithms. Two cost functions are
used in the experiments, namely, LNR and QDR, which are respectively linear
and quadratic to the area of a generalized location. More specifically, LNR equals
to the area and QDR equals to the square of the area. QDR is used to emulate
and approximate the scenarios where enlarging the location significantly reduces
the utility of the published dataset. There are quite many applications where this
assumption holds, particularly in data mining.

Since no real user location datasets are publicly available, we constructed syn-
thetic datasets for both user locations and events using the state-of-the-art Network-
based Generator of Moving Objects [Brinkhoff 2002]. This simulator is known to
imitate the movement of automobiles and has been widely used in studies on real
user movement. The road network fed into the generator was the Kowloon City
area of Hong Kong, which is approximately a 2km-by-2km square with 115 main
road segments. We randomly identified a maximum of 10,000 user locations, each
of which was a 10m-by-10m square. We also obtained a maximum of 5,000 events
from the same road network. These locations were the shops, telephone booths,
and bus stops, and so on, where users may make purchases or other financial trans-
actions. Like the user locations, each event also occurred within a 10m-by-10m
square, and was initially covered by at least one user location. Without loss of
generality, we randomly assigned one of these covering users as the genuine user.
To achieve a fair comparison, all algorithms could access the R-tree index on both
datasets. The testbed was implemented using Java (JDK 1.5) and all experiments
were run on a desktop computer running Windows XP SP2 with an Intel Pentium
4 3.0GHz CPU and 512 MB memory. Table I summarizes the parameter settings
for the datasets and experiments.

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 33

Parameter Symbol Default Value Maximum Value

of users W 1,000 10,000

of events N 1,000 5,000

anonymity requirement k 5 20

cost function cost LNR

Table I. Simulation Parameters Settings

0

0
.
5

1

1
.
5

2

2
.
5

3

I
n
c
o
g
 P
R
I
V
E
 K
N
N
 I
K
N
N
 L
o
c
a
l

G

e

n
.

C

o

s
t

(a) Generalization Cost

0
.
0
1

0
.
1

1

1
0

1
0
0

I
n
c
o
g
 P
R
I
V
E
 K
N
N
 I
K
N
N
 L
o
c
a
l

C

l
o

c
k

T

i
m

e

(

s
e

c
)

(b) Clock Time

Fig. 11. Overall Comparison

8.1 Overall Evaluation

Figures 11(a) and 11(b) show the generalization cost and clock time of all algo-
rithms. Regarding the cost, we observe that: (1) both Incognito and PRIV E have
far higher costs than the others, amounting to over 6 (only shown partially in the
figure) and 2.5, respectively, which confirms that k-anonymity on a single database
is inefficient in solving this problem, even for multi-dimension recoding algorithms;
(2) the Local algorithm leads on the cost and outperforms the first runner-up —
KNN — by 30%; (3) KNN outperforms IKNN, which means that making the KNN
algorithm incremental may not further improve its performance as we expected,
probably because IKNN heavily relies on the processing order of events. As for
the clock time, although Local is about two orders of magnitude higher than the
others, the running time is still within 30 seconds, which is reasonable for offline
and even realtime data publishing.

8.2 Security Test

In this experiment, we test whether these generalizing algorithms can sustain se-
curity threats that arise from the probabilistic background knowledge (see Sec-
tion 7.3). Specifically, we compare the distributions of three feature metrics for
all covering users and genuine users only, and show how their difference helps the
adversary to speculate the genuine user from all covering users of an event.

Figure 12(a) plots the distribution of the first metric for all covering users under
Local algorithm. The metric is the distance between the centroids of a user and a
covered event. The x-axis is the distance and the y-axis is the occurrence frequency.
As a comparison, the lower half of the figure plots the distribution of the same metric
for genuine users only. The symmetry of these two plots with respect to the x-axis
confirms that Local does not have a biased distribution of centroid distance for the

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

34 ·

genuine users. On the other hand, Figure 12(b) plots the distributions under the
KNN algorithm, and we observe a distinct dissymmetry between the upper and
lower distributions. In particular, the centroid distance of the genuine user tends
to be shorter than the other covering users. This coincides with our analysis in
Section 7.3. The distributions of the second metric, the areas of generalized user
locations, are plotted in Figures 13(a) (under Local algorithm) and 13(b) (under
KNN algorithm). Local has a slightly biased distribution for the genuine users
only when the areas are extremely small (≤ 0.2× 10−4). On the other hand, KNN
exhibits a more heavily biased distribution across a wider range (0-0.5×10−4), which
shows the genuine user tends to have a smaller location size. This also coincides
with our analysis in Section 7.3. Figures 14(a) and 14(b) plot the distributions
of the third metric, i.e., the number of covered events, under the Local and KNN
algorithms, respectively. Both algorithms show certain bias in the distributions
of genuine users. However, under KNN, the genuine user has consistently fewer
covered events than other covering users, because at x = 1, 2 and 3, the frequencies
of the genuine users are consistently higher than the frequencies of all covering
users. On the other hand, Local algorithm does not exhibit this property; in fact,
only at x = 2 and 3 are the frequencies of the genuine users higher.

The above interpretation is reinforced by the success rates of the three corre-
sponding attacks designed to exploit the biased metric distributions. To study the
worst-case privacy loss, we assume the adversary has the complete knowledge of
the three metric distributions for genuine users. For each event, the adversary
computes the posterior probability of each covering user being the genuine user by
Equation 9, and speculates the genuine user as the one with the highest probability.
Figure 15 shows the success rates of attacks on the centroid distance metric (Attack
1), area metric (Attack 2) and number of covered events metric (Attack 3) under
KNN, IKNN, and Local algorithms. Local consistently achieves the lowest rates,
which range from 20% to 25%. Since k = 5, such rates are close to the success
rate of a random guess, which is 20%. This shows Local algorithm is almost im-
mune to these attacks and has little probabilistic knowledge to be exploited. In
addition, Attack 2 has the highest rate because Local exhibits a bit more bias in
the area metric than in the centroid distance, and the bias in the covered events is
not consistently leftwards. KNN and IKNN suffer from higher success rates, espe-
cially under Attack 1. This can be explained by the wild bias in the distribution of
centroid distance metric for the genuine users under KNN algorithm, as shown in
Figure 12(b).

8.3 Effect of Cost Function

In this experiment, we change the cost function from LNR to QDR and the results
are shown in Figures 16(a) and 16(b). The Local algorithm for QDR runs about
four times faster than for LNR, while the other algorithms make no differences. This
is because Local has strong pruning capability; therefore, while the cost function
is QDR, the c/s values of larger candidate boxes increase significantly and thus
are more vulnerable to pruning. In addition to speed boost, the cost gain of Local
over the first runner-up algorithm is also more significant for QDR (by 70%) than
for LNR (by 30%). This is due to the fact that only the Local algorithm aims
at minimizing the generalization cost while the others follow heuristics that are

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 35

0

0
.
05

0
.
1

Distance

A

l
l

C

o

v
e

r
i
n

g

U

s
e

r
s

0
.
05

0
.
1
G

e

n
u

i
n

e

U

s
e

r

O

n

l
y

0
.
02
 0
.
04
 0
.
06
 0
.
08
 0
.
1

(a) Local

0

0
.
05

0
.
1

Distance

A

l
l

C

o

v
e

r
i
n

g

U

s
e

r
s

0
.
05

0
.
1

0
.
15

G

e

n
u

i
n

e

U

s
e

r

O

n

l
y

0
.
01
 0
.
02
 0
.
03
 0
.
04
 0
.
05

(b) KNN

Fig. 12. Distribution of Centroid Distances between Covering Users and Events

0

0
.
1

0
.
2

1
 2
 3
 4
 5

Area
(
10
-
4
)

A

l
l

C

o

v
e

r
i

n
g

U

s
e

r
s

0
.
1

0
.
2
G

e

n
u

i
n

e

U

s
e

r

O

n

l
y

(a) Local

0

0
.
1

0
.
2

1
 2
 3
 4
 5

Area
(
10
-
4
)

A

l
l

C

o

v
e

r
i
n

g

U

s
e

r
s

0
.
1

0
.
2
G

e

n
u

i
n

e

U

s
e

r

O

n

l
y

(b) KNN

Fig. 13. Distribution of Areas of Covering Users

oblivious of whether the cost function is LNR or QDR. Both metrics consistently
show that the Local algorithm performs even better with cost functions that are
hyperlinear to the area. Such hyperlinear cost functions are common and useful
in practice; for example, to suppress super-large user locations or totally eliminate
oversized ones.

8.4 Effect of k

We vary the privacy requirement k from 1 to 20 and the results are shown in Fig-
ures 17(a) and 17(b). As k increases, the clock time for Incognito and PRIV E de-
creases, because they are single-dataset-based k-anonymity algorithms, and higher
k means fewer partitions. However, this is at the cost of increasing the generaliza-
tion cost, and even worse, the cost gap with other algorithms also increases. On

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

36 ·

0

0
.
1

0
.
2

0
.
3

0
.
4

1
 2
 3
 4
 5
 6

of Covered Events

A

l
l

C

o

v
e

r
i

n
g

U

s
e

r
s

0
.
1

0
.
2

0
.
3

0
.
4

0
.
5
G

e

n
u

i
n

e

U

s
e

r

O

n

l
y

(a) Local

0

0
.
1

0
.
2

0
.
3

0
.
4

1
 2
 3
 4
 5
 6
 7
 8

of Covered Events

A

l
l

C

o

v
e

r
i

n
g

U

s
e

r
s

0
.
1

0
.
2

0
.
3

0
.
4
G

e

n

u
i

n

e

U

s
e

r

O

n

l
y

(b) KNN

Fig. 14. Distribution of Covered Event Numbers of Covering Users

0

10

20

30

40

50

60

1st Attack
 2nd Attack
 3rd Attack

S
uc

ce
ss

 R
at

e

KNN
 IKNN
 Local

Fig. 15. Success Rates of Privacy Attacks

0
.
0
0
1

0
.
0
1

0
.
1

1

1
0

L
N
R
 Q
D
R

G

e

n

.

C

o

s
t

I
n
c
o
g
 P
R
I
V
E
 K
N
N
 I
K
N
N
 L
o
c
a
l

(a) Generalization Cost

0
.
0
1

0
.
1

1

1
0

1
0
0

L
N
R
 Q
D
R

C

l
o

c
k

T

i
m

e

(

s

e

c
)

I
n
c
o
g
 P
R
I
V
E
 K
N
N
 I
K
N
N
 L
o
c
a
l

(b) Clock Time

Fig. 16. Comparison with Respect to Cost Function

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 37

0

5

1
0

1
5

2
0

2
5

1
 5
 1
0
 1
5
 2
0
k

G

e

n

.

C

o

s
t

I
n
c
o
g
 P
R
I
V
E

K
N
N
 I
K
N
N

L
o
c
a
l

(a) Generalization Cost

0
.
0
1

0
.
1

1

1
0

1
0
0

1
0
0
0

1
 5
 1
0
 1
5
 2
0
k

C

l
o

c
k

T

i
m

e

(

s

e

c
)

I
n
c
o
g
 P
R
I
V
E

K
N
N
 I
K
N
N

L
o
c
a
l

(b) Clock Time

Fig. 17. Comparison with Respect to k

the other hand, KNN, IKNN, and Local require more clock time when k increases.
In particular, the clock time for Local increases fast at first but tends to reach
the saturation point afterwards, making its overall increasing rate similar to that
of IKNN. The reason for this is that as the Local algorithm continues to run to
achieve higher k-anonymity, the Ω’s that pops up from the priority queue usually
cover more events than earlier. KNN, IKNN, and Local maintain a relatively low
generalization cost. In particular, Local outperforms the others even more signif-
icantly when k increases, which suggests that heuristics like KNN or IKNN may
not scale well for larger k. Therefore, we can conclude that Local is a robust and
low-cost algorithm under a wide range of k.

8.5 Scalability

In this experiment, we evaluate the effect of increasing W (number of users) and
N (number of events), respectively. Figures 18(a) and 18(b) show the comparison
result when W increases from 100 to 10000 (fixing N = 1000). The generalization
cost of our Local algorithm consistently outperforms the others in all W settings.
Moreover, the trend of the curve shows that its performance gain over the oth-
ers becomes even higher for larger W . This suggests that with more user locations
available, Local algorithm still chooses them wisely to cover the events while heuris-
tics like KNN or IKNN become less effective. As for the clock time, while all other
algorithms increase monotonously as k increases, the Local algorithm decreases
at first and increases afterwards. This is due to the fact that when W is small,
each user location must cover more events, and computing Ω for larger candidate
boxes is more time consuming. Interestingly, the turning point of this curve is at
W = 1000, which coincides with N . This means that the Local algorithm performs
best when the cardinality of two datasets is comparable.

Figures 19(a) and 19(b) show the comparison result when N increases from 100
to 5000 (fixing W = 5000). The generalization cost of Local is the least among all
the algorithms. Moreover, the trend of the curve shows that the performance gain
is still steady when N increases. The clock time shows a similar trend: although
Local requires the highest clock time, the gap with KNN and IKNN is stable, sug-
gesting that these three algorithms are almost linear to N . For the Local algorithm,
this is a significant improvement over the asymptotic complexity O(N4(N + W))

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

38 ·

0
.
0
1

0
.
1

1

1
0

1
0
0
 5
0
0
 1
0
0
0
 5
0
0
0
 1
0
0
0
0
W

G

e

n

.

C

o

s
t

I
n
c
o
g

P
R
I
V
E

K
N
N

I
K
N
N

L
o
c
a
l

(a) Generalization Cost

0
.
0
1

0
.
1

1

1
0

1
0
0

1
0
0
 5
0
0
 1
0
0
0
 5
0
0
0
 1
0
0
0
0
W

C

l
o

c
k

T

i
m

e

(

s

e

c
)

 I
n
c
o
g
 P
R
I
V
E

K
N
N
 I
K
N
N

L
o
c
a
l

(b) Clock Time

Fig. 18. Comparison with Respect to W

0
.
0
0
1

0
.
0
1

0
.
1

1

1
0

1
0
0
 5
0
0
 1
0
0
0
 5
0
0
0
N

G

e

n

.

C

o

s
t

I
n
c
o
g
 P
R
I
V
E

K
N
N
 I
K
N
N

L
o
c
a
l

(a) Generalization Cost

0
.
0
1

0
.
1

1

1
0

1
0
0

1
0
0
0

1
0
0
 5
0
0
 1
0
0
0
 5
0
0
0
N

C

l
o

c
k

T

i
m

e

(

s

e

c
)

I
n
c
o
g
 P
R
I
V
E

K
N
N
 I
K
N
N

L
o
c
a
l

(b) Clock Time

Fig. 19. Comparison with Respect to N

(see Section 4.3), and indirectly verifies the effectiveness of the proposed pruning
algorithms. On the other hand, the clock time of Incognito and PRIV E is almost
invariable because the partition is performed on the user location dataset, and
increasing N only slightly increases the number of partitions. Nonetheless, their
generalization costs are consistently worse than those of the other three algorithms.
Therefore, we can conclude that Local is a robust and scalable generalization algo-
rithm for medium and reasonably large datasets.

8.6 Evaluation of Coverage Adjustment

In this experiment, we evaluate the effectiveness of the coverage adjustment algo-
rithm (Algorithm 6). More specifically, we execute this algorithm on various combi-
nations of user location and event dataset sizes (denoted by their N/W value), and
plot the standard deviation (std) of the number of covered events by all users before
and after the execution in Figure 20(a). In addition, we also plot in Figure 20(b)
the increment of the generalization cost due to the adjustment. We observe that
the algorithm reduces std in almost all cases; however, the ratio of reduction varies
with respect to N/W — the density of events over users: the ratio always exceeds
50% when N/W is between 0.1 and 10, and decreases as N/W moves away from
this range. The reason for this is that when events are too sparse, only a few users
cover events, making the non-uniform coverage an intrinsic problem no matter how
the algorithm adjusts; on the other hand, when events are too dense, almost all

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 39

0
.
1

1

1
0

1
0
0

1
0
0
0

0
.
0
1
0
.
0
5
0
.
1
 0
.
5
 1
 2
 1
0
 2
0
 1
0
0

N
/
W

s
d
v

-
0
.
5

0

0
.
5

1

r
a
t
i
o

b
e
f
o
r
e

a
d
j
u
s
t
m
e
n
t

a
f
t
e
r

a
d
j
u
s
t
m
e
n
t

r
e
d
u
c
t
i
o
n

r
a
t
i
o

(a) std of Event Coverage

0
.
0
1

0
.
1

1

1
0

1
0
0

0
.
0
1
0
.
0
5
 0
.
1
 0
.
5
 1
 2
 1
0
 2
0
 1
0
0

N
/
W

c
o
s
t

0
.
1

1

1
0

1
0
0

r
a
t
i
o

b
e
f
o
r
e

a
d
j
u
s
t
m
e
n
t

a
f
t
e
r

a
d
j
u
s
t
m
e
n
t

i
n
c
r
e
m
e
n
t

r
a
t
i
o

(b) Generalization Cost

Fig. 20. Effectiveness with Respect to N/W

users cover a large number of events, making the non-uniform coverage less of a
problem. Figure 20(b) shows a similar trend for cost: its increment is the most
significant when N/W is between 0.1 and 10, the same range where the highest
std reduction ratio is achieved. However, even though the cost increases, the ra-
tio is modest and always less than an order of magnitude in all cases. As for the
computational cost, the algorithm takes no more than 2 seconds to execute in all
cases. Therefore, we can conclude that the coverage adjustment algorithm is effec-
tive while the event density is moderate, but anyhow, uniform coverage is always
at the cost of increasing generalization cost.

9. CONCLUSION

This paper presents the problem of k-anonymity with respect to a reference dataset
and a solution that is based on local enlargement paradigm. We formally prove
that the solution is an Hn approximation to the optimal. In addition, we propose
plane-sweep and index-based pruning techniques that significantly reduce the search
space of the solution. Through mathematical analysis and experimental results, our
algorithm outperforms the conventional partition-based k-anonymity algorithm by
several orders of magnitude and outperforms heuristic-based KNN algorithms by
up to 60%. We also extend this problem to incorporate background knowledge and
show through experiments that our algorithm can sustain various privacy attacks.

Regarding future work, we plan to find applications of this problem in relational
databases where table joining is common and known to compromise privacy. We
will still adapt a local enlargement paradigm to solve the problem; however, the
challenge is that the cost function may no longer be as regular as the area or perime-
ter of a box, which makes some pruning techniques (Lemma 3) invalid. Meanwhile,
we also plan to develop the incremental version of the local enlargement algorithm,
and apply it to a dynamic environment when either the location dataset or the
event dataset changes. Furthermore, in this paper, we do not consider the issue of
continuous anonymity; that is, an adversary may infer information from a sequence
of published locations of a user over time, particularly if the publishing cycles for
these locations are short. To address this issue, we need to redefine the prob-
lem by either treating time as another dimension or adding an additional privacy
requirement that involves time.

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

40 ·

10. ACKNOWLEDGEMENT

The authors would like to thank the editor and anonymous reviewers for their
valuable suggestions that significantly improved the quality of this paper. This
work was supported by Research Grants Council, Hong Kong SAR, China, un-
der Projects HKBU FRG/08-09/II-48, FRG2/09-10/047, FRG/07-08/II-23, GRF
210808, HKBU1/05C.

REFERENCES

Bayardo, R. and Agrawal, R. 2005. Data privacy through optimal k-anonymization. In Pro-
ceedings of ICDE. 217–228.

Brinkhoff, T. 2002. A framework for generating network-based moving objects. Geoinformat-
ica 6, 2, 153–180.

Chen, B.-C., LeFevre, K., and Ramakrishnan, R. 2007. Privacy skyline: Privacy with multi-
dimensional adversarial knowledge. In Proceedings of VLDB.

Du, Y., Xia, T., Tao, Y., Zhang, D., and Zhu, F. 2007. On multidimensional k-anonymity with
local recoding generalization (poster paper). In Proceedings of ICDE.

Fung, C. M., Wang, K., and Yu, P. S. 2005. Top-down specialization for information and
privacy preservation. In Proceedings of ICDE. 205–216.

Gedik, B. and Liu, L. 2005. Location-privacy in mobile systems: A personalized anonymization
model. In Proceedings of ICDCS.

Gedik, B. and Liu, L. 2008. Protecting location privacy with personalized k-anonymity: Archi-
tecture and algorithms. IEEE Transactions on Mobile Computing 7, 1, 1–18.

Ghinita, G., Kalnis, P., and Skiadopoulos, S. 2007a. Mobihide: A mobile peer-to-peer system
for anonymous location-based queries. In Proceedings of the Int. Symposium in Spatial and
Temporal Databases (SSTD). 221–238.

Ghinita, G., Kalnis, P., and Skiadopoulos, S. 2007b. Prive: Anonymous location-based queries
in distributed mobile systems. In Proc. of WWW ’07. 371–380.

Gruteser, M. and Grunwald, D. 2003. Anonymous usage of location-based services through
spatial and temporal cloaking. In Proc. of MobiSys. 31–42.

Iwuchukwu, T. and Naughton, J. F. 2007. K-anonymization as spatial indexing: toward scalable
and incremental anonymization. In Proceedings of VLDB.

Iyengar, V. 2002. Transforming data to satisfy privacy constraints. In Proceedings of ACM
SIGKDD. 279–288.

LeFevre, K., D.DeWitt, and Ramakrishnan, R. 2005. Incognito: Efficient full-domain k-
anonymity. In Proceedings of ACM Conference on Management of Data (SIGMOD05). 49–60.

LeFevre, K., DeWitt, D. J., and Ramakrishnan, R. 2006. Mondrian multidimensional k-
anonymity. In Proceedings of ICDE.

Li, N., Li, T., and Venkatasubramanian, S. 2007. t-closeness: Privacy beyond k-anonymity and
l-diversity. In Proceedings of the 23rd IEEE International Conference on Data Engineering
(ICDE). 106–115.

Machanavajjhala, A., Gehrke, J., Kifer, D., and Venkitasubramaniam, M. 2006. l-diversity:

Privacy beyond k-anonymity. In Proceedings of the 22nd IEEE International Conference on
Data Engineering (ICDE). 24–35.

Martin, D. J., Kifer, D., Machanavajjhala, A., Gehrke, J., and Halpern, J. Y. 2007. Worst-
case background knowledge for privacy-preserving data publishing. In Proceedings of ICDE.

Mokbel, M. F., Chow, C.-Y., and Aref, W. G. 2006. The new casper: Query processing for
location services without compromising privacy. In Proceedings of VLDB.

Samarati, P. 2001. Protecting respondents privacy in microdata release. IEEE Transactions on
Knowlowledge and Data Engineering 13, 6, 1010–1027.

Sweeney, L. 2002. Achieving k-anonymity privacy protection using generalization and suppres-
sion. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10, 5,
571–588.

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

· 41

Vazirani, V. V. 2001. Approximation Algorithms. Springer.

Wang, K., Yu, P. S., and Chakraborty, S. 2004. Bottom-up generalization: A data mining
solution to privacy protection. In Proceedings of ICDM. 249–256.

Xiao, X. and Tao, Y. 2006a. Anatomy: simple and effective privacy preservation. In Proceedings
of the 32nd international conference on Very large data bases (VLDB ’06). 139–150.

Xiao, X. and Tao, Y. 2006b. Personalized privacy preservation. In Proceedings of ACM Con-
ference on Management of Data (SIGMOD06). 229–240.

ACM Transactions on Database Systems, Vol. 2, No. 3, 09 2001.

