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1. INTRODUCTION
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   1.1 Introduction

    Data mining is the process of extracting potentially useful information from a data set. Clustering is a popular data mining technique which is intended to help the user discover and understand the structure or grouping of the data in the set according to a certain similarity measure. Clustering algorithms usually employ a distance metric e.g., Euclidean or a similarity measure in order to partition the database so that the data points in each partition are more similar than points in different partitions. The commonly used Euclidean distance, while computationally simple, requires similar objects to have close values in all dimensions. However, with the high-dimensional data commonly encountered nowadays, the concept of similarity between objects in the full-dimensional space is often invalid and generally not helpful.

1.2 Problem Statement

     Feature selection techniques are commonly utilized as a preprocessing stage for   clustering, in order to overcome the curse of dimensionality. The most informative dimensions are selected by eliminating irrelevant and redundant ones. Such techniques speed up clustering algorithms and improve their performance. Nevertheless, in some applications, different clusters may exist in different subspaces spanned by different dimensions. In such cases, dimension reduction using a conventional feature selection technique may lead to substantial information loss.
    1.3 Scope 

   Recent theoretical results reveal that data points in a set tend to be more equally spaced as the dimension of the space increases, as long as the components of the data point are independently and identically distributed. Although the condition is rarely satisfied in real applications, it still becomes less meaningful to differentiate data points based on a distance or a similarity measure computed using all the dimensions. These results explain the poor performance of conventional distance-based clustering algorithms on such data sets. 
  1.4 Objective
        A number of projected clustering algorithms have been proposed. However, most of them encounter difficulties when clusters hide in subspaces with very low dimensionality. These challenges motivate our effort to propose a robust partitional distance-based projected clustering algorithm.
   1.5 Approach

       These observations motivate our effort to propose a novel projected clustering algorithm, called Projected Clustering based on the K-Means Algorithm (PCKA). PCKA is composed of three phases: attribute relevance analysis, outlier handling, and discovery of projected clusters. Our algorithm is partitional in nature and able to automatically detect projected clusters of very low dimensionality embedded in high-dimensional space, thereby avoiding computation of the distance in the full-dimensional space.

  1.6 Thesis Outline 

The proposed dissertation consists of seven Chapters including Introduction and Conclusions. Chapter 1 motivation, problem definition, objective and limitation of the proposed system. Chapter 2 emphasizes on detailed literature survey. Chapter 3 Describes about the analysis, software requirement specification, software and hardware requirements, algorithms. Chapter 4 described the Total Design of the Project using UML Diagrams and Chapter 5 describes the implementation details of the project. Testing and validation and the Screen Shots/ Reports is described in Chapter 6.

Chapter 7 describes the conclusion and future work of the project.
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2. LITERATURE SURVEY
2.1 Introduction
Data mining is the process of extracting potentially useful information from a data set. Clustering is a popular data mining technique which is intended to help the user discover and understand the structure or grouping of the data in the set according to a certain similarity measure. Clustering algorithms usually employ a distance metric e.g., Euclidean or a similarity measure in order to partition the database so that the data points in each partition are more similar than points in different partitions. 
The commonly used Euclidean distance, while computationally simple, requires similar objects to have close values in all dimensions. However, with the high-dimensional data commonly encountered nowadays, the concept of similarity between objects in the full-dimensional space is often invalid and generally not helpful. Recent theoretical results reveal that data points in a set tend to be more equally spaced as the dimension of the space increases, as long as the components of the data point are i.i.d. (independently and identically distributed). Although the i.i.d. condition is rarely satisfied in real applications, it still becomes less meaningful to differentiate data points based on a distance or a similarity measure computed using all the dimensions. These results explain the poor performance of conventional distance-based clustering algorithms on such data sets.

Feature selection techniques are commonly utilized as a preprocessing stage for clustering, in order to overcome the curse of dimensionality. The most informative dimensions are selected by eliminating irrelevant and redundant ones. Such techniques speed up clustering algorithms and improve their performance. Nevertheless, in some applications, different clusters may exist in different subspaces spanned by different dimensions. In such cases, dimension reduction using a conventional feature selection technique may lead to substantial information loss.

The following example provides an idea of the difficulties encountered by conventional clustering algorithms and feature selection techniques. Figure 1 illustrates a generated dataset set composed of 1000 data points in 10-dimensional space. Note that this dataset is generated based on the data generator model described in. As we can see from Figure 2.1, there are four clusters that have their own relevant dimensions (e.g., cluster 1 exists in dimensions A1; A4; A8; A10). By relevant dimensions, we mean dimensions that exhibit cluster structure. In our example, there are also three irrelevant dimensions A3, A5 and A7 in which all the data points are sparsely distributed, i.e. no cluster structure exist in these dimensions. Note that the rows in this figure indicate the boundaries of each cluster.
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        Fig. 2.1. Example of dataset containing projected clusters.

For such an example, a traditional clustering algorithm is likely to fail to find the four clusters. This is because the distance function used by these algorithms gives equal treatment to all dimensions, which are, however, not of equal importance. While feature selection techniques can reduce the dimensionality of the data by eliminating irrelevant attributes such as A3, A5 and A7, there is an enormous risk that they will also eliminate relevant attributes such as A1. This is due to the presence of many sparse data points in A1, where a cluster is in fact present. To cope with this problem, new classes of projected clustering have emerged.

Projected clustering exploits the fact that in high-dimensional datasets, different groups of data points may be correlated along different sets of dimensions. The clusters produced by such algorithms are called”projected clusters”. A projected cluster is a subset SP of data points, together with a subspace SD of dimensions, such that the points in SP are closely clustered in SD . For instance, the fourth cluster in the dataset presented in Figure 1 is (SP4; SD4) = (fxk; : : : ; xng; fA2; A4; A6; A9g). Recent research has suggested the presence of projected clusters in many real-life datasets.
2.2. Existing Projected Clustering Algorithms
A number of projected clustering algorithms have been proposed in recent years. Although these previous algorithms have been successful in discovering clusters in different subspaces, they encounter difficulties in identifying very low-dimensional projected clusters embedded in high-dimensional space. Yip et al. observed that current projected clustering algorithms provide meaningful results only when the dimensionalities of the clusters are not much lower than that of the dataset. For instance, some partitional projected clustering algorithms, such as PROCLUS and ORCLUS, make use of a similarity function that involves all dimensions in order to find an initial approximation of the clusters. After that, relevant dimensions of each cluster are determined using some heuristics and the clustering is refined based on the relevant dimensions previously selected. Here, it is clear that a similarity function that uses all dimensions misleads the relevant dimensions detection mechanism and adversely affects the performance of these algorithms. Another example is HARP, a hierarchical projected clustering algorithm based on the assumption that two data points are likely to belong to the same cluster if they are very similar to each other along many dimensions. However, when the number of relevant dimensions per cluster is much lower than the dataset dimensionality, such an assumption may not be valid. In addition, some existing projected clustering algorithms, such as PROCLUS  and ORCLUS, require the user to provide the average dimensionality of the subspaces, which is very difficult to establish in real-life applications.

These observations motivate our effort to propose a novel projected clustering algorithm, called PCKA (Projected Clustering based on the K-means Algorithm). PCKA is composed of three phases: attribute relevance analysis, outlier handling and discovery of projected clusters. Our algorithm is partitional in nature and able to automatically detect projected clusters of very low dimensionality embedded in high-dimensional space, thereby avoiding computation of the distance in the full-dimensional space.

The problem of finding projected clusters has been addressed in, the partitioned algorithm PROCLUS, which is a variant of the K-medoid method, iteratively computes a good medoid for each cluster. With the set of medoids, PROCLUS finds the subspace dimensions for each cluster by examining the neighboring locality of the space near it. After the subspace has been determined, each data point is assigned to the cluster of the nearest medoid. The algorithm is run until the sum of intracluster distances ceases to change. ORCLUS  is an extended version of PROCLUS that looks for non-axis-parallel clusters, by using Singular Value Decomposition (SVD) to transform the data to a new coordinate system and select principal components. PROCLUS and ORCLUS were the first to successfully introduce a methodology for discovering projected clusters in high-dimensional spaces, and they continue to inspire novel approaches.

A limitation of these two approaches is that the process of forming the locality is based on the full dimensionality of the space. However, it is not useful to look for neighbors in datasets with very low-dimensional projected clusters. In addition, PROCLUS and ORCLUS require the user to provide the average dimensionality of the subspace, which also is very difficult to do in real life applications.
In Procopius et al. propose an approach called DOC (Density-based Optimal projective Clustering) in order to identify projected clusters. DOC proceeds by discovering clusters one after another; defining a projected cluster as a hypercube with width 2w, where w is a user-supplied parameter. In order to identify relevant dimensions for each cluster, the algorithm randomly selects a seed point and a small set, Y , of neighboring data points from the dataset. A dimension is considered as relevant to the cluster if and only if the distance between the projected value of the seed point and the data point in Y on the dimension is no more than w. All data points that belong to the defined hypercube form a candidate cluster. The suitability of the resulting cluster is evaluated by a quality function which is based on a user-provided parameter that controls the trade-off between the number of objects and the number of relevant dimensions. DOC tries different seeds and neighboring data points, in order to find the cluster that optimizes the quality function. The entire process is repeated to find other projected clusters. It is clear that since DOC scans the entire dataset repetitively, its execution time is very high. To alleviate this problem, an improved version of DOC called Fast DOC is also proposed in .

DOC is based on an interesting theoretical foundation and has been successfully applied to image processing applications. In contrast to previous approaches, (i.e. PROCLUS and ORCLUS), DOC is able to automatically discover the number of clusters in the dataset. However, the input parameters of DOC are difficult to determine and an inappropriate choice by the user can greatly diminish its accuracy. Furthermore, DOC looks for clusters with equal width along all relevant dimensions. In some types of data, however, clusters with different widths are more realistic.

Another hypercube approach called FPC (Frequent-Pattern-based Clustering) is proposed in to improve the efficiency of DOC. FPC replaces the randomized module of DOC with systematic search for the best cluster defined by a random medoid point p. In order to discover relevant dimensions for the medoid p, an optimized adaptation of the frequent pattern tree growth method used for mining item sets is proposed. In this context, the authors of FPC illustrate the analogy between mining frequent item sets and discovering dense projected clusters around random points. The adapted mining technique is combined with Fast DOC to discover clusters. However, the fact that FPC returns only one cluster at a time adversely affects its computational efficiency. In order to speed up FPC, an extended version named CFPC (Concurrent Frequent-Pattern-based Clustering) is also proposed in.CFPC can discover multiple clusters simultaneously, which improves the efficiency of the clustering process. 

It is shown in that FPC significantly improves the efficiency of DOC/FastDOC and can be much faster than the previous approaches. However, since FPC is built on DOC/FastDOC it inherits some of their drawbacks. FPC performs well only when each cluster is in the form of a hypercube and the parameter values are specified correctly.

A recent chapter proposes a hierarchical projected clustering algorithm called HARP (a Hierarchical approach with Automatic Relevant dimension selection for projected clustering). The basic assumption of HARP is that if two data points are similar in high-dimensional space, they have a high probability of belonging to the same cluster in lower-dimensional space. Based on this assumption, two clusters are allowed to merge only if they are similar enough in a number of dimensions. The minimum similarity and minimum number of similar dimensions are dynamically controlled by two thresholds, without the assistance of user parameters. The advantage of HARP is that it provides a mechanism to automatically determine relevant dimensions for each cluster and avoid the use of input parameters, whose values are difficult to set. In addition to this, the study illustrates that HARP provides interesting results on gene expression data.

On the other hand, as mentioned in Section 1, it has been shown in that, for a number of common data distributions, as dimensionality increases, the distance to the nearest data point approaches the distance to the farthest data point. Based on these results, the basic assumption of HARP will be less valid when projected clusters have few relevant dimensions. In such situations the accuracy of HARP deteriorates severely. This effect on HARP’s performance was also observed by Yip et al.In order to overcome the limitation encountered by HARP and other projected clustering algorithms, the authors of HARP propose in a semi-supervised approach named SSPC (Semi-Supervised Projected Clustering). This algorithm is partitional in nature and similar in structure to PROCLUS. As in semi-supervised clustering, SSPC makes use of domain knowledge (labeled data points and/or labeled dimensions) in order to improve the quality of a clustering. As reported in , the clustering accuracy can be greatly improved by inputting only a small amount of domain knowledge. However, in some applications, domain knowledge in the form of labeled data points and/or labeled dimensions is very limited and not usually available.

A density-based algorithm named EPCH (Efficient Projective Clustering by Histograms) is proposed in for projected clustering. EPCH performs projected clustering by histogram construction. By iteratively lowering a threshold, dense regions are identified in each histogram. A”signature” is generated for each data point corresponding to some region in some subspace.


Projected clusters are uncovered by identifying signatures with a large number of data points. EPCH has an interesting property in that no assumption is made about the number of clusters or the dimensionality of subspaces. In addition to this, it has been shown in that EPCH can be fast and is able to handle clusters of irregular shape. On the other hand, while EPCH avoids the computation of distance between data points in the full-dimensional space, it suffers from the curse of dimensionality. In our experiments, we have observed that when the dimensionality of the data space increases and the number of relevant dimensions for clusters decreases, the accuracy of EPCH is affected. A field that is closely related to projected clustering is subspace clustering. CLIQUE was the pioneering approach to subspace clustering, followed by a number of algorithms in the same field such as MAFIA and SUBCLU. The idea behind subspace clustering is to identify all dense regions in all subspaces, whereas in projected clustering, as the name implies, the main focus is on discovering clusters that are projected onto particular spaces.The outputs of subspace clustering algorithms differ significantly from those of projected clustering. Subspace clustering techniques tend to produce a partition of the dataset with overlapping clusters. The output of such algorithms is very large, because data points may be assigned to multiple clusters. In contrast, projected clustering algorithms produce disjoint clusters with a single partitioning of points .Depending on the application domain, both subspace clustering and projected clustering can be powerful tools for mining high-dimensional data. Since the major concern of this chapter is projected clustering, we will focus only on such techniques. Further details and a survey on subspace clustering algorithms and projected clustering algorithms can be found.
2.3. Existing Subspace Clustering Algorithms
   Some algorithms better adjust to high dimensions. For example, the algorithm CACTUS (section Co-Occurrence of Categorical Data) adjusts well since it defines a cluster only in terms of a cluster’s 2D projections. In this section we cover techniques that are specifically designed to work with high dimensional data.

The algorithm CLIQUE (Clustering in Quest) [Agrawal et al. 1998] for numerical attributes is fundamental in subspace clustering. It marries the ideas of:

· Density-based clustering

· Grid-based clustering

· Induction through dimensions similar to A priori algorithm in association rules MDL principle to select appropriate subspaces

· Interpretability of clusters in terms of DNF representation

CLIQUE starts with the definition of a unit – elementary rectangular cell in a subspace. Only units whose densities exceed a threshold τ are retained. A bottom-up approach of finding such units is applied. First, 1-dimensional units are found by dividing intervals in equal-width bins (a grid). Both parameters τ and are the algorithm’s inputs. The recursive step from q-1-dimensional units to q-dimensional units involves self-join of q-1 units having first common q-2 dimensions (Apriori-reasoning). All the subspaces are sorted by their coverage and lesser-covered subspaces are pruned. A cut point is selected based on MDL principle. A cluster is defined as a maximal set of connected dense units. It is represented by a DNF expression that is associated with a finite set of maximal segments (called regions) whose union is equal to a cluster. Effectively, CLIQUE results in attribute selection (it selects several subspaces) and produces a view of data from different perspectives! The result is a series of cluster systems in different subspaces. This versatility goes more in vein with data description rather than with data partitioning: different clusters overlap. If q is a highest subspace dimension selected, the complexity of dense units generations is O(constq  qN). Identification of clusters is a quadratic task in terms of units.

The algorithm ENCLUS (Entropy-based Clustering) [Cheng et al. 1999] follows in the footsteps of CLIQUE, but uses a different criterion for subspace selection. The criterion is derived from entropy related considerations: the subspace spanned by attributes A1,..., Aq with entropy H(A1,..., Aq ) smaller than a threshold is considered good for clustering. Any subspace of a good subspace is also good, since

H(A1,..., Aq−1 ) < H(A1,..., Aq ) − H(Aq  | A1,..., Aq−1 ) ≤ H(A1,..., Aq ) < ω .

Low entropy subspace corresponds to a skewed distribution of unit densities. The computational costs of ENCLUS are high.

The algorithm MAFIA (Merging of Adaptive Finite Intervals) [Goil et al. 1999; Nagesh et al. 2001] significantly modifies CLIQUE. It starts with one data pass to construct adaptive grids in each dimension. Many (1000) bins are used to compute histograms by reading blocks of data in core memory, which are then merged together to come up with a smaller number of variable-size bins than CLIQUE does. The algorithm uses a parameter Į, called cluster dominance factor, to select bins that are Į-times more densely populated relative to their volume than on average. These are q=1 candidate dense units (CDUs). Then MAFIA proceeds recursively to higher dimensions (every time a data scan is involved). The difference between MAFIA and CLIQUE is that to construct a new q-CDU, MAFIA tries two q-1-CDUs as soon as they share any (not only first dimensions) q-2-face. This creates an order of magnitude more candidates. Adjacent CDUs are merged into clusters and clusters that are proper subsets of the higher dimension clusters are eliminated. The parameter Į (default value 1.5 works fine) presents no problem in comparison with global density threshold used in CLIQUE. Reporting for a range of Į ina single run is supported. If q is a highest dimensionality of CDU, the complexity is O (constq qN).
The algorithm OPTIGRID [Hinesburg & Keim 1999] uses data partitioning based on divisive recursion by multi-dimensional grids. Authors present a very good introduction into the effects of high-dimension geometry. Familiar concepts, as for example, uniform distribution, become blurred for large d. OPTIGRID uses density estimations in the same way the algorithm DENCLUE (by the same authors) does. It primarily focuses on separation of clusters by (hyper) planes that are not necessarily axes parallel. To find such planes consider a set of contracting linear projectors (functional) P1,...,Pk ,Pj≤ 1 of the attribute space A at a 1D line. For a density kernel of the form   K(x − y)
(a tool of trade in DENCLUE) and a contracting projection, density induced after projection is more concentrated. A cutting plane is chosen so that it goes through the point of minimal density and discriminates two significantly dense half-spaces. Several cutting planes are chosen, and recursion continues with each subset of data.

The algorithm PROCLUS (Projected Clustering) [Aggarwal et al. 1999] associates with a subset C a low-dimensional subspace such that the projection of C into the subspace is a tight cluster. The subset – subspace pair when exists constitutes a projected cluster. The number k of clusters and the average subspace dimension l are user inputs. The iterative phase of the algorithm deals with finding k good medoids, each associated with its subspace. A sample of data is used in a greedy hill-climbing technique. Manhattan distance divided by the subspace dimension is a useful normalized metric for searching among different dimensions. An additional data pass follows after iterative stage is finished to refine clusters including subspaces associated with the medoids.

The algorithm ORCLUS (Oriented projected CLUSter generation) [Aggarwal & Yu 2000] uses a similar approach of projected clustering, but employs non-axes parallel subspaces of high dimensional space. In fact, both developments address a more generic issue: even in a low dimensional space, different portions of data could exhibit clustering tendency in different subspaces (consider several non-parallel non-intersecting cylinders in 3D space). If this is the case, any attribute selection is doomed. ORCLUS has a k-means-like transparent model that defines clusters as sets of points (partition) that have low sum-of-squares of errors (energy) in a certain subspace. More specifically, for x C, and directions E ={e1,...,el} (specific to C), the projection is defined as {x e1,..., x el} .

The projection only decreases energy. SVD diagonalization can be used to find directions (eigenvectors) corresponding to the lowest l Eigen values of the covariance matrix. In reality, the algorithm results in X partitioning (the outliers excluded) into k clusters Cj together with their subspace directions Ej. The algorithm builds more than k clusters, with larger than l-dimensional E gradually fitting the optimal subspace and requested k. Though suggestion of picking a good parameter l is provided, uniform l is a certain liability.

Any other comparison aside, projected clusters provide data partitioning, while cluster systems resulted from CLIQUE overlap.
CLIQUE: The CLIQUE algorithm was one of the first subspace clustering algorithms. The algorithm combines density and grid based clustering and uses an APRIORI style search technique to find dense subspaces. Once the dense subspaces are found they are sorted by coverage, defined as the fraction of the dataset the dense units in the subspace represent. The subspaces with the greatest coverage are kept and the rest are pruned. The algorithm then finds adjacent dense grid units in each of the selected subspaces using a depth first search. Clusters are formed by combining these units using using a greedy growth scheme. The algorithm starts with an arbitrary dense unit and greedily grows a maximal region in each dimension until the union of all the regions covers the entire cluster. Redundant regions are removed by a repeated procedure.

where smallest redundant regions are discarded until no further maximal region can be removed. The hyper- rectangular clusters are then defined by a Disjunctive Normal Form (DNF) expression. 

The region growing, density based approach to generating clusters allows CLIQUE to find clusters of arbitrary shape, in any number of dimensions. Clusters may be found in the same, overlapping, or disjoint subspaces. The DNF expressions used to represent clusters are of- ten very interpretable and can describe overlapping clusters, meaning that instances can belong to more than one cluster. This is often advantageous in subspace clustering since the clusters often exist in different subspaces and thus represent different relationships. 

PROCLUS: PROjected CLUStering was the first top-down subspace clustering algorithm. Similar to CLARANS [19], PROCLUS samples the data, then selects a set of k medoids and iteratively improves the clustering. The algorithm uses a three phase approach consisting of initialization, iteration, and cluster refinement. Initialization selects a set of potential medoids that are far apart using a greedy algorithm. The iteration phase selects a random set of k medoids from this reduced dataset, replaces bad medoids with randomly chosen new medoids, and determines if clustering has improved. Cluster quality is based on the average distance between instances and the nearest medoid. For each medoid, a set of dimensions is chosen whose aver- age distances are small compared to statistical expectation. Once the subspaces have been selected for each medoid, average Manhattan segmental distance is used to assign points to medoids, forming clusters. The refinement phase computes a new list of relevant dimensions for each medoid based on the clusters formed and reassigns points to medoids, removing outliers. 

The distance based approach of PROCLUS is biased toward clusters that are hyper-spherical in shape. Also, while clusters may be found in different sub- spaces, the 
subspaces must be of similar sizes since the user must input the average number of dimensions for the clusters. Clusters are represented as sets of instances with associated medoids and subspaces and form non-overlapping partitions of the dataset with possible outliers. PROCLUS is actually somewhat faster than CLIQUE due to the sampling of large datasets. However, using a small number of representative points can cause PROCLUS to miss some clusters entirely

 2.4. Clustering High Dimensional Data

             The objects in data mining could have hundreds of attributes. Clustering in such high dimensional spaces presents tremendous difficulty, much more so than in predictive learning. In decision trees, for example, irrelevant attributes simply will not be picked for node splitting, and it is known that they do not affect Naïve Bayes as well. In clustering, however, high dimensionality presents a dual problem. First, under whatever definition of similarity, the presence of irrelevant attributes eliminates any hope on clustering tendency. After all, searching for clusters where there are no clusters is a hopeless enterprise. While this could also happen with low dimensional data, the likelihood of presence and number of irrelevant attributes grows with dimension.

The second problem is the dimensionality curse that is a loose way of speaking about a lack of data separation in high dimensional space. Mathematically, nearest neighbor query becomes unstable: the distance to the nearest neighbor becomes indistinguishable from the distance to the majority of points [Beyer et al. 1999]. This effect starts to be severe for dimensions greater than 15. Therefore, construction of clusters founded on the concept of proximity is doubtful in such situations. For interesting insights into complications of high dimensional data, see [Aggarwal et al. 2000].

Basic exploratory data analysis (attribute selection) preceding the clustering step is the best way to address the first problem of irrelevant attributes. We consider this topic in the section General Algorithmic Issues. Below we present some techniques dealing with a situation when the number of already pre-selected attributes d is still high.

In the sub-section Dimensionality Reduction we talk briefly about traditional methods of dimensionality reduction. In the sub-section Subspace Clustering we review algorithms that try to circumvent high dimensionality by building clusters in appropriate subspaces of original attribute space. Such approach has a perfect sense in applications, since it is only better if we can describe data by fewer attributes. Still another approach that divides attributes into similar groups and comes up with good new derived attributes representing each group is discussed in the sub-section Co-Clustering.

Important source of high dimensional categorical data comes from transactional (market basket) analysis. Idea to group items very similar to co-clustering has already been discussed in the section Co-Occurrence of Categorical Data.
2.5 Dimensionality Reduction
When talking about high dimensionality, how high is high?

Many spatial clustering algorithms depend on indices in spatial datasets (sub-section Data Preparation) to facilitate quick search of the nearest neighbors. Therefore, indices can serve as good proxies with respect to dimensionality curse performance impact. Indices used in clustering algorithms are known to work effectively for dimensions below 16. For a dimension d > 20 their performance degrades to the level of sequential search (though newer indices achieve significantly higher limits). Therefore, we can arguably claim that data with more than 16 attributes is high dimensional.

How large is the gap? If we are dealing with a retail application, 52-weeks sales volumes represent a typical set of features, which is a special example of more general class of time series data. In customer profiling dozens of generalized item categories plus basic demographics result in at the least 50-100 attributes. Web clustering based on site contents results in 200-1000 attributes (pages/contents) for modest Web sites. Biology and genomic data can have dimensions that easily surpass 2000-5000 attributes. Finally, text mining and information retrieval also deal with many thousands of attributes (words or index terms). So, the gap is significant.

Two general purpose techniques are used to fight high dimensionality: (1) attributes transformations and (2) domain decomposition.

Attribute transformations are simple functions of existent attributes. For sales profiles and OLAP-type data, roll-ups as sums or averages over time intervals (e.g., monthly volumes) can be used. Due to a fine seasonality of sales such brute force approaches rarely work. In multivariate statistics principal components analysis (PCA) is popular [Mardia et al. 1980; Joliffe 1986], but this approach is problematic since it leads to clusters with poor 
interpretability. Singular value decomposition (SVD) technique is used to reduce dimensionality in information retrieval [Berry et al. 1995; Berry & Browne 1999] and statistics [Fukunaga 1990]. Low-frequency Fourier harmonics in conjunction with Parseval’s theorem are successfully used in analysis of time series [Agrawal et al. 1993], as well as wavelets and other transformations [Keogh et al. 2001].

Domain decomposition divides the data into subsets, canopies, [McCallum et al. 2000] using some inexpensive similarity measure, so that the high dimensional computation happens over smaller datasets. Dimension stays the same, but the costs are reduced. This approach targets the situation of high dimension, large data, and many clusters.
2.6 Finding Generalized Projected Clusters 
                        The problem of clustering data points is defined as follows: Given a set of points in multidimensional space, and a partition of the points into clusters so that the points within each cluster are similar to one another.  Various distance functions may be used in order to make a quantitative determination of similarity. In addition, an objective function may be defined with respect to this distance function in order to measure the overall quality of a partition. The method has been studied in considerable detail by both the statistics and database communities because  of its applicability to many practical problems such  as customer segmentation, pattern recognition, trend  analysis and classification. An overview of clustering methods may be found in.

                         A common class of methods in clustering is partitioning methods in which a set of seeds (or representative objects) are used in order to partition the points implicitly. Several variations of this technique exist such as the k-means and k-medoid algorithms.  In medoid-based techniques, the points from the database are used as seeds, as the algorithm tries to search for the optimal set of k seeds which results in the best clustering. An effective practical technique in this class called CLARANS uses a restricted search space in order to improve efficiency.  

                        Another well known class of techniques are hierarchical clustering methods in which the database is decomposed into several levels of partitioning which are represented by a dendogram. Such methods are qualitatively effective, but practically infeasible for large data- bases since the performance is at least quadratic in the number of database points. 

                          In density-based clustering methods, the neighborhood of a point is used in order to find dense regions in which clusters exist. Other related techniques for large databases include condensation and grid based methods in conjunction with spatial and hierarchical structures. The BIRCH method uses a hierarchical data structure called the CF-Tree in order to incrementally build clusters. This is one of the most efficient approaches for low dimensional data, and it requires only one scan over the database. Another hierarchical method called CURE was recently proposed, which tends to show excellent quality because it uses robust methods in order to measure distances between clusters. Therefore, it adjusts well to different shapes of clusters. An interesting grid-partitioning technique called Optigrid has recently been proposed which is designed to perform well for high dimensional data.  In spite of these improved techniques, high dimensional data continues to pose a challenge to clustering algorithms at a very fundamental level. Most clustering algorithms do not work efficiently in higher dimensional spaces because of the inherent sparsity of the data.
Chapter 3

3. ANALYSIS

       A Software Requirements Specification (SRS) is a description of a particular software product, program or set of programs that performs a set of functions in a target environment (IEEE Std. 830-1993).

3.1. Introduction

     Data mining is the process of extracting potentially useful information from a data set. Clustering is a popular data mining technique which is intended to help the user discover and understand the structure or grouping of the data in the set according to a certain similarity measure. Clustering algorithms usually employ a distance metric e.g., euclidean or a similarity measure in order to partition the database so that the data points in each partition are more similar than points in different partitions. The commonly used euclidean distance, while computationally simple, requires similar objects to have close values in all dimensions. However, with the high-dimensional data commonly encountered nowadays, the concept of similarity between objects in the full-dimensional space is often invalid and generally not helpful.

3.1.1. Purpose
    The purpose of software requirements specification specifies the intentions and intended audience of the SRS.

      Feature selection techniques are commonly utilized as a preprocessing stage for clustering, in order to overcome the curse of dimensionality. The most informative dimensions are selected by eliminating irrelevant and redundant ones. Such techniques speed up clustering algorithms and improve their performance. Nevertheless, in some applications, different clusters may exist in different subspaces spanned by different dimensions. In such cases, dimension reduction using a conventional feature selection technique may lead to substantial information loss.

3.1.2. Scope   

       The scope of the SRS identifies the software product to be produced, the capabilities, application, relevant objects etc.

A number of projected clustering algorithms have been proposed. However, most of them encounter difficulties when clusters hide in subspaces with very low dimensionality. These challenges motivate our effort to propose a robust partitional distance-based projected clustering algorithm. The algorithm consists of three phases. The first phase performs attribute relevance analysis by detecting dense and sparse regions and their location in each attribute. Starting from the results of the first phase, the goal of the second phase is to eliminate outliers, while the third phase aims to discover clusters in different subspaces. The clustering process is based on the K-Means algorithm, with the computation of distance restricted to subsets of attributes where object values are dense.

3.1.3 Definitions, Acronyms and Abbreviations

     Software Requirements Specification: It’s a description of a particular software product, program or set of programs that performs a set of function in target environment.

SRS: Software Requirement Specification

This description of Software Requirements Specifications is derived from IEEE std. 830-1993.

The Unified Modelling Language by Grady Booch

3.1.4 Overview
     The SRS contains the details of process, functions of the product, user characteristics. The non functional requirements if any are also specified.

The remaining section of the SRS specifies the functionality of these systems. Further the need of Interfaces is also described in the next part of SRS. The criteria for the non-functional requirements, the constraints on the system and assumptions and dependencies (if any) are also described in the remaining sections.

3.2. Overall Description

     The main functions associated with the product are described in this section of SRS.  The characteristics of a user of this product are indicated. The assumptions in this section result from interaction with the project stakeholders.

3.2.1 Product Perspective

    Product Perspective states if product is self-contained, independent or if product is part of a large system.

This system implements an algorithm consists of three phases. The first phase performs attribute relevance analysis by detecting dense and sparse regions and their location in each attribute. 

3.2.2 Product Function
      This section describes major function the software will perform.

Product functions should be organized so that they are understandable to the client or anyone else who read SRS for the first time.

3.2.3   User Characteristics

   User Characteristics indicates intended users of product and education level, experience, technical expertise required by user. 

This application implements various strategies for execution of the code on various data sets. Since the system is implemented on the bases of Java Services, the request is initiated by any data source in the form of a request at the application. 

3.2.4. Constraints
The system suffers from the scalability if the application cannot handle the multi datasets.

3.2.5 Assumptions and Dependencies

    Assumptions indicate how changes to the SRS can affect particular SRS sections. 

This system assumes and is dependent on the dataset, the basic assumption is that the dataset must be already present to execute this system.

3.3 Specific Requirements

  This section of the SRS provides a description of the observable behavior of a software system It also includes a description of the non-behavioral features of the software. 

3.3.1 External Interface Requirements

Provide a detail description of all inputs into and outputs from the system.

3.3.2 User Interface 

The user interface implemented to simulate this system is a user friendly Java Graphical User Interface through Traditional GUI Models.

3.3.3 Hardware Requirement
Minimum system hardware requirement will be sufficient to execute the application since it does not take large or complex processing.
	1
	Pentium-4 PC with 20 GB hard-disk and 256 MB RAM, Keyboard, Mouse
	Not-Applicable


Table 3.1: Hardware Requirement Table
3.3.4 Software Requirement
The other required software needed for the simulation of this system is Java and its advanced components including the third party components.
	1.
	Operating System
	Windows 2000 / XP, Linux based systems

	2.
	Languages/

Software
	Java Runtime Environment, 

Java Software Development Kit 1.6

Java NetBeans IDE


Table 3.2: Software Requirement Table

3.3.5 Communication Interface

The System should be connected to intranet and various communicating devices

3.4 Functional Requirements

    Functional requirements will define the fundamental actions that must take place in the software in accepting & processing the inputs in processing & generating the outputs.
3.4.1 Information flows

      Class diagram, Uses Case Diagram, Activity Diagrams, Sequence Diagrams, and Collaboration Diagrams will be provided which describes the flow of data between various processes of the system. 

3.4.2 Process Description

Process descriptions will be provided based on the process information. Use Case Specification will be enclosed and provided which describes the detailed specifications of each use case.

3.4.3 Performance Requirements

The data must be processed from different data sources in a finite amount of time.
3.5. Non- Functional Requirements
The major non-functional Requirements of the system are as follows

1. Usability

      The system is designed with completely automated process hence there is no or less user intervention. 

2. Reliability 

     The system is more reliable because of the qualities that are inherited from the chosen platform java. The code built by using java is more reliable.

3. Performance

      This system is developing in the high level languages and using the advanced front-end and back-end technologies it will give response to the end user on client system with in very less time.
4. Supportability

       The system is designed to be the cross platform supportable. The system is supported on a wide range of hardware and any software platform, which is having JVM, built into the system.

5. Implementation

  The system is implemented with Java environment. The java software development kit and net beans used as software and windows xp professional is used as the platform. 

3.6. Software system attributes          
Scalability: The number of intermediate sources can be scalable, thus changing or updating the data.

Reliability: This proposed system should provide reliable results. 

Resource Utilization Efficiency: This system will utilize less processing time.

Security: This system is developed in java hence it is secured

Safety: This system uses java code safety

Capacity: Any number of users will be able to use this system

Interfaces: They will be provided in the design document

Availability: This system will always cater to the needs of the users

Accuracy: This system will produce accurate results

Reusability: This system can be easily reused

Ease of Use: This system is developed using graphical user interface hence it is easy to use

Interoperability: Through the use of Preprocessed file interoperability is achieved

Portability: The system is portability any version of windows as well as Linux Systems.

Privacy: This system ensures privacy of the data

System Administration Ease: This system will provide easy administration capabilities

Expandability: Any number of modules can be added to this system

Maintainability: The system would be design as open system and new method is easily added

Testability: Test cases will be written to ensure correct results
Chapter 4

                                                                                     4. DESIGN

  4.1. General

          Design is a meaningful engineering representation of something that is to be built. Software design is a process through which the requirements are translated into a representation of the software. Design is the place where quality is fostered in software engineering. Design is the perfect way to accurately translate a customer’s requirement in to a finished software product. Design creates a representation or model, provides detail about software data structure, architecture, interfaces and components that are necessary to implement a system. This chapter discusses about the design part of the project. Here in this document the various UML diagrams that are used for the implementation of the project are discussed.
4.2. Introduction
     The Unified Modeling Language (UML) is a visual modeling language used to specify, visualize, construct and document a software intensive system. The embedded real-time software systems encountered in applications such as telecommunications, school systems, aerospace, and defense typically tends to be large and extremely complex. It is crucial in such systems that the software is designed with a sound architecture. A good architecture not only simplifies construction of the initial system, but also, readily accommodates changes forced by a steady stream of new requirements.

The UML represents a collection of best engineering practices that have proven successful in the modeling of large and complex systems. The UML is a very important part of developing objects oriented software and the software development process.  The UML uses mostly graphical notations to express the design of software projects.  Using the UML helps project teams communicate, explore potential designs, and validate the architectural design of the software.
The primary goals in the design of the UML are: Provide users with a ready-to-use, expressive visual modeling language so they can develop and exchange meaningful models. Provide extensibility and specialization mechanisms to extend the core concepts. Be independent of particular programming languages and development processes. Provide a formal basis for understanding the modeling language. Encourage the growth of the OO tools market. Support higher-level development concepts such as collaborations, frameworks, patterns and components. Integrate best practices. 
4.3. Modeling
4.3.1. Class Diagram
      UML Class diagram shows the static structure of the model. The class diagram is a collection of static modeling elements, such as classes and their relationships, connected as a graph to each other and to their contents
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                     Figure 4.1: Modeling Through Class Diagram
4.3.2. Use Case Diagram
      A use case diagram is a graph of actors, a set of use cases enclosed by a system boundary, communication (participation) associations between the actors and users and generalization among use cases. The use case model defines the outside (actors) and inside (use case) of the system’s behavior
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                      Figure 4.2: Modeling Through Use Case Diagram

4.3.3. Activity Diagram
    The purpose of activity diagram is to provide a view of flows and what is going on inside a use case or among several classes. Activity diagram can also be used to represent a class’s method implementation. A token represents an operation. An activity is shown as a round box containing the name of the operation. An outgoing solid arrow attached to the end of activity symbol indicates a transition triggered by the completion.

                         1





2
[image: image4.emf]Retrieve 

Attribute Set

Normalizes

Compute 

Likelihood Criteria

Select Number of 

Components

                     







                 3




        4
[image: image5.emf]Input 

Location

Sort in Decending 

Order

Calculate E

Calculate F

Select Best 

Partition

[image: image6.emf]Retrieve 

DataSet

Apply PDF 

Algorithm

Update Location 

Infomation

Compute 

MDL




5




        6
[image: image7.emf]Input Dataset

Initialize 

Table Size

Compute the Number of 

Similar Points

Update OUT

[image: image8.emf]Retrieve 

Dataset

Compute 

Membership Matrix

Compare different 

distances

Compute 

Cluster Center


       Figure 4.3: Modeling through Activity Diagram 

4.3.4. Sequence Diagram

       Sequence diagram are an easy and intuitive way of describing the behavior of a system by viewing the interaction between the system and its environment. A Sequence diagram shows an interaction arranged in a time sequence. A sequence diagram has two dimensions: vertical dimension represents time; the horizontal Dimension represents different objects. The vertical line is called is the object’s life line. The lifeline represents the object’s existence during the interaction.
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                 Figure 4.4: Modeling Through Sequence Diagram
4.3.5. Collaboration Diagrams
      The collaboration diagram represents a collaboration, which is a set of objects Related in a particular context, and interaction, which is a set of messages exchanged among the objects within the collaboration to achieve a designed Outcome.
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                   Figure 4.5: Modeling Through Collabration Diagram
4.4. Conclusion
In this section of the documentation we have described the design considerations, several design diagrams are also specified which contains use case diagram, class diagram, and sequence diagrams, activity diagram, collaboration diagram are also specified with modules of the proposed project.

Chapter 5

5. IMPLEMENTATION TECHNIQUE 
5.1. Introduction to PCKA
    A novel projected clustering algorithm, called PCKA (Projected Clustering based on the K-means Algorithm). PCKA is composed of three phases: attribute relevance analysis, outlier handling and discovery of projected clusters. Our algorithm is partitional in nature and able to automatically detect projected clusters of very low dimensionality embedded in high-dimensional space, thereby avoiding computation of the distance in the full-dimensional space.

Problem Statement:
To describe our algorithm, we will introduce some notation and definitions. Let DB be a dataset of d-dimensional points, where the set of attributes is denoted by [image: image15.png]be the set of N data points,where[image: image16.png]
Each [image: image17.png] corresponds to the value of data point xi on attribute Aj. In what follows, we will call xij a 1-d point. In this chapter, we assume that each data point xi belongs either to one projected cluster or to the set of outliers OUT . Given the number of clusters nc, which is an input parameter, a projected cluster [image: image18.png] is defined as a pair [image: image19.png]where SPs is a subset of data points of DB and SDs is a subset of dimensions of A, such that the projections of the points in SPs along each dimension in SDs are closely clustered. The dimensions in SPs are called relevant dimensions for the cluster Cs. The remaining dimensions, i.e., [image: image20.png] are called irrelevant dimensions for the cluster Cs. The cardinality of the set SDs is denoted by ds, where ds · d and ns denotes the cardinality of the set SPs, where ns < N.

PCKA is focused on discovering axis-parallel projected clusters which satisfy the following properties:

1) Projected clusters must be dense. Specifically, the projected values of the data points along each dimension of [image: image21.png] form regions of high density in comparison to those in each dimension of [image: image22.png] 

2) The subset of dimensions [image: image23.png] may not be disjoint and they may have different cardinalities. 

3) For each projected cluster [image: image24.png] the projections of the data points in [image: image25.png] along each dimension in [image: image26.png] are similar to each other according to a similarity function, but dissimilar to other data points not in [image: image27.png] 
The first property is based on the fact that relevant dimensions of the clusters contain dense regions in comparison to irrelevant ones and such a concept of ”density” is comparatively relative across all the dimensions in the dataset. The reason for the second and third properties is trivial. In our clustering process, which is K-means-based, we will use the Euclidean distance in order to measure the similarity between a data point and a cluster center such that only dimensions that contain dense regions are involved in the distance calculation. Hence, the discovered clusters should have, in general, a concave (near spherical) shape.
Note that the algorithm that we propose does not presume any distribution on each individual dimension for the input data. Furthermore, there is no restriction imposed on the size of the clusters or the number of relevant dimensions of each cluster. A projected cluster should have a significant number of selected (i.e., relevant) dimensions with high relevance in which a large number of points are close to each other
PCKA proceeds in three phases:
1) Attribute relevance analysis: The goal is to identify all dimensions in a dataset which exhibit some cluster structure by discovering dense regions and their location in each dimension. The underlying assumption for this phase is that in the context of projected clustering, a cluster should have relevant dimensions in which the projection of each point of the cluster is close to a sufficient number of other projected points (from the whole data set), and this concept of ”closeness” is relative across all the dimensions. The identified dimensions represent potential candidates for relevant dimensions of the clusters. 

2) Outlier handling: Based on the results of the first phase, the aim is to identify and eliminate outlier points from the dataset. Like the majority of clustering algorithms, PCKA considers outliers as points that do not cluster well. 
3) Discovery of projected clusters: The goal of this phase is to identify clusters and their relevant dimensions. The clustering process is based on a modified version of the K-means algorithm in which the computation of distance is restricted to subsets where the data point values are dense. Based on the identified clusters, in the last step of our algorithm we refine the results of phase 1 by selecting the appropriate dimensions of each cluster.

5.2. Explanation of PCKA Algorithm

Phase 1:
1: Input: DB, k, m _max

2: Output: Z

3: LOC ←ǿ ;
4: Choose m_max;

5: for j = 1 to d do

6: Apply Algorithm 1(Aj, m_max, k, m, αl ,βl, γl);

7: Apply EM to partition the sparseness degree in

dimension j into m components;

8: for i = 1 to m do

9: LOC ←LOC U median(component);

10: end for

11: end for

12: Apply Algorithm 2 (LOC, E, F);

13: Based on the locq values in F, select the components

which represent dense regions;

14: Based on Definition 2 compute the matrix
Phase 2:

1: Input: DB, Z, Є, λ, 
2: Output: RDB, T, OUT

3: OUT←ǿ ;

4: Let count be a table of size N;

5: for i =1 to N do

6: count[i]← 0;

7: end for

8: for i = 1 to N do

9: if ∑Zij==0 then
10: OUT ←OUT U {xi};

11: else

12: for j = i + 1 to N do

13: Estimate the number of similar binary vector of zi

and zj:

14: if JC(zi; zj) > Є then

15: count[i]← count[i]+1;

16: count[j]_ count[j]+ 1;

17: end if

18: end for

19: if count[i] < λ then

20: OUT ←OUT U{xi};

21: end if

22: end if

23: end for

24: RDB ←DB - OUT;

25: Based on RDB and OUT extract T from Z;
Phase 3:

1: Input: RDB, T, nc, γ
2: Output: vs, U(Nr*nc), SDs

3: Choose the cluster centers randomly from RDB;

4: repeat

5: Compute the membership matrix U(Nr*nc):

6: for i =1 to Nr do

7: for j =1 to nc do

8: if dist(xi, vs) < dist(xi, vj) then

9: uij = 0;

10: else

11: uij =1;

12: end if

13: end for

14: end for

15: Compute the cluster center:

16:  vsl=∑i-1Nr(vis*ti  *xi )
             ---------------------  (s=1,…….,nc);
             ∑i-1Nr vis 
17: until convergence, i.e., no change in centroid coordinates;

18: Based on Definition 4, detect the set SDs of relevant dimensions for each   clusterCs;
5.3. Sample Code
DataPoints:

import javax.swing.*;

import javax.swing.SwingUtilities;

import javax.swing.filechooser.*;

import java.io.*;

import java.util.*;

package miningclusters;

public class DataPoint 

{

    private double mX,mY;

    private String mObjName;

    private Cluster mCluster;

    private double mEuDt;

    public DataPoint(double x, double y, String name) 

    {

        this.mX = x;

        this.mY = y;

        this.mObjName = name;

        this.mCluster = null;

    }

    public void setCluster(Cluster cluster) 

    {

        this.mCluster = cluster;

        calcEuclideanDistance();

    }

    public void calcEuclideanDistance() 

    { 

        mEuDt = Math.sqrt(Math.pow((mX - mCluster.getCentroid().getCx()),2) + Math.pow((mY - mCluster.getCentroid().getCy()), 2));

    }

    public double testEuclideanDistance(Centroid c) 

    {

        return Math.sqrt(Math.pow((mX - c.getCx()), 2) + Math.pow((mY - c.getCy()), 2));

    }

    public double getX() 

    {

        return mX;

    }

    public double getY() 

    {

        return mY;

    }

    public Cluster getCluster() 

    {

        return mCluster;

    }

    public double getCurrentEuDt() 

    {

        return mEuDt;

    }

    public String getObjName() 

    {

        return mObjName;

    }

}

Clustering:

package miningclusters;

import java.util.Vector;

class Cluster 

{

    private String mName;

    private Centroid mCentroid;

    private double mSumSqr;

    private Vector mDataPoints;

    public Cluster(String name) 

    {

        this.mName = name;

        this.mCentroid = null; 

        mDataPoints = new Vector();

    }

    public void setCentroid(Centroid c) 

    {

        mCentroid = c;

    }

    public Centroid getCentroid() 

    {

        return mCentroid;

    }

    public void addDataPoint(DataPoint dp) 

    { 

        dp.setCluster(this); 

        this.mDataPoints.addElement(dp);

        calcSumOfSquares();

    }

    public void removeDataPoint(DataPoint dp) 

    {

        this.mDataPoints.removeElement(dp);

        calcSumOfSquares();

    }

    public int getNumDataPoints() 

    {

        return this.mDataPoints.size();

    }

    public DataPoint getDataPoint(int pos) 

    {

        return (DataPoint) this.mDataPoints.elementAt(pos);

    }

    public void calcSumOfSquares() 

    { 

        int size = this.mDataPoints.size();

        double temp = 0;

        for (int i = 0; i < size; i++) 

        {

            temp = temp + ((DataPoint)

            this.mDataPoints.elementAt(i)).getCurrentEuDt();

        }

        this.mSumSqr = temp;

    }

    public double getSumSqr() 

    {

        return this.mSumSqr;

    }

    public String getName() 

    {

        return this.mName;

    }

    public Vector getDataPoints() 

    {

        return this.mDataPoints;

    }

}
Displaying Clusters:

     int maxX = -99999;

        int minX = 99999;

        int maxY = -99999;

        int minY = 99999;

        for(int i=0;i<ii;i++)

        {

            if(kk==Integer.parseInt(Clusters[i][0]))

            {

                if((int)Double.parseDouble(Clusters[i][2]) > maxX)

                    maxX = (int)Double.parseDouble(Clusters[i][2]);

                if((int)Double.parseDouble(Clusters[i][2]) < minX)

                    minX = (int)Double.parseDouble(Clusters[i][2]);

                if((int)Double.parseDouble(Clusters[i][3]) > maxY)

                    maxY = (int)Double.parseDouble(Clusters[i][3]);

                if((int)Double.parseDouble(Clusters[i][3]) < minY)

                    minY = (int)Double.parseDouble(Clusters[i][3]);

            }

        }

        Graphics g = jPanel1.getGraphics();

        System.out.println();

        System.out.println();

        System.out.println(minX+"    "+maxX);

        System.out.println(minY+"    "+maxY);

        System.out.println();

                Random rand = new Random();

                Color c=newColor(Math.abs(rand.nextInt())%255,Math.abs(rand.nextInt())%255,Math.abs(rand.nextInt())%255);

        for(int i=0;i<ii;i++)

        {

            if(kk==Integer.parseInt(Clusters[i][0]))

            {

                int x = (int)Double.parseDouble(Clusters[i][2]);

                int y = (int)Double.parseDouble(Clusters[i][3]);

                int xx = (int) (800.0/(maxX-minX)*(x-minX) );

                int yy = (int) (500.0/(maxY-minY)*(y-minY) );

                System.out.println(xx+"  "+yy);

                g.setColor(c);

                g.fillRect(xx,yy,5,5);

                g.drawString(Clusters[i][1],xx+5,yy+5);

            }

        }
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6. TESTING & SCREENS 

6.1. Testing introduction 
      The purpose of testing is to discover errors. Testing is the process of trying to discover every conceivable fault or weakness in a work product. It provides a way to check the functionality of components, sub assemblies, assemblies and/or a finished product It is the process of exercising software with the intent of ensuring that the Software system meets its requirements and user expectations and does not fail in an unacceptable manner. There are various types of test. Each test type addresses a specific testing requirement.

Unit testing

       Unit testing involves the design of test cases that validate that the internal program logic is functioning properly, and that program input produces valid outputs. All decision branches and internal code flow should be validated. It is the testing of individual software units of the application .it is done after the completion of an individual unit before integration. This is a structural testing, that relies on knowledge of its construction and is invasive. Unit tests perform basic tests at component level and test a specific business process, application, and/or system configuration. Unit tests ensure that each unique path of a business process performs accurately to the documented specifications and contains clearly defined inputs and expected results.

Integration testing

       Integration tests are designed to test integrated software components to determine if they actually run as one program.  Testing is event driven and is more concerned with the basic outcome of screens or fields. Integration tests demonstrate that although the components were individually satisfaction, as shown by successfully unit testing, the combination of components is correct and consistent. Integration testing is specifically aimed at   exposing the problems that arise from the combination of components.

Integration testing is of three types:

· Bottom up Integration





· Top down Integration

· Sandwich Integration

 Bottom up integration testing consists of unit testing followed by system testing. Unit testing has the goal of testing individual modules in the system. Subsystem testing is concerned with verifying the operation of the interfaces between modules in the sub systems. Top down integration testing starts with the main routine and one or two immediately subordinate routines in the system structure. Top down integration requires the use of program stubs to simulate the effect of lower level routines that are called by those being tested.

Top down method has the following advantages:

· System integration is distributed through the implementation phase. Modules are integrated as they are developed.

· Top level interfaces are tested first and mist often.

· The top level routine provides a natural test harness for lower level routines.

· Errors are localized to the new modules and interfaces that are being added.

Functional test

       Functional tests provide systematic demonstrations that functions tested are available as specified by the business and technical requirements, system documentation, and user manuals. Functional testing is centered on the following items: 
Valid Input               :  identified classes of valid input must be accepted.

Invalid Input             : identified classes of invalid input must be rejected.

Functions                 : identified functions must be exercised.

Output           
:         identified classes of application outputs must be exercised.

Systems/Procedures: interfacing systems or procedures must be invoked.

Organization and preparation of functional tests is focused on requirements, key functions, or special test cases. In addition, systematic coverage pertaining to identify Business process flows; data fields, predefined processes, and successive processes must be considered for testing. Before functional testing is complete, additional tests are identified and the effective value of current tests is determined.

System Test

      System testing ensures that the entire integrated software system meets requirements. It tests a configuration to ensure known and predictable results. An example of system testing is the configuration oriented system integration test. System testing is based on process descriptions and flows, emphasizing pre-driven process links and integration points.

6.2. Test cases
	Test Case ID: 
	1

	Test Case Name:
	Required Software Testing

	Purpose:
	To check weather the required Software is installed on the systems

	Input:

	Enter Javac –version, and Java –version

	Expected Result:
	Should Display the version number for both the java compiler and Java virtual Machine


	Test Case ID: 
	2

	Test Case Name:
	Programs Integration Testing

	Purpose:
	To ensure that all the modules works together

	Input:

	Open and Run the Project

	Expected Result:
	All the code  should  run in the common execution Environment


6.3. Validation
	Test Case ID: 
	1

	Test Case Name:
	Required Software Testing

	Input:

	Enter Javac –version, and Java –version

	Actual Result:
	Displays java version "1.6.0_01" and Javac "1.6.0_01"

	Failure
	If the java environment is not installed then the Deployment fails

	Result
	Successes


	Test Case ID: 
	2

	Test Case Name:
	Programs Integration Testing

	Input:

	Open the Code Project

	Actual Result:
	All the code Executed

	Failure
	Code does not Executed.

	Result
	Successes


6.4. Screens 

 1. GUI for Mining Projected clusters in High dimensional spaces

[image: image28.png]
2. Browse the dataset file from your system.

[image: image29.png]
3. Extract or Initialization of the dataset file.

 [image: image30.png]
4. Click on the Data items we will get the number of data items from the dataset file.

[image: image31.png]
5. Click on the set of attributes button will get the number of attributes of the each data item.

[image: image32.png]
6. After that click on the Retrieve Data points button will get the number of data points of the each data item.

[image: image33.png]
7. Give the number of clusters in the text field. After that you select the X-axis attribute and Y-axis attribute and then press on the compute clusters button, will get number of clusters, each cluster is having a group of data items.

[image: image34.png]
8. Select any cluster from the existed and display the cluster.

[image: image35.png]
9. Graphical display of the selected cluster.

[image: image36.png]
10. at same way select all clusters, how these clusters are displayed graphically.

[image: image37.png]
6.5 Conclusion

In this section we have shown how testing is performed and different test cases are designed to test the system for its performance as well as debugging process. The validation of the test cases and also screen shots of the proposed system as shown.

Chapter 7

7. CONCLUSION & FUTUREWORK

Conclusion 
     In this thesis we have proposed a robust distance-based projected clustering algorithm for the challenging problem of high dimensional clustering, and illustrated the suitability of our algorithm in tests and comparisons with previous work. Experiments show that PCKA provides meaningful results and significantly improves the quality of clustering when the dimensionalities of the clusters are much lower than that of the data set. Moreover, our algorithm yields accurate results when handling data with outliers. The performance of PCKA on real data sets suggests that our approach could be an interesting tool in practice. The accuracy achieved by PCKA results from its restriction of the distance computation to subsets of attributes, and its procedure for the initial selection of these subsets. Using this approach, we believe that many distance-based clustering algorithms could be adapted to cluster high-dimensional data sets.

Future Work
    There are still many obvious directions to be explored in the future. The interesting behavior of PCKA on generated data sets with low dimensionality suggests that our approach can be used to extract useful information from gene expression data that usually have a high level of background noise. From the algorithmic point of view, we believe that an improved scheme for PCKA is possible. One obvious direction for further study is to extend our approach to the case of arbitrarily oriented clusters. Another interesting direction to explore is to extend the scope of phase 1 of PCKA from attribute relevance analysis to attribute relevance and redundancy analysis. This seems to have been ignored by all of the existing projected clustering algorithm
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Appendix 

Appendix A
	Definition
	Description

	Data mining
	It is the process of extracting potentially useful information from a data set

	Cluster
	Clustering is a division of data into groups of similar objects. Each group, called cluster

	Knowledge Discovery in Databases
	 A synonym for data mining.

	Supervised learning
	A machine learning technique for deducing a function from training data.

	Unsupervised learning
	A class of problems in which one seeks to determine how the data are organized.

	Subspace clustering
	subspace clustering is to identify all dense regions in all subspaces

	Projected clustering
	projected clustering, as the name implies, the main focus is on discovering clusters that are projected onto particular spaces

	Outlier
	Outlier is defined as an observation that deviates too much from other observations.

	Machine learning
	a scientific discipline that is concerned with the design and development of algorithms that allow computers to learn based on data, such as from sensor data or databases.
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