
1

Hibernate Overview

By

Khader Shaik

2

Agenda

• Introduction to ORM

• Overview of Hibernate

• Why Hibernate

• Anatomy of Example

• Overview of HQL

• Architecture Overview

• Comparison with iBatis and JPA

3

Introduction to ORM

• Object Persistence

– Saving objects for future use

– Storage could be a File system, RDBMS etc

– Today’s popular data storage systems are RDBMS

– Objects are not directly mapped to RDBMS tables

• Traditional Solutions

– JDBC/SQL code embedded in Class, EJB (J2EE)

solution etc

– More coding, container dependent etc are the issues

– Best practice would be to keep the Persistence

separate from classes

4

Introduction to ORM cont..

• ORM - Object Relational Mapping – New
solution
– Persists Objects in a Relational Database

– Transparent solution; underlying tables are hidden
from classes

– Support CRUD (Create, Read, Update and Delete)
operations

– Provides RDBMS Vendor independence

• ORM Solutions
– Hibernate – Open Source

– iBatis SQL Maps – Open Source

– TopLink – Commercial

– JPA – Java EE 5 Solution

5

Overview of Hibernate

• Open Source light-weight ORM solution

• Doesn’t require container (light-weight)

• Object based model

• Transparent solutions

• It is around from quite some time

• Very well matured and adopted by a large

developer community

• Latest Version 3.x

6

Why Hibernate?
• Hibernate was introduced to address the issues of Entity

Beans

• Hibernate is built on top of JNDI, JDBC, JTA

• It uses XML based configuration files for mapping

• Supports many databases like Sybase, Oracle, MySQL,
other Object Oriented Databases etc.

• Easy migration from one vendor database to another

• Hibernate generates the JDBC Code based on the
underlying vendor database

• Hibernate APIs are very simple to learn and use

• Provides quite powerful object query language known as
Hibernate Query Language (HQL)

7

Example - Java Class

public class Trade {

private Long tradeId;
private String clientId;

private String symbol;

private String orderType;

public Long getTradeId() { return id; }
private void setTradeId(Long id) { this.tradeId = id; }

public String getSymbol() { return symbol; }

public void setSymbol(String text) { this.symbol = text; }

}

8

Hibernate Persistence Code
…

//Initialize Hibernate session
Session session = getSessionFactory().openSession();

//Start the transaction

Transaction tx = session.beginTransaction();

//Object to be persisted

Trade trade = new Trade();
//Set the object values

//Persist the Object

session.save(trade);

//Commit the transaction

tx.commit();
//Close the Hibernate Session

session.close();

….

9

How is Hibernate Persisting?

• Hibernate used XML Mapping file to

generate the SQL code to save the object

<hibernate-mapping>

<class name=“Trade" table=“Trades">

<id name=“tradeId" column=“TRADE_ID"></id>

<property name=“clientId" column=“CLIENT_ID"/>

<property name=“symbol" column=“SYMBOL"/>

<property name=“orderType" column=“ORDER_TYPE"/>

</class>

</hibernate-mapping>

Hibernate Generates SQL Statement like

INSERT INTO Trades (TRADE_ID, CLIENT_ID, SYMBOL, ORDER_TYPE)

VALUES (30, “CL7678”, “IBM”, “M”)

10

RDBMS Table

Create Table Trades(

TRADE_ID int not null,

CLIENT_ID varchar(50),

SYMBOL varchar(15),

ORDER_TYPE char(1)

)

11

HQL - Example

• HQL is fully object oriented query

language
Session newSession = getSessionFactory().openSession();

Transaction newTransaction = newSession.beginTransaction();

List trades = newSession.find("from Trades as t order by t.tradeId asc");

System.out.println(trades.size() + " trades(s) found:");

for (Iterator iter = trades.iterator(); iter.hasNext();) {

Trade trade = (Trade) iter.next();

System.out.println(“ID: “ + trade.getOrderId() +

“ Symbol:” + trade.getSymbol());

}

newTransaction.commit();

newSession.close();

Generates the below SQL Statement:

select t.TRADE_ID, t.CLIENT_ID, t.SYMBOL, t.ORDER_TYPE

from TRADE t

order by t.TRADE_ID asc

12

Hibernate Architecture

Business Layer

Persistence Layer

Hibernate

J2EE APIs

JNDI, JDBC, JTA

Data Layer

13

Hibernate Features

• Inheritance, Polymorphism Support

• Custom Data Types

• Collections

• Uni and Bi-directional entity Associations

• Transactions and concurrency

• Caching

• Connection Pooling

• HQL – Advanced Object Query Language

etc

14

Hibernate Vs Others

• Other popular ORMs are

– iBatis

– JPA

– TopLink

• iBatis

– Needs SQL Statements to be coded in its Mapping

files

– Good when developer needs control over the SQL

• TopLink

– Very similar and quite powerful but costs

– Vendor lockin

15

Hibernate Vs Others cont..
• JPA – Java Persistence API

– Java EE 5 ORM Solution

– Part of EJB 3 Specification
– Supported by all Java EE vendors

– Designed based on popular ORM solutions like iBatis,
JDO, TopLink including Hibernate

– Replaces Entity Beans

– It’s a more of specification; you can use any provider
like TopLink etc

– Depends on provider which may implement more
than standard specification

– JPA lags in defining Caching and other advanced
features

– Useful in case of standard Java based solution using
Java EE platform

16

Thank You

khaderv@yahoo.com

www.ksvali.com

