ABSTRACT

Wireless data broadcast is a promising technique for information dissemination that leverages the computational capabilities of the mobile devices in order to enhance the scalability of the system. Under this environment, the data are continuously broadcast by the server, interleaved with some indexing information for query processing. Clients may then tune in the broadcast channel and process their queries locally without contacting the server. The spatial query processing for wireless broadcast systems has only considered snapshot queries over static data.

An air indexing framework that 1) outperforms the existing (i.e., snapshot) techniques in terms of energy consumption while achieving low access latency and 2) constitutes the first method supporting efficient processing of continuous spatial queries over moving objects.
Contents
Chapter 1 Introduction

Chapter 1

Introduction

Mobile devices with computational, storage, and wireless communication capabilities (such as PDAs) are becoming increasingly popular. At the same time, the technology behind positioning systems is constantly evolving, enabling the integration of low-cost GPS devices in any portable unit. Consequently, new mobile computing applications are expected to emerge, allowing users to issue location-dependent queries in a ubiquitous manner. Consider, for instance, a user (mobile client) in an unfamiliar city, who would like to know the 10 closest restaurants. This is an instance of a k nearest neighbor (kNN) query, where the query point is the current location of the client and the set of data objects contains the city restaurants. Alternatively, the user may ask for all restaurants located within a certain distance, i.e., within 200 meters. This is an instance of a range query.

Spatial queries have been studied extensively in the past and numerous algorithms exist (e.g., [10], [11], [21]) for processing snapshot queries on static data indexed by a spatial access method. Subsequent methods [22], [24], [30] focused on moving queries (clients) and/or objects. The main idea is to return some additional information (e.g., more NNs [22], expiry time [24], validity region [30]) that determines the lifespan of the result. Thus, a moving client needs to issue another query only after the current result expires. These methods focus on single query processing, make certain assumptions about object movement (e.g., static in [22], [30], linear in [24]), and do not include mechanisms for maintenance of the query results (i.e., when the result expires, a new query must be issued).

In the aforementioned methods, the processing load at the server side increases with the number of queries. In applications involving numerous clients, the server may be overwhelmed by their queries or take prohibitively long time to answer them. To avoid this problem, propose wireless data broadcast, a promising technique that leverages the computational capabilities of the clients’ mobile devices and pushes the query processing task entirely to the client side. In this environment, the server only monitors the locations of the data objects, but is unaware of the clients and their queries. The data objects are continuously broadcast by the server, interleaved with some indexing information. The clients utilize the broadcast index, called air index, to tune in the channel only during the transmission of the relevant data and process their queries locally. Thus, the server load is independent of the number of clients.

The location-dependent spatial query processing for wireless broadcast systems has only considered snapshot queries over static data. On the other hand, existing spatial monitoring techniques do not apply to the broadcast environment because they assume that the server is aware of the client locations and processes their queries centrally. The Broadcast Grid Index (BGI) method, is suitable for both snapshot and continuous queries. Furthermore, BGI extends to the case that the data are also dynamic. The below figure shows an example of continuous monitoring using BGI. The data objects are taxis that issue location updates to a central server using unicast uplink messages. The server processes the location updates and continuously broadcasts the object information along with an up-to-date index using a wireless (e.g., 3G) network. Finally, the interested clients (e.g., mobile devices) listen to the broadcast channel and process their queries locally. Note that since the server tasks are independent of the number and the positions of the clients, this architecture may theoretically support infinite concurrent clients/queries. On the other hand, high object (e.g., taxi) cardinality increases both the server load (for processing the updates) and the length of the broadcast cycle.
[image: image1.wmf]³

BGI and broadcast techniques, in general, are preferable for applications, where the number of clients is large with respect to the number of data objects. As an example [33], Microsoft’s MSN Direct uses broadcasting as an information dissemination method. Subscribers can receive live information regarding traffic conditions, stock quotes, gas prices, movie times, weather reports, etc. Even though location-based queries are not supported, we believe that this will be the next step, i.e., allowing the user to filter out unnecessary information using selective tuning (thus, reducing the power consumption).
Chapter 2

Related work

 Section 2.1 provides the main concept of wireless broadcasting and discusses techniques for query processing on one-dimensional data. Section 2.2 overviews previous work on spatial query processing using air indexes.
2.1 Wireless Broadcasting and Air Indexes

The transmission schedule in a wireless broadcast system consists of a series of broadcast cycles. Within each cycle the data are organized into a number of index and databuckets. A bucket (which has a constant size) corresponds to the smallest logical unit of information, similar to the page concept in conventional storage systems. A single bucket may be carried into multiple network packets (i.e., the basic unit of information that is transmitted over the air). However, they are typically assumed to be of the same size (i.e., one bucket equals one packet).

The most common data organization method is the (1, m) interleaving scheme [14], as shown in below figure. The data objects are divided into m distinct segments and each data segment in the transmission schedule is preceded by a complete version of the index. In this way, the access latency for a client is minimized, since it may access the index (and start the query processing) immediately after the completion of the current data segment. An alternative distributed index that reduces the degree of replication in order to further improve the performance. Specifically, instead of the entire index being replicated prior to each data segment, only the index that corresponds to the subsequent segment is included (i.e., replication occurs at the upper levels of the index tree).
[image: image6.emf]

The main motivation behind air indexes is to minimize the power consumption at the mobile client. Although in a broadcast environment, the uplink transmissions are avoided, receiving all the downlink packets from the server is not energy efficient. For instance, the Cabletron 802.11 network card (wireless LAN) was found to consume 1,400 mW in the transmit, 1,000 mW in the receive, and 130 mW in the sleep mode [5]. Therefore, it is imperative that the client switches to the sleep mode (i.e., turns off the receiver) whenever the transmitted packets do not contain any useful information. Based on the data organization technique in the above figure, the query processing at the mobile client is performed as follows: 1) the client tunes in the broadcast channel when the query is issued and goes to sleep until the next index segment arrives, 2) the client traverses the index and determines when the data objects satisfying its query will be broadcast, and 3) the client goes to sleep and returns to the receive mode only to retrieve the corresponding data objects.

To measure the efficiency of an indexing method, two performance metrics have been considered in the literature: 1) tuning time, i.e., the total time that the client stays in the receiving mode to process the query and 2) access latency, i.e., the total time elapsed from the moment the query is issued until the moment that all the corresponding objects are retrieved. In other words, the tuning time is a measure of the power consumption at the mobile client, while the access latency reflects the user-perceived quality of service.

Most of the existing work on query processing for wireless data broadcast focuses on conventional data and one-dimensional indexes. There are two methods, namely hashing and flexible index, for retrieving records based on their key values.

Broadcast Disks, is a method that assumes knowledge of the user access patterns. Objects with high access frequency are replicated within the broadcast cycle to reduce access latency. The Broadcast Disks approach with a set of update dissemination policies is complemented. There is a problem of skewed data access; they build unbalanced tree structures based on the object frequencies. There is no knowledge about the user access patterns (i.e., objects are equally likely to be queried). A flat broadcast program (where each object appears once in the broadcast cycle) achieves the best expected performance [2].
2.2 Spatial Query Processing Using Air Indexes

There is a possibility of broadcasting spatial data together with a data partitioning index. The are several techniques for spatial query processing that adjust to the limited memory of the mobile device. The methods evaluate experimentally for range queries (using the R+z-tree [3] as the underlying index) and illustrates the feasibility of this architecture. By focusing on single nearest neighbor (NN) search in broadcast environments, both methods utilize a precomputed Voronoi diagram that can answer any NN query by identifying the Voronoi cell that encloses it. Specifically, the Voronoi diagram of the data objects is built prior to the construction of the air index. The D-tree [28] then recursively partitions the data space (containing the Voronoi cells) into areas with a similar number of cells. This procedure is repeated until each area contains exactly one cell. On the other hand, the grid partition index [34] divides the space into disjoint grid cells, each intersecting multiple Voronoi cells. Both methods are found superior to broadcast solutions based on R+-trees.

The techniques are related to kNN search on the air. an approximate kNN query processing algorithm that is not guaranteed to always return k objects. The idea is to use an estimate r of the radius that is expected to contain at least k points. Using this estimate, the search space can be pruned efficiently at the beginning of the search process. A learning algorithm that adaptively reconfigures the estimation algorithm to reflect the distribution of the data. Regarding the query processing phase, two different approaches are proposed: 1) the standard R+- tree index enhanced with the aforementioned pruning criterion and 2) a new sorted list index that maintains a sorted list of the objects on each spatial dimension. The sorted list method is shown to be superior to the R+-tree only for small values of k.

There are several algorithms to improve kNN query processing in sequential-access R-trees. They investigate the effect of different broadcast organizations on the tuning time and also propose the use of histograms to enhance the pruning capabilities of the search algorithms. The access latency of kNN search is reduced by accessing the data segment of the broadcast cycle. In particular, there is a method where the data objects are sorted according to one spatial coordinate. In this way, the client does not need to wait for the next index segment to arrive, but can start query processing immediately by retrieving the actual data objects.

The Hilbert Curve Index (HCI) [32] is a general framework for processing both range and kNN queries in wireless broadcast systems. HCI is based on the ð1;mÞ interleaving scheme; it exploits the linear access of the broadcast channel by transforming the two-dimensional space into a one-dimensional one, using the Hilbert space-filling curve [16].

Once the objects are mapped onto the Hilbert curve, they are indexed with a B+-tree, which is then broadcast on the air (as the index segment). Range queries are processed as follows. Consider the below figure Fig 3(a), where the Hilbert values range from 0 to 15, and the query region is the shaded rectangle. The client first determines the first (a) and the last (b) points on the Hilbert curve that intersect the query window (illustrated as crosses in the figure). Letting H(a) and H(b) be the Hilbert values of a and b, the client listens to the first broadcast index segment and retrieves all objects inside the Hilbert range [H(a), H(b)]. In this example, H(a) =2 and H(b) =13 (note that the Hilbert value of a point is the integer that corresponds to its closest solid square in two-dimensional space). Objects p1; p2; p3; p4 are identified (with H(p1) =2; H(p2) = 6; H(p3) =7; H(p4) = 9), but not all of them satisfy the query. Thus, they are mapped back to the two-dimensional space and their associated data are received (from the corresponding data segment) only if they are inside the query region; in our example, the result includes only p1.
[image: image7.emf]

In HCI, kNN queries are processed with a two-step approach. In the first step, the query point q is mapped onto the Hilbert curve and the k objects closest to q (on the curve) are determined. In the second step, the maximum distance dmax (from q) across these k objects is calculated and a range query is processed (in the way described above) to retrieve a set of candidate neighbors. Within this set, the k closest objects to q are identified by comparing their individual distances from q. in the above figure Fig 3(b) exemplifies this procedure for a 2-NN query q, where H(q) = 8. In the first step, the client identifies the k = 2 data objects with the closest Hilbert values to H(q) = 8; these are p3 and p4, with H(p3) = 7 and H(p4) = 9, respectively. In the second step, the client additionally retrieves p1 and p2 since they fall inside the circle with center at q and radius dmax = max(dist(p3), dist (p4)) (shown shaded). Among these candidate objects, the k = 2 closest ones (i.e., p1 and p2) are selected and their contents are retrieved from the corresponding data segments. To conclude the description of HCI, Zheng et al. [32] include an optimization (applicable to both range and kNN queries) that improves the accuracy of the Hilbert curve by partitioning the original space into smaller sub-grids.

The Distributed Spatial Index (DSI) [17] is another general air index, supporting both range and kNN queries. DSI is a distributed index that aims at minimizing the access latency at the cost of an increased tuning time. Similar to HCI, it uses the Hilbert curve to order the data. The broadcast cycle is constructed as follows. The ordered data are partitioned into a number of frames. Each frame contains a fixed number of consecutive objects (on the Hilbert curve) and an index table. Each entry of the index table contains a pointer to a subsequent frame, along with the minimum Hilbert value inside that frame. Specifically, the ith entry points to the eith future frame, where e is a system parameter. Fig. 4 illustrates a situation, where each frame contains 2 data objects, e = 2, and the subscripts of the objects coincide with their Hilbert order. The index table of every frame contains pointers (and the corresponding minimum Hilbert values) to the 1st, 2nd, 4th, and 8th subsequent frame; the arrows in the figure represent the index entries in Frame 1. These exponentially increasing frame intervals enable fast access to both nearby and distant frames. To identify the object with a specific Hilbert value, the client listens to the current frame and follows the pointer to the furthest frame that does not exceed the target Hilbert value (i.e., goes to sleep until that future frame is broadcast). The procedure is repeated for this coming frame and terminates when the search converges to the frame that contains the target object. Query processing in DSI is similar to HCI, relying on the locality preservation of the Hilbert curve. The improved access latency of DSI stems mainly from the fact that the client retrieves indexing information directly when it first tunes in the channel (instead of waiting for the next index segment to be broadcast).
[image: image8.emf]

HCI and DSI are the most general and efficient indexes for data on air, and thus, we use them as benchmarks in our experimental evaluation. Note, however, that these methods are designed for snapshot queries over static data. Their adaptation to continuous queries and dynamic data would be inefficient, since they cannot utilize previous results and require query recomputation from scratch at the beginning of each broadcast cycle.
Chapter 3

Snapshot kNN Queries

For ease of presentation, the BGI method focusing on snapshot kNN queries over static data. The first section introduces the data index and the procedure that forms the index segment. The second Section discusses the query processing algorithm at the client side. The application of our techniques to continuous queries, moving objects and range search is presented in the next sections 4, 5, and 6, respectively. Although our examples are two-dimensional, the extension to higher dimensionalities is straightforward

3.1 Air Index Structure

BGI indexes the data objects with a regular grid, i.e., a partitioning of the data space into square cells of equal size with side-length  (a system parameter). Each cell stores the object coordinates falling inside and maintains their total number. Consider the below figure (a), where the data objects in the system are p1 to p20, and  is set as shown. In the example, cell c0;0 contains the coordinates of objects p1 and p2 and has cardinality 2. Given an object with coordinates x and y, its covering cell is ci,j, where i = [x/] and j = [y/]. Similarly, given a cell ci,j, its corresponding region is [i.i. x j.j.The grid information is placed into packets to form the index segment of BGI. Note that the index segment contains only1 the object coordinates to keep its size small. Following the (1,m) scheme, the full object information is broken into m data segments, each preceded by a copy of the index segment. The value of m is determined using the analysis of [14].

In BGI, the first packet of the index segment provides general system information. It is called header packet and contains the following:

1.
The data space spatial extents,

2.
The cell side-length  of the grid,

3.
The data object size in bytes,

4.
The number m of index/data segments per broadcast cycle,

5.
The order of the current index segment in the broadcast cycle (i.e., an integer

between 1 and m), and

6.
The cell side-length of the dirty grid (used only in the case of moving objects)
The rest of the index segment consists of two parts. The first one, called the upper level, contains the cell cardinalities appearing in a specific order (to be discussed next). The second part of the index segment is called the lower level and contains the object coordinates. The lower level is formed by scanning the upper level cells in the specified order, and sequentially placing their contents (object coordinates) into a list. The upper level is transmitted first, followed by the lower one. The detailed structure of the index segment is depicted in the below figure.

Concerning the upper level, since the bucket2 size is typically small, the list of cell cardinalities has to be divided into multiple packets. Let C be the maximum number of integers that fit in a packet. Each bucket Bi consists of a number, called offset, followed by C-1 cell cardinalities. BGI benefits from compact packet minimum bounding rectangles (MBRs), as it will become clear from the kNN computation algorithm at the client side (described in Section 3.2). Therefore, the cells of the grid are visited according to some space-filling curve. In our implementation, we use the Hilbert curve, but BGI can be applied with other space-filling curves as well (e.g., the Peano curve). The cell cardinalities are stored into packets in this order, in blocks of size C - 1. The offset Bi, offset of a bucket Bi is set to the sum of all the cell cardinalities contained in the preceding buckets (i.e., in buckets Bj, where j < i).

Returning to our running example, the below figure (b) shows how the upper level is formed, assuming that the packet size is C = 5. Initially, we sort the cells according to the Hilbert value of their centroids and consider them in this order. Every C - 1 (= 4) of them is stored in a bucket. For example, the cardinalities of cells c0,0, c1,0, c1,1, and c0,1 form bucket B1. The offset of B1 is 0 because it constitutes the first bucket and, thus, B1 = {0, 2, 1, 1, 1}. The upper level construction continues with B2. Its offset equals the sum of cardinalities in B1, i.e., B2, offset = 5 and B2 = {5, 1, 1, 1, 2}. Similarly, B3 = {10, 1, 1, 1, 1} and B4 = {14, 2, 1, 1, 2}. The boundaries of the upper level buckets appear bold.
[image: image9.emf][image: image10.emf]
[image: image11.emf]
[image: image12.emf]

Regarding the lower level of the index, we first form the list of object coordinates. In our example, this order coincides with the object name subscripts. Since C=5 and each object p has a pair of coordinates p.x and p.y, the first lower level packet contains {p1.x, p1.y, p2.x, p2.y, p3.x}, the second one {p3.y, p4.x, p4.y, p5.x, p5.y}, and so on. Note that when a client receives an upper level bucket B, it can determine when the contents of each cell c in B will be broadcast. Assume for simplicity that m = 1, i.e., the broadcast cycle consists of one index segment followed by a single data segment. If a client receives packet B3 (when the upper level is transmitted) and decides to process the positions of the objects in cell c3;2, then it can acquire the contents of c3,2 as follows. The client knows how many more upper level packets remain to be broadcast (their number is fixed). Given that B3.offset + 3 (= 13) objects precede the contents of c3,2 in the lower level, it can compute when to wake up and enter the receiving mode.

BGI has several advantages compared to other indexing methods. First, the index segment is concise, leading to a shorter broadcast cycle, and lower tuning time and access latency. This is because: 1) the spatial regions of the cells are implicit and they do not have to be transmitted and 2) the ordering of the cells and the objects can easily be inferred by the clients, avoiding the extra cost of previous methods that store pointers within their index segment, and from the index segment to the data objects. Finally, the index building and index segment creation procedures are very fast because of the simplicity of the grid. Even though for static objects, this is a onetime cost spent when the system starts functioning, in the case that the objects are dynamic , it is essential to keep this cost low; when objects move frequently, the index has to support fast updates so that the new broadcast cycle can be designed on-the-fly.
3.2 Query Processing

The kNN computation runs completely at the client side. Let q be the client location. Given a cell c; maxdist(c) is the maximum possible distance between any point in c and q. If the cardinality of c is c.card, then at least c.card objects lie within distance maxdist(c) from q. Similarly, mindist(c) is the minimum possible distance between any point in c and q. If there are at least k objects within distance dmax from q, then a cell c (or bucket) does not have to be considered if mindist(c)
[image: image32.emf] dmax, since it cannot contain any better neighbor.

Based on the above observations, the NN computation algorithm consists of two steps. During the first step, the client receives (some) upper level buckets. According to the cardinalities and the maxdist of the contained cells, it computes a conservative upper bound dmax of the radius around q that contains at least k objects. During the second step, the client listens to the contents of cells c (in the lower level) that have mindist(c) < dmax, cells (and buckets) with mindist above dmax are skipped. After the second step, the client already knows the coordinates and the packets containing the full information of its k NNs. An important remark is that during each step, the bound dmax keeps decreasing, excluding more unnecessary packets from consideration.

Continuing the example given in the above figure.(a) shows the first step of a 2-NN query at point q. The client initializes dmax to infinity, tunes in the broadcast channel, and listens to the packets of the upper level, starting with B1 = {0, 2, 1, 1, 1}. Recall from Fig. 5b that 0 is the number of objects preceding B1, 2 is the cardinality of c0,0, 1 is the cardinality of c1,0, and so on. The first cell c0,0 has maxdist(c0;0) equal to d1 and cardinality 2. Two virtual entries < c0,0, d1> are inserted in a list best NN that stores the k NNs ordered according to their (actual or conservative) distance from q. The dmax equals the key of the kth entry in best NN, i.e., after the consideration of c0,0; dmax becomes equal to d1 because at least k=2 objects lie within distance d1 from q. The next cell c1,0 has maxdist d2 > dmax and it is ignored. The following cell (in the Hilbert order) c1;1 has maxdist d3 < dmax and cardinality 1. A new entry <c1;1; d3> is inserted in best NN and an entry < c0;0; d1 > is deleted, i.e., best NN=<c1;1; d3 >; <c0;0; d1>. The dmax remains d1, i.e., the distance of the kth (2nd) entry. The last cell c0;1 updates best NN to <c0;1; d4 >; <c1;1; d3> and dmax becomes equal to d3.

The next upper level bucket is B2 = {5; 1; 1; 1; 2}. Since mindist(B2) < dmax (=d3), B2 has to be processed. Its cells (c0;2; c0;3; c1;3, and c1;2) and their cardinalities are considered like before. As shown in below figure(b), dmax is updated to d4, which is the minimum maxdist guaranteed to contain two objects (one from c0;2 and one from c0;1). The first step terminates here and the client sleeps, because mindist(B3)
[image: image2.wmf]³

 dmax and mindist(B4) [image: image3.emf]³



 dmax, meaning that they cannot lead to a better bound.
[image: image13.emf]

In the second step (and while the lower level is transmitted), the client listens to the contents of the cells with mindist less than dmax. Whenever some new object enters the best NN list, the dmax is updated to the distance of the kth element in best NN. Thus, dmax shrinks as more objects are considered, enhancing the pruning of the algorithm and skipping unnecessary packets. Continuing our example in the below figure (a), after processing the objects (coordinates) in cells c0;0; c1;0; c1;1; c0;1; best NN = {p5; p4}, and dmax \ dist(p4). Then, the contents of cells c0;2; c0;3; c1;3, and c1;2 are broadcast (in the below figure (b)). Object p6 in c0;2 updates best NN = {p5; p6} and dmax = dist(p6). Processing continues with c0;3 but the result does not change. The next cell contents in the lower level correspond to c1;3. Since mindist(c1;3) > dmax, the client does not listen to the objects in c1;3. Finally, the objects in c1;2 are considered without, however, altering the result. The algorithm terminates here with best NN = {p5; p6}. When the information about p5 and p6 is broadcast in the data segment, the client wakes up and receives it.
[image: image14.emf]

The kNN computation algorithm is shown in below figure, Lines 1-8 implement step one, while lines 9-15 implement step two. The first step uses the best NN list to store the cells with the lowest maxdist values. In particular, each cell c in a considered bucket B generates up to c.card virtual entries <c; maxdist(c)> into the best NN list, where c.card is the cardinality of c. In the second step, when a cell c is considered, we delete from best NN all its virtual entries (<c; maxdist(c)>) and insert its actual objects p (if dist(p)
[image: image4.wmf]£

 dmax). Maintaining the same best NN list in both steps enhances the pruning power of the method; the maxdist of a cell not transmitted so far is used to prune cells in line 9, even though its exact contents are not known.
[image: image15.emf]
Chapter 4
Continuous kNN Queries On Static Data

In this section, we consider continuous kNN queries from moving clients over static data objects. In this scenario, the server broadcasts exactly the same information as above, but the clients continuously monitor their k NNs as they move. A straightforward processing method is to compute from scratch the k NN set whenever the client changes position. This, however, may be very expensive. We propose an alternative monitoring algorithm that reuses the previous query result in order to reduce the number of packets received.

Assume that a client moves from point q to point q0 and let best NN be its previous result (i.e., the kNN set at q). Since the objects are static, the old NNs of the client are still at their previous location. Thus, we can directly compute an upper bound dmax as the maximum distance between the old NNs and the new client location q0. This bound allows the client to start pruning index buckets immediately. The kNN monitoring algorithm for static objects is the same as in the above figure , the difference being in line 1, where dmax should be initialized as dmax = maxp
[image: image5.wmf]Î

best_NN(dist(p, q1)). The below figure Fif 10(a) shows an example, where a 2-NN query moves from q to q0.

The old NNs are p5 and p6 and dmax is initialized to dist(p5; q0). When the upper level is broadcast (Fig. 10a), the client receives bucket B1 but the cells therein do not have sufficiently small maxdist to further decrease dmax. Bucket B2 is also considered. Similar to B1, its cells have maxdist greater than dmax. On the other hand, buckets B3 and B4 are ignored since their mindist is larger than dmax. The client sleeps and waits until the lower level is broadcast to perform the second step of the NN computation algorithm (Fig. 10b). During this step, cells c0;0; c1;0; c0;3 are pruned and only the contents of the shaded cells are considered. The algorithm finally returns best NN = {p6; p10} as the result.
[image: image16.emf]
Chapter 5
Continuous kNN Queries On Moving Data

In this section, we address the problem of continuous kNN queries, where both the query points and the data objects may move arbitrarily. Section 5.1 describes the basic algorithm, while Section 5.2 introduces an optimization that utilizes some stored information at the client side.
5.1 Basic Algorithm

Assume that the data objects may move, appear, or disappear; e.g., in our taxi example, cabs may move, new ones may enter service, or existing ones may go off duty. When an object moves, it sends an update to the server including its id, its old, and new coordinates. When an object appears (disappears), it informs the server of this event, providing also its id and (expired) location. The task of the server is to update the data grid and restructure the broadcast cycle. If the object lists of the cells are implemented as hash-tables, the grid supports updates (i.e., object insertions and deletions) in constant expected time. Note that an object movement is equivalent to a deletion from its old location and an insertion to its new one.

In particular, a dirty grid is broadcast in the beginning of each cycle (prior to the upper level of the first index segment), indicating the regions of the data space that received updates during the cycle. The dirty grid is a regular grid, whose granularity is typically finer than that of the object grid (i.e., its cell side-length is smaller). Each cell of the dirty grid contains one bit (and no actual objects or cardinality information). Before applying the updates received in a broadcast cycle, all the cells of the dirty grid are initialized to contain 0. If some object insertion or deletion takes place inside the region covered by a cell of the dirty grid, then its bit is set to 1, and the cell is said to be dirty. Note that, even if an object moves within the boundaries of its dirty cell, the cell is still marked as dirty (since each object movement is equivalent to a deletion followed by an insertion).

Each client tunes in the broadcast channel and listens to the dirty grid in the beginning of each broadcast cycle. It reevaluates its query only if: 1) some dirty cell overlaps

with the circular disk circðqÞ with center at the client location q and radius equal to the distance of its previous kth NN or 2) if the client moves to a new position q0. Otherwise, the result is unaffected by the updates in the last time stamp and the client can sleep until the beginning of the next broadcast cycle. Even if reevaluation is necessary, existing information may be reused to facilitate efficiency.

Consider the example of Fig. 11a, where the client moves to a new location q1 and object p1 moves to p08. Since the dirty cells do not contain any of the previous NNs p6 and p10, these objects have not moved. This provides an initial bound dmax = max(dist(p6; q0); dist(p10; q0)) = dist(p); q0) for the NN computation at q0. On the other hand, in Fig. 11b, the update of p17 affects the cell of p10. The client does not know whether p10 is at its previous position (e.g., it might have been deleted), and no bound dmax can be computed before the call of the NN computation algorithm.
[image: image17.emf]
5.2 Optimization

In order to provide “tight” dmax values for NN recomputations in highly dynamic environments, we may store some extra information at the client side. Since for the received cells, we have the concrete object locations, the maintained information is kept at the finest, i.e., dirty grid granularity. We illustrate this optimization using the running example given in Fig. 8, where the client computes from scratch its 2 NNs. During the second step of the algorithm, the client listens to the contents of cells c0;0, c1;0, c0;1, c1;1, c0;2, c1;2, and c0;3. We map the received object coordinates into dirty grid cells. Then, we insert each such nonempty cell into a list, along with the number of objects inside.3 In our example, we store the id and the cardinality of the shaded cells in Fig. 12a.
[image: image18.emf]

In the subsequent broadcast cycles, 1) if some stored cells become dirty, we remove them from the list and 2) if a recomputation is necessary, we acquire an initial dmax

according to the cardinalities and maxdist of the stored cells, prior to the NN retrieval. Continuing the example given in Fig. 12a, assume that in the next time stamp, object p8 moves to p08. Its old and new cells are marked as dirty. The client receives the dirty grid information and removes the cell of p08 from its list, but it does not resort to NN recomputation because its NN list (p5; p6) is not affected by the update. Assume now that in the next time stamp, the client moves from q to q0 (Fig. 12b) and has to reevaluate the query. Before implementing the algorithm given in Fig. 9, it considers the cardinalities of the cells in its list (i.e., the shaded cells). For each such cell, it assumes that all the objects inside lie at distance maxdist from q0 and computes a bound dmax accordingly. In our example, all the cells have cardinality 1 and the client sets as dmax the second smallest maxdist (i.e., dmax = di). The complete kNN monitoring algorithm is shown in the below figure 13.
[image: image19.emf]

The overhead of the dirty grid is expected to be low since for each cell, we send a single bit. Furthermore, its size can be reduced by the run-length compression scheme. In this scheme, large blocks of consecutive bits with the same value (i.e., all 0 or all 1) are represented by a single integer. To achieve high compression ratios, the order of bits follows the Hilbert order of the corresponding cells in the dirty grid. Since object updates in most real-world applications exhibit locality, ordering according to a space-filling curve leads to long blocks of ones or zeros, when the corresponding spatial region is “hot” (in terms of updates) or not. Finally, as the header packet is typically not full, the free space can be occupied by (part of) the dirty grid information.
Chapter 6

Range Queries

In this section, provides how BGI extends to range queries. For simplicity, we assume that the ranges are rectangular. Snapshot queries over static data can be answered trivially. The client tunes in the channel and waits until the first index segment is broadcast. Among the buckets Bi of the upper level, it listens only to the ones whose MBRs overlap with its range. Similarly, it considers only the cells in the lower level that intersect the range.

[image: image20.emf]
In the case that the query moves, then its new range rnew is partitioned into: 1) the overlapping area roverlap between the old and the new range and 2) the residual area rresidual = rnew - roverlap. The client has to compute all the objects in rresidual. Additionally, if some dirty cells intersect the roverlap, then it also has to compute the objects falling in the intersection of these dirty cells with roverlap. Consider Fig. 14b, where q moves to q1. Object p12 moves to a new position p012, resulting in two dirty cells. One of these cells overlaps with roverlap and their intersection is the striped rectangle. The client tunes in the channel and listens to all upper level buckets whose MBRs intersect either the striped area or rresidual. Similarly, from the lower level, it listens to the contents of the cells intersecting one of the aforementioned areas.
Chapter 7

Experimental Evaluation

In this section, we evaluate the performance of the proposed methods under various system parameters. We use a real spatial data set (REAL) containing the locations of 5,848 cities and villages in Greece (available at www.rtreeportal. org). Additionally, in order to investigate scalability, we generated five skewed data sets (SKEW), where the object locations follow a Zipf distribution with parameter 0.8. All data sets are scaled to fit in a [0, 10,000]2 workspace. Assuming that the data objects are distributed on a 50 km x 50 km area, the average density of the objects varies between 2.3 and 80 objects/km2.
[image: image21.emf]

For static data, each object corresponds to a point in the data set. For generating moving data, we randomly select the initial position and the destination of each object from the spatial data set. The object then follows a linear trajectory (with constant velocity) between the two points. Upon reaching the endpoint, a new random destination is selected and the same process is repeated. To further control the object movement, only a certain fraction (which we call agility) of the objects moves during each time stamp. The same pattern is also adopted for the moving queries.

In each experiment, we generate and evaluate 10,000 random queries. In the continuous case, the queries are evaluated for a period of 100 time stamps. We use the tuning time and access latency as the performance metrics. The results correspond to the average measurements over all queries, expressed in number of packets. The size of each data object is fixed to 128 bytes. Table 1 summarizes the parameters under investigation, along with their ranges. Their default (median) values are typeset in boldface. In each experiment, we vary a single parameter, while setting the remaining ones to their default values. Section 7.1 evaluates snapshot queries, Section 7.2 deals with continuous queries over static objects, while Section 7.3 considers the case where both the queries and the data objects are mobile. Finally, Section 7.4 investigates the effect of packet losses on the performance of our methods.
7.1 Snapshot Queries

In this section, we compare BGI against HCI and DSI, which, as discussed in Section 2.2, are the current state-of-the-art frameworks in terms of tuning time and access latency, respectively. For BGI and HCI, we employ the ð1;mÞ interleaving scheme, where the value of m is set according to the methodology in [14]. For HCI, we use the space partitioning optimization with a 4 x 4 grid (the default setting used in [32] for the REAL data set).
[image: image22.emf]
The first experiment studies the effect of the grid granularity on the performance of BGI using the REAL data set. We divide each axis into a number of equal intervals that varies between 8 and 128. Fig. 15a shows the tuning time for range and kNN queries as a function of the grid size. A grid of 16 x 16 cells is the best choice overall and we use this value in the remainder of this section. A coarser grid (e.g., 8 x 8) reduces the size of the upper level index (and, thus, the size of the index segment), but query processing considers more objects (equivalently, receives more lower level packets). On the other hand, a finer grid is more expensive because the increased index size offsets any potential benefit in precision. Fig. 15b illustrates the access latency for the same experiment. Again, BGI performs best for a 16 x 16 grid. Even though the index segment is smaller for a 8 x 8 grid, the latency is larger because the objects are less clustered and the full data of the result objects are placed further away from each other in the broadcast cycle.

Figs. 16a and 16b depict the tuning time for range (kNN) queries as a function of the packet size. As the packet size increases, the clients receive fewer packets with any method. The tuning time of BGI is two to three times lower than HCI because the index (a Bþ-tree) of HCI is large and query processing on the one-dimensional Hilbert curve is less efficient than processing with a grid in the original space. BGI is around 10 times better than DSI, mainly because DSI is designed to sacrifice tuning time for the sake of lower latency, and also because of its Hilbert curve based query evaluation. Note that the tuning time of HCI is considerably smaller than that of DSI. To avoid confusion, this fact does not contradict the results shown in [17], since [17] evaluates DSI against a distributed version of HCI (which sacrifices tuning time for access latency compared to the (1,m) version used here).
[image: image23.emf]

Fig. 17 shows the access latency for the same experiment. For range queries, HCI has around 50 percent higher latency than our method because of its larger index and the Hilbert ordering that may place the full information of the result objects far from each other in the broadcast cycle. For kNN queries, the latency of HCI is even higher (around two times worse than BGI), due to the two-step kNN retrieval that performs a kNN search on the Hilbert curve, followed by a range query on the returned window. DSI has 20 and 12 percent lower latency than BGI, for range and kNN queries, respectively, because of its distributed nature. Note that even though DSI achieves slightly lower access latency than our method, its tuning time is an order of magnitude higher (as demonstrated in Fig. 16).
[image: image24.emf]

Fig. 18 investigates the effect of the query selectivity on the tuning time. As the selectivity increases, the performance of all algorithms deteriorates due to the larger search region and result size. BGI is consistently better than both its competitors, for the reasons explained in the context of Fig. 16. For kNN queries, our method is less sensitive to the parameter k because multiple nearest neighbors may be found in the same cell of the grid. Fig. 19 shows the access latency for the same experiment. The latency equals the number of packets between the first time tuning in of the client and the position of the furthest result object in the broadcast cycle. As the selectivity (equivalently, the result size) increases, so does the latency. The latency for ranges is larger than kNN because they return more objects, e.g., for the default settings of Table 1, a range query with a 50 km2 area returns on the average 117 objects, while a 4-NN one retrieves only 4.
7.2 Continuous Queries over Static Data

In this section, we evaluate the monitoring version of BGI, as discussed in Section 4. Specifically, we consider static objects and continuous moving queries. Since both HCI and DSI are designed for snapshot queries, we compare our method with a naive recomputation approach that reevaluates each query from scratch at the beginning of every broadcast cycle (using the basic BGI algorithm described in Section 3). To verify the generality of our results, we use the synthetic data sets (SKEW) in our experiments, in addition to the REAL one. Since the database size and distribution of SKEW are very different from those of REAL, we fine-tuned the object grid granularity in a manner similar to Fig. 15. The results indicated that a 64 x 64 grid provides good results for all the tested database sizes of SKEW. Concerning the query movement, unless otherwise specified, the queries are assumed to move with a medium speed and have an agility of 50 percent.
[image: image25.emf]
7.3 Continuous Queries over Dynamic Data

In this section, we evaluate BGI (as described in Section 5) in an environment, where both queries and objects are mobile. Again, due to the absence of a competitor, we use the naı¨ve (recomputation) approach as the baseline. To finetune the dirty grid granularity for the monitoring technique, in Fig. 25, we measure the tuning time for various grid sizes. A 256x256 dirty grid achieves the best trade-off between grid size and precision. We use this granularity for all the remaining experiments. We focus solely on kNN, since range queries do not benefit from a monitoring algorithm in a system with a high rate of updates. This is because range queries need to access only a small number of cells (i.e., the ones intersecting the query range) and the savings of the dirty grid are counterbalanced by its overhead. Thus, the diagrams for the monitoring and recomputation approaches are almost identical.
[image: image26.emf]
 Fig. 26 shows the tuning time as a function of the database size. Clearly, the monitoring version of BGI scales well with increasing database size and is almost two times better than recomputation in all cases. Fig. 27 investigates the effect of k. Comparing the results to Fig. 22 (for static objects), it is evident that frequent object updates decrease the pruning power of the BGI monitoring algorithm. Nevertheless, it performs considerably better than recompute, as it significantly benefits from reusing the previous NNs and the dirty grid information.
[image: image27.emf]
[image: image28.emf]
[image: image29.emf]
Figs. 28 and 29 illustrate the effect of the object moving behavior on the tuning time. Clearly, recomputation is unaffected by object movements. The tuning time of monitoring degrades with object agility since more query results are recomputed per time stamp. For constantly moving objects (i.e., agility 1), all queries are affected and monitoring is worse than recomputation due to the overhead of the dirty grid. On the other hand, its performance is independent of the object speed, since an object movement is treated as a deletion from its old position and an insertion to the new one, and the probability that any of these positions affects some query is independent of their distance (i.e., the object moving distance).
[image: image30.emf]

Next, we study the feasibility of implementing continuous monitoring over the existing cellular infrastructure. Recall that updates occurring during the current broadcast cycle are transmitted at the next one. Thus, clients do not always know the most up-to-date location of all objects. In order to minimize this inaccuracy, the broadcast cycle should be short. Fig. 30 illustrates the duration of the cycle (in seconds) as a function of the database size (the number of clients does not affect the duration) for wireless networks supporting data rates of 384 Kbps and 2 Mbps. These rates are chosen because 2 Mbps is the maximum rate for the 3G standard, while 384 Kbps is the rate of the current systems.
[image: image31.emf]

For a 384-Kbps bandwidth, 10,000 objects are supported with a minimum accuracy of around 30 sec. On the other hand, a 2 Mbps rate can provide an accuracy of 1minute for 100,000 objects. We believe that these delays are acceptable since the targeted applications (e.g., taxi example in Fig. 1) involve a relatively small number of data objects (in the order of thousands) and a large number of clients (in the order of millions). Furthermore, as the infrastructure for wireless broadcasting improves, the supported database sizes will increase accordingly. Finally, note that the inaccuracy is not specific to BGI, but inherent to all broadcasting methods since the broadcast cycle cannot be restructured to accommodate object updates on-the-fly. This is the case also for the snapshot queries [14].

7.4 Robustness to Packet Loss

The results reported in the previous sections assume a perfect channel, where no packet losses occur. However, the typical wireless channel is error-prone due to several factors, such as radio interference, fading, attenuation, etc. Specifically, packet error rates in wireless networks are reported to range from 1 up to 10 percent [23]; resilience to link errors is, thus, a very desirable property for any air indexing scheme. In this section, we investigate the performance of our methods in lossy environments.

First, we consider snapshot queries. We compare only against DSI because HCI is not designed to deal with packet loss, while its distributed version (which does take packet losses into account) is worse than DSI in both access latency and tuning time [17]. In BGI, errors are handled in a straightforward manner: a lost packet in the current index segment has to be recovered in the subsequent index segment. However, query processing may continue in the current segment even after a packet loss. Specifically, for range queries, BGI continues normally in the current index segment, but the lost packet is received in the next segment. If the lost packet is in the upper level, then the corresponding lower level ones must also be accessed in the next segment. For kNN queries, error handling in BGI is similar, except for the case where an upper level packet is lost; in this situation, BGI halts and resumes when the lost packet is broadcast again (i.e., in the next index segment).

Fig. 31 shows the tuning time of BGI and DSI (for snapshot queries) under different packet loss rates for the REAL data set. DSI is affected to a lesser degree than BGI because its distributed structure offers multiple search paths towards any frame of the index. Nevertheless, BGI retains its efficiency achieving a 7-10 times smaller tuning time than DSI in all cases, because it needs to (successfully) receive only a few index packets (see Section 7.1).

The above figure 32 illustrates the access latency for the same experiment. DSI remains practically unaffected by the link errors due to its distributed nature that enables query processing to resume directly after a packet loss. BGI also performs very well and the degradation due to errors is below 14 percent in all cases. Note that, similar to the performance evaluation in [17], we assume that only index packets may be received erroneously. When a data packet is lost, it has to be recovered in the next broadcast cycle and its effect on the access latency is independent of the underlying air indexing method.
Chapter 8
Conclusion

In spatial query processing (wireless broadcast environments), a central server transmits the data along with some indexing information. The clients process their queries locally, by accessing the broadcast channel. The main target is to reduce the power consumption and access latency at the client side. An on-air indexing method uses a regular grid to store and transmit the data objects. Algorithms are designed for snapshot and continuous queries, over static or dynamic data. To the best of my knowledge, this is the first study on air indexing that 1) addresses continuous queries and 2) considers moving data objects. The efficiency of our algorithm through an extensive experimental comparison with the current state-of-the-art frameworks for snapshot queries and with the naive constant recomputation technique for continuous queries. A challenging problem is to devise cost models for continuous monitoring of spatial queries in wireless broadcast environments. Such models could reveal the best technique given the problem settings, help fine-tune several system parameters (e.g., grid size), and potentially lead to better algorithms. Another interesting direction for future work is to study different types of spatial queries, such as reverse nearest neighbors, and to extend our framework to process their snapshot and continuous versions.
References
[1] S. Acharya, R. Alonso, M.J. Franklin, and S.B. Zdonik, “Broadcast Disks: Data Management for Asymmetric Communications Environments,” Proc. ACM SIGMOD, 1995.
[2] S. Acharya, M.J. Franklin, and S.B. Zdonik, “Disseminating Updates on Broadcast Disks,” Proc. Int’l Conf. Very Large Data Bases (VLDB ’96), 1996.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R+- Tree: An Efficient and Robust Access Method for Points and Rectangles,” Proc. ACM SIGMOD, 1990.

[4] Y. Cai, K.A. Hua, and G. Cao, “Processing Range-Monitoring Queries on Heterogeneous Mobile Objects,” Proc. IEEE Int’l Conf. Mobile Data Management (MDM ’04), 2004.

[5] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An Energy-Efficient Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks,” Proc. ACM MobiCom, 2001.
[6] M.-S. Chen, P.S. Yu, and K.-L. Wu, “Indexed Sequential Data Broadcasting in Wireless Mobile Computing,” Proc. Int’l Conf. Distributed Computing Systems (ICDCS ’97), 1997.

[7] B. Gedik and L. Liu, “MobiEyes: Distributed Processing of Continuously Moving Queries on Moving Objects in a Mobile System,” Proc. Int’l Conf. Extending Database Technology (EDBT ’04), 2004.

[8] B. Gedik, A. Singh, and L. Liu, “Energy Efficient Exact kNN Search in Wireless Broadcast Environments,” Proc. Ann. ACM Int’l Workshop Geographic Information Systems (GIS ’04), 2004.
[9] S.E. Hambrusch, C.-M. Liu, W.G. Aref, and S. Prabhakar, “Query Processing in Broadcasted Spatial Index Trees,” Proc. Int’l Symp. Advances in Spatial and Temporal Databases (SSTD ’01), 2001.
[10] A. Henrich, “A Distance Scan Algorithm for Spatial Access Structures,” Proc. Second ACM Workshop Geographic Information Systems (GIS ’94), 1994.

[11] G.R. Hjaltason and H. Samet, “Distance Browsing in Spatial Databases,” ACM Trans. Database Systems, vol. 24, no. 2, pp. 265- 318, 1999.
[12] Q. Hu, W.-C. Lee, and D.L. Lee, “Power Conservative Multi-Attribute Queries on Data Broadcast,” Proc. Int’l Conf. Data Eng. (ICDE ’00), 2000.
[13] T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Power Efficient Filtering of Data an Air,” Proc. Int’l Conf. Extending Database Technology (EDBT ’94), 1994.
[14] T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Data on Air: Organization and Access,” IEEE Trans. Knowledge and Data Eng., vol. 9, no. 3, pp. 353-372, May 1997.
[15] D.V. Kalashnikov, S. Prabhakar, and S.E. Hambrusch, “Main Memory Evaluation of Monitoring Queries over Moving Objects,” Distributed and Parallel Databases, vol. 15, no. 2, pp. 117-135, 2004.
[16] I. Kamel and C. Faloutsos, “On Packing R-Trees,” Proc. Conf. Information and Knowledge Management (CIKM ’93), 1993.
[17] W.-C. Lee and B. Zheng, “DSI: A Fully Distributed Spatial Index for Location-Based Wireless Broadcast Services,” Proc. Int’l Conf. Distributed Computing Systems (ICDCS’05), 2005.
[18] M.F. Mokbel, X. Xiong, and W.G. Aref, “SINA: Scalable Incremental Processing of Continuous Queries in Spatio-Temporal Databases,” Proc. ACM SIGMOD, 2004.
[19] K. Mouratidis, M. Hadjieleftheriou, and D. Papadias, “Conceptual Partitioning: An Efficient Method for Continuous Nearest Neighbor Monitoring,” Proc. ACM SIGMOD, 2005.
[20] K. Park, M. Song, and C.-S. Hwang, “An Efficient Data Dissemination Schemes for Location Dependent Information Services,” Proc. Int’l Conf. Distributed Computing and Internet Technologies (ICDCIT ’04), 2004.
[21] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest Neighbor Queries,” Proc. ACM SIGMOD, 1995.
[22] Z. Song and N. Roussopoulos, “K-Nearest Neighbor Search for Moving Query Point,” Proc. Int’l Symp. Spatial and Temporal Databases (SSTD ’01), 2001.
[23] I. Stojmenovic, Handbook of Wireless Networks and Mobile Computing. John Wiley & Sons, 2002.
[24] Y. Tao and D. Papadias, “Spatial Queries in Dynamic Environments,” ACM Trans. Database Systems, vol. 28, no. 2, pp. 101-139, 2003.
[25] Y. Tao, D. Papadias, and Q. Shen, “Continuous Nearest Neighbor Search,” Proc. Conf. Very Large Data Base (VLDB ’02), 2002.
[26] X. Xiong, M.F. Mokbel, and W.G. Aref, “SEA-CNN: Scalable Processing of Continuous K-Nearest Neighbor Queries in Spatio-Temporal Databases,” Proc. Int’l Conf. Data Eng. (ICDE ’05), 2005.
[27] J. Xu, W.-C. Lee, and X. Tang, “Exponential Index: A Parameterized Distributed Indexing Scheme for Data on Air,” Proc. MobiSys, 2004.
[28] J. Xu, B. Zheng, W.-C. Lee, and D.L. Lee, “Energy Efficient Index for Querying Location-Dependent Data in Mobile Broadcast Environments,” Proc. Int’l Conf. Data Eng. (ICDE ’03), 2003.
[29] X. Yu, K.Q. Pu, and N. Koudas, “Monitoring K-Nearest Neighbor Queries over Moving Objects,” Proc. Int’l Conf. Data Eng. (ICDE ’05), 2005.
[30] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D.L. Lee, “Location- Based Spatial Queries,” Proc. ACM SIGMOD, 2003.
[31] B. Zheng, W.-C. Lee, and D.L. Lee, “Search k Nearest Neighbors on Air,” Proc. Conf. Mobile Data Management (MDM ’03), 2003.
[32] B. Zheng, W.-C. Lee, and D.L. Lee, “Spatial Queries in Wireless Broadcast Systems,” Wireless Networks, vol. 10, no. 6, pp. 723-736, 2004.
[33] B. Zheng, W.-C. Lee, and D.L. Lee, “On Searching Continuous k Nearest Neighbors in Wireless Data Broadcast Systems,” IEEE Trans. Mobile Computing, vol. 6, no. 7, pp. 748-761, July 2007.
[34] B. Zheng, J. Xu, W.-C. Lee, and D.L. Lee, “Grid-Partition Index: A Hybrid Method for Nearest-Neighbor Queries in Wireless Location-Based Services,” VLDB J., vol. 15, no. 1, pp. 21-39, 2006.

_1330062992.unknown

_1330063539.unknown

_1330063855.unknown

_1330062337.unknown

