1 INTRODUCTION
 Operating system was originally developed to provide a set of common systems services, such as I/O, communication and persistent storage, to simplify application programming. With the advent of multiprogramming, this charter expanded to include abstracting shared resources so that they were as easy to use (and sometimes easier) as dedicated physical resources. The introduction of local area networks in 80’s expanded this role even further. A goal of network operating systems such as Locus, Mach, Sprite and Amoeba was to make remote resources over the LAN as easy to use as local resources, in the process simplifying the development of distributed applications.

With analogy to these systems, argues that it is time to provide a common set of services for wide area applications, in effect to make wide area resources as easy to use as those on a LAN. The past few years has seen a dramatic increase in the number and variety of services that are available over the internet, beyond simple documents to a wide variety of on-line services, such as search engines, real-time news, weather forecasts, interactive games and chat room, airplane reservations and ticketing, to name just a few.

Today, although the World Wide Web has made geographically distributed read-only data easy to use, geographically distributed computing resources are not. The result is that wide area applications that require access to remote CPU cycle, memory, or disk must be programmed in an ad-hoc and application-specific manner. For example, many popular services, such as Digital’s Alta Vista or Netscape’s download page, are geographically replicated to improve bandwidth, reduce latency, and improve availability-no single connection onto the Internet can support tens of millions of users. This situation will only get worse; it is currently predicted that the number of Internet users will increase by an order of magnitude to over 100 million in less than 5 years.
To address these problems, we have built WebOS, a framework for supporting applications that are geographically distributed, highly available, incrementally scalable, and dynamically reconfiguring. WebOS includes mechanisms for resource discovery, a global namespace, remote process execution, resource management, authentication and security .The WebOS used to demonstrate the synergy of these services in simplifying the development of wide area distributed applications and in providing more efficient global resource utilization.

The WebOS framework enables a new paradigm for Internet services.

Instead of being fixed to a single location, services can dynamically push parts of their responsibilities out onto Internet computing resources, and even all the way to the client.
Characteristics
In addition to demonstrating the synergy of a common framework for wide area distributed applications, made a number of specific contributions.
· First, demonstrated and extensible mechanism for running service-specific functionality on client machines and show that this allows for more flexible implementation of name resolution, load balancing, and fault tolerance.
· Second, provided a file system abstraction that combines persistent storage with efficient wide-area communication pattern; demonstrated that this simplifies the implementation of a number of wide area applications.
· Next, presented a methodology for coherently caching program results through the file system, speeding the performance of applications which must repeatedly execute programs with common inputs. Finally, demonstrated how Rent-A-Server, an application developed in our framework, both improves system performance and more efficiently utilizes system resources for Web server access.
2 WebOS Overview

In this section, we provide a brief overview of the major WebOS components; together, they provide the wide area analogue to local area operating system services, to make using geographically remote resources easier to use. Each of these components is operational in our current prototype.

Resource Discovery: Many wide area services are geographically distributed. To provide the best overall system performance, a client application must be able to dynamically locate the server able to deliver the high quality of service. In WebOS, resource discovery includes mapping a service name to multiple servers, an algorithm for balancing load among available servers, and maintaining enough state to perform fail-over if a server becomes unavailable. These operations are performed through Smart Clients, which flexibly extended service-specific functionality to the client machine.

Wide Area File System: To Support replication and wide-scale sharing, WebOS provides a cache coherent wide area file system. WebOS extends to wide area applications running in a secure HTTP name space the same interface, caching, and performance of existing distributed file systems. In addition, we demonstrate the benefit of integrating the file system with application-controlled efficient wide area communication.

Security and Authentication: To support applications operating across organizational boundaries, WebOS defines a mode of trust providing both security guarantees and an interface for authenticating the identity of principals. A key enabling feature is fine-grained control of capabilities provided to remote processes executing on behalf of principals.

Process Control: In WebOS, executing a process on a remote node should be as simple as the corresponding local operation. The underlying system is responsible for authenticating the identity of the requester and determining if the proper access rights are held. Precautions must be taken to ensure that the process does not violate local system integrity and that it does not consume more resources than allocated to it by local system administrators.

As an explicit design choice, we leverage as much functionality as possible from existing low level services. For example, for compatibility with existing applications, we adopt IP address and URL’s for the global name space. TCP is used to provide reliable communication, while SSL is used for link level security.

3. Resource Discovery

In this section, we discuss how WebOS clients locate representatives of geographically distributed and dynamically reconfiguring services, while providing load balancing and end-to-end high availability.

3.1
 Current Approaches

To address increasing demand, some popular services such as the Alta Vista search engine [Dig 1995] or the Netscape download page [Net 1994] are geographically distributed by being replicated manually by the service provider. Load balancing across the wide area is achieved by instructing users to access a particular “mirror site” based on their location. To distribute load across servers, techniques such as HTTP redirect or DNS Aliasing can be used to send user requests to individual machines. With HTTP redirect, a front-end machine redirects the client to resend the request to an available worker machine. This approach has the disadvantage of either adding a round trip message latency to each request or of binding the client to a single server for the duration of a session. Further, the front-end machine serving redirects is both a single point of failure and a central bottleneck for very popular services.

DNS Aliasing allows the Domain Name Service to map a single hostname (URL) to multiple IP addresses in a round robin fashion. Thus, DNS aliasing does not suffer from the added latency and central bottlenecks associated with HTTP redirect. However, currently load balancing with DNS aliasing is restricted to round-robin, making it difficult to use service-specific knowledge such as load information. Further, because clients cache hostname to IP address mappings, a single server can become overloaded with multiple requests while other servers remain relatively idle.

3.2 Smart Clients

In WebOS, we address the shortcomings of existing solutions for resource discovery through Smart Clients. Smart Clients enable extensions of server functionality to be dynamically loaded onto the client machine. Java’s portability and availability in all major Internet browsers allow us to distribute these extensions as Java applets. We believe that performing naming, load balancing, and fail over from the perspective of the client has a number of fundamental advantages over server-side implementations. We demonstrate these advantages by using our Smart Clients prototype to implement scalable access to services such as FTP, chat, and the Rent-A-Server application described in Section 6.

[image: image1.png]Thes

“*ﬂ”*m i

~Responsel
State update

Figure 1: Two cooperating threads make up the Smart

Client architecture. The GUI thread presents the service

interface and passes user requests to the Director

Thread. The Director is responsible for picking a service

provider likely to provide best service to the user.

The decision is made in a service-specific manner. In

this case, the nearest mirror site is chosen.
The Smart Client architecture is summarized in Figure 1. A typical applet’s code is composed of two cooperating threads: a customizable graphical interface thread implementing the user’s view of the service and a director thread responsible for performing load balancing among service representatives and maintaining the necessary state to transparently mask individual failures. Both the interface and director threads are extensible in a service-specific manner.

3.3 Bootstrapping Applet Retrieval

While the Smart Client architecture provides a portable mechanism for fault tolerant and load balanced access to Web services, bootstrapping Smart Client startup remains to be described. Naively, services would be named through URL’s with the applet downloaded each time the service is to be accessed. This would imply a central bottleneck, a single point of failure, and effectively doubling latency for small requests.

[image: image2.png]service: /enat Cht Cartificte
@] tser Reques Sic:sel
Locuion: CA
Capucty: 100
Conitonr

Request Sic:sit2

Applet Location: MA
e e

Figure 2: Bootstrapping applet retrieval in Smart

Clients. A new service name space is introduced. In step

1, a name is translated into a certificate request from

highly-available search engines in step 2. The certificate

contains hints as to initial service group membership.

The Smart Client applet is retrieved from one of

these sites in step 3. Both the certificate and applet are

cached to disk to avoid future bootstrapping.

Figure 2 summarizes our approach to addressing these issues. A meta-applet runs in a Java enabled browser and is responsible for bootstrapping accessing to Web services. A new service namespace is introduced, allowing users to make requests of the form service: //URL; we leverage the URL namespace to simplify integration with existing browsers. The meta-applet translates these names into requests to a well-known and highly available Internet name service to fetch a service certificate – the list of servers capable of providing the service, along with individual server characteristics. Currently, we use Alta Vista to perform this operation; however we plan to switch to a more lightweight technique, such as DNS. The service’s Smart Client applet is downloaded from one of these sites and operation proceeds normally described in section 3.2. The service certificate, the Smart Client applet, and any service state are cached to disk (with timeouts) by the meta-applet to avoid bootstrapping on subsequent accesses.

4. Security and Authentication

Applications operating across the wide area are such susceptible to a variety of potential attacks by sophisticated adversaries. For users to trust their sensitive computations to WebOS, a well-defined and easily validated model of trust must be defined and implemented. The goal of our implementation is to make issues of security as transparent as possible for common operations while still allowing for arbitrary levels of paranoia for programs that are required. In this section, we describe such a model and show how it is used for secure, authenticated access to global resources.

WebOS provides security at number of levels. First, two principals communicating at the link layer believe one another’s identity and trust that the data cannot be compromised by a third party. Next, principals are able to have fine-grained control over which capabilities are transferred to remote WebOS processes running on their behalf. Finally, WebOS provides an interface for registering users and for specifying access rights to individual system resources. The WebOS security model is summarized in figure 3.

[image: image3.png]

Figure 3: WebOS Security Model. First, users transfer

some portion of their access rights to a WebOS server.

When attempting to access a remote resource, WebOS

servers communicate using SSL (step 2). Finally, the remote

server checks if the proper credentials are held in

local ACL’s.
4.1 Link Layer

WebOS relies upon a hierarchy of certification authorities (CA’s). These authorities are responsible for producing X.509 certificates [CCITT 1988] mapping principals to their public keys. These certificates are generated by the CA and contain the following information: the identity of the CA, the name of the principal, its public key, the period during which the mapping is valid, and a digital signature of the entire certificate by the CA. By using these certificates and by placing trust in the CA’s, we are able to guarantee that any data successfully decrypted by a given public key was in fact generated by the associated principal.

We use the Secure Socket Layer (SSL) to authenticate the identity of communicating servers to one another. SSL uses the public keys from a WebOS server’s X.509 certificate to establish an RC4 symmetric key for session communication, and an MD5 hash of chunks of the byte stream to allow the principals to determine if an adversary is attempting to patch-their communication. Symmetric keys are used for encryption because of their computational simplicity relative to public key cryptography. WebOS manages a cache of available connections to remote servers to avoid the overhead of establishing a secure connection for each login operation.

4.2 Transfer of Rights

Principals register with WebOS and are able to control the transfer of portions of their rights to servers acting on their behalf. For example, a principal might register with a remote WebOS compute engine, transferring to the server the right to access a particular sub-directory containing the relevant data files. The server would be able to access the files necessary to carry out any computation on the principal’s behalf but would be able to accessing the principal’s private financial information located in another directory. A WebOS server can recursively transfer rights to a second server by signing the appropriate transfer certificate, unless a transfer right is not granted by the user.

In WebOS, principals transfer rights by creating a transfer certificate that the resources in question (for example, all files in a particular WebFS sub-directory), the identity of the target WebOS server, and a time period during which the transfer certificate is valid. This transfer certificate is attached to the principal’s X.509 certificate (identifying the principal) and an MD5 hash of both the X.509 and transfer certificates encrypted in the user’s private key. This encrypted hash certifies that the user actually created the transfer certificate. Using this scheme, a WebOS server is able to prove to other sites that it is authorized to act on the principal’s behalf when accessing the resources specified in the transfer certificate. Note that the program generating the transfer certificate requires the principal’s private key; however, this registration program is distributed as source and runs on a principal’s local machine.

4.3 Specifying and Validating Rights

WebOS access rights are specified through Access Control Lists (ACL’s). These access rights specify the list of principals which possess read, write, modify, and execute permission on a given resource. When a principal attempts to access a resource, WebOS sends the request with the proper transfer certificate to the site that owns the resource. The destination site takes the following steps in validating access to the resource in question: (i) it checks for a valid timestamp in the transfer certificate, (ii) it determines if the requesting WebOS server has the proper authority to act on the principal’s behalf for the requested resource, as described in the transfer certificate, and (iii) it checks its local ACL’s to determine whether the principal has the proper access permissions for the requested resource.

We chose to use ACL’s because of their relative conceptual simplicity both form the principal’s and implementer’s point of view. A capability based system is more manageable in a global context where the access rights of potentially millions of users must be monitored. However, capabilities present complications for rights revocation and transfer. To partially address the issues of scale associated with ACL’s, WebOS allows for global group access rights and implements an efficient storage/lookup mechanism for its ACL’s. Based on the assumption that many resources will have identical groups of principals associated with them, WebFS resources point to unique “buckets” containing the appropriate rights specification. Lookups are executed by performing a hash of the requesting principal into the buckets.
 5. WebOS Applications

This section provides an overview of four applications built using the WebOS framework. The applications demonstrate that WebOS services enable and simplify their implementation. The first two applications have been completed, while the last two are under development.

5.1 Internet Chat

Internet chat allows for individuals to enter and leave chat rooms to converse with others co-located in the same logical room. In our implementation, chat rooms are modeled as WebFS files accessed by Smart Clients. The file system interface is well-matched to chat semantics in a number of ways: (i) A simple file append abstracts the required network communication necessary to send messages, (ii) the chat file provides a persistent log of chat activity, and (iii) access control lists allow for private and secure (through WebFS encryption) chat rooms. For scalability, we allow multiple WebFS servers to handle client requests for a single file (room). Each WebFS server accumulates updates, and periodically propagates the updates to other servers in the WebFS group, who in turn transmit the updates to local clients. Smart Clients choose the least loaded WebFS server for load balancing and connect to alternative servers on host failure or network partition for fault transparency.

5.2 Remote Compute Engine

Sites with unique computing resources, such as supercomputer centers, often wish to make their resources available over the Internet. Using WebOS, we allow remote programs to be invoked in the same way as local programs and can allow access to the same files as local programs. WebOS functionality is used to address a number of issues associated with such access: the identity of requesting agents is authenticated, programs are provided secure access to private files on both local and remote systems, and programs run in a restricted virtual machine isolated from other programs to protect the local system from malicious users. At our site, WebOS provides compute access to research cluster 100 machines. Resource allocation within the virtual machine allows external users to take advantage of the aggregate computing resources, while ensuring system developers have the requisite priority.

5.3 Wide Area Cooperative Cache

We are using WebOS to build a geographically distributed Web cooperative cache to both validate our design and to provide an immediate benefit to the Internet by doing more intelligent caching of Web content. Existing proposals for hierarchical caching of the Web suffer from an inability to dramatically grow the cache size and processing power at each level of the hierarchy. With cooperative caching among peer servers, the aggregate capacity grows dramatically with the distance from the client. Thus, while caches above the first level in existing hierarchical designs have very low hit rates and simply increase the latency to end clients, a cooperative cache is more likely to successfully retrieve a caches copy from a peer. We plan to explore tradeoffs associated with maintaining directories of peer cache contents, hints, or using simple IP multicasts or broadcasts.

WebOS simplifies the implementation of the cooperative cache in a number of ways. First, Smart Clients are used to determine the appropriate proxy cache to contact. WebFS is used to transport cache files among the proxies and to securely share any necessary (private) state among the proxies. Finally, the authentication model allows proxies to validate their identities both to one another and to the client.
 Internet Weather

A number of sites are currently attempting to provide regular updates of congestion, latency, and partitions in the Internet. Such information is invaluable for services making placement and load network measurements from a centralized site, making it difficult to measure network characteristics between two arbitrary sites. We are addressing this limitation by using the WebOS framework to generate more comprehensive snapshots of Internet conditions. In our implementation, a centralized server provides Smart Client applets for whose wishing to view the current Internet weather. In exchange for the weather report, the user implicitly agrees to allow the applet to execute trace route to a subset of server-determined sites and to transmit the result back to the server. Using these results from multiple sites, the service is able to construct fairly comprehensive snapshots of Internet weather.

 6. Rent-A-Server

This section describes the design, implementation, and performance of Rent-A-Server, an application demonstrating the power of using a unified system interface to wide area resources and of moving a service out across the Internet.

[image: image4.png]

Figure 4: Rent-A-Server Architecture. HTTP servers periodically send load information to a load daemon. In response to an update, the load daemon transmits the state of all servers. In turn, the HTTP servers transmit this state information as part of the HTTP header to Smart Clients. The Smart Clients can use this information to determine which server to contact for its next request. When the load daemon notices that the service as a whole is becoming overloaded, it contacts the resource manager on an available surrogate to create another server replica. WebFS is used to securely transmit any executables or data files needed to start the server.

6.1 Motivation

Rent-A-Server allows sites to deal with peak loads that are much higher than their average loads by “renting” hardware to deal with peaks. For example, the Internal Revenue Service site (http://www.irs.ustreas.gov) is overwhelmed by requests around April 15, but providing the computation power and network bandwidth necessary to handle peak levels of demand year round is a waste of resources. The benefits for Rent-A-Server can be summarized as follows:

· Geographic Locality: In addition to distributing load, Rent-A-Server improves performance by increasing locality. Rather than satisfying requests from centralized site, a system can distribute its requests across geographically distributed servers, each of which satisfies nearby clients.

· Dynamic Reconfiguration: The location and number of sites representing a service can be determined dynamically response to client access patterns. Rent-A-Servers can be spawned to locations “near” current spikes in client demand, and torn down once client activity subsides.

· Transport End-To-End Availability: Once a service is replicated with Rent-A-Server, users can transparently access whichever replica is available, routing around both Internet and service failures.

· Secure Coherent Data Access: To address limitations associated with caching proxies which are unable to generate dynamic Web pages (e.g. results cgi-bin programs) and often serve stale data, Rent-A-Server uses WebOS to provide authenticated, coherent global file access to data pages, CGI scripts, and internal server state needed by CGI scripts.

· Safe Remote Execution: Surrogate sites securely execute service programs and associated scripts (such as CGI programs) without violating the surrogate’s system integrity.

6.2 Current Approaches

Current efforts to distribute HTTP server load focus on either distributing load across a fixed set of machines maintained by the owner of the data or distributing data across (proxy) caches under client (not server) control. Many HTTP server implementations achieve scalability by replicating their data across a fixed set of servers at a single site and then using the Domain Name Service (DNS) to randomly distribute requests across the servers. Unfortunately, this approach requires that each site purchase enough computing power and network bandwidth to satisfy peak demand.

“Mirror Sites” are also used to improve locality and to distribute load, but this manual approach requires more effort to set up the mirrors and to maintain data consistency across the mirrors. Further, users must specify which mirror to use, which is both inconvenient and unlikely to yield a balanced load across sites. Finally, as with the approach of running multiple servers at one site, mirror sites are allocated statically. The system must always maintain enough mirrors cannot be shifted to address shifts in geographic hotspots.

Another approach to distributing load, caching proxies, is used to reduce server load and to improve network locality. To use a proxy, groups of clients send all of their requests to their proxy machine. The proxy machine attempts to satisfy the requests from its local cache, sending the requests to the remote server if the cache cannot supply the data. If proxies satisfy many requests to the server through their caches, both server load and network congestion are reduced.

 System Design

In this subsection, we demonstrate how WebOS services simplify the implementation of this application. The architecture of the Rent-A-Server is described in Figure – 4. Smart Clients access HTTP services. Periodically (currently every tenth response), servers piggyback service state information to Smart Clients in the HTTP reply header. This state information includes a list of all servers currently providing the service. The following information is included for each serer: its geographic location, an estimate of its processing power, an estimate of current load, and a time period during which the server is guaranteed to be active. The last field is determined with short term leases that are periodically renewed if high demand persists. The short leases prevent clients with stale state information from trying to access inactive surrogates (or worse, surrogates acting on behalf of a different service).

Each Rent-A-Server maintains information about client geographic locations (location is sent by Smart Clients as part of HTTP request) and its own load information in the form of requests per second and bytes transmitted per second. Each Rent-A-Server periodically transmits this state information to a centralized load daemon. For software engineering reasons, the load daemon is currently a separate process; however its functionality could be rolled into an elected member of the server group. The load daemon is responsible for determining the need to spawn or to tear down Rent-A-Servers based on current load information and client access patterns. It also transmits server group state (e.g. membership and load information) to each member of the server group, which is in turn piggybacked by the servers to Smart Clients as part of HTTP replies, as described above.

Once the load daemon determines the need to spawn an additional server, it first determines a location for the new Rent-A-Server. The new server should be located close to any hotspots in client access patterns to both conserve bandwidth and to minimize client latency (this policy has not yet been implemented). Once the target machine is selected, the load daemon established an SSL channel with the surrogate’s resource manager. The load daemon then ads the surrogate to the necessary ACL’s allowing it access to WebFS files containing the executables (e.g. HTTP server) or internal service state (e.g. CGI scripts or internal database). In addition, the load daemon provides a signed certificate with an expiration date) granting the surrogate the right to serve data on behalf of the service. This certificate is transmitted to Smart Clients on demand to prevent spoofing of the service by malicious sites.

When setup negotiation is completed, the surrogate site builds a Janus virtual machine to execute the necessary programs (in our case an arbitrary HTTP server) to establish a service identity at the surrogate. The virtual machine ensures that the surrogate’s system integrity is not violated by a buggy executable or a malicious server. Both the service executable and any necessary service state are securely accessed and cached on demand through WebFS. The load daemon propagates the identity of the new surrogate to other members of the server group, which in turn transmit the identity and location of the new server to Smart Clients. Tear down of a surrogate is accomplished when client demand subsides and the load daemon decides not to renew leases with a surrogate. The load daemon removes the surrogate from the appropriate ACL’s.

6.3 Performance

To demonstrate the power of dynamic resource recruitment available from our approach, we measure the performance of a Rent-A-Server when placed under a heavy synthetic load. Our experiments are conducted on a cluster of Sun Ultra Servers interconnected by 10 mbps switched Ethernet. Seven Ultra Servers are designated as surrogates available to provide HTTP service on behalf of an eighth machine designated as the primary. All eight server machines run WebOS, including the file system and the resource manager responsible for process control. Another 32 machines are used to generate gradually increasing load to the HTTP service. All machines are running Solaris 2.5.1 and Apache 1.2b6 is used for the HTTP server.

[image: image5.png](a) Rent-A-S:

Figure 5: Rent-A-Server Performance. The grapls plot average client latency as a finction of time for the operation
of rerieving a 2.5 KB HIML file over HTTP. In the Rent-A-Server graph, dark colunns correspond to spavwni
Rent-A-Servers onto surrogates while the lighter lines mark the start of a new group of § cliens. The same experiment
15 run for the Fived Server graph with static allocation of § HTTP servers

During the experiment, each client machine starts 15 Smart Clients use random load balancing to pick from a changing list of available HTTP servers. To simulate increasing load, all 32 client machines do no begin making requests at the same time. Rather, clients start in four groups of eight machines each, with the a start time of each group staggered by two minutes.

The results of our tests are summarized in Figure 5. The graphs plot average client-perceived latency in seconds as a function of elapsed time, also in seconds. Initially, only a single HTTP server is available; however, the load daemon spawns new servers onto available surrogates as service load increases. The thick dark columns corresponding to execution of new HTTP servers, while the lighter thin lines correspond to the startup of a clients starting at time 0. For example the Rent-A-Server graph shows that a third surrogate server was started at t = 122 shortly after the second group of eight clients start. The experiment reaches steady state at approximately seconds after the last group of client machines start running at t = 360 seconds. The graph is truncated at t = 600 seconds. In summary, Figure 5(a) shows that Rent-A-Server is able to dynamically recruit resources in response to increased client demands. As clients increase server load over time, Rent-A-Server is able to dynamically recruit needed surrogates to maintain relatively steady quality of service, delivering 800 ms average latency.

While the number of active HTTP servers varies from between one and eight, on average 5.7 servers are active. To contrast the performance of Rent-A-Server with static server allocation, the experiment is executed with identical parameters, with the exception that 6 fixed servers are allocated for the duration. Figure 5(b) depicts the results. Between t = 0 and t = 120 with relatively light client demand, static allocation outperforms Rent-A-Server, delivering an average latency of approximately 600 ms. However, it can be argued that resources are wasted because measurements indicate that three servers could deliver the same performance for eight clients. When all 32 clients are running between t = 360 and t = 600 ms, Rent-A-Server’s ability to dynamically recruit resources results in improved performance. During this time period, clients see 850 ms average latency while the statically allocated resources become constrained, delivering 965 ms average latency. Thus, Rent-A-Server outperforms static resource allocation even when the average amount of consumed service resources stays constant.

The performance of Rent-A-Server demonstrates the power of dynamically recruiting resources for wide area services. However, it is equally important to provide a convenient interface for application development. Our implementation of Rent-A-Server in WebOS consists solely of the load daemon and additions to the Apache HTTP server to transmit state information to the load daemon and to transmit aggregate service state (in HTTP headers) to Smart Clients. The load daemon consists of 1000 lines of C++ code, and we added 150 lines of C code to Apache. Beginning with the WebOS framework, our prototype of Rent-A-Server was operational in less than one week.

Advantages

These dynamically reconfiguring and geographically mobile services provide a number of advantages, including:

 (i) better end-to-end availability (services-specific extensions running in the client mask Internet or server failures),

(ii)better cost-performance (by dynamically moving information closer to clients, network latency, congestion, and cost can all be reduced while maintaining server control), and

(iii) better burst behavior (by dynamically recruiting resources to handle spikes in demand) .

For example, many Internet news services were over whelmed on the night of the last U.S. Presidential election; the framework would enable those services to handle demand through dynamic replication.

7. Conclusion
In this paper, we have demonstrated the synergy available from exporting traditional operating system functionality to wide area applications. Our prototype implementation, WebOS, describes one possible organization

Of these system services, in this framework, we make the following contributions. First, we show that extending server functionality onto client machines allows for more flexible implementation of name resolution, load balancing, and fault tolerance. Second, by providing a file system abstraction combining communication and persistence, we simplify the implementation of a number of wide area applications. Next, we present a methodology for coherently caching program results through the file system, speeding the performance of applications which must repeatedly execute programs with common inputs. Finally, we demonstrate how Rent-A-Server, an application developed in our framework, both improves system performance and more efficiently utilizes system resources for Web server access.

Bibliography
www.researchIndex.com
PAGE

