A PROJECT REPORT ON

Server Tech/Safe Internet
Submitted to XXXX University for the partial fulfillment of

the requirement for the

Award of Degree for

XXXXXXXXXXXXXXXXXXXXXXXX

Done by

Mr. XXXXXX

XXXXX Institute of Management & Computer Sciences

Hyderabad

ACKNOWLEDGEMENT

My heartful gratitude and thanks to God, my parents and other family members and friends without whose unsustained support, I could not have made this career in XXXX.

I wish to place on my record my deep sense of gratitude to my project guide,

Mr. XXXXX for his consant motivation and valuable help through the project work. Express my gratitude to Mr. XXXX, Director of XXXXX Institute of Management & Computer Sciences for his valuable suggestions and advices through out the XXX course. I also extend my thanks to other Faculties for their Cooperation during my course.

Finally I would like to thank my friends for their cooperation to complete this project.

XXXXXXX
5INTRODUCTION

6Introduction About Cybertel

9Introduction to the project

10SYSTEM ANALYSIS

15Identification of Need:

18Feasibility Study

20Requirement Specification:

21TOOLS, PLATFORM/LANGUAGES USED

45SYSTEM DESIGN

46Software Engineering Paradigm Applied - (Rad-Model)

50Data Flow Diagrams:

60SYSTEM TESTING & IMPLEMENTATION

61System Testing

63Implementation

68OUTPUTS

76SCOPE FOR THE FUTURE APPLICATIONS

78CONCLUSION

80BIBILOGRAPHY

INTRODUCTION

Introduction About CMC
XXXXXXXXXXXXX
Introduction to the project

The aim of the project is to develop a Proxy Server, which accepts HTTP requests from various clients and forwards HTTP responses to the clients.

 The World Wide Web has advanced furiously since the days when Mosaic was the browser. Today, tens of millions of people surf the web regularly, and billions of dollars in commerce are conducted online annually.
The web has gone from a morass of static pages with broken links, to a medium that can provide sophisticated and personalized services. Unfortunately, the web development infrastructure is only beginning to come up to the level required to support the promise of Internet services of today and tomorrow. Today, everyone from the smallest start-up to General Motors has access to middleware application servers that provide high reliability, scalability, database access and connection pooling, caching, and supports open standards. The web server market is rapidly heating up and there are several products that provide middleware functionality and support open standards. In our Web Server is a Java language - based platform that provides development and deployment for dynamic Web applications that provide personal user experiences. It is designed to use server-side to provide high-performance web applications.
The main purpose of the tool is the dynamic creation and serving of web content while supporting connectivity with such varied sources as relational databases, and SNMP compatible tools.It provides many pre-built nucleus components that are useful across a wide range of applications.

SYSTEM ANALYSIS

System Analysis refers to the process of examining a situation with the intent of improving it through better procedures and methods. Systems development can generally be thought of as having two major components: System Analysis and Systems Design. Systems design is the process of planning a new system or replace or complement the existing system. Before this planning can be done, we must thoroughly understand the existing system and determine how computers can best be used to make its operation more effective. Systems analysis, then, is the process of gathering and interpreting facts diagnosing problems and using the information to recommend improvement to the system. In designing the proxy server, special care being taken to understand the inter-relatedness between the various components and their system characteristics. However, System Analysis is a management technique, which helps us in designing a new system or improving the existing system.

Based on the above Analysis specifications, the following characteristics are observed:

1. Organization: Organization implies structure and order. It is the arrangement of components that helps to achieve objectives. In developing the above project, the structure mainly involves the client requests, server responses and searching methodologies. When these units are integrated together, they work as a whole system for generating information.

2. Interaction: Interaction refers to the procedure in which each component functions with other components of the system. In developing the above project, the client’s passes various requests from their respective terminals interact with the server on a common port and shares the information.

3. Interdependence: Interdependence means that the components of the system depend on one another. They are coordinated and linked together in a planned way to achieve an objective. In developing the above project, Interdependence is achieved since the server responses mainly depend on the various client requests.

4. Integration: Integration is concerned with how a system is tied together. It is more than sharing a physical part or locations. It means that parts of the system work together within the system even though each part performs a unique function. Successful Integration will typically produce a better result as a whole rather than if each component works independently. In developing the above project, all the units are integrated together to perform predefined task.

There are four basic elements in the System Analysis. Brief description of each element has been given below:

A. Outputs: First of all, the user must determine what the objectives or goals are, what do we intend to achieve, what is the purpose of the work. In the other words, what is the main objective behind the system? Defining the aim is very vital in system work. In our project, the main objective is to develop a server, which accepts requests from various clients, retrieves the information from its cache and forward the response to the clients.

B. Inputs: Once the outputs are defined, users can easily determine what the inputs should be. Sometimes, it may happen that the required information may not be readily available in the proper form. This may be because of the existing forms are not properly designed. Sometimes, it may not be possible to get the required information without the help of top management. If the information is vital to the system, we should make all possible efforts to make it available. Sometimes, it might be too costly to get the desired information. It would be better in such cases to prepare a cost-benefit analysis to convince the management of the necessity for acquiring the information. The essential elements of inputs are:

a) Accuracy: If the data is not accurate, the outputs will be wrong.

b) Timeliness: If data is not obtained in time, the entire system falls into arrears.

c) Proper format: The inputs must be available in the proper format.

d) Economy: The data must be produced at the least cost.

In developing our project, the various Inputs are clients who pass requests from various terminals and the outputs are server responses forwarded to the clients.

C. Files: As the word implies files are used to store data. Most of the inputs necessary for the system may be historical data, or it may be possible that these are generated from within the system. These information is stored in files either in terms of isolated facts or in large volumes.

D. Process: Process involves the programs and the way in which data is processed through the computer. The processing involves a set of logical steps. These steps are required to be instructed to the computer and this is done by a series of instructions called "programs".

Systems have been classified in different ways. Common classifications are:

a) Physical or abstract systems: Physical systems are tangible entities that may be static or dynamic in operation. Abstract systems are conceptual or non-physical entities, which may be as straightforward as formulas of relationships among sets of variables or models-the abstract conceptualization of physical situations.

b) Open or Closed Systems: An open system continually interacts with its environments. It receives inputs from and delivers outputs. An information system belongs to this category, since it must adapt to the changing demands of the user. In contrast, a closed system is isolated from environmental influences. In reality completely closed systems are rare. Our project is mainly open system based.

c) Deterministic or Probabilistic Systems: A Deterministic system is one in which the occurrence of all events is perfectly predictable. If the user gets the description of the system state at a particular time, the next state can be easily predicted. An example of such a system is a numerically controlled machine tool. Probabilistic system is one in which the occurrence of events cannot be perfectly predicted. An example of such a system is a warehouse and its contents.

d) Man-made Information Systems: It is generally believed that information reduces uncertainty about a state or event. An information system is the basis for interaction between the user and the analyst. It determines the nature of relationship among decision makers. In fact, it may be viewed as a decision centre for personal at all levels. From this basis, an information system may be defined as a set of devices, procedures and operating systems designed around user-based criteria to produce information and communicate it to the user for planning, control and performance.

Identification of Need:

For proceeding in the right direction for a given objective, we must always have a goal clearly understood. This goal is software application development can also be termed as problem specification, which is to identify clearly what the current project means for and who are the people to be benefited from the outcome and the limitations of the end users etc., all form a part of the problem.

 In this section, we try to look at this aspect of the project more closely.

Introduction:

Proxy Server acts as an interface between a Client and a Remote Server. It is a kind of gateway that speaks HTTP to the browser but FTP or some other protocol to the server. A Proxy Server translates HTTP (Hyper Text Transfer Protocol) requests into FTP(File Transfer Protocol) requests. Proxy servers have a number of other important functions such as Caching. A Caching Proxy Server collects and keeps all the pages that pass through it. When a user asks for a page, Proxy Server checks to see if it has the page. If so, it can check to see if the page is still current. In the event that the page is still current, it is passed to the user. Otherwise, a new copy is fetched.

Introduction To Cache

 Cache memories are high-speed buffers, which are inserted between main memory and the CPU. Caches are faster than main memory. The caches although are fast yet are very expensive memories and are used in only small sizes. Thus, small cache memories are intended to provide fast speed of memory retrieval without sacrificing the size of memory. If such small size of fast memory will be advantageous in increasing the overall speed of memory references.

Cache contains a copy of certain portions of main memory. The memory read or writes operation is first checked with cache and if the desired location data is available in cache then used by the CPU directly. Otherwise, blocks of words are read from main memory to cache and CPU from cache uses the word. Since cache has limited space, so for this incoming block a portion called a slot need to be vacated in Cache. The contents of this vacating block are written back to the main memory at the position it belongs to. Thus, for a word, which is not in cache, access time is slightly more than the access time for main memory without cache.

The performance of the cache is closely related to the nature of the programs being executed. An important aspect of the cache is the size of the block, which is normally equivalent to 4 to 8 addressable units. A cache consists of a number of slots. Since cache size is smaller than that of main memory, there is no possibility of one is to one mapping of the contents of main memory to cache.

Features:

Proxy Server is a software solution running on Windows 95/98/NT that provides a single point of contact between the network and the Internet. An Administrator can also schedule access times to the Internet on a per user, workgroup or on a global basis.

· Comprehensive Features:

Proxy Server provides access to all the important Internet facilities such as HTTP (the World Wide Web), NNTP (newsgroups), Telnet, POP3 (incoming email), SMTP (outgoing email), and FTP and others. It also allows caching a Web-Page at the Silverside so that further requests from the clients can be completed in a faster manner and also allowing the facility to empty the cache.

· Anti-Virus Scanning:

The latest versions of the Proxy Server incorporate anti-virus technology to prevent Internet users from inadvertently downloading infected files. An auto updating facility ensures that the virus scanner always has the latest Anti Virus definition files to combat the growing virus menace.

· Faster Page Serving:

 Through a highly intelligent page caching system, Proxy speeds up access to commonly used web sites. Web pages are automatically stored in the server's cache when a user visits a website. The next time a request is made for that page it is served directly from the server's cache - an almost instant delivery as opposed to the irritating wait normally associated with online connections.

· Content/Site Filtering:

Proxy Server provides Network Administrator with a powerful highly flexible tool for controlling and monitoring the kind of web content that finds its way onto your system.

Undesirable material can be filtered in any number of ways by means of easy to follow dialogue windows and multiple-choice buttons.

Feasibility Study

· Technical Feasibility: Technical Feasibility is concerned with specifying equipment and software that will successfully satisfy the user requirement. The technical needs of the system may vary considerably, but might include:

· The facility to produce outputs in a given time.

· Response time under certain conditions.

· Ability to process a certain volume of transaction at a particular speed.

· Facility to communicate data to distant location.

In examining Technical Feasibility, configuration of the system is given more importance than the actual make of the hardware. The configuration should give the complete picture of the system requirements: How many workstations are required, how these units are interconnected so that they could operate and communicate smoothly.

· Operational Feasibility: Operational Feasibility is mainly related to the various political aspects of the system such as :

· Will the system work when it is developed and installed?

· Is there sufficient support for the project from the management? If the present system is well liked and used to the extent that users will not be able to see reasons for a change, they may be resistance.

· Have the users been involved in the planning and development of the project? If they are involved at the earliest stage of project development, the chances of resistance can be possibly reduced.

· Will the proposed system cause harm? Will it produce poorer result in any case or area? Will the performance of staff member fall down after implementation?

Issues that appear to be quite minor at the early stage can grow into major problem after implementation. Therefore, it is always advisable to consider the operational aspects carefully.

· Economical Feasibility: A system that can be developed technically and that will be used if installed, must still be profitable for the organization. Financial benefits must equal or exceed the costs. The analysts raise various financial and economic questions during the preliminary investigation to estimate the following:

· The cost to conduct a full systems investigation.

· The cost of hardware and software for the class of application being considered.

· The benefits in the form of reduced costs or fewer costly errors.

· The cost if nothing changes (i.e. the proposed system is not developed).

To be judged feasible, a proposal for the specific project must pass all these tests. Otherwise the project is not considered as feasible.

Requirement Specification:

Software Requirements: 32bit Java Compiler.

Hardware Requirements:

1. Windows NT/2000 Operating System.

2. PIII Processor with 256MB of RAM (Recommended).

3. 10 GB Hard Disk.

TOOLS, PLATFORM/LANGUAGES USED

SELECTED SOFTWARE

ABOUT JAVA: -

Object-Oriented Programming:

Object-oriented programming is at the core of java. To manage increasing complexity, object-oriented programming was conceived. Object-oriented programming organizes a program around its data and a set of well-defined interfaces to that data. An object-oriented program can be characterized as data controlling access to code.

History Of Java:

 Java began life as the programming language Oak. The members of the Green Project, which included Patrick Naughton, Mike Sheridan and James Gosling, a group formed in 1991 to create products for the smart electronics market, developed oak. The team decided that the existing programming language were not well suited for use in consumer electronics. The chief programmer of Sun Microsystems, James Gosling, was given the task of creating the software for controlling electronic devices. Members of the Oak team realized that java would provide the required cross-platform independence that is, independence from the hardware, the network, and the operating system. Very soon, java became an integral part of the web.

Java software works in every device i.e. from the smallest device to supercomputers. Java technology components do not depend on the kind of computer, telephone, television, or operating system they run on. They work on any kind of compatible device that supports the Java platform.

Features Of Java

Java is simple, object oriented, distributed, interpreted, and robust, and secure, high performance, architecture neutral, multithreaded and dynamic programming language.

At the same time, WWW team was searching for a language that suits its Internet applications. All the above features suited their requirements and they adopted Java as the language of Internet.

Simple:

Java has been described as "C++ minus" because of many of the most complex and confusing elements of C++ were omitted, like pointers, memory management, operator overloading, virtual functions etc. Finding a pointer error in a large program is a toughest job.

Memory management occurs automatically in java. Programmers need not have to write clean-up statements like free () or delete (). Memory allocation and deallocation is implicit built-in feature of java. Garbage collection is a continuous process that automatically takes place through out the execution of the program goto is a reversed word in java, but programmer is not allowed to use it. With goto, programmer looses the sequence of flow of control, and it becomes very difficult to debug a program. There are cases when maintenance projects are abandoned due to goto, and written afresh. With this simplicity it is easy to learn Java than learning C/C++.

Object-Oriented:

 Object-Oriented Programming (OOP) is a powerful way of organizing and developing software. The components of OOP, called as objects, exist independently of other. Java exploits the advantages of OOPs concepts like Encapsulation, Inheritance and Polymorphism.

The Java language includes a set of class libraries (in the form of package) that provide basic functionality to write programs in a simple way like java. Lang (contains classes required for running every Java program), java.io (for input and output operations) and java. Applet (for writing applets).

Secure:

Another essential to Java's success as an Internet language is that it is safe and secure. A Java program that executes from a web page is called an applet. When the browser into the system, along text and images, downloads an applet it may bring viruses-the enemy of software on your disk.

For this Java provides security at different levels. First, it eliminated pointers that can change data on the disk. Next, a bytecode verifier check anything suspicious (like access permissions) is going on. An applet by default, cannot open, read or write files on the user system.

Jdk1.2.2 offers more advanced approach to security by allowing applets to be digitally signed for verification purposes. Jar files can be protected with public and private keys. Also you can override the default Security Manager class for extra safeguards.

Platform Independent:

Most computer software is developed for a specific operating system. Platform independent means, the same program (.class file) can work on different operating systems. The bytecode of a .class file makes it platform independent. That is, we compile only once and can run on any operating system on any time. This feature is very important for an applet. The applet downloaded and executed on our system is not known on which system it was compiled.

Robust:

Java is strongly typed language and it checks the program both at compile time and at run time. First of all, implicit memory management prevents memory leaks. It’s exception handling mechanism eliminates common problems like "divide by zero" or "file not found" etc. Unassigned instance variables and unassigned elements of an array are given default values instead of giving junk values.

Multithreaded:

Java was designed to meet the real-world requirements of creating interactive, networked programs. To accomplish this, Java supports multithreaded programming, which allows you to write programs that do many things simultaneously. That is downloading an applet, running an animation and editing a source code -all can be done at once. Java's Thread class makes it easy to write a multithreaded program. The Java run-time system comes with an elegant yet sophisticated solution for multiprocessing synchronization that enables you to construct smoothly running interactive systems. Java's easy- to- use approach to multithreading allows you to think about the specific behavior of your program, not the multitasking subsystem.

Architecture-Neutral:

A central issue for the Java designers was that of code longevity and portability. The Java designers made several hard decisions in the Java language and the Java Virtual Machine in an attempt to alter this situation. Their goal was "write once; run anywhere, anytime forever”. To a great extent this goal was accomplished.

Distributed:

Java is designed for the distributed environment of the Internet, because it handles TCP/IP protocols. This allowed objects on two different computers to execute procedures remotely. Java has recently revived these interfaces in a package called Remote Method Invocation (RMI). This feature brings an unparalleled level of abstraction to client/server programming.

Dynamic:

Java programs carry with them substantial amounts of run-time type information that is used to verify and resolve accesses to objects at run time.

Components Of Java Architecture:

Java Architecture:

The Java architecture comprises of four components, each of which has been defined by Sun Microsystems.

· Java Programming Language.

· Java Class File Format.

· Java Application Programming Interface (Java API).

· Java Virtual Machine (JVM).

A Java program uses all these four components.

· You write code in the Java Language.

· When you compile the “.java” file, it creates a .class file(the byte code).

· The “.class” file is executed on the JVM.

· When you execute the program, it makes function calls using the methods available in the Java API.

The JVM and Java API form a platform for executing Java programs. They are also called the Java Runtime System or the Java Platform.

The Java Virtual Machine:

The Java Virtual Machine (JVM) is the heart of the Java's network orientation. The JVM is a virtual machine that does not exist physically. It is software that is based on an imaginary computer with a logical set of instructions that defines the operations performed by it. The compiler compiles the source code to instructions understood by the imaginary machine. The interpreter converts the instructions to the machine language that is understood by the hardware for which the interpreter has been created. One of the main tasks of the JVM is the loading of .class files. The JVM has class loaders that load the .class files, and execute the bytecode. The .class files of the Java API are also loaded into the JVM. The .class files are interpreted and executed by the execution engine.

The Java Class File:

The .class file makes the Java program network mobile and platform-independent. It serves as a binary code that is understood by the JVM, and is not dependent on the hardware or operating system of the host machine. The Java .lass file can be executed on any machine that hosts the JVM. The .class files are compact and can be transported easily and quickly across a network. As Java programs are dynamically linked, the classes are loaded when required.

The Java API:

The Java API is a set of .class files available at runtime. The API offers a standard way of accessing resources on the host computer. Any machine that has the JVM will have the Java API, as the part of the Java platform specification. Thus, you can safely assume that your .class files will run on any machine that has a JVM. The Java API .class files are loaded when a Java program needs them.

The JVM and the Java API are built for every platform. A Java program calls the methods of Java API, which invokes the methods of the underlying operating system. The Java API thus insulates the Java program from the host operating system. The Java API also checks with the security manager before providing access to resources.

The Java Programming Language:

Java is object-oriented and offers code reusability. This increases a programmer's productivity. Java does not allow implicit typecasting from a data type that supports a wider range of values to a data type that supports a narrower range of values.

Memory of an object can be allocated using the new operator. Java does not allow pointer arithmetic. Java does not allow out of bounds array access. Java ensures that objects and variables are allocated memory. It also ensures that variables are initialized before use. Java programs can run on multiple platforms. Hence, only one version of the application needs to be developed and maintained.

Java Programs

Java can be used to write a huge variety of applications. A few types of Java applications are:

Applications that do not use a Graphical User Interface (GUI):

They are similar to traditional programs written in C and C++.

Applications using GUI:

These are similar to the applications described above, but have graphical user interfaces. These applications are used in the Windows environment.

Applets:

An applet is a client side program that run on a Web page and requires a Java-enabled browser like Internet Explorer or Netscape Navigator. An applet is simple to use, since all that the user has to do to start the applet is to access a Web page. An applet can only access the resources of the host machine. It cannot access the files on the local computer. Appletviewer is a minimal browser that comes with jdk with which we can run an applet.

Servlets:

 Just like an applet is a client-side program, a servlet is a server-side program, written in Java that dynamically extends the functionality of the Web server. Servlets execute inside a JavaWebServer on the server. Servlets do not display a Graphical User Interface to the user. A servlet work is done "behind the scenes" on the server only the results of the servlet's processing are returned to the client.

JavaServerPages:

JavaServerPages is new web technology, which provides vast of features to develop server-side application. JSP application can run on any platform and browsers as JSP is product of Sun Microsystems. And also, by using the enhanced features of XML, we can develop application that can run any device

 (ex:- Mobile Application). In J2EE technology JSP plays major role. In order to work with JSP we required JavaWebServer 2.0 version.

Packages:

 Packages are collection of classes that can be shared by applications and applets. They are similar to the libraries provided by other languages like C++. Java provides many packages like lang and util. You can also create our own packages. Packages provide access restrictions to other classes. Packages also reduce the potential name clashes between classes.

The Java IO system

Creating a good input/output (IO) system is one of the more difficult tasks for the language designer.
This is evidenced by the number of different approaches. The challenge seems to be in covering all eventualities. Not only are there different kinds of IO that you want to communicate with (files, the console, network connections), but you need to talk to them in a wide variety of ways (sequential, random-access, binary, character, by lines, by words, etc.).

The Java library designers attacked the problem by creating lots of classes. In fact, there are so many classes for Java’s IO system that it can be intimidating at first (ironically, the Java IO design actually prevents an explosion of classes). There has also been a significant change in the IO library between Java 1.0 and Java 1.1. Instead of simply replacing the old library with a new one, the designers at Sun extended the old library and added the new one alongside it. As a result you can sometimes end up mixing the old and new libraries and creating even more intimidating code.

This chapter will help you understand the variety of IO classes in the standard Java library and how to use them. The first portion of the chapter will introduce the “old” Java 1.0 IO stream library, since there is a significant amount of existing code that uses that library. The remainder of the chapter will introduce the new features in the Java 1.1 IO library. Note that when you compile some of the code in the first part of the chapter with a Java 1.1 compiler you can get a “deprecated feature” warning message at compile time. The code still works; the compiler is just suggesting that you use certain new features that are described in the latter part of this chapter. It is valuable, however, to see the difference between the old and new way of doing things and that’s why it was left in – to increase your understanding (and to allow you to read code written for Java 1.0).

Input and output

The Java library classes for IO are divided by input and output, as you can see by looking at the online Java class hierarchy with your Web browser. By inheritance, all classes derived from InputStream have basic methods called read() for reading a single byte or array of bytes. Likewise, all classes derived from OutputStream have basic methods called write() for writing a single byte or array of bytes. However, you won’t generally use these methods; they exist so more sophisticated classes can use them as they provide a more useful interface. Thus, you’ll rarely create your stream object by using a single class, but instead will layer multiple objects together to provide your desired functionality. The fact that you create more than one object to create a single resulting stream is the primary reason that Java’s stream library is confusing.

It’s helpful to categorize the classes by their functionality. The library designers started by deciding that all classes that had anything to do with input would be inherited from InputStream and all classes that were associated with output would be inherited from OutputStream.

Types of InputStream:

InputStream’s job is to represent classes that produce input from different sources. These sources can be (and each has an associated subclass of InputStream):

1. An array of bytes

2. A String object

3. A file

4. A “pipe,” which works like a physical pipe: you put things in one end and they come out the other

5. A sequence of other streams, so you can collect them together into a single stream

6. Other sources, such as an Internet connection. (This will be discussed in a later chapter.)

In addition, the FilterInputStream is also a type of InputStream, to provide a base class for “decorator” classes that attach attributes or useful interfaces to input streams. This is discussed later.

Table 10-1. Types of InputStream
	Class
	Function
	Constructor Arguments

	How to use it
	
	

	ByteArray-InputStream
	Allows a buffer in memory to be used as an InputStream.
	The buffer from which to extract the bytes.

	As a source of data. Connect it to a FilterInputStream object to provide a useful interface.
	
	

	StringBuffer-InputStream
	Converts a String into an InputStream.
	A String. The underlying implementation actually uses a StringBuffer.

	As a source of data. Connect it to a FilterInputStream object to provide a useful interface.
	
	

	File-InputStream
	For reading information from a file.
	A String representing the file name, or a File or FileDescriptor object.

	As a source of data. Connect it to a FilterInputStream object to provide a useful interface.
	
	

	Piped-InputStream
	Produces the data that’s being written to the associated PipedOutput-Stream. Implements the “piping” concept.
	PipedOutputStream

	As a source of data in multithreading. Connect it to a FilterInputStream object to provide a useful interface.
	
	

	Sequence-InputStream
	Coverts two or more InputStream objects into a single InputStream.
	Two InputStream objects or an Enumeration for a container of InputStream objects.

	As a source of data. Connect it to a FilterInputStream object to provide a useful interface.
	
	

	Filter-InputStream
	Abstract class which is an interface for decorators that provide useful functionality to the other InputStream classes. See Table 10-3.
	See Table 10-3.

	See Table 10-3.
	
	

Types of OutputStream:

This category includes the classes that decide where your output will go: an array of bytes (no String, however; presumably you can create one using the array of bytes), a file, or a “pipe.”

In addition, the FilterOutputStream provides a base class for "decorator" classes that attach attributes or useful interfaces to output streams. This is discussed later.

Table 10-2. Types of OutputStream
	Class
	Function
	Constructor Arguments

	How to use it
	
	

	ByteArray-OutputStream
	Creates a buffer in memory. All the data that you send to the stream is placed in this buffer.
	Optional initial size of the buffer.

	To designate the destination of your data. Connect it to a FilterOutputStream object to provide a useful interface.
	
	

	File-OutputStream
	For sending information to a file.
	A String representing the file name, or a File or FileDescriptor object.

	To designate the destination of your data. Connect it to a FilterOutputStream object to provide a useful interface.
	
	

	Piped-OutputStream
	Any information you write to this automatically ends up as input for the associated PipedInput-Stream. Implements the “piping” concept.
	PipedInputStream

	To designate the destination of your data for multithreading. Connect it to a FilterOutputStream object to provide a useful interface.
	
	

	Filter-OutputStream
	Abstract class which is an interface for decorators that provide useful functionality to the other OutputStream classes. See Table
10-4.
	See Table 10-4.

	See Table 10-4.
	
	

Adding attributes and useful interfaces:

The use of layered objects to dynamically and transparently add responsibilities to individual objects is referred to as the decorator pattern. (Patterns[44] are the subject of Chapter 16.) The decorator pattern specifies that all objects that wrap around your initial object have the same interface, to make the use of the decorators transparent – you send the same message to an object whether it’s been decorated or not. This is the reason for the existence of the “filter” classes in the Java IO library: the abstract “filter” class is the base class for all the decorators. (A decorator must have the same interface as the object it decorates, but the decorator can also extend the interface, which occurs in several of the “filter” classes).

Decorators are often used when subclassing requires a large number of subclasses to support every possible combination needed – so many that subclassing becomes impractical. The Java IO library requires many different combinations of features which is why the decorator pattern is a good approach. There is a drawback to the decorator pattern, however. Decorators give you much more flexibility while you’re writing a program (since you can easily mix and match attributes), but they add complexity to your code. The reason that the Java IO library is awkward to use is that you must create many classes – the “core” IO type plus all the decorators – in order to get the single IO object that you want.

The classes that provide the decorator interface to control a particular InputStream or OutputStream are the FilterInputStream and FilterOutputStream – which don’t have very intuitive names. They are derived, respectively, from InputStream and OutputStream, and they are abstract classes, in theory to provide a common interface for all the different ways you want to talk to a stream. In fact, FilterInputStream and FilterOutputStream simply mimic their base classes, which is the key requirement of the decorator.

Reading from an InputStream with FilterInputStream:

The FilterInputStream classes accomplish two significantly different things. DataInputStream allows you to read different types of primitive data as well as String objects. (All the methods start with “read,” such as readByte(), readFloat(), etc.) This, along with its companion DataOutputStream, allows you to move primitive data from one place to another via a stream. These “places” are determined by the classes in Table 10-1. If you’re reading data in blocks and parsing it yourself, you won’t need DataInputStream, but in most other cases you will want to use it to automatically format the data you read.

The remaining classes modify the way an InputStream behaves internally: whether it’s buffered or unbuffered, if it keeps track of the lines it’s reading (allowing you to ask for line numbers or set the line number), and whether you can push back a single character. The last two classes look a lot like support for building a compiler (that is, they were added to support the construction of the Java compiler), so you probably won’t use them in general programming.

You’ll probably need to buffer your input almost every time, regardless of the IO device you’re connecting to, so it would have made more sense for the IO library to make a special case for unbuffered input rather than buffered input.

Table 10-3. Types of FilterInputStream
	Class
	Function
	Constructor Arguments

	How to use it
	
	

	Data-InputStream
	Used in concert with DataOutputStream, so you can read primitives (int, char, long, etc.) from a stream in a portable fashion.
	InputStream

	Contains a full interface to allow you to read primitive types.
	
	

	Buffered-InputStream
	Use this to prevent a physical read every time you want more data. You’re saying “Use a buffer.”
	InputStream, with optional buffer size.

	This doesn’t provide an interface per se, just a requirement that a buffer be used. Attach an interface object.
	
	

	LineNumber-InputStream
	Keeps track of line numbers in the input stream; you can call getLineNumber() and setLineNumber(int).
	InputStream

	This just adds line numbering, so you’ll probably attach an interface object.
	
	

	Pushback-InputStream
	Has a one byte push-back buffer so that you can push back the last character read.
	InputStream

	Generally used in the scanner for a compiler and probably included because the Java compiler needed it. You probably won’t use this.
	
	

Writing to an OutputStream with FilterOutputStream:

The complement to DataInputStream is DataOutputStream, which formats each of the primitive types and String objects onto a stream in such a way that any DataInputStream, on any machine, can read them. All the methods start with “write,” such as writeByte(), writeFloat(), etc.

If you want to do true formatted output, for example, to the console, use a PrintStream. This is the endpoint that allows you to print all of the primitive data types and String objects in a viewable format as opposed to DataOutputStream, whose goal is to put them on a stream in a way that DataInputStream can portably reconstruct them. The System.out static object is a PrintStream.

The two important methods in PrintStream are print() and println(), which are overloaded to print out all the various types. The difference between print() and println() is that the latter adds a newline when it’s done.

BufferedOutputStream is a modifier and tells the stream to use buffering so you don’t get a physical write every time you write to the stream. You’ll probably always want to use this with files, and possibly console IO.

Table 10-4. Types of FilterOutputStream
	Class
	Function
	Constructor Arguments

	How to use it
	
	

	Data-OutputStream
	Used in concert with DataInputStream so you can write primitives (int, char, long, etc.) to a stream in a portable fashion.
	OutputStream

	Contains full interface to allow you to write primitive types.
	
	

	PrintStream
	For producing formatted output. While DataOutputStream handles the storage of data, PrintStream handles display.
	OutputStream, with optional boolean indicating that the buffer is flushed with every newline.

	Should be the “final” wrapping for your OutputStream object. You’ll probably use this a lot.
	
	

	Buffered-OutputStream
	Use this to prevent a physical write every time you send a piece of data. You’re saying “Use a buffer.” You can call flush() to flush the buffer.
	OutputStream, with optional buffer size.

	This doesn’t provide an interface per se, just a requirement that a buffer is used. Attach an interface object.
	
	

ff by itself:
RandomAccessFile

RandomAccessFile is used for files containing records of known size so that you can move from one record to another using seek(), then read or change the records. The records don’t have to be the same size; you just have to be able to determine how big they are and where they are placed in the file.

At first it’s a little bit hard to believe that RandomAccessFile is not part of the InputStream or OutputStream hierarchy. It has no association with those hierarchies other than that it happens to implement the DataInput and DataOutput interfaces (which are also implemented by DataInputStream and DataOutputStream). It doesn’t even use any of the functionality of the existing InputStream or OutputStream classes – it’s a completely separate class, written from scratch, with all of its own (mostly native) methods. The reason for this may be that RandomAccessFile has essentially different behavior than the other IO types, since you can move forward and backward within a file. In any event, it stands alone, as a direct descendant of Object.

Essentially, a RandomAccessFile works like a DataInputStream pasted together with a DataOutputStream and the methods getFilePointer() to find out where you are in the file, seek() to move to a new point in the file, and length() to determine the maximum size of the file. In addition, the constructors require a second argument (identical to fopen() in C) indicating whether you are just randomly reading (“r”) or reading and writing (“rw”). There’s no support for write-only files, which could suggest that RandomAccessFile might have worked well if it were inherited from DataInputStream.

What’s even more frustrating is that you could easily imagine wanting to seek within other types of streams, such as a ByteArrayInputStream, but the seeking methods are available only in RandomAccessFile, which works for files only. BufferedInputStream does allow you to mark() a position (whose value is held in a single internal variable) and reset() to that position, but this is limited and not too useful.

The File class:

The File class has a deceiving name – you might think it refers to a file, but it doesn’t. It can represent either the name of a particular file or the names of a set of files in a directory. If it’s a set of files, you can ask for the set with the list() method, and this returns an array of String. It makes sense to return an array rather than one of the flexible collection classes because the number of elements is fixed, and if you want a different directory listing you just create a different File object. In fact, “FilePath” would have been a better name. This section shows a complete example of the use of this class, including the associated FilenameFilter interface.

SYSTEM DESIGN
Software Engineering Paradigm Applied - (Rad-Model)

System Design

The two design objectives continuously sought by developers are reliability and maintenance.

Reliable System:

 There are two levels of reliability. The first is meeting the right requirements. A careful and through systems study is needed to satisfy this aspect of reliability. The second level of systems reliability involves the actual working delivered to the user. At this level, the systems reliability is interwoven with software engineering and development. There are three approaches to reliability.

1. Error avoidance: Prevents errors from occurring in software.

2. Error detection and correction: In this approach errors are recognized whenever they are encountered and correcting the error by effect of error, of the system does not fail.

3. Error tolerance: In this approach errors are recognized whenever they occur, but enables the system to keep running through degraded perform or by applying values that instruct the system to continue process.

Maintenance:

The key to reducing need for maintenance, while working, if possible to do essential tasks.

1. More accurately defining user requirement during system development.

2. Assembling better systems documentation.

3. Using more effective methods for designing, processing, login and communicating information with project team members.

4. Making better use of existing tools and techniques.

5. Managing system-engineering process effectively.

Output Design:
One of the most important factors of an information system for the user is the output the system produces. Without the quality of the output, the entire system may appear unnecessary that will make us avoid using it possibly causing it to fail. Designing the output should process the in an organized well throughout the manner. The right output must be developed while ensuring that each output element is designed so that people will find the system easy to use effectively.

The term output applying to information produced by an information system whether printed or displayed while designing the output we should identify the specific output that is needed to information requirements select a method to present the formation and create a document report or other formats that contains produced by the system.

Types of output:

Whether the output is formatted report or a simple listing of the contents of a file, a computer process will produce the output.

· A Report

· A Document

· A Message

· Retrieval from a data store

· Transmission from a process or system activity

· Directly from an output sources

Layout Design:

It is an arrangement of items on the output medium. The layouts are building a mock up of the actual reports or document, as it will appear after the system is in operation. The output layout has been designated to cover information. The outputs are presented in the appendix.

Input design and control:
Input specifications describe the manner in which data enter the system for processing. Input design features will ensure the reliability of the systems and produce results from accurate data, or thus can be

result in the production of erroneous information. The input design also determines whenever the user can interact efficiently with this system.

Objectives of input design:

Input design consists of developing specifications and procedures for data preparation, the steps necessary to put transaction data into a usable from for processing and data entry, the activity of data into the computer processing. The five objectives of input design are:

· Controlling the amount of input

· Avoiding delay

· Avoiding error in data

· Avoiding extra steps

· Keeping the process simple

Controlling the amount of input:

Data preparation and data entry operation depend on people, because labour costs are high, the cost of preparing and entering data is also high. Reducing data requirement expense. By reducing input requirement the speed of entire process from data capturing to processing to provide results to users.

Avoiding delay:

The processing delay resulting from data preparation or data entry operations is called bottlenecks. Avoiding bottlenecks should be one objective of input.

Avoiding errors:

Through input validation we control the errors in the input data.

Avoiding extra steps:

The designer should avoid the input design that cause extra steps in processing saving or adding a single step in large number of transactions saves a lot of processing time or takes more time to process.

Keeping process simple:

If controls are more people may feel difficult in using the systems. The best-designed system fits the people who use it in a way that is comfortable for them.

Data Flow Diagrams:

Introduction: A Data Flow Diagram is one of the most important modeling tools used during the System Design phase. These Data Flow analysis methods are developed and promoted simultaneously by the two organizations viz. Yourdan Inc and McDonnel Douglas, through the work and writings of Gane and Sarson(1979). Data Flow Diagrams are directed graphs in which the nodes specify processing activities and the arcs specify the data item transmitted between processing nodes. Data Flow Diagrams can be used at any desired level of abstraction.

 Data Flow Diagram is a graphical tool used to describe and analyze the moment of data through a system manual or automated including the process, source of data and delays in the system. Data Flow Diagrams are the central tool and the basis from which other components are developed. The transformation of data from input to output through process may be described logically and independently of the physical components like computers, file cabinets, disk units associated with the system.

 A Data Flow Diagram might represent data flow between individual statements or block of statements in a routine, data flow between sequential routines, data flow between concurrent processes, or data flow in a distributed computer system.

Data Flow Diagram do not indicate the decision logic or conditions under which various processing nodes in the diagram might be activated. Data Flow Diagrams are excellent mechanisms for communicating with customers during requirement analysis. They are also widely used for representation of external and top level internal design specifications.

Notations Used:

There are four symbols, which are frequently used to represent various activities in the data flow diagrams. The use of specific icons associated with each elements depends on whether the Yourdon or Gane-Sarson approach is used.

1. Data Flow:

 A Data Flow connects the output of an object or process to the input of another object or process. It represents an intermediate data value within a computation. The value is not changed by the data flow.

A data flow is drawn as an arrow between the producer and the consumer of the data value. The arrow is labeled with a description of the data, usually its name or type. The same value can be sent to several places; a fork indicates this with several arrows emerging from it. The output arrows are unlabeled because they represent the same value as the input.

 Sometimes an aggregate data value is split into its components, each of which goes to a different process. This is shown by a fork in the path in which each outgoing arrow is labeled with the name of its component. The combination of several components into an aggregate value is just the opposite.

 Each Data Flow represents a value at some point in the computation. The data flows internal to the diagram represent intermediate values within a computation and do not necessarily have any significance in the real world.

 Flows on the boundary of a data flow diagram are its inputs and outputs. These flows may be unconnected or they may be connected to objects. Their sources must be specified in the larger context in which the diagram is used.

2. Process:

 Process transforms data values. The lowest-level processes are pure functions without side effects. An entire data flow graph is a high-level process. A process may have side effects if it contains nonfunctional components, such as data stores or external objects. The result of such a process depends on the behavior of the system.

Process is drawn as an ellipse containing a description of the transformation, usually its name. Each process has a fixed number of input and output data arrows, each of which carries a value of a given type. The inputs and outputs can be labeled to show their role in the computation, but often the type of value on the data flow is sufficient.

3. Actors:
 An Actor is an active object that drives the data flow graph by producing or consuming values. Actors are attached to the inputs and outputs of a data flow graph. In a sense, the actors lie on the boundary of the data flow graph but terminate the flow of data as sources and sinks of data, and so are sometimes called Terminators.

An actor is drawn as a rectangle to show that it is an object. Arrows between the actor and the diagram are inputs and outputs of the diagram.

4. Data Store:

A Data Store is a passive object within a data flow diagram that stores data for later access. Unlike an actor, a data store does not generate any operations on its own but merely responds to requests to store and access data. A data store allows values to be accessed in a different order than they are generated. Aggregate data stores, such as lists and tables, provide access of data by insertion order or index keys.

Data Store is drawn as a pair or parallel lines containing the name of the store. Input arrows indicate information or operations that modify the stored data; this includes adding elements, modifying values, or deleting elements. Output arrows indicate information retrieved from the store. This includes retrieving the entire value or some component of it.

The various levels of the Data Flow Diagrams of the project is shown below:

SYSTEM TESTING & IMPLEMENTATION
System Testing

System Testing is quite expensive and time-consuming process. The common view of testing held by users is that it is performed to prove that program is error free. But this is quite difficult since the analyst cannot prove that software is free from all sort of errors.

Therefore the most useful and practical approach is with the understanding that testing is the processing of executing a program with the explicit intention of finding error. A successful test, then, is one that finds an error.

The goal of testing at the design phase is to verify that the specifications have been accurately and completely incorporated in to design as well as to ensure the correctness of the design itself. For example, the design must not have any logic faults and all interfaces must be correctly defined. It is important that any errors in the design be detected before coding commences, otherwise the cost of fixing errors will be considered higher.

There are two general strategies for testing software: Code testing and specification testing. In Code testing, the analysts develop that cases to execute every instructions and path in a program. Under Specification testing, the analyst examines the program specifications and then writes test data to determine how the program operates under specific conditions.

The following test strategies have been conducted in developing the project:

 Storage Testing: This testing strategy determines the capacity of the system to store the data on a disk or in other files. For example, verify documentation statements that the system will store 10000 records of 400 bytes on a single flexible disk.

 Performance Testing: This testing strategy determines the time taken by the system to process the information. This test is conducted prior to determine how long it takes to get a response from the server, make the backup copy of a file, or sending the requests and getting the responses.

Recovery Testing: This testing strategy determines the ability of user to restart the system after failure. For example, load backup copy of data and resume processing without data or integrity loss.

Procedure Testing: This testing strategy determines the clarity of documentation on operation and use of system when a clients passes requests from various terminals.

During testing, the system is used experimentally to ensure that the software does not fail. In other words, we can say that it will run according to its specifications and in the way users expect. Special test data are input for processing, and the results examined. A limited number of users may be allowed to use the system so as to examine the storage, performance and the behaviors of the system.

Implementation

A crucial phase in the system life cycle is the successful implementation of the new system design. Implementation includes all those activities that take place to convert from the old system to the new one. The new system has been implemented and many users have come forward to learn the operation of the new system. Many users have the system and found it to be very useful and efficient in all respects except some.

Implementation is the process of having systems personnel check out and put new equipment into use, train users, install the new application and construct any files of data needed to use it. This phase is less creative than system design. Depending on the size of the organization that will be involved in using the application and the risk involved in its use, system developers may choose to test the operation in only one area with only one or two persons.

Implementation becomes necessary so as to provide a reliable system based on the requirements of the organization. Successful implementation may not guarantee improvement in the organization using the new system, but improper installation will prevent it. It has been observed that even the best system cannot show good result if the analysts managing the implementation do not attend to every important details. This is an area where the users need to work with utmost care.

Even well designed system can succeed or fail because of the way they are operated and used. Therefore, the quality of training received by the users involved with the system in various capacities helps and may even prevent the successful implementation of the management information system. Those who are directly or indirectly related with the system development work must know in detail what their roles will be, how they can make efficient use of the system and what the system will or will not do for them.

Implementing the system is properly planned and executed. Four methods are common in use. They are:

I. Parallel Systems.

II. Direct Conversion

III. Pilot System

IV. Phase-in method.

Each method should be considered in the light of the opportunities that it offers and problems that it may create. However, it may be possible that sometimes, users may be forced to apply one method over others, even though other methods may be more beneficial. In general, implementation should be accomplished in shortest possible time.

i. Parallel Systems:

The most secure method of converting from an old to new system is to run both systems in parallel. Under this approach, users continue to operate the old system in the usual manner but they also start using the new system. This method is the safest because it ensures that in case of any problems in using the new system, the organization can still fall back to the old system without loss of time or money. The disadvantage of this approach includes:

· It doubles operating costs.

· The new system may not get fair trial.

ii. Direct Conversion:

This method converts from the old to the new abruptly, sometimes over a weekend or even overnight. The old system is used until a planned conversion day, when it is replaced by the new system. There are no parallel activities. The organization relies fully on the new system. The main disadvantages of this approach are: no other system to fall back on, if difficulties arise with new system. Secondly, wise and careful planning is required.

The goal of this project is to implement a simple, easy to understand and flexible HTTP proxy server. The main purpose of the proxy server is to be used as an HTML filter. The filtering tools can be "plugged-in" very easily, without modification of the proxy source code. Apart from filtering, the proxy server also caches documents on disk for faster access. Part of the specification was the request to retain simple statistics about documents. This information is stored on disk as well and accessible from the proxy server by a client through a Web interface.

This Project aims at the creation of a comprehensive Caching Proxy-Server, which can be used at Corporate Environments and also at Internet Cafeterias.

EXISTING SYSTEM

In a typical client-server environment where each terminal needs to retrieve information from the Internet, every terminal has to be equipped with a modem or a device that enables it to connect to the Internet. In an organization containing a group of computers this requirement may not be cost effective. At the same time it not possible to have a centralized monitoring of the content being viewed on each terminal nor is it possible to protect the organization from virus and the like. There exists no mechanism to filter the sites viewed or even to restrict hackers from breaking into the organizations data.

If a particular site is viewed on a regular basis, the web server has to be contacted every time the URL (Uniform Resource Locator) is typed which is not always time-effective.

Proposed System:

To solve the above inconveniences, "Proxy Server" is proposed. Proxies are store-and-forward caches. When a user configures his/her web browser to use a proxy, it never connects to the URL. Instead, it always connects to the proxy server, and asks it to get the URL. Proxies can be used as a sort of firewall, because it isolates a user from connecting to the Internet. A proxy server receives a request for an Internet service (such as a Web page request) from a user. If it passes filtering requirements, the proxy server, assuming it is also a cache server, looks in its local cache of previously downloaded Web pages. If it finds the page, it returns it to the user without needing to forward the request to the Internet. If the page is not in the cache, the proxy server, acting as a client on behalf of the user, connects to the remote server and fetches the page from the server out on the Internet. When the page is returned, the proxy server relates it to the original request and forwards it on to the user.

To the end users, the proxy server is invisible; all Internet requests and returned responses appear to be directly with the addressed Internet server. An advantage of using a proxy server is that its cache can serve all users. If one or more Internet sites are frequently requested, these are likely to be in the proxy's cache, which will improve user response time. In fact, there are special servers called cache servers. The functions of proxy, firewall, and caching can be in separate server programs or combined in a single package. Different server programs can be in different computers. For example, a proxy server may in the same machine with a firewall server or it may be on a separate server and forward requests through the firewall. There are different types of proxy servers with different features, some are anonymous proxies, who are used to hide real IP address and some proxies are used to filter sites, which contain material that may be unsuitable for people to view.

OUTPUTS

[image: image1.png]
[image: image2.png]
[image: image3.png]
[image: image4.png]
[image: image5.png]
[image: image6.png]
[image: image7.png]
SCOPE FOR THE FUTURE APPLICATIONS

Server Tech is used at various corporate environments, Internet Cafeterias, Banks and various Reservation Systems. Using this technology, clients can share the information from the server and ease of retrieval becomes faster.

This document is meant for the use of the developers, and will also form the basis for validating the final delivered system. Any changes made to the future requirements will have to go through the formal change approval process. The developer is responsible for asking the clarifications, where necessary, and will not make any alterations without the permission of the clients.

CONCLUSION

Server Tech is developed from the following requirements :

Software Requirements: 32bit Java Compiler.

Hardware Requirements: 1. Windows NT/2000 Operating System.

2. PIII Processor with 256MB of RAM (Recommended).

 3. 10 GB Hard Disk.

BIBILOGRAPHY

Java : Loney.

Computer Servers :

 Andrew s. Tananbaum,

 William Stallings.

 Analysis & Design :

 James A Senn,

 Tom De Marco,

 Page Jones Meilir.

client

 2.0

Process

request

URL

client

Req page

Level 1 Diagram

Context Level Diagram

URL

Res

Level 2 Diagram.

client

Proxy

Server

Request

Response

Client 	

 1.0

Analyze Request

Request

Req

Req

1.3

1.2

1.1

Check

Valid

Site

Client

Fork a

Child

Extract

URL

Client

Level 2 Diagram.

2.2

2.1

Check in

Cache

Comm.

with

Server

Res

URL

Cache File

Nonzero

Resp.

Client

Client

Level 3 Diagram.

2.2.1

Forward to

Server

Analyze

Header

2.2.2

Req

Page

URL

Res.

Header

Client

Client

Level 4 Diagram.

Requested Page

2.2.2.1

Public _ Cache

Cache File

Store in

Cache

Client

Server

Bypass

Cache

2.2.2.2

Private _ Cache

Requested Page

Client

Server

