
CHAPTER 1

INTRODUCTION
 Peer-to-peer (P2P) databases are becoming prevalent on the Internet for distribution and sharing of documents, applications and other digital media. The problem of answering large-scale ad hoc analysis queries, for example, aggregation queries, on these databases poses unique challenges. Exact solutions can be time consuming and difficult to implement, given the distributed and dynamic nature of P2P databases. We present novel sampling based techniques for approximate answering of ad hoc aggregation queries in such databases.
 Computing a high-quality random sample of the database efficiently in the P2P environment is complicated due to several factors: the data is distributed(usually in uneven quantities)across many peers, within each peer, the data is often highly correlated and, moreover, even collecting a random sample of the peers is difficult to accomplish. To counter these problems, we have developed an adaptive two-phase sampling approach based on random walks of the P2P graph, as well as block-level sampling techniques. We present extensive experimental evaluations to demonstrate the feasibility of our proposed solution.

1.1 Objection of the project:
In Order to be able to define our system architecture, we must first dearly state what our objective that will deriver system behavior at the same one of our objective is to create an experience, which is not only unique to the (user) client, but also makes him feel that he has loyal attachment to the system and approaches us whenever he/she needs.

To achieve better results and success by implement computerized process instead of manual process.
1.2
 1.2.4 Aggregate Rule Analyzer :
· Pass the aggregate which you selected to the nodes in the server. Then we can give the output for two phases here. Then the final probability will find out from the visited node phase.

 1.2.5 Report Module :
· We going to produce the report from our two phases and visited and unvisited peers in a chart representation and do chart representation of time of each peers.

 CHAPTER 2
SOFTWARE PROJECT PLAN
This chapter discuss about that time schedule for the project and it contain the various phases of the project.

The Various Phases of the Project:

	S.NO

	TASK
	DURATION

	1
	Requirement Specification
	10 Day’s

	2
	Requirement document specification

	10 Day’s

	3
	Design analysis
	20 Day’s

	4
	Design Documentation
	15 Day’s

	5
	Design Review
	20 Day’s

	6
	Coding
	15 Day’s

	
	Total
	90 Day’s

CHAPTER 3

 CUSTOMER REQUIREMENTS DETERMINATION
3.1
 CHAPTER 4

SOFTWARE REQUIREMENTS SPECIFICATION

Software Requirements Specification (SRS) is the starting point of the software development activity. Little importance was given to this phases in the early days of software development. The emphasis was first on coding and then shifted to design.

As systems grew more complex, it become evident that the goal of the entire system cannot be easily comprehended. Hence need for the requirements analysis phase arose. Now, for large software systems, requirements analysis is perhaps the most difficult activity and also the most error prone.

Some of the difficulty is due to the scope of this phase. The software project is imitated by the client needs. In the beginning these needs are in the minds of various people in the client organization. The requirement analyst has to identify the requirements by tacking to these people and understanding there needs. In situations where the software is to automated a currently manuals process, most of the needs can be understood by observing the current practice.

The SRS is a means of translating the ideas in the minds of the clients (the output) into formal document (the output of the requirements phase). Thus the output of the phase is a set of formally specified requirements, which hopefully are complete and consistent, while the input has none of these properties.
4.1 Functional Requirements:

· What can I do with ASP?

Fortunately we are not limited to dynamically generating and presenting date and time information in the client browser or performing computations. We can also access COM components to extend the functionality of our Web With ASP we caprovtransactionamanaging

While ASP should not be used for implementing business logic, we can easily aapplications.

4.2 Performance Requirements

4.2 Performance Requirement
 The project must the end user requirements. Accuracy and fast must be imposed in the Project.

 The project is development as easy as possible for the sake of end user. The project has to be developed with view of satisfying the future requirements and future enhancement.

 The tool has been finally implemented satisfying the needs specified by the company. As per the performance is concerned this system said is performing

 This processing as well as tine taken to generate well reports where also even when large amount of data was used. The system is designed in such a way that even when large amount of data used for processing there would less performance degradation.

4.3 Interface requirements

4.3.1 Hardware Interface

The stranded input device like keyboard and mouse are to get input. The output will be generated and display in the monitor. The reports can also be exported to a SQL-server document are text file. The stranded printer in used to take outputs.

4.3.2 Software Interface

The design part and interface id done the front end ASP.Net and SQL server as a backend of the project.

4.4 Operational requirements
The database or databases that are being failed over to the stand by server cannot be used for anything else. but databases on the standby server not being used for failover can still be used normally.

When it comes time for actual failover, you much one of two things to make your application work either rename the standby server the same name as the failed production server(and the IP address),or re-point your user’s applications to new standby server in some cases,neither of this option is practical.

4.5 Resource Requirements
4.5.1 Hardware Requirements
 Processor
 : PENTIUM III 866 MHz

 Ram
 :
 128 MD SD RAM

Monitor

 :
 15” color

Hard disk

 :
 20 GB

Floppy Drive
 :
 1.44 MB

Cd Drive :
 LG 52X

Keyboard
 :
 STANDARD 102 KEYS

Mouse
 :
 3 BUTTONS

4.5.2 Software Requirements
Operating System

 : Windows XP Professional

Environment

 : Visual Studio .NET 2008

.Net Framework : Version 3.5

Language

 : VB.NET

Web Technology : ASP.NET

Backend

 : SQL SERVER 2005

4.6 Security Requirements
Web application are available via network access, it is a difficult. If not possible, to limit the population of the end-user who may access the applications? In order to product sensitive connect and provide secure mode be implemented throughout the infrastructure that the supports web application and within the application itself.

Web Application have become heavy integrated with critical corporate and database.

E-commerce application extracts and then store sensitive customer information.

4.7 Design Requirements

To create project, add base masters and masters to the project, assign behaviors to the master, create and assign behavior sets, and then apply, test and validate those behaviors. It also shows how to create and build a stencil to hold the shapes.

4.8 Quality and Reliability Requirements

A software component that is developed for reuse would be correct and would contain no defects. In reality, formal verification is not carried out routinely, and defects can add to occur.However,with each reuse, defects are found eliminated, and a components qualify improve as a result. Over time the components virtually defect free.

Software reliability is defined in statical term as” the probability of faultier-free operation of a computer program in a specified environment for specified tine”. The software quality and reliability, failure is nonconformance to software requirements. Failure can be only anything or catastrophic. one failure can be corrected within seconds while another requirements week even mouths to correct. Complicating the issue even further, the correction of the one failure may in fact result in the introduction of the errors that ultimately result in other failure.

Web
 Correct link processing

Application
Reliability
 Error recovery

Quality
 Input validation and recovery
 CHAPTER 5
 SYSTEM ANALYSIS
In this section discussed about data flow diagram, Entity relationship diagram. these things are represented as diagrams with proper notation.

5.1 Data Flow Diagram

The data flow diagram is one of the most improvement tools used by the system analyst DeMacro (1978) Nad Gand Sarson (1979) popularized the use if the data flow diagram as modeling tools through their structured system analysis methodologies.

A data flow diagram should be the first tool used by system analyst to model system components. These components are the system processes; the data used by this processes and external entities that interact with the system and the information flows in the system.

There are four kinds of system components

5.1.1. Process

Process show what system does. Each process has one or more data inputs and produce one or more data output, Circles in a data flow diagram represent process. Each process has unique name and number. This name and number appear inside the circle that represents the processes in a data flow diagram.

This process is represented as circle

5.1.2. Data Stores:

File or data store is depositary of data. They contain data that is retained in the system. Processes can enter the data into a data store or retrieve data from the data store. Each data store is represented by thin line in the data flow diagram and each data store has a unique name.

The data store is represented in form of a line

5.1.3 External Entities:

External entities are outside the system but they either supply input data into the system or use the system output, they are entities which the designer has no control. Square or rectangle may represent external entities that supply data into a system or some times called sources. External entities that use the system data are sometimes called sinks.

 SHAPE * MERGEFORMAT

5.1.4 Data Flows:

Dataflow model the passage of data in the system and are represented lines joining system components. An arrow indicates the direction of the flow and the line labeled by the name of the data flow.
FLOW DIAGRAM:

· What can I do with ASP?

Fortunately we are not limited to dynamically generating and presenting date and time information in the client browser or performing computations. We can also access COM components to extend the functionality of our Web site.

With ASP we can use client-side scripts as well as server-side scriptsMaysprocessmanaging

· What’s wrong with that?

There are many problems with ASP if we think of today’s need for powerful Web applications. Some of these “restrictions” are listed here:

5.2 ER Diagram
5.3 ER Diagram

5.3 Use Case Diagram
5.4 Software Life Cycle
CHAPTER 6
 SYSTEM DESIGN
6.1 Input Design
Input design is the process of converting user-originated inputs to a computer-based format. Input design is one of the most expensive phases of the operation of computerized system and is often the major problem of a system. In the project, the input design is made in various web forms with various methods.

For example, in the Admin form, the empty username and password is not allowed. The username if exists in the database, the input is considered to be invalid and is not accepted. Likewise, during the “Employee Creation” process, the employee name, employee_ID, age, address, salary and also his designation will be noted.

6.2 Output Design
Output design generally refers to the results and information that are generated by the system for many end-users; output is the main reason for developing the system and the basis on which they evaluate the usefulness of the application.

In the project, the admin details and employee details once are given. It stores in to the data base added. The reports here generated vividly and the employee salary details & his attendance details can be seen through the reports.

6.3 Interface Design
The ODBC (Open Database Connectivity) interface is a pure .NET to execute SQL statement. The ODBC provides a set classes and interfaces that can be used by developers to write database applications. Basic ODBC interactions in its simplest form, can be broken down into four steps:

1. Open a connection to the database.

2. Execute a SQL statement

3. Process the result

4. Close the connection to the database
6.4 Table And Database Design:
 The database design is a must for any application developed especially more for the data store projects. Since the chatting method involves storing the message in the table and produced to the sender and receiver, proper handling of the table is a must.

In the project, login table is designed to be unique in accepting the username and the length of the username and password should be greater than zero.

The salary and attendance table are common for all employee details. The different users view the data in different format according to the privileges given.

The complete listing of the tables and their fields are provided in the annexure under the title ‘Table Structure’.

DATABASE STRUCTURE
[image: image2.png]
6.5 Front End Design
 SELECTION OF SOFTWARE:
ASP.NET is a new way to program dynamic and interactive Web applications. ASP.NET is a compiled environment that makes extensive use of the Microsoft® .NET Framework, and the entire .NET platform is available to any ASP.NET application.

· What is ASP?

Microsoft Active Server Pages (ASP) is a server-side scripting technology. Any scripting or programming language that is compliant with the Component Object Model (COM) can be used to create Web server applications.

Take a pure HTML file and add scripting code to it, so that one file contains both HTML and, for example, Microsoft Visual Basic Scripting Edition (VBScript). That file has the file extension .asp (instead of .html) and is accessed via HTTP requests.

In the browser, a user enters the URL for the file. When the server receives the request, it recognizes the extension; Microsoft Internet Information Service (IIS) treats the .asp file differently from an .html file. A COM component (asp.dll) parses the file for the scripting code and processes it from the top of the file to bottom. The scripting code inside the .asp file is interpreted each time the file is requested.

Normally, a standard HTML document will be generated and sent to the browser as a response; but other data, such as images or binary data, can be returned.
· What can I do with ASP?

Fortunately we are not limited to dynamically generating and presenting date and time information in the client browser or performing computations. We can also access COM components to extend the functionality of our Web site.

With ASP we can use client-side scripts as well as server-side scripts. Maybe we want to validate user input or access a database. ASP provides solutions for transaction processing and managing session state.

While ASP should not be used for implementing business logic, we can easily and quickly create simple Web applications.

· What’s wrong with that?

There are many problems with ASP if we think of today’s need for powerful Web applications. Some of these “restrictions” are listed here:

· Mixes layout (HTML) and logic (scripting code)

Mixing HTML code and scripting code may not cause problems when implementing and editing one file the first time. You will begin to have problems when a programmer and a designer have to update the functionality and the layout, because having both HTML and scripting code in one file complicates the update process.

· Interpreting ASP code leads to performance loss

As mentioned earlier, the scripting code in an ASP file is interpreted each time the file is requested. The .asp file name extension alerts IIS that the file contains scripting code. IIS then parses the file for the code and processes it.

On Web servers where hundreds of client requests per minute are expected, this time consuming processing leads to a performance loss.

· Uses JScript and VBScript

Microsoft JScript® and VBScript are common scripting languages and currently supported by the ASP scripting engine. Because both JScript and VBScript are not strongly typed, this leads to another performance loss.

You can use other scripting languages, but custom scripting engines are hard to find.

· Browser compatibility

Another restriction is that you have to be sure that the user’s browser can make use of the scripting language your ASP code is written in.

· No real state management

Session state is only maintained if the client browser supports cookies. Session state information can only be held by using the ASP Session object. And you have to implement additional code if you, for example, want to identify a user.

A big problem with ASP and state management is that the information cannot be shared across Web farms. This causes you trouble if you want to enhance the performance of your application by hosting it on more than one server.

If IIS fails, all the data corresponding to a session state is lost, because the session information is stored in memory on the server.

· Update files only when server is down

If your Web application makes use of components, copying new files to your application should only be done when the Web server is stopped. Otherwise it is like pulling the rug from under your application’s feet, because the components may be in use (and locked) and must be registered.
· ASP.NET Core Concepts

ASP.NET is a new way to program dynamic and interactive Web applications. There is more in it than just a few new features; it is much more than “ASP 4.0.” ASP.NET is a new programming framework for Web applications. It is a compiled .NET-based environment that makes extensive use of the .NET Framework.

Because it has evolved from ASP, ASP.NET looks very similar to its predecessor—but only at first sight. Some items look very familiar, and they remind us of ASP. But concepts like Web Forms, Web Services, or Server Controls gives ASP.NET the power to build real Web applications.

· Separate layout and business logic

To make a clean sweep, with ASP.NET you have the ability to completely separate layout and business logic.

This means that you can split all inline code from the page and store both code and content in different files (with different file name extensions). Now your designers can work with nearly pure HTML files, while the programmers can implement the “working code.”

· Use services provided by the .NET Framework

The .NET Framework provides class libraries that can be used by your application. Some of the key classes help you with input/output, access to operating system services, data access, or even debugging. We will go into more detail on some of them in this module.

· Code is compiled the first time a page is requested

When a page is requested for the first time, its code is compiled to classes instead of being interpreted by a scripting engine. This compilation is done once, and then the objects are kept in memory. Besides other advantages, this allows for strong typing and performance optimizations; of course, this solution improves performance even without using optimization at compile time, because accessing existing objects in memory is faster than interpreting the code.

· State management

To refer to the problems mentioned before, ASP.NET provides solutions for session and application state management. State information can, for example, be kept in memory or stored in a database. It can be shared across Web farms, and state information can be recovered, even if the server fails or the connection breaks down.

· Make use of programming languages

The ASP.NET code is not scripting code anymore. Your programmers can choose whatever programming language they prefer.

Visual Basic, C++, and Microsoft’s new component-oriented language C# are just 3 out of 17 supported languages to meet the demands; even the “good old ones” like COBOL can be chosen.

And if there are programmers preferring different languages or if you have to use more than one language to meet your needs, do so. Take, for example, Visual Basic and C# to implement the business logic, because now languages can be integrated with one another. A class written in one language can derive from a class implemented in another language.

Cross-language interoperation is possible because of the underlying .NET Framework.

· Update files while the server is running!

Components of your application can be updated while the server is online and clients are connected. The Framework will use the new files as soon as they are copied to the application. Removed or old files that are still in use are kept in memory until the clients have finished.

[image: image3.png]
· Architecture

In this section you will get an overview of the .NET Framework architecture, the Web application model, and the configuration system.

· The .NET Framework Architecture

To really understand what makes ASP.NET more than just “ASP 4.0” we need to have a look at the underlying .NET Framework architecture.

The .NET Framework architecture is built on top of the operating system services. This framework contains different layers.

In the .NET Framework common language runtime, this resides on top of the operating system services. The common language runtime loads and executes code that targets the runtime. This code is therefore called managed code. The runtime gives you, for example, the ability for cross-language integration. For that matter it makes use of the common type system, which defines a standard set of types and rules to create new types.

As mentioned earlier, the .NET Framework provides a rich set of class libraries. These include base classes, like networking and input/output classes, a data class library for data access, and classes for use by programming tools, such as debugging services. All of them are brought together by the Services Framework, which sits on top of the common language runtime.

The top layer of the .NET framework consists of the Windows application model and, in parallel, the Web application model.

Use the Windows application model—Windows Forms—to develop more traditional Windows applications and take advantage of new Windows 2000 features. You can include existing COM components, but also make use of Web Services (which are explained later).

The Web application model—in the slide presented as ASP.NET—includes Web Forms and Web Services.

[image: image4.png]
ASP.NET comes with built-in Web Forms controls, which are responsible for generating the user interface. They mirror typical HTML widgets like text boxes or buttons. If these controls do not fit your needs, you are free to create your own user controls.

Web Services brings you a model to bind different applications over the Internet. This model is based on existing infrastructure and applications and is therefore standard-based, simple, and adaptable.

A Web Service can be understood as a contract between server and client. Those contracts are described by the XML-based Web Services Description Language (WSDL). Doing so, Web Services are defined as endpoints that communicate via XML-based messages.

· Web Application Model

But now we will show you in more detail how ASP.NET requests are handled.

As with earlier versions of ASP, a client can access your Web application using URLs. So, a Web application is a set of URLs related to one or more virtual directories on the Web server.

Each request is processed by the HTTP runtime, which is the core of the ASP.NET Web application model. Processing consists of resolving the URL of the request to the corresponding application, and dispatching the request to the application for further processing.

Requests are led through a pipeline of HTTP modules. With each module a developer can catch and modify requests. One of those modules could be, for example, a security module.

At the end of the module pipeline, there are request handlers. They enable the processing of individual URLs within an application.

From the developer’s point of view there is easy access to a clean and well-structured object model. Beside those aspects mentioned above, there is an object encapsulating all information about an individual HTTP request within ASP.NET. This object is called HttpContext. HTTP modules and request handlers access ASP.NET intrinsic via HttpContext.

· HTTP Runtime

Now in more detail:

Managed code

While the HTTP runtime is managed code—because it targets the common language runtime—it runs within an unmanaged host process that could be, for example, Microsoft IIS.

So, for ASP.NET the .NET Framework uses IIS as a more or less “dump” gateway for its own HTTP infrastructure.

Aims for 100% availability

The HTTP runtime processes all requests asynchronously. Because of this and because it’s multithreaded, the HTTP runtime is fail-safe to a high level. For example, badly written code cannot block the HTTP runtime.

Replaces ISAPI

The HTTP runtime replaces the Internet Server Application Programming Interface (ISAPI).

HTTP module pipeline

The HTTP module pipeline can consist of one or more modules. Each module implements a specific interface or functionality. This architecture makes it easy to extend the functionality of your Web application: just add another module! If you need state management, just add the state management module by adding the module to the <httpmodules> section in your Web.Config file.

It is also possible to add third-party modules for additional needs, which are not covered by .NET. While all requests to one application are routed through the same pipeline, an application can be associated with multiple request handlers.

Request handler

Request handlers are higher-level implementations like Web Services, and reside at the end of the module pipeline, waiting to process the request.

[image: image5.png]
· Hierarchical Configuration

ASP.NET ships with a rich and flexible configuration system for both developers and administrators.

Concepts and architecture

All configuration settings are stored in XML-based files named Web.Config. Those files are human readable and writeable. They are easy to edit by developers and administrators using text editors or, for example, Perl scripts. Configuration files are kept within the directory tree of your Web application.

You can store different Web.Config files on the server. Each configuration file affects the directory that it is placed in and all subdirectories. This is called hierarchical configuration architecture.

For example, assume that you stored a Web.Config file for your Web application in SubDir1 and none in the root directory. Then all configuration settings for the root directory are taken from the default Web.Config file (more about this on the next slide). The application subdirectories SubDir1 and SubDir2 are configured by the settings in the Web.Config file that is stored in SubDir1. SubDir2 will inherit all configuration settings of its parent directory.

Of course, you don’t have to write one configuration file for each directory of your application. It is possible to apply settings to specific directories using the <location> tag.

· This hierarchical configuration architecture is a simple way to customize your configuration. Additionally, all changes are automatically detected by th Web.Config sample
All configuration settings must reside between the starting <configuration> and ending </configuration> tags. The two main parts of the file are the leading configuration section handler declarations and the actual configuration sections:

· <configSections>
This section contains the configuration section handler declarations. With each declaration you specify the name for the configuration section and the type of the section handler. In this sample we declare httpmodules and sessionstate.

· <sectionName>
For each declaration you have to write a configuration section. So, here we have two sections, one for httpmodules and one for sessionstate. In the httpmodules section you can register HTTP modules for your HTTP module pipeline. In the section named sessionstate you can set a session timeout or specify a server for remote session state store.
· [image: image6.png]
Compilation, when page is requested the first time

The first time a page is requested, the code is compiled. Compiling code in .NET means that a compiler in a first step emits Microsoft intermediate language (MSIL) and produces metadata—if you compile your source code to managed code. In a following step MSIL has to be converted to native code.

Microsoft intermediate language (MSIL)

Microsoft intermediate language is code in an assembly language–like style. It is CPU independent and therefore can be efficiently converted to native code.

The conversion in turn can be CPU-specific and optimized. The intermediate language provides a hardware abstraction layer.

MSIL is executed by the common language runtime.

Common language runtime

The common language runtime contains just-in-time (JIT) compilers to convert the MSIL into native code. This is done on the same computer architecture that the code should run on.

The runtime manages the code when it is compiled into MSIL—the code is therefore called managed code.

[image: image7.png]
Assemblies

Information that is related to executable code is stored together as metadata. The metadata is generated from the source code—at the moment the compiler produces MSIL—by the compiler. Executable files and metadata together are characterized as self-describing components.

Further on, a group of resources (for example, a collection of physical files) and types along with the corresponding metadata (which is then called manifest) are referred to as an assembly. Assemblies are essential to the common language runtime.

A resource may be a DLL, and now you can use your service—the DLL—without entering “DLL Hell” by just copying the assembly to whatever location you want to use it; no installation, no registration.

Assemblies build the substantial entity for reuse, deployment, version control, and security. Assemblies are usually made up of one or more Portable Execution (PE) and resource files. And a .NET application consists of one or more related assemblies.

Note .NET DLLs have nothing to do with today’s DLLs; the only thing in common is the file name extension.

Result of compiling is still a .dll or .exe file

While the outcome of compilation is still a DLL or EXE file, assemblies are the principle of how to avoid DLL conflicts. To install the application just xcopy the assembly—and all related assemblies—to your application directory.

You can store and use many copies of one DLL file on a server. Two applications that are physically located in different directories may use the same DLL. In the past they have to share one single file. Now each application can have a copy of the DLL within its application directory. This solves the versioning problem, where different applications need different versions of a DLL, as well as the locking problem, where one application uses and locks a DLL while another application wants to gain access to the DLL.

Imagine a multi-file Assembly1 referencing a single-file Assembly2. To do this, Assembly2 has to expose a so-called shared name that can be referred to by Assembly1 using a token. This mechanism works with a public key and a signature generated over the target assembly.

[image: image8.png]
· Metadata

The metadata is referred to as an assembly’s manifest. A manifest can be stored as part of a DLL or as a stand-alone file. It contains a list of all files of the corresponding assembly, version information including version and build numbers, shared name information guaranteeing name uniqueness, type reference information, and more. Optionally, a developer can store a description, configuration information, or product information.

All this information is, among other things, used to:

· Locate and load class types.

· Lay out objects instances in memory.

· Resolve method invocations and field references.

· Translate MSIL to native code.

· Enforce security.

Features Of Asp.Net

ASP.NET is the next version of Active Server Pages (ASP); it is a unified Web development platform that provides the services necessary for developers to build enterprise-class Web applications. While ASP.NET is largely syntax compatible, it also provides a new programming model and infrastructure for more secure, scalable, and stable applications.

 ASP.NET is a compiled, NET-based environment, we can author applications in any .NET compatible language, including Visual Basic .NET, C#, and JScript .NET. Additionally, the entire .NET Framework is available to any ASP.NET application.
 ASP.NET has been designed to work seamlessly with WYSIWYG HTML editors and other programming tools, including Microsoft Visual Studio .NET. Not only does this make Web development easier, but it also provides all the benefits that these tools have to offer, including a GUI that developers can use to drop server controls onto a Web page and fully integrated debugging support.
 Developers can choose from the following two features when creating an ASP.NET application. Web Forms and Web services, or combine these in any way they see fit. Each is supported by the same infrastructure that allows you to use authentication schemes, cache frequently used data, or customize your application's configuration, to name only a few possibilities.
Web Forms allows us to build powerful forms-based Web pages. When building these pages, we can use ASP.NET server controls to create common UI elements, and program them for common tasks. These controls allow we to rapidly build a Web Form out of reusable built-in or custom components, simplifying the code of a page.
An XML Web service provides the means to access server functionality remotely. Using Web services, businesses can expose programmatic interfaces to their data or business logic, which in turn can be obtained and manipulated by client and server applications. XML Web services enable the exchange of data in client-server or server-server scenarios, using standards like HTTP and XML messaging to move data across firewalls. Each of these models can take full advantage of all ASP.NET features, as well as the power of the .NET Framework and .NET Framework common language runtime. Accessing databases from ASP.NET applications is an often-used technique for displaying data to Web site visitors. ASP.NET makes it easier than ever to access databases for this purpose. It also allows us to manage the database from your code .
ASP.NET provides a simple model that enables Web developers to write logic that runs at the application level. Developers can write this code in the global.aspx text file or in a compiled class deployed as an assembly. This logic can include application-level events, but developers can easily extend this model to suit the needs of their Web application.
ASP.NET provides easy-to-use application and session-state facilities that are familiar to ASP developers and are readily compatible with all other .NET Framework APIs.ASP.NET offers the IHttpHandler and IHttpModule interfaces. Implementing the IHttpHandler interface gives you a means of interacting with the low-level request and response services of the IIS Web server and provides functionality much like ISAPI extensions, but with a simpler programming model. Implementing the IHttpModule interface allows you to include custom events that participate in every request made to your application.
ASP.NET takes advantage of performance enhancements found in the .NET Framework and common language runtime. Additionally, it has been designed to offer significant performance improvements over ASP and other Web development platforms. All ASP.NET code is compiled, rather than interpreted, which allows early binding, strong typing, and just-in-time (JIT) compilation to native code, to name only a few of its benefits. ASP.NET is also easily factorable, meaning that developers can remove modules (a session module, for instance) that are not relevant to the application they are developing.

ASP.NET provides extensive caching services (both built-in services and caching APIs). ASP.NET also ships with performance counters that developers and system administrators can monitor to test new applications and gather metrics on existing applications. Writing custom debug statements to your Web page can help immensely in troubleshooting your application's code. However, it can cause embarrassment if it is not removed. The problem is that removing the debug statements from your pages when your application is ready to be ported to a production server can require significant effort.
ASP.NET offers the Trace Context class, which allows us to write custom debug statements to our pages as we develop them. They appear only when you have enabled tracing for a page or entire application. Enabling tracing also appends details about a request to the page, or, if you so specify, to a custom trace viewer that is stored in the root directory of your application. The .NET Framework and ASP.NET provide default authorization and authentication schemes for Web applications. we can easily remove, add to, or replace these schemes, depending upon the needs of our application .
ASP.NET configuration settings are stored in XML-based files, which are human readable and writable. Each of our applications can have a distinct configuration file and we can extend the configuration scheme to suit our requirements.
Data Access With Ado.Net

As you develop applications using ADO.NET, you will have different requirements for working with data. You might never need to directly edit an XML file containing data - but it is very useful to understand the data architecture in ADO.NET.

ADO.NET offers several advantages over previous versions of ADO
Interoperability

Maintainability

Programmability

Performance
Scalability
Interoperability
ADO.NET applications can take advantage of the flexibility and broad acceptance of XML. Because XML is the format for transmitting datasets across the network, any component that can read the XML format can process data. The receiving component need not be an ADO.NET component.

The transmitting component can simply transmit the dataset to its destination without regard to how the receiving component is implemented. The destination component might be a Visual Studio application or any other application implemented with any tool whatsoever.

 The only requirement is that the receiving component be able to read XML. SO, XML was designed with exactly this kind of interoperability in mind.

Maintainability

In the life of a deployed system, modest changes are possible, but substantial, Architectural changes are rarely attempted because they are so difficult. As the performance load on a deployed application server grows, system resources can become scarce and response time or throughput can suffer. Faced with this problem, software architects can choose to divide the server's business-logic processing and user-interface processing onto separate tiers on separate machines.
 In effect, the application server tier is replaced with two tiers, alleviating the shortage of system resources. If the original application is implemented in ADO.NET using datasets, this transformation is made easier.

 ADO.NET data components in Visual Studio encapsulate data access functionality in various ways that help you program more quickly and with fewer mistakes.
Performance
 ADO.NET datasets offer performance advantages over ADO disconnected record sets. In ADO.NET data-type conversion is not necessary.
Scalability
 ADO.NET accommodates scalability by encouraging programmers to conserve limited resources. Any ADO.NET application employs disconnected access to data; it does not retain database locks or active database connections for long durations.
Visual Studio .Net

Visual Studio .NET is a complete set of development tools for building ASP Web applications, XML Web services, desktop applications, and mobile applications In addition to building high-performing desktop applications, you can use Visual Studio's powerful component-based development tools and other technologies to simplify team-based design, development, and deployment of Enterprise solutions.

Visual Basic .NET, Visual C++ .NET, and Visual C# .NET all use the same integrated development environment (IDE), which allows them to share tools and facilitates in the creation of mixed-language solutions.
 In addition, these languages leverage the functionality of the .NET Framework and simplify the development of ASP Web applications and XML Web services. Visual Studio supports the .NET Framework, which provides a common language runtime and unified programming classes; ASP.NET uses these components to create ASP Web applications and XML Web services. Also it includes MSDN Library, which contains all the documentation for these development tools.
THE .NET FRAMEWORK
The .NET Framework is a new computing platform that simplifies application development in the highly distributed environment of the Internet.

Objectives of. Net framework
1. To provide a consistent object-oriented programming environment whether object codes is stored and executed locally on Internet-distributed, or executed remotely.

2. To provide a code-execution environment to minimizes software deployment and guarantees safe execution of code.

3. Eliminates the performance problems

There are different types of application, such as Windows-based applications and Web-based applications.

COMPONENTS OF .NET FRAMEWORK
THE COMMON LANGUAGE RUNTIME (CLR)

The common language runtime is the foundation of the .NET Framework. It manages code at execution time, providing important services such as memory management, thread management, and remoting and also ensures more security and robustness. The concept of code management is a fundamental principle of the runtime. Code that targets the runtime is known as managed code, while code that does not target the runtime is known as unmanaged code

THE .NET FRAME WORK CLASS LIBRARY

It is a comprehensive, object-oriented collection of reusable types used to develop applications ranging from traditional command-line or graphical user interface (GUI) applications to applications based on the latest innovations provided by ASP.NET, such as Web Forms and XML Web services.

The .NET Framework can be hosted by unmanaged components that load the common language runtime into their processes and initiate the execution of managed code, thereby creating a software environment that can exploit both managed and unmanaged features. The .NET Framework not only provides several runtime hosts, but also supports the development of third-party runtime hosts.
 Internet Explorer is an example of an unmanaged application that hosts the runtime (in the form of a MIME type extension). Using Internet Explorer to host the runtime to enables embeds managed components or Windows Forms controls in HTML documents.

FEATURES OF THE COMMON LANGUAGE RUNTIME

 The common language runtime manages memory; thread execution, code execution, code safety verification, compilation, and other system services these are all run on CLR.

Security.

Robustness.

Productivity.

Performance.
Security
The runtime enforces code access security. The security features of the runtime thus enable legitimate Internet-deployed software to be exceptionally feature rich. With regards to security, managed components are awarded varying degrees of trust, depending on a number of factors that include their origin to perform file-access operations, registry-access operations, or other sensitive functions.
Robustness
The runtime also enforces code robustness by implementing a strict type- and code-verification infrastructure called the common type system(CTS). The CTS ensures that all managed code is self-describing. The managed environment of the runtime eliminates many common software issues
Productivity
 The runtime also accelerates developer productivity. For example, programmers can write applications in their development language of choice, yet take full advantage of the runtime, the class library, and components written in other languages by other developers.

Performance
The runtime is designed to enhance performance. Although the common language runtime provides many standard runtime services, managed code is never interpreted. A feature called just-in-time (JIT) compiling enables all managed code to run in the native machine language of the system on which it is executing. Finally, the runtime can be hosted by high-performance, server-side applications, such as Microsoft® SQL Server™ and Internet Information Services (IIS).

6.6 Back End Design
 FEATURES OF SQL-SERVER 2000
 The OLAP Services feature available in SQL Server version 7.0 is now called SQL Server 2000 Analysis Services. The term OLAP Services has been replaced with the term Analysis Services. Analysis Services also includes a new data mining component. The Repository component available in SQL Server version 7.0 is now called Microsoft SQL Server 2000 Meta Data Services. References to the component now use the term Meta Data Services. The term repository is used only in reference to the repository engine within Meta Data Service

SQL-SERVER database consist of six type of objects,
They are,

1. TABLE

2. QUERY

3. FORM

4. REPORT

5. MACRO
 6. MODULE
 6.6.1 TABLE:

 A database is a collection of data about a specific topic.
 VIEWS OF TABLE:

 We can work with a table in two types,

1. Design View

2. Datasheet View
Design View

 To build or modify the structure of a table we work in the table design view. We can specify what kind of data will be hold.
Datasheet View
 To add, edit or analyses the data itself we work in tables datasheet view mode.
 6.6.2 QUERY
 A query is a question that has to be asked the data. Access gathers data that answers the question from one or more table. The data that make up the answer is either dataset (if you edit it) or a snapshot (it cannot be edited).Each time we run query, we get latest information in the dataset. Access either displays the dataset or snapshot for us to view or perform an action on it, such as deleting or updating.

 6.6.3 FORMS
 A form is used to view and edit information in the database record by record .A form displays only the information we want to see in the way we want to see it. Forms use the familiar controls such as textboxes and checkboxes. This makes viewing and entering data easy.

 Views of Form
 We can work with forms in several primarily there are two views,

 They are,

 1. Design View

 2. Form View
Design View

 To build or modify the structure of a form, we work in forms design view. We can add control to the form that are bound to fields in a table or query, includes textboxes, option buttons, graphs and pictures.

Form View

 The form view which display the whole design of the form.
 6.6.4 REPORT
 A report is used to vies and print information from the database. The report can ground records into many levels and compute totals and average by checking values from many records at once. Also the report is attractive and distinctive because we have control over the size and appearance of it.
6.6.5 MACRO

 A macro is a set of actions. Each action in macros does something. Such as opening a form or printing a report .We write macros to automate the common tasks the work easy and save the time.
 6.6.6 MODULE

 Modules are units of code written in access basic language. We can write and use module to automate and customize the database in very sophisticated ways.It is a personal computer based RDBMS. This provides most of the features available in the high-end RDBMS products like Oracle, Sybase, and Ingress etc.
 6.7 Algorithm:
 Step 1: Verify the user entry by means of captcha code

 Step2: Listing the available peer information’s to user to know the seed and leaches for performing file searching

 Step3: Download the files based upon the available seeds to local system

 Step4: Upload file from local system to remote machine

 Step5: monitoring remote system for knowing active and inactive remote systems

 Step6: Logout successful

 CHAPTER 7

 CODINGS
Login

Imports System

Partial Class _Default

 Inherits System.Web.UI.Page

 Dim obj As New peer

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

 If Not Page.IsPostBack Then

 codetxt.Text = obj.random_identity()

 End If

 End Sub

 Protected Sub TextBox1_TextChanged(ByVal sender As Object, ByVal e As System.EventArgs) Handles usernametxt.TextChanged

 usernametxt.BackColor = Drawing.Color.White

 End Sub

 Protected Sub TextBox2_TextChanged(ByVal sender As Object, ByVal e As System.EventArgs) Handles codetxt.TextChanged

 identitytxt.BackColor = Drawing.Color.White

 End Sub

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles Button1.Click

 If identitytxt.Text = codetxt.Text Then

 obj.submit_login_info(usernametxt.Text, identitytxt.Text)

 Response.Redirect("welcomepage.aspx?username='" & usernametxt.Text & "'")

 Else

 MsgBox("Enter Correct Code", MsgBoxStyle.Information, "PeerProvider")

 End If

 End Sub

End Class

<script runat="server">

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

 usernamelbl.Text = Request.QueryString("username")

 End Sub

</script>
 End Sub
File Search

Public Sub download_manager(ByVal filename As String)

 Dim file_info As New FileInfo(filename)

 filename = file_info.FullName

 If Not String.IsNullOrEmpty(filename) Then

 If file_info.Exists Then

 Response.Clear()Imports System

Imports System.IO

Partial Class downloader

 Inherits System.Web.UI.Page

 Dim server_obj As New localhost.server1

 Dim file_name As New ArrayList

 Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles Button1.Click

 file_name.Add(server_obj.filecollection(keywordtxt.Text))

 If Not file_name.Count = 0 Then

 Session("peers") = file_name

 GridView1.DataSource = file_name

 GridView1.DataBind()

 peercountlbl.Text = GridView1.Rows.Count

 End If

 Response.AddHeader("Content-Disposition", "attachment; filename=" & filename)

 Response.AddHeader("Content-Length", filename.Length.ToString())

 Response.ContentType = "application/octet-stream"

 Response.WriteFile(filename)

 Response.Close()

 Else

 MsgBox(filename & " Cannot be exist !", MsgBoxStyle.Information, "DownloadManager")

 End If

 End If

 End Sub

Protected Sub GridView1_SelectedIndexChanged(ByVal sender As Object, ByVal e As System.EventArgs) Handles GridView1.SelectedIndexChanged

 Dim row As GridViewRow

 Dim selected_file As String

 row = GridView1.SelectedRow

 selected_file = row.Cells(1).Text

 download_manager(selected_file)

 End Sub

 Protected Sub LinkButton1_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles LinkButton1.Click

 Response.Redirect("peerlister.aspx")

 End Sub

Document Feeder
Imports System

Imports System.Collections

Imports System.IO

Imports System.Net

Imports System.Runtime.Remoting

Imports System.IO.Compression

Imports System.DirectoryServices

Partial Class peerlister

 Inherits System.Web.UI.Page

 Dim peername As New ArrayList

 Dim result As New ArrayList

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

 intimationlbl.Visible = False

 peername = Session("peers")

 GridView1.DataSource = peername

 GridView1.DataBind()

 End Sub

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles Button1.Click

 If Not String.IsNullOrEmpty(filenametxt.Text) Then

 FileUpload1.SaveAs(filenametxt.Text)

 intimationlbl.Visible = True

 Else

 intimationlbl.Text = "Please Give a FileName !"

 intimationlbl.Visible = True

 End If

 End Sub

Protected Sub Button2_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles Button2.Click

 Dim de As New DirectoryEntry

 Dim computer_name As New ArrayList

 de.Path = "WinNT://" + "MSHOME"

 For Each d As DirectoryEntry In de.Children

 If d.SchemaClassName = "Computer" Then

 computer_name.Add(d.Name)

 End If

 Next

 For Each cn As String In computer_name

 getallIP(cn)

 Next

 End Sub

Public Sub getallIP(ByVal args As String)

 Dim strHostName As New String("")

 Dim ipaddr As New ArrayList

 Dim hostname As New ArrayList

 ' Then using host name, get the IP address list..

 Dim ipEntry As IPHostEntry = Dns.GetHostByName(args)

 Dim addr As IPAddress() = ipEntry.AddressList

 If args.Length = 0 Then

 strHostName = Dns.GetHostName()

 Dim ip As IPHostEntry = Dns.GetHostByName(strHostName)

 addr = ip.AddressList

 args = strHostName

 End If

 Dim i As Integer = 0
 While i < addr.Length

 ListBox1.Items.Add(addr(i).ToString())

 ListBox2.Items.Add(args)

 System.Math.Max(System.Threading.Interlocked.Increment(i), i - 1)

 End While

 End Sub

End Class
File Upload
Imports System.Web

Imports System.Web.Services

Imports System.Web.Services.Protocols

Imports System.IO

<WebService(Namespace:="http://tempuri.org/")> _

<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _

Public Class server1

 Inherits System.Web.Services.WebService

 <WebMethod()> _

 Public Function filecollection(ByVal keyword As String) As String

 Dim drivers() As String = Directory.GetLogicalDrives()

 Dim filenames_collection As New ArrayList

 Dim folders_name_collection As New ArrayList

 Dim match_files As New ArrayList

 Dim file_reader As StreamReader

 Dim number_of_peers As Integer

 Dim contents As String

Try

 'For i = 0 To drivers.Length - 1

 If drivers.IsFixedSize Then

 Dim di As New DirectoryInfo("e:\")
 Dim fi() As FileInfo = di.GetFiles("*", SearchOption.TopDirectoryOnly)

 For Each fil_info As FileInfo In fi

 If Not fil_info.Extension = ".avi" Or fil_info.Extension = ".jpg" Or fil_info.Extension = ".mp4" Or fil_info.Extension = ".mp3" Or fil_info.Extension = ".gif" Or fil_info.Extension = ".png" Then

 file_reader = New StreamReader(fil_info.Name)

 contents = file_reader.ReadToEnd()

 file_reader.Close()

 If (Regex.IsMatch(contents, keyword)) Then

 number_of_peers += 1

 Return fil_info.Name

 End If

 End If

If fil_info.Name.Contains(keyword.Trim()) Then

 number_of_peers += 1

 Return fil_info.Name.ToString()

 End If

 Next

 End If

 'Next

 Catch ex As Exception

 MsgBox(ex.ToString())

 End Try

 End Function

End Class

Peer Configuration

Imports System.Data.SqlClient

Imports System.IO

Public Class peer

 Dim identity As Integer

 Public con As New SqlConnection(Configuration.ConfigurationManager.ConnectionStrings("connectionstring").ToString)

 Public cmd As New SqlCommand

 Dim query As String

 Public Function random_identity() As Integer

 Dim rnd As New Random

 Dim result As Integer

 result = rnd.Next(100, 9999).ToString()

 Return result

 End Function

Public Sub submit_login_info(ByVal username As String, ByVal code As Long)

 query = "insert into [logininformation] values('" & username & "'," & code & ")"

 Try

 cmd = New SqlCommand(query, con)

 cmd.Connection.Open()

 cmd.ExecuteNonQuery()

 Catch ex As Exception

 MsgBox(ex.Message)

 Finally

 cmd.Connection.Close()

 End Try

 End Sub

End Class

 CHAPTER 8
 SYSTEM TESTING

System testing involves user training system testing and successful running of the developed proposed system. The user tests the developed system and changes are made according to their needs. The testing phase involves the testing of developed system using various kinds of data.
An elaborate testing of data is prepared and the system is tested using the test data. While testing, errors are noted and the corrections are made. The corrections are also noted for the future use. The users are trained to operate the developed system.
TESTING
System testing is the stage of implementation that is aimed at ensuring that the system works accurately and efficiently before live operation commences. Testing is vital to the success of the system. System testing makes logical assumption that if all the parts of the system are correct, then the goal will be successfully achieved. A series of testing are done for the proposed system before the system is ready for the user acceptance testing.

The following are the types of Testing

1. Unit Testing

2. Integration Testing

3. Validation Testing

4. Verification testing
5. User acceptance testing
8.1 Unit Testing

The procedure level testing is made first. By giving improper inputs, the errors occurred are noted and eliminated. Then the web form level testing is made. For example storage of data to the table in the correct manner.

 In the company as well as seeker registration form, the zero length username and password are given and checked. Also the duplicate username is given and checked. In the job and question entry, the button will send data to the server only if the client side validations are made
8.2 Integration Testing
 Testing is done for each module. After testing all the modules, the modules are integrated and testing of the final system is done with the test data, specially designed to show that the system will operate successfully in all its aspects conditions. Thus the system testing is a confirmation that all is correct and an opportunity to show the user that the system works.

8.3 Validation Testing
 The final step involves Validation testing, which determines whether the software function as the user expected. The end-user rather than the system developer conduct this test most software developers as a process called “Alpha and Beta Testing” to uncover that only the end user seems able to find.

 The compilation of the entire project is based on the full satisfaction of the end users. In the project, validation testing is made in various forms. In question entry form, the correct answer only will be accepted in the answer box. The answers other than the four given choices will not be accepted.

8.4 Verification Testing
Verification is a fundamental concept in software design. This is the bridge between customer requirements and an implementation that satisfies those requirements.

This is verifiable if it can be demonstrated that the testing will result in an implementation that satisfies the customer requirements.

Inadequate testing or non-testing leads to errors that may appear few months later. This will create two problems

· Time delay between the cause and appearance of the problem.

· The effect of the system errors on files and records within the system.

8.5 User Acceptance Testing
User acceptance testing of a system is the key factor of the success of any system. The system under study is tested for the user acceptance by constantly keeping in touch with the prospective system users at any time of developing and making changes whenever required.
 CHAPTER 9

 PROBLEMS FACED
 When there is a clear goal in sight but no clear set of directions or means to attain that goal, then it is called a problem. problems can be broken down into four aspects; goal, givens, means of transforming conditions, and obstacles.

Goal – the goal is the desired end state which the problem solving is being directed toward.

The hope is to reach that end state and be able to assess whether or not you achieved what you wanted.

Givens- these are the objects , conditions ,and constraints that accompany a problem ,and can be either explicit or implicit.

Means of transforming conditions- there should be a way of changing the initial stateof the problem.this is most usually a person’s knowledge or skill level. For instance ,a computer programmer presented with a problem would utilize his or her knowledge of programming language to transform the state of the problem.

Obstacles- the problem should present a challenge.if there are no challenges involved and the situation can be easily solved then it is not so a problem so much as a rountine task.

Every problem has a problem faced, which is the whole range of possible states and operators.only some of these states and operators will bring the person closer to the goal state. The problem starts at the initial state and operators are applied to change the state, creating a series of intermediate states that should hopefully lead to the final goal state
 CHAPTER 10

 FUTURE PLANS
 Every application has its own merits and demerits. The project has covered almost all the requirements. Further requirements and improvements can easily be done since the coding is mainly structured or modular in nature. Changing the existing modules or adding new modules can append improvements. Further enhancements can be made to the application, so that the web site functions very attractive and useful manner than the present one

 CONCLUSION

The site works according to the restrictions provided in their respective browsers. Further enhancements can be made to the application, so that the web site functions very attractive and useful manner than the present one. The speed of the transactions become more enough now.

 APPENDIX
[image: image9.png]
 Fig 1.Login
[image: image10.png]

Fig 2.Home Page
[image: image11.png]
 Fig 3. File Search
[image: image12.png]

Fig 4.Document Feeder
[image: image13.png]

Fig 5.File Upload
[image: image14.png]

Fig 6.Peer Configuration
REFERENCES

Book Reference
· Professional ASP.NET MVC 1.0 (Wrox Programmer to Programmer) / Rob Conery, Scott Hanselman, Phil Haack, Scott Guthrie Publisher: Wrox
· ASP.NET 3.5 Unleashed / Stephen Walther Publisher: Sams
· Programming ASP.NET 3.5 / Jesse Liberty, Dan Maharry, Dan Hurwitz Publisher: O'Reilly Media, Inc.
 BIBILOGRAPHY

· Beginning ASP.NET 3.5 in C# 2008: From Novice to Professional by Matthew MacDonald - Computers - Apress (2007) - Paperback - 954 pages

· Beginning ASP.NET 2.0 in VB 2005: From Novice to Professional

by Matthew MacDonald - Computers - Apress (2006) - Paperback - 1063
pages

· Mastering ASP.NET with C# by A. Russell Jones - Computers - Sybex (2002) - Paperback - 816 pages

· Pro ASP.NET 2.0 in C# 2005 by Matthew MacDonald, Mario Szpuszta - Computers - Apress (2005) - Paperback - 1255 pages
[image: image15.png]

 SIGN IN

 SIGN IN

PEER LISTER :

SERVER 1

SERVER N

 PEERLISTER

CLIENT 1

CLIENT N

CLIENT 1

CLIENT N

ACTIVE PEERS :

 ACTIVE SERVERS CURRENTLY INACTIVE SERVERS

 PEER LISTER

 VISITED PEERS

 UNVISITED PEERS

AGGRIGATE RULE :

 AGGRIGATE OPERATION

 VISITED PEERS

VISITED NODES

AVAILABLE PEER AND SERVER VISITED NODE AS OUTPUT

 VISITED PEERS

REPORT OUTPUT :

 SIGN IN

PEER LISTER :

SERVER 1

SERVER N

 PEER LISTER

CLIENT 1

CLIENT N

CLIENT 1

CLIENT N

ACTIVE PEERS :

 ACTIVE SERVERS CURRENTLY INACTIVE SERVERS

 PEER LISTER

 VISITED PEERS

 UNVISITED PEERS

AGGRIGATE RULE :

 AAGGRIGATE OPERATION

 VISITED PEERS

 VISITED NODES

AVAILABLE PEER AND SERVER VISITED NODE AS OUTPUT

 VISITED PEERS

REPORT OUTPUT :

54

