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1. INTRODUCTION

                         The collection of digital information by governments, corporations, and individuals has created tremendous opportunities for knowledge-based decision making. Driven by mutual benefits, or by regulations that require certain data to be published, there is a demand for the exchange and publication of data among various parties. Detailed person-specific data in its original form often contains sensitive information about individuals, and publishing such data immediately violates individual privacy. The current practice primarily relies on policies and guidelines to restrict the types of publishable data and on agreements on the use and storage of sensitive data. The limitation of this approach is that it either distorts data excessively or requires a trust level that is impractically high in many data-sharing scenarios. For example, contracts and agreements cannot guarantee that sensitive data will not be carelessly misplaced and end up in the wrong hands.
              Privacy means how an individual controls who has access to his personal information. From another point of view, Privacy may be how the data is collected, shared and used by the customers. So definition of privacy varies from one environment to the other
Some of the definitions are:- 
 Privacy as the right of a person to determine which personal information about himself herself may be communicated to others. 
 Privacy as the control over access to information about oneself. 
 Privacy as limited access to a person and to all the features related to the person. 
              From experiment point of view privacy is defined as “The right of an entity to be secure from unauthorized disclosure of sensible information that are contained in an electronic repository or that can be derived as aggregate and complex information from data stored in an electronic repository”. 
              A task of the utmost importance is to develop methods and tools for publishing data in a more hostile environment, so that the published data remains practically useful while individual privacy is preserved. This undertaking is called privacy-preserving data publishing (PPDP). In the past few years, research communities have responded to this challenge and proposed many approaches
1.1  Micro data Publishing
                GOVERNMENT agencies and other organizations often need to publish micro data, e.g., medical data or census data, for research and other purposes. While the released table gives useful information to researchers, it presents disclosure risk to the individuals whose data are in the table. Therefore, objective is to limit the disclosure risk to an acceptable level while maximizing the benefit. 
 Micro data can be considered as census data and medical data. Typically, micro data are stored in a table, and each record (row) corresponds to one individual. Each record has a number of attributes, which can be divided into the following three categories:
          1. Identifier. 
Identifiers are attributes that clearly identify individuals. Examples include Social Security Number and Name.
                               Table 1.1 Micro data Table (Example of Micro data)

	Name
	Zip-Code
	Age
	Disease

	Alice
	47677
	29
	Heart Disease

	Bob
	47602
	22
	Heart Disease

	Carl
	47678
	27
	Heart Disease

	David
	47905
	43
	Flu

	Eva
	47906
	77
	Heart Disease

	Frank
	479006
	30
	Heart Disease

	Glory
	47605
	36
	Cancer

	Harry
	45678
	21
	Cancer

	Ian
	47890
	45
	Heart Disease


                  
           2. Quasi-Identifier. 
       Quasi-identifiers are attributes whose values when taken together can potentially identify an individual. Examples include Zip-code, Birth date, and Gender. An adversary may already know the QI values of some individuals in the data. This knowledge can be either from personal contact or from other publicly available databases (e.g., a voter registration list) that include both explicit identifiers and quasi-identifiers.
       3. Sensitive Attribute. 
   Sensitive attributes are attributes whose values should not be associated with an individual by the adversary. Examples include Disease and Salary. An example of micro data table is shown in Table 1.1. As in most previous work, we assume that each attribute in the micro data is associated with one of the above three attribute types and attribute types can be specified by the data publisher.
               1.1.1 Information Disclosure Risks
                     When releasing micro data, it is necessary to prevent the sensitive information of the individuals from being disclosed. Three types of information disclosure have been identified: - membership disclosure, identity disclosure, and attribute disclosure.
         1. Membership Disclosure. 
  When the data to be published is selected from a larger population and the selection criteria are sensitive (e.g., when publishing datasets about diabetes patients for research purposes), it is important to prevent an adversary from learning whether an individual’s record is in the data or not.
          2. Identity Disclosure.
 Identity disclosure (also called re-identification) occurs when an individual is linked to a particular record in the released data. Identity disclosure is what the society views as the clearest form of privacy violation. If one is able to correctly identify one individual’s record from supposedly anonymized data, then people agree that privacy is violated. In fact, most publicized privacy attacks are due to identity disclosure. 
          3. Attribute Disclosure.
 Attribute disclosure occurs when new information about some individuals is revealed, i.e., the released data makes it possible to infer the characteristics of an individual more accurately than it would be possible before the data release. Identity disclosure often leads to attribute disclosure. Once there is identity disclosure, an individual is re-identified and the corresponding sensitive values are revealed. Attribute disclosure can occur with or without identity disclosure. It has been recognized that even disclosure of false attribute information may cause harm. An observer of the released data may incorrectly perceive that an individual’s sensitive attribute takes a particular value, and behave accordingly based on the perception. This can harm the individual, even if the perception is incorrect.

In some scenarios, the adversary is assumed to know who is and who is not in the data, i.e., the membership information of individuals in the data. The adversary tries to learn additional sensitive information about the individuals. In these scenarios, our main focus is to provide identity disclosure protection and attribute disclosure protection. 

          1.1.2 Data Anonymization
              While the released data gives useful information to researchers, it presents disclosure risk to the individuals whose data are in the data. Therefore, objective is to limit disclosure risk to an acceptable level while maximizing the benefit. This is achieved by anonymizing the data before release. The first step of anonymization is to remove explicit identifiers. However, this is not enough, as an adversary may already know the quasi identifier values of some individuals in the table. This knowledge can be either from personal knowledge (e.g., knowing a particular individual in person), or from other publicly available databases (e.g., a voter registration list) that include both explicit identifiers and quasi-identifiers. Privacy attacks that use quasi-identifiers to re-identify an individual’s record from the data is also called re-identification attacks. To prevent re-identification attacks, further anonymization is required. A common approach is generalization, which replaces quasi-identifier values with values that are less specific but semantically consistent. For example, age 24 can be generalized to an age interval [20 − 29]. As a result, more records will have the same set of quasi-identifier values. A  QI group is defined to be a set of records that have the same values for the quasi-identifiers. In other words, a QI group consists of a set of records that are indistinguishable from each other.







2. PRIVACY PRESERVING DATA PUBLISHING (PPDP)
                                 Privacy-preserving data publishing, is to prevent linking some record holder to a specific (or a small number of) data record and sensitive information in the released data while, at the same time, preserving the useful information in the released data.
[image: ]
Fig 2.1: Data flow in data mining system
                 Figure 2.1 shows the data flow model in a typical data mining system. In the data collection phase, a data publisher collects information from individual record holders (e.g., Alice, Bob, Cathy, and Doug). In the data publishing phase, a data publisher releases the collected data to a data miner (or even to the public) for data mining.
                There are two models of data publishers. In the un-trusted model, the data publisher himself could be an attacker who attempts to identify some record holders and their sensitive information from the collected data. In the trusted model, the data publisher is trustworthy, and the record holders are willing to contribute their personal information to him. For example, a record holder is willing to provide her medical information to a hospital in order to receive the required medical service; however, the trust to the hospital may not be transitive to the data miner. Typically, the data 


publisher has a table of the form T (Explicit identifier, Quasi-identifier, Sensitive attributes).
                Given a data set, privacy-preserving data publishing can be intuitively thought of as a game among four parties:
• Data user, who wants to utilize the data.
• Adversary, who wants to derive private information from the data.
• Data publisher, who collect the data and wants to release the data in a way that satisfies the data user’s need but also prevents the adversary from obtaining private information about the individuals in the data.
• Individuals, whose data are collected by the data publisher. In some cases, the individuals agree with the data publisher’s privacy policy, trust the data publisher and give the data publisher all the requested information.
             In these cases, it is the data publisher’s responsibility to ensure privacy preservation. In other cases, the individuals do not trust the data publisher and want to make sure that the data publisher cannot precisely identify their sensitive information (e.g., by adding noise to their data records so that the data publisher can only have accurate aggregate statistics, but noisy individual data values). There are fundamental tradeoffs between privacy and utility. At one extreme, the data publisher may release nothing so that privacy is perfectly preserved; however, no one is able to use the data. At the other extreme, the data publisher may release the data set without any modification so that data utility can be maximized; however, no privacy protection is provided. For the data publisher to release useful data in a way that preserves privacy, the following three components need to be defined.
• Sanitization mechanism: Given an original data set, a sanitization mechanism sanitizes the data set by making the data less precise. This mechanism defines the space of possible “snapshots” of the original data set that are considered as candidates 


for release. These candidates are called release candidate. Generalization is an example for sanitization mechanism. 
• Privacy criterion: Given a release candidate, the privacy criterion defines whether the release candidate is safe for release or not. k-Anonymity is an example privacy criterion.
• Utility metric: Given a release candidate, the utility metric quantifies the utility of the release candidate (equivalently, the information loss due to the sanitization process). For example, the researchers in Gotham City University use the number of replacements of gender values by any as their utility measure. 
                    Given the above three components, one approach to privacy preserving data publishing is to publish the most useful release candidate that satisfies the privacy criterion. An algorithm that takes an original data set and generates a release candidate that satisfies a given privacy criterion while providing high utility is called an anonymization (or sanitization) algorithm. The terms “anonymization” and “sanitization” will be used interchangeably. After the data publisher finds a good release candidate and makes it public, the data user will use it for good and the adversary will attack it. Because the sanitization mechanism has perturbed the data to make it less precise and less sensitive, the data user may not be able to use the data in a straightforward manner. The information published in the anonymized table is prone to attack due to the background knowledge of the adversary. So the private information might be revealed in two ways: positive disclosure and Negative disclosure. 
2.1. Positive disclosure: 
            The original table T published after anonymization as T* results in a positive disclosure if the adversary can correctly identify the value of a sensitive attribute with high probability; i.e., given a δ > 0, there is a positive disclosure if β (q, s, T*) > (1 – δ) and there exists t Є T such that t [Q] = q and t[S] = s. 


2.2. Negative disclosure: 
            The original table T after anonymization is published as T* results in a negative disclosure if the adversary can correctly eliminate some possible values of the sensitive attribute with high probability; i.e., given an Є > 0, there is a negative disclosure if β (q, s, T*) < Є and there exists a t Є T such that t[Q] = q but t[S] != s.If the prior belief was that α (q, s) > 1−δ, the adversary would not have learned anything new. Hence, the ideal definition of privacy can be based on the following principle: 
           2.3. Uninformative Principle: 
            The published table should provide the adversary with little additional information beyond the background knowledge. In other words, there should not be a large difference between the prior and posterior beliefs. Suppose the published table T* has two constants ρ1 and ρ2, we say that a (ρ1, ρ2) - privacy breach has occurred when either α (q, s) < ρ1 β (q, s, T*) > ρ2 or when α (q, s) > 1 − ρ1 β (q, s, T*) < 1−ρ2. If a (ρ1, ρ2) privacy breach has not occurred, then table T* satisfies (ρ1, ρ2)-privacy.

	









3. PRIVACY MODELS IN PRIVACY- PRESERVING DATA PUBLISHING
                              A privacy threat occurs either when an identity is linked to a record or    when an identity is linked to a value on some sensitive attribute. These threats are called record linkage and attribute linkage. Below, assume that the attacker knows the Quasi-identifier X of a target record holder.
3.1. The Record Linkage Model
              In the record linkage model, some value x on quasi-identifier X identifies a small number of records in the released table T. In this case, the record holder having the value x is vulnerable to being linked to a small number of records in T.
k-Anonymity
                         k-Anonymity states that if the information for each person contained in the release cannot be distinguished from at least k-1 individuals whose information also appears in the release.E.g.:-If one  try to identify a man from a release, but the only information is his birth date and gender. There are k people meet the requirement. This is k-Anonymity. 
                       The notion of k-anonymity was proposed to combat record linkage. In general, a cost metric is used to measure the data distortion of anonymization. Two types of cost metric have been considered. The first type, based on the notion of minimal generalization, is independent of the purpose of the data release. The second type factors in the purpose of the data release such as classification .The goal is to find the optimal k-anonymization that minimizes this cost metric. In general, achieving optimal k-anonymization is NP-hard. k-Anonymity does not provide privacy if:
· Sensitive values in an equivalence class lack diversity
·   The attacker has background knowledge
        

    3.2. The Attribute Linkage Model
                If some sensitive values are predominate in a group, an attacker has no difficulty to infer such sensitive values for a record holder belonging to this group. Such attacks are called attribute linkage. Attribute linkage poses a privacy threat even if k-anonymity is satisfied. To overcome this new method called l-Diversity is formed.

l-Diversity
            Machanavajjhala proposed the diversity principle, called l-diversity, to prevent attribute linkage. The l-diversity requires every quasi-identifying group x on X to contain at least l well-represented" sensitive values. The main properties are 
 Knowledge of the full distribution of the sensitive and non-sensitive attributes is not required in l-diversity. 
 l-diversity does not even require the data publisher to have as much information as the adversary. The larger the value of l, the more information is needed to rule out possible values of the sensitive attribute. 
 Different adversaries can have different background knowledge leading to different inferences. It simultaneously protects against all of them without the need for checking which inferences can be made with which levels of background knowledge. 

3.3. Closeness model
      In this model two basic models are present. First formalize the idea of global background knowledge and propose the base model t-closeness which requires that the distribution of a sensitive attribute in any equivalence class to be close to the distribution of the attribute in the overall table. This effectively limits the amount of individual-specific information an observer can learn. The t-closeness model was introduced in order to provide a safeguard against the similarity attacks on published dataset. It requires that the earth mover's distance between the distribution of a 

sensitive attribute within each equivalence class does not differ from the overall earth movers distance of the sensitive attribute in the whole table by more than a predefined parameter t. 
The next model is (n,t)-closness:- t-closeness effectively limits the amount of individual-specific information an observer can learn. However, an analysis on data utility shows that t-closeness substantially limits the amount of useful information that can be extracted from the released data. Based on the analysis, new model (n, t) closeness is proposed, which requires that the distribution in any equivalence class is close to the distribution in a large-enough equivalence class (contains at least n records) with respect to the sensitive attribute. This limits the amount of sensitive information about individuals while preserves features and patterns about large groups. 














4. k-Anonymity
Samarati and Sweeney introduced k-anonymity as the property that each record is indistinguishable with at least k-1 other records with respect to the quasi-identifier. In other words, k-anonymity requires that each QI group contains at least k records. For example, Table 4.2 is an anonymized version of the original micro data table in Table 4.1 and Table 4.2 satisfies 3-anonymity.
The concept of k-anonymity requires that the released private table (PT) should be indistinguishably related to no less than a certain number of respondents which is followed by all statistical community and by agencies. The set of attributes included in the private table, also externally available and therefore exploitable for linking, is called quasi-identifier. The k-anonymity requirement described in states that every tuple released cannot be related to fewer than k respondents.
The protection k-anonymity provides is simple and easy to understand. If a table satisfies k-anonymity for some value k, then anyone who knows only the quasi-identifier values of one individual cannot identify the record corresponding to that individual with confidence greater than 1/k.
For k-anonymization we need to identify the quasi identifier from a set of attributes present in the original table. The quasi-identifier depends on the external information available to the recipient which determines the extent of linking (not all possible external tables are available to every possible data recipient). Therefore, although the identification of the correct quasi-identifier for a private table can be a difficult task, it is assumed that the quasi-identifier has been properly recognized and defined.





Table 4.1: Original table (eg: k-Anonymity)

	
	Zip-Code
	Age
	Disease

	1
	47677
	22
	Heart Disease

	2
	47602
	34
	Cancer

	3
	47678
	14
	Heart Disease

	4
	47905
	90
	Cancer

	5
	47906
	75
	Heart Disease

	6
	47906
	44
	Cancer

	7
	47605
	55
	Flu

	8
	47673
	77
	Cancer

	9
	47607
	12
	Heart Disease



Example 4.1 Consider the original patients table in Table 4.1 and the 3-anonymous table in Table 4.2. The Disease attribute is sensitive. Suppose Alice knows that Bob is a 27-year old man living in ZIP 47678 and Bob’s record is in the table. From Table 4.2, Alice can conclude that Bob corresponds to one of the first three records, and thus must have heart disease. This is the homogeneity attack. For an example of the background knowledge attack, suppose that, by knowing Carl’s age and zip code, 

Alice can conclude that Carl corresponds to a record in the last QI group in Table 4.2. Furthermore, suppose that Alice knows that Carl has very low risk for heart disease. This background knowledge enables Alice to conclude that Carl most likely has cancer. 
Table 4.2: A 3-Anonymous Table (Example of k-Anonymity)
	
	ZIP Code
	Age
	Disease

	1
2
3
	476**
476**
476**
	2*
2*
2*
	Heart Disease
Heart Disease
Heart Disease

	4
5
6
	4790*
4790*
4790*
	


	Flu
Heart Disease
Cancer

	7
8
9
	476**
476**
476**

	3*
3*
3*
	Herat Disease
Cancer
Cancer





4.1. Attacks on k-Anonymized Datasets 
                  Sufficient care must be taken while selecting the quasi identifier because a solution that adheres to k-anonymity can still be vulnerable to attacks. Some possible attacks identified by Sweeney are described below. 
4.1.1. Unsorted matching attack against k-anonymity: 
                  This attack is based on the order in which tuples appear in the released table. It can be corrected of course, by randomly sorting the tuples of the solution table. Otherwise, the release of a related table can leak sensitive information. For example a PT having two attributes is released twice. The quasi identifier is different in the two released table T1 and T2. If the orders of tuples are same in T1 and T2 then both tables can be linked to get back the original table.
            4.1.2. Complementary release attack against k-anonymity: 
                   It is more common that the attributes that constitute the quasi-identifier are themselves a subset of the attributes released. Therefore, subsequent releases of the same privately held information must consider all of the previously released attributes of T, so that it can prohibit linking on T. 
4.1.3. Temporal attack against k-anonymity: 
                 Data collections are dynamic. Tuples are added, changed, and removed constantly. As a result, releases of generalized data over time can be subject to a temporal inference attack. Let table T0 be the original privately held table at time t=0. Assume a k-anonymity solution based on T0, which is called table RT0, is released. At time t, assume additional tuples were added to the privately held table T0, so it becomes Rt. Let RTt be a k-anonymity solution based on Tt that is released at time t. Because there is no requirement that RTt respect RT0, linking the tables RT0 and RTt may reveal sensitive information and thereby compromise k-anonymity protection. To combat this problem, RT0 should be considered as joining other external information. Therefore, either all of the attributes of RT0 would be considered a quasi identifier for subsequent releases, or subsequent releases themselves would be based on RT0. 

4.1.4. Homogeneity Attack: 
                When the non sensitive information of an individual is known to the attacker then sensitive information may be revealed based on the known information. It occurs if there is no diversity in the sensitive attributes for a particular block. This method of getting sensitive information is also known as positive disclosure. This suggests that in addition to k-anonymity, the sanitized table should also ensure “diversity” – all tuples that share the same values of their quasi-identifiers should have diverse values for their sensitive attributes. 
4.1.5. Background Knowledge Attack: 
               If the user has some extra demographic information which can be linked to the released data which helps in neglecting some of the sensitive attributes, then some sensitive information about an individual might be revealed. This method of revealing information is also known as negative disclosure.  
            To eliminate the homogeneity and background knowledge attack diversity in the sensitive information is necessary. The method of diversifying the sensitive attributes in a block is called l-diversity. 



5. l-Diversity
                l-diversity tries to put constraints on minimum number of distinct values seen within a equivalence class for any sensitive attribute. An equivalence class has l-diversity if there is l or more well-represented values for the sensitive attribute. A table is said to be l-diverse if each equivalence class of the table is l-diverse.
5.1 Variants of l-diversity
A) Distinct l-diversity: 
               This is the most general form of l-diversity. Here well represented used in earlier definition of l-diversity distinct means that there are at least l-distinct values for the sensitive attribute in any possible equivalence class. This prevents homogeneity attacks. But this does protect against probabilistic inference attacks. An example of the same will be when within an equivalence class some value appears much more frequently than the other values. Assuming that all values were equally likely at start adversary can now conclude that entity is more likely to have that more frequent value. This lead to the development of the following two stronger notions of l-diversity.
B) Entropy l-diversity: 
               For each equivalence class E, entropy is defined as Entropy (E) =   where p (E, s) is the fraction of records in E that have sensitive value s and S is the domain of the sensitive attribute. The table has entropy l-diversity if in each equivalence class E , entropy(E) ≥ log l. The main problem with this model is that it is restricts the data a lot. For the entire table the entropy may be- low if few values are very common.
C) Recursive (c, l)-diversity:
                Recursive (c, l)-diversity restricts the less frequent values to not appear too rarely and similarly the most frequent value does not appear too frequently.


5.2 l-diversity: Limitations
            1) l-diversity is unnecessary and difficult to achieve for some cases
                         Example: Let the original data have one sensitive attribute, pass or fail the students who have failed or passed in a course. Further there are 1000 students enrolled and their corresponding records. Say 1% of the students have failed and rest have passed. Both the values have sensitivity of different degree. A Student may not mind for others to know that he has passed but may not like others to know if he has failed.
                     Here, 2-diversity is not desired for an equivalence class where there are records of students who have passed and not failed. For achieving a 2-diverse table, there can be at most 1000 * 1% = 10 equivalence classes. This would mean large generalizations and large information loss.
            2.) Diversity does not prevent attribute disclosure.
            3) Skewness Attack:
                  Although identity disclosure is successfully handled by l-diversity, it does not prevent attribute disclosure when the overall distribution is skewed.
                 Example: Let focus on again on the example discussed above. Suppose one equivalent class has equal number of pass and fail records. Anyone belonging to that equivalent class would be considered to have 50% chance of having failed as compared with the 1% initially. This is thus a major privacy risk.
                 Again consider an equivalence class with 49 fail records and 1 pass record. It would be satisfy 2-diverse but still there will be 98% chance of having failed for someone in that equivalence class, which is much more than 1% initially. This equivalence class has the same diversity as a class that has 1 failed and 49 pass records but can clearly see that both have different levels of sensitivity.
         
   4) Similarity Attack: 
                These attacks occur when the sensitive attributes are semantically similar. Similarity attacks are the main motivation to look forward for yet another kind of privacy preserving methods like t-closeness. The following example explains similarity attacks.
Table 5.1:-Original Table (Example for l-diversity)

	
	Department
	Age
	Course

	1
2
3
4
5
6
7
8
9
	ME
MME
ME
CHE
CHE
CHM
CSE
CSE
CSE
	20
21
20
22
23
22
26
25
26
	Mechanics
Relativity
Rotational
Algorithms
Psychology
Real Analysis
Algorithms
Architecture
Mechanics


                        





Table 5.2:-An Anonymized table (l-Diversity)

	
	Department
	Age
	Course

	1
2
3
	M*
M*
M*
	[20-21]
[20-21]
[20-21]
	Mechanics
Relativity
Rotational


	4
5
6

	CH*
CH*
CH*
	[22-23]
[22-23]
[22-23]
	Algorithms
Psychology
Real Analysis


	7
8
9
	CS*
CS*
CS*
	[25-26]
[25-26]
[25-26]
	Algorithms
Architecture
Mechanics



            The second table shows an anonymized version satisfying 3-distinct diversity. The sensitive attribute is Course. Suppose one knows that Bob's record corresponds tothe one among first 3(by knowing his department to be ME(say)), then one knows that Bob's Courses are among Mechanics, Relativity, Rotational . Having the information that Bob's record belongs to the first equivalence class enables adversary to know that Bob does some course related to physics as all the 3 courses are of this.

6. CLOSENESS
                            One problem with ℓ-diversity is that it is limited in its assumption of adversarial knowledge. It is possible for an adversary to gain information about a sensitive attribute as long as she has information about the global distribution of this attribute. This assumption generalizes the specific background and homogeneity attacks used to motivate ℓ-diversity. Another problem with privacy-preserving methods in general is that they effectively assume all attributes to be categorical; the adversary either does or does not learn something sensitive. Of course, especially with numerical attributes, being close to the value is often good enough.
6.1 Closeness: A New Privacy Model
                  Intuitively, privacy is measured by the information gain of an observer. Before seeing the released table, the observer has some prior belief about the sensitive attribute value of an individual. After seeing the released table, the observer has a posterior belief. Information gain can be represented as the difference between the posterior belief and the prior belief. The novelty of approach is that separate the information gain into two parts: that about the population in the released data and that about specific individuals.
6.1.1 t-Closeness: The Base Model
               To motivate approach, perform the following thought experiment: First an observer has some prior belief B0 about an individual’s sensitive attribute. Then, in a hypothetical step, the observer is given a completely generalized version of the data table where all attributes in a quasi-identifier are removed (or, equivalently, generalized to the most general values). The observer’s belief is influenced by Q, the distribution of the sensitive attribute values in the whole table, and changes to belief B1. Finally, the observer is given the released table. By knowing the quasi-identifier values of the individual, the observer is able to identify the QI group that the individual’s record is in, and learns the distribution P of sensitive attribute values in this class. The observer’s belief changes toB2.
          
   The ℓ-diversity requirement is motivated by limiting the difference between B0 and B2 (although it does so only indirectly, by requiring that P has a level of diversity). It is good to choose to limit the difference between B1 and B2. In other words, assume that Q, the distribution of the sensitive attribute in the overall population in the table, is public information. We do not limit the observer’s information gain about the population as a whole, but limit the extent to which the observer can learn additional information about specific individuals.
             To justify assumption that Q should be treated as public information, observe that with generalizations, the most one can do is to generalize all quasi-identifier attributes to the most general value. Thus as long as a version of the data is to be released, a distribution Q will be released. It also argues that if one wants to release the table at all, one intends to release the distribution Q and this distribution is what makes data in this table useful. In other words, one wants Q to be public information. A large change from B0 to B1 means that the data table contains a lot of new information, e.g., the new data table corrects some widely held belief that was wrong. In some sense, the larger the difference between B0 and B1 is, the more valuable the data is. Since the knowledge gain between B0 and B1 is about the population the dataset is about, do not limit this gain. Limit the gain from B1 to B2 by limiting the distance between P and Q. intuitively, if P = Q, then B1 and B2 should be the same. If P and Q are close, then B1 and B2 should be close as well, even if B0 may be very different from both B1 and B2.
Definition 6.1.1 (The t-closeness Principle) A QI group is said to have t-closeness if the distance between the distribution of a sensitive attribute in this class and the distribution of the attribute in the whole table is no more than a threshold t. A table is said to have t-closeness if all QI groups have t-closeness.
                       Requiring that P and Q to be close would substantially limit the amount of useful information that is released to the researchers. It might be difficult to assess a correlation between a sensitive attribute (e.g., disease) and some quasi-identifier attributes (e.g., zip code) because by construction, partitions are selected to prevent such correlations from being revealed. For example, suppose that people living in a certain community have an alarmingly higher rate of a certain disease due to health risk factors in the community, and the distance between the distribution in this community and that in the overall population with respect to the sensitive attribute is greater than t. Then requiring t-closeness would result in records of this community be grouped with other records to make the distribution close to the overall distribution. This greatly reduces the utility of the data, as it hides the very information one wants to discover. 
6.1.2 (n, t)-Closeness: A More Flexible Privacy Model
             First illustrate that t-closeness limits the release of useful information through the following example.

Table 6.1.1-Example of t-closeness Limitation

	
	Zip code
	Age
	Disease
	Count

	1
2
3
4
	47673
47674
47605
47602

	29
21
25
23
	Cancer
Flu
Cancer
Flu
	100
100
200
200

	5
6
7
8
	47902
47903
47906
47908
	43
45
47
48
	Cancer
Flu
Cancer
Flu
	100
900
100
900

	9
10
11
12
	47603
47605
47608
47609
	34
30
36
35
	Cancer
Flu
Cancer
Flu
	100
100
100
100




Table 6.1.2: An Anonymous Table (Example of t-Closness Limitations)

	
	Zip code
	Age
	Disease
	Count

	1
2
	476**
476**
	2*
2*
	Cancer
Flu
	300
300

	3
4
	479**
479**
	4*
4*
	Cancer
Flu
	200
1800

	5
6
	476**
476**
	3*
3*
	Cancer
Flu
	200
200



Example 6.1.2 Table 6.1.1 is the original data table containing 3000 individuals and Table 6.1.2 is an anonymized version of it. The Disease attribute is sensitive and there is a column called Count that indicates the number of individuals. The probability of cancer among the population in the dataset is 700/3000 = 0.23 while the probability of cancer among individuals in the first QI group is as high as 300/600 = 0.5. Since 0.5 − 0.23 > 0.1, the anonymized table does not satisfy0.1-closeness.
                 To achieve 0.1-closeness, all tuples in Table 6.1.2 have to be generalized into a single QI group. This results in substantial information loss. If examine the original data in Table 6.1.2, it can be discovered that the probability of cancer among people living in zip code 476** is as high as 500/1000 = 0.5 while the probability of cancer among people living in zip code 479** is only 200/2000 = 0.1. The important fact that people living in zip code 476** have a much higher rate of cancer will be hidden if 0.1-closeness is enforced.
                The t-closeness principle defines the large population to be the whole table; however, it does not have to be so. In the above example, while it is reasonable to assume that the distribution of the whole table is public knowledge, one may argue that the distribution of the sensitive attribute among individuals living in zip code 476** should also be public information since the number of individuals living in zip code 476** (which is 1000) is large. This leads to the following more flexible definition.
Definition 6.1.2 (The (n, t)-closeness Principle) a QI group E1 is said to have (n, t) - closeness if there exists a set E2 of records that is a natural superset of E1 such that E2 contains at least n records, and the distance between the two distributions of the sensitive attribute in E1 and E2 is no more than a threshold t. A table is said to have (n, t)-closeness if all QI groups have (n, t)-closeness.
              The intuition is that it is okay to learn information about a population of a large-enough size (at least n). Assume that to achieve (1000, 0.1) - closeness for the above example. The first QI group E1 is defined by (zip code=’476**’, 20 ≤Age≤ 29) and contains 600 tuples. One QI group that naturally contains it would be the one defined by (zip code=’476**’, 20 ≤Age≤ 39). Another such QI group would be the one defined by (zip code=’47***’, 20 ≤Age≤ 29). If both of the two large QI groups contain at least 1000 records, and E1’s distribution is close to (i.e., the distance is at most 0.1) either of the two large QI groups, then E1 satisfies (1000, 0.1)-closeness.
             In the above definition of the (n, t)-closeness principle, the parameter n defines the breadth of the observer’s background knowledge. A smaller n means that the observer knows the sensitive information about a smaller group of records. The parameter t bounds the amount of sensitive information that the observer can get from the released table. A smaller t implies a stronger privacy requirement.
            In fact, Table 6.1.2 satisfies (1000, 0.1)-closeness. The second QI group satisfies (1000, 0.1)-closeness because it contains 2000 > 1000 individuals and thus meets the privacy requirement (by setting the large group to be itself). The first and the third QI groups also satisfy (1000, 0.1)-closeness because both have the same distribution (the distribution is (0.5, 0.5)) as the large group which is the union of these two QI groups and the large group contains 1000 individuals.
          Choosing the parameters n and t would affect the level of privacy and utility. The larger n is and the smaller t is, one achieves more privacy, and less utility. By using specific parameters for n and t, we are able to show the relationships between (n, t)-closeness with existing privacy models such as k-anonymity and t-closeness.
Observation 6.2.1 When one sets n to the size of the whole table, then (n, t)-closeness becomes equivalent to t-closeness.
When one sets t = 0, (n, 0)-closeness can be viewed as a slightly weaker version of requiring k-anonymity with k set to n.
Observation 6.2.2 A table satisfying n-anonymity also satisfies (n, 0)-closeness. However, the reverse may not be true.The reverse may not be true because, to satisfy (n, 0)-closeness, one is allowed to break up a QI group E of size n into smaller QI groups if these small classes have the same distribution as E.Finally, there is another natural definition of (n, t)-closeness, which requires the distribution of the sensitive attribute in each QI group to be close to that of all its supersets of sizes at least n.. Consider a QI group (50 ≤Age≤ 60, Sex=“Male”) and two of its supersets (50 ≤Age≤ 60) and (Sex=“Male”), where the sensitive attribute is “Disease”. Suppose that the Age attribute is closely correlated with the Disease attribute but Sex is not. The two supersets may have very different distributions with respect to the sensitive attribute: the superset (Sex=“Male”) has a distribution close to the overall distribution but the superset (50 ≤Age≤ 60) has a very different distribution. In this case, requiring the distribution of the QI group to be close to both supersets may not be achievable. 

7. UTILITY ANALYSIS

                       In this section, analyze the utility aspect of different privacy measurements. The analysis shows that (n, t)-closeness achieves a better balance between privacy and utility than other privacy models such as ℓ-diversity and t-closeness. Intuitively, utility is measured by the information gain about the sensitive attribute of a group of individuals. To study the sensitive attribute values of a group of individuals G, one examines the anonymized data and classifies the QI groups into three categories: (1) all tuples in the QI group are in G, (2) no tuples in the QI group are in G, and (3) some tuples in the QI group are in G and some tuples are not. Query inaccuracies occur only when evaluating tuples in QI groups of category (3). The utility of the anonymized data is measured by the average accuracy of any arbitrary query of the sensitive attribute of a group of individuals. Any QI group can fall into category (3) for some queries. A QI group does not have any information loss when all sensitive attribute values in that QI group are the same. Intuitively, information loss of a QI group can be measured by the entropy of the sensitive attribute values in the QI group.
                        Formally, let T be the original dataset and {E1, E2.., Ep} be the anonymized data where Ei(1 ≤ i ≤ p) is a QI group. Let H(T) denote the entropy of sensitive attribute values in T and H(Ei) denote the entropy of sensitive attribute values in Ei(1 ≤ i ≤ p).The total information loss of the anonymized data is measured as:
      IL(E1, ...,Ep) = while the utility of the anonymized data is defined as U(E1, ...,Ep) = H(T) − IL(E1, ...,Ep)
7.1.ℓ-diversity: 
              ℓ-diversity requires that each QI group contains at least ℓ “well-represented” values for the sensitive attribute. This is in contrast to the above definition of utility 

where the homogeneous distribution of the sensitive attribute preserves the most amount of data utility. In particular, the above definition of utility is exactly the opposite of the definition of entropy ℓ-diversity, which requires the entropy of the sensitive attribute values in each QI group to be at least log ℓ. Enforcing entropy ℓ-diversity would require the information loss of each QI group to be at least log ℓ. ℓ-diversity is neither necessary nor sufficient to protect against attribute disclosure.
7.2. t-Closeness:
              t-closeness substantially limits the amount of useful information that the released table preserves. t-closeness requires that the distribution of the sensitive attribute in each QI group to be close to the distribution of the sensitive attribute in the whole table. Therefore, enforcing t-closeness would require the information loss of each QI group to be close to the entropy of the sensitive attribute values in the whole table. In particular, a 0-close table does not reveal any useful information at all and the utility of this table is computed as
                                 U (E1... Ep) = H (T) −
                         = H (T) −

7.3. (n, t)-closeness: - 
                 The (n, t)-closeness model allows better data utility than t-closeness. Given an anonymized table {E1, ...,Ep} where each Ei(1 ≤ i ≤ p) is a QI group and another anonymized table {G1, ...,Gd} where each Gj(1 ≤ j ≤ d) is the union of a set of QI groups in {E1, ...,Ep} and contains at least n records. The anonymized table {E1... Ep} satisfies the (n, t)-closeness requirement if the distribution of the sensitive attribute in each Ei (1 ≤ i ≤ p) is close to that in Gj containing Ei. By the above definition of data utility, the utility of the anonymized table {E1... Ep} is computed as:


    U (E1... Ep) = H (T)−
                         = H (T) −
                          =U (G1... Gd)+
                Thus it is able to separate the utility of the anonymized table into two parts: (1) the first part U(G1, ...,Gd) is the sensitive information about the large groups {G1, ...,Gd} and (2) the second part  is further sensitive information about smaller group.














8. ANONYMIZATION TECHINQUES

                   In privacy preserving data publishing, in order to prevent privacy attacks, data should be anonymized properly before it is released. Anonymization methods should take into account the privacy models of the data and the utility of the data. Anonymizing a micro-dataset consists in removing or modifying the identifying variables contained in the dataset. "Typically an identifying variable is one that describes a characteristic of a person that is observable, that is registered (identification numbers, etc.), or generally, that can be known to other persons."
Identifying variables include:
· Direct identifiers, which are variables such as names, addresses, or identity card numbers. They permit direct identification of a respondent but are not needed for statistical or research purposes, and should thus be removed from the published dataset. 
· Indirect identifiers, which are characteristics that may be shared by several respondents, and whose combination could lead to the re-identification of one of them. For example, the combination of variables such as district of residence, age, sex, and profession would be identifying if only one individual of that particular sex, age and profession lived in that particular district. Such variables are needed for statistical purposes, and should thus not be removed from the published data files. 
             Anonymizing the data will consist of
· determining which variables are potential identifiers (this relies on one's personal judgement), and in
· Modifying the level of precision of these variables to reduce the risk of re-identification to an acceptable level. The challenge is to maximize the security while minimizing the resulting information loss. 

         

    It should be noted that the disclosure risk does not only depend on the presence of identifying variables in the dataset, but also on:
· The existence of an intruder, which in turn depends on the potential benefit this intruder, would reap from re-identification. For some types of data such as business data, the intruder's motivation can be high. For other types of datasets, like household surveys in developing countries, the motivation would typically be much lower as there is little to gain in re-identifying respondents. 
· What other data are available to the intruder. Often, re-identification is done by matching data from various sources (for example, matching sample survey data with administrative registers). 
· The cost of re-identification. The higher the cost, the lower the benefit for an intruder.
                    To account for these various parameters, a disclosure scenario must be defined as a first step in the anonymization process. Scenarios can be classified in two categories: 
· Nosy neighbor scenarios. These scenarios assume the intruder has enough information on a single unit, or a few of them, and this information stems from his/her personal knowledge. In other words, the intruder belongs to the circle of acquaintances of a statistical unit. 
· External archive scenarios. Such scenarios are based on the assumption that the intruder can link records belonging to the distributed dataset to records from another available dataset (or register) which contains direct identifiers. The intruder does so by using identifying variables available in both datasets as merging keys (data matching). Conservative assumptions are often made in order to define a worst case scenario. 
                  When producing micro data file, one should always keep the user perspective in mind. It is fundamental that the released file meet the researcher's requirements. Both information content and the choice of protection methods have to 

focus as much as possible on the user's needs. Knowledge of the statistical analysis the users generally wants to perform helps deciding the anonymization strategy. 
                   Anonymization is the making data publicly without compromising the individual privacy. One of the functions of a federal statistical agency is to collect individually sensitive data, process it and provide statistical summaries, and/or public use micro data files to the public. Some of the data collected are considered proprietary by respondents. On the other hand, not all data collected and published by the government are subject to disclosure limitation techniques. Some data on businesses that is collected for regulatory purposes are considered public. In addition, some data are not considered sensitive and are not collected under a pledge of confidentiality. The statistical disclosure limitation techniques described however confidentiality is required and data or estimates are made publicly available. All disclosure limitation methods result in some loss of information and sometimes the publicly available data may not be adequate for certain statistical studies. However, the intention is to provide as much data as possible, without revealing individually sensitive data. Statistical disclosure limitation methods can be classified in two categories:
8.1 Methods based on data reduction. 
                  Such methods aim at increasing the number of individuals in the sample population sharing the same or similar identifying characteristics presented by the investigated statistical unit. Such procedures tend to avoid the presence of unique or rare recognizable individuals.
8.2 Methods based on data perturbation.
                  Such methods aim at increasing the number of individuals in the sample/population sharing the same or similar identifying characteristics presented by the investigated statistical unit. Such procedures tend to avoid the presence of unique or rare recognizable individuals.


8.1 Methods based on data reduction
8.1.1 Removing variables
                The first obvious application of this method is the removal of direct identifiers from the data file. A variable should be removed when it is highly identifying and no other protection methods can be applied. A variable can also be removed when it is too sensitive for public use or irrelevant for analytical purpose.
8.1.2 Removing records
             Removing records can be adopted as an extreme measure of data protection when the unit is identifiable in spite of the application of other protection techniques. For example, in an enterprise survey dataset, a given enterprise may be the only one belonging to a specific industry. In this case, it may be preferable to remove this particular record rather than removing the variable "industry" from all records. Since it largely impacts the statistical properties of the released data, removing records has to be avoided as much as possible.
8.1.3 Global recoding
              The global recoding method consists in aggregating the values observed in a variable into predefined classes for example, recoding the age into five-year age groups, or the number of employees in three-size classes: small, medium and large. The method applies to numerical variables, continuous or discrete. It affects all records in the data file.
8.1.4 Top and bottom coding
             Top and bottom coding can be referred to as a special case of global recoding that can be applied to numerical or ordinal categorical variables. The variables “Salary" and “Age" are two typical examples. The highest values of these variables are usually very rare and therefore identifiable. Top coding at certain thresholds introduces new categories such as "monthly salary higher than 6000 dollars" or "age 

higher than 75", leaving unchanged the other observed values. The same reasoning applied to the smaller observed values defines bottom coding. When dealing with ordinal categorical variables, a top or bottom category is defined by aggregating the "highest" or "smallest" categories.
8.1.5 Local suppression
                Local suppression consists in replacing the observed value of one or more variables in a certain record with a missing value. Local suppression is particularly suitable for the setting of categorical key variables and when combinations of scores on such variables are at stake. In this case, local suppression consists in replacing an observed value in a combination with a missing value. The aim of the method is to reduce the information content of rare combinations.
8.2 Methods based on data perturbation
8.2.1 Micro-aggregation
              Micro-aggregation is a perturbation technique first proposed by Euro-stat as a statistical disclosure method for numerical variables. The idea is to replace an observed value with the average computed on a small group of units, small aggregate or micro-aggregate, including the investigated one. The units belonging to the same group will be represented in the released file by the same value. The groups contain a minimum predefined number k of units. The k minimum accepted value is 3. For a given k, the issue consists in determining the partition of the whole set of units in groups of at least k units k-partition minimizing the information loss usually expressed as a loss of variability. Therefore, the groups are constructed according to a criterion of maximum similarity between units. The micro-aggregation mechanism achieves data protection by ensuring that there are at least k units with the same value in the data file. When micro-aggregation is independently applied to a set of variables, the method is called individual ranking. When all the variables are averaged at the same time for each group, the method is called multivariate micro-aggregation.



8.2.2 Data swapping
                Data swapping was initially proposed as a perturbation technique for categorical micro-data, and aimed at protecting tabulation stemming from the perturbed micro data file. Data swapping consists in altering a proportion of the records in a file by swapping values of a subset of variables between selected pairs of records swap pairs.
8.2.3 PRAM
               As a statistical disclosure control technique, PRAM induces uncertainty in the values of some variables by exchanging them according to a probabilistic mechanism. PRAM can therefore be considered as a randomized version of data swapping.
8.2.4 Adding noise
              Adding noise consists in adding a random value ε, with zero mean and predefined variance, to all values in the variable to be protected. Generally, methods based on adding noise are not considered very effective in terms of data protection
8.2.5 Re-sampling
Re-sampling is a protection method for numerical micro-data that consists in drawing with replacement samples of n values from the original data, sorting the sample and averaging the sampled values. Data protection level guaranteed by this procedure is generally considered quite low.
8.2.6 Synthetic micro-data
Synthetic micro-data are an alternative approach to data protection, and are produced by using data simulation algorithms. The rationale for this approach is that synthetic data do not pose problems with regard to statistical disclosure control because they do not contain real data but preserve certain statistical properties.

8.3 Anonymization Algorithm
                     One challenge is designing algorithms for anonymizing the data to achieve (n, t) - closeness. In this section, it describes how to adapt the Mondrian multidimensional algorithm for (n, t)-closeness model. Since t-closeness is a special model of (n, t) - closeness, Mondrian can also be used to achieve t-closeness. 

      Input is partitioned into r partitions {P1... Pr}
      Output: true if (n, t)-closeness is satisfied, false otherwise

          1. for every Pi
          2.        if Pi contains less than n records
          3.                 find false
          4.                 for every Q
          5.                       Pi.Q|<=t, find true
          6.                 if find==false, return false
          7. return true

                   Fig 7.3.1: Mondarian Multidimensional Algorithm
                   

           

     The algorithm consists of three components: (1) choosing a dimension on which to partition, (2) choosing a value to split, and (3) checking if the partitioning violates the privacy requirement. For the first two steps, use existing heuristics for choosing the dimension and the value.
                   Figure 7.3.1 gives the algorithm for checking if a partitioning satisfies the (n, t)-closeness requirement. Let P be a set of tuples. Suppose that P is partitioned into r partitions {P1, P2... Pr}, i.e., ∪i {Pi} = P and Pi ∩ Pj = ∅ for any i≠ j. Each partition Pi can be further partitioned and all partitions form a partition tree with P being the root. Let Parent (P) denote the set of partitions on the path from P to the root, which is the partition containing all tuples in the table. If Pi (1 ≤ i ≤ r) contains at least n records, then Pi satisfies the (n, t)-closeness requirement. If Pi (1 ≤ i ≤ r) contains less than n records, the algorithm computes the distance between Pi and each partition in Parent (P). If there exists at least one large partition (containing at least n records) in Parent (P) whose distance to Pi (D [Pi,Q]) is at most t, then Pi satisfies the (n, t)-closeness requirement. Otherwise, Pi violates the (n, t)-closeness requirement. The partitioning satisfies the (n, t)-closeness requirement if all Pi’s have (n, t)-closeness.










9. DISTANCE MEASURES
 
                              Distance measures are used to measure the distance between two probabilistic distributions. There are a number of ways to define the distance between them. Given two distributions P = (p1, p2... pm), Q = (q1, q2... qm), two well-known distance measures are as follows.
A) The Variational distance is defined as: D [P, Q] = pi-qi| 
B) The Kullback-Leibler (KL) distance is defined as: D [P, Q] =
Where H (P) = is the entropy of P and H (P,Q)= is the cross entropy of P and Q
                            These distance measures do not reflect the semantic distance among values. For example the overall distribution of the Income attribute is Q = {3k, 4k, 5k, 6k, 7k, 8k, 9k, 10k, 11k}. The first QI group in Table 2.2 has distribution P1 = {3k, 4k, 5k} and the second QI group has distribution P2 = {6k, 8k, 11k}. Intuition is that P1 results in more information leakage than P2, because the values in P1 are all in the lower end; thus we would like to have D [P1, Q] > D [P2, Q]. The distance measures mentioned above would not be able to do so, because from their point of view values such as 3k and 6k are just different points and have no other semantic meaning. In short, there is a metric space for the attribute values so that a ground distance is defined between any pair of values. Then there have two probability distributions over these values and want the distance between the two probability distributions to be dependent upon the ground distances among these values. This requirement leads us to the Earth Mover’s distance



9.1 Desiderata for designing the Distance Measure
         From one’s perspective, a useful distance measure should display the following properties:
1. Identity of indiscernible: An adversary has no information gain if her belief does not change. Mathematically, D [P, P] = 0, for any P.
2. Non-negativity: When the released data is available, the adversary has a non-negative information gain. Mathematically, D [P, Q] ≥ 0, for any P and Q.
3. Probability scaling: The belief change from probability α to α+β is more significant than that from µ to µ +β when α < µ and α nis small. D [P, Q] should consider reflect the difference.
4. Zero-probability definability: D [P, Q] should be well-defined when there are zero probability values in P and Q.
5. Semantic awareness: When the values inP and Q have semantic meanings, D [P, Q] should reflect the semantic distance among different values. For example, for the “Salary” attribute, the value 30K is closer to 50K than to 80K. A semantic-aware distance measure should consider this semantics, e.g., the distance between {30K, 40K} and {50K, 60K} should be smaller than the distance between {30K, 40K} and {80K, 90K}.
            Note that it doesn’t require D [P, Q] to be a distance metric (the symmetry property and the triangle-inequality property). First, D [P, Q] does not always have to be the same as D [Q, P]. Intuitively, the information gain from (0.5, 0.5) to (0.9, 0.1) is larger than that from (0.9, 0.1) to (0.5, 0.5). Second, D [P, Q] can be larger than D [P, R] + D[R, Q] where R is also a probabilistic distribution. In fact, the well-known Kullback-Leibler (KL) divergence is not a distance metric since it is not symmetric and does not satisfy the triangle inequality property.
           The KL divergence measure KL [P, Q] = is undefined when pi > 0 but qi = 0 for some i ∈ {1, 2... d} and thus does not satisfy the zero-probability 

definability property. To fix this problem, a variation of KL divergence called the Jensen-Shannon (JS) divergence has been proposed. The JS divergence measure is defined as:JS[P,Q] =1/2(KL[P, avg(P,Q)] + KL[Q, avg(P,Q)])  where avg(P,Q) is the average distribution (P + Q)/2 and KL[, ] is the KL divergence measure.
9.2 The Distance Measure based on kernel smoothing
              The idea is to apply kernel smoothing before using JS divergence. Kernel smoothing is a standard statistical tool for filtering out high-frequency noise from signals with a lower frequency variation. Here, use the technique across the domain of the sensitive attribute value to smooth out the distribution.
Let the sensitive attribute be S and its attribute domain is {s1, s2... sm}. For computing the distance between two sensitive values, we define a m × m distance matrix for S. The (i, j)-th cell dij of the matrix indicates the distance between si and sj . The Nadaraya-Watson kernel weighted average is used:

Where K (.) is the kernel function, which is chosen to be the Epanechnikov kernel, which is widely used in kernel estimation:
                                    Ki(x) =
Where B = (B1,B2, ...,Bd) is the bandwidth of the kernel function.
                   Then there have a smoothed probability distribution  = (,, ..., m) for P. The distribution   reflects the semantic distance among different sensitive values. To incorporate semantics into the distance between P and Q, compute the distance between  and   as an estimate instead: D [P, Q] ≈ D [,] .The distance D [,] can be computed using JS-divergence measure which is well-defined even when there are zero probabilities in the two distributions. 
             
     Finally, define the distance between two sensitive attribute values in {s1, s2, ..., sm}. The attribute S is associated with a m × m distance matrix where the (i, j)-th cell dij (1 ≤ i, j ≤ m) indicates the semantic distance between si and sj . The distance matrix is specified by the data publisher. One way of defining the distance matrix is as follows. If S is a continuous attribute, the distance matrix can be defined as:
                        dij = 
where R is the range of the attribute S, i.e., R = maxi{si}−mini{si}. If S is a categorical attribute, the distance matrix can be defined based on the domain hierarchy of attribute S:
                         dij = 
where ℎ(si, sj) is the height of the lowest common ancestor of si and sj , and H is the height of the domain hierarchy of attribute S.
9.3 Earth Mover’s Distance
           The EMD is based on the minimal amount of work needed to transform one distribution to another by moving distribution mass between each other. Intuitively, one distribution is seen as a mass of earth spread in the space and the other as a collection of holes in the same space. EMD measures the least amount of work needed to fill the holes with earth. A unit of work corresponds to moving a unit of earth by a unit of ground distance.
EMD can be formally defined using the well-studied transportation problem. 
               Let P = (p1, p2 ...pm), Q = (q1, q2 ...qm), and dij be the ground distance between element i of P and element j of Q. We want to find a flow F = [fij ] where fij is the flow of mass from element i of P to element j of Q that minimizes the overall work:
                  

WORK (P, Q, F) =
subject to the following constraints:
                fij ≥ 0,       1 ≤ i ≤ m, 1 ≤ j ≤ m                               (c1)
                pi –
                                 (c3)	
                  These three constraints guarantee that P is transformed to Q by the mass flow F. Once the transportation problem is solved, the EMD is defined to be the total work, i.e.,
               D [P, Q] = WORK (P,Q, F) =
The above fact entails that t-closeness with EMD satisfies the following two properties.
      1)Generalization Property:-
                 Let T be a table, and let A and B be two generalizations on T such that A is more general than B If T satisfies t-closeness using B, then T also satisfies t-closeness using A.
Proof:
               Since each QI group in A is the union of a set of QI groups in B and each QI group in B satisfies t-closeness, we conclude that each QI group in A also satisfies t-closeness. Thus T satisfies t-closeness using A.
       2) Subset Property:
                Let T be a table and let C be a set of attributes in T. If T satisfies t-closeness with respect to C, then T also satisfies t-closeness with respect to any set of attributes D such that D ⊂ C.


Proof:-
              Similarly, each QI group with respect to D is the union of a set of QI groups with respect to C and each QI group with respect to C satisfies t-closeness; conclude that each QI group with respect to D also satisfies t-closeness. Thus T satisfies t-closeness with respect to D.
9.4. EMD for Numerical Attributes
            Numerical attribute values are ordered. Let the attribute domain be {v1, v2...vm}, where vi is the itℎ smallest value.
9.4.1. Ordered Distance: The distance between two values of is based on the number of values between them in the total order, i.e., ordered dist (vi, vj) = ∣i−j∣/m−1 .
                   It is straightforward to verify that the ordered-distance measure is a metric. It is nonnegative and satisfies the symmetry property and the triangle inequality. To calculate EMD under ordered distance, only consider flows that transport distribution mass between adjacent elements, because any transportation between two more distant elements can be equivalently decomposed into several transportations between adjacent elements.
Formally, let ri = pi − qi,(i=1,2,...,m), then the distance between P and Q can be calculated as:
               D [P, Q] = (∣r1∣ + ∣r1 + r2∣ + ... + ∣r1 + r2 + ...rm−1∣)
               =
9.5. EMD for Categorical Attributes
                For categorical attributes, a total order often does not exist. Consider two distance measures.

9.5.1. Equal Distance: 
               The ground distance between any two values of a categorical attribute is defined to be 1. It is easy to verify that this is a metric. As the distance between any two values is 1, for each point that pi − qi > 0, one just needs to move the extra to some other points. Thus following formula:

D [P, Q] =
9.5.2Hierarchical Distance:
          The distance between two values of a categorical attribute is based on the minimum level to which these two values are generalized to the same value according to the domain hierarchy. Mathematically, let H be the height of the domain hierarchy, the distance between two values v1 and v2 (which are leaves of the hierarchy) is defined to be level (v1, v2)/H, where level(v1, v2) is the height of the lowest common ancestor node of v1 and v2. It is straightforward to verify that this hierarchical-distance measure is also a metric.
               Given a domain hierarchy and two distributions P and Q, we define the extra of a leaf node that corresponds to element i, to be pi − qi, and the extra of an internal node N to be the sum of extras of leaf nodes below N. This extra function can be defined recursively as:
              extra(N) =
where Child(N) is the set of all leaf nodes below node N. The extra function has the property that the sum of extra values for nodes at the same level is 0.
Ttwo other functions for internal nodes:
             pos _extra(N) =

               neg _extra(N) =

               Cost (N) is to denote the cost of moving between N’s children branches. An optimal flow moves exactly extra (N) in/out of the sub tree rooted at N. Suppose that pos extra(N) > neg extra, then extra(N) = pos extra(N)−neg extra(N) and extra(N) needs to move out. (This cost is counted in the cost of N’s parent node.) In addition, one has to move neg extra among the children nodes to even out all children branches; thus, Cost (N) = min (pos extra (N), neg extra (N)).Then the earth mover’s distance can be written as:D [P, Q] =, where N is a non-leaf node.
9.6. Analysis of t-Closeness with EMD
[image: ]
Fig. 9.6.1. Hierarchy for categorical attributes Disease.
            
               Consider Example 6.1.2, to show how t-closeness with EMD handles the difficulties of ℓ-diversity. Recall that Q = {3k, 4k, 5k, 6k, 7k, 8k, 9k, 10k, 11k}, P1 = {3k, 4k, 5k}, and P2 = {6k, 8k, 11k}.Then calculate D[P1,Q] and D[P2,Q] using 

EMD. Let v1 = 3k, v2 = 4k ...v9 = 11k, define the distance between vi and vj to be ∣i − j∣/8, thus the maximal distance is 1. We have D[P1,Q] =  and D[P2,Q] = 0.167. 
               For example in Figure 9.6.1, the distance between “Flu” and “Bronchitis” is 1/3, the distance between “Flu “and “Pulmonary embolism” is 2/3, and the distance between “Flu” and “Stomach cancer” is 3/3 = 1. Then the distance between the distributions {gastric ulcer, gastritis, stomach cancer} and the overall distribution is 0.5 while the distance between the distribution
       {Gastric ulcer, stomach cancer, pneumonia} is 0.278. Table 9.3.1 shows another anonymized version of Table 2.1. It has 0.167-closeness w.r.t Salary and 0.278-closeness w.r.t. Disease. The Similarity Attack is prevented in Table 9.3.1.

                   Table 9.3.1An Anonymized Table (Example of EMD Calculation)

	
	Zip code
	Age
	Salary
	Disease

	1
3
8

	4767*
4767*
4767*


	≤40
≤40
≤40


	3K
5K
9K
	Gastric Ulcer
Stomach Ulcer
Pneumonia


	4
5
6

	4790*
4790*
4790*

	≥40
≥40
≥40
	6K
11K
8K
	Gastritis
Flu
Cancer

	2
7
9

	4760*
4760*
4760*

	≤40
≤40
≤40

	4K
7K
10K
	Gastritis
Bronchitis
Flu



















10. EXPERIMENTS

                The main goals of the experiments are to study the effect of Similarity Attacks on real data and to investigate the effectiveness of the (n, t)-closeness model in both privacy protection and utility preservation. In the experiments, compare four privacy measures as described in Table 9.1. The comparison is based on privacy measures through an evaluation of (1) vulnerability to similarity attacks; (2) efficiency; and (3) data utility. 
                    
Table 10.1: Privacy Parameters used in Experiments

	
	Privacy Measure
	Default parameters

	1
	Distinct l-diversity
	L=5

	2
	Probabilistic l-diversity
	L=5

	3
	k-anonymity with t-closeness
	K=5,t=0.15

	4
	k-anonymity with (n,t)-closeness
	K=5,n=1000,t=0.15



      


    10.1 Similarity Attacks
              Use the first 6 attributes as the quasi-identifier and treat Occupation as the sensitive attribute. Then divide the 14 values of the Occupation attribute into three roughly equal size groups, based on the semantic closeness of the values. The three groups are {Tech- support, Craft-repair, Prof-specialty, Machine-op-inspect, Farming-fishing}, {other-service, Handlers-cleaners, Transport-moving, Priv-house-serv, Protective- serv}, and {Sales, Exec-managerial, Adm-clerical, Armed-Forces}. Any QI group that has all values falling in one group is viewed as vulnerable to the similarity attacks. The Mondrian multidimensional k-anonymity algorithm is used to generate the distinct 5-diverse table. In the anonymized table, a total of 2471 tuples can be inferred about their sensitive value classes.Generate the probabilistic 5-diverse table, which contains 720 tuples whose sensitive value classes can be inferred. The experimental results show that similarity attacks present serious privacy risks to ℓ-diverse tables on real data. Generate the anonymized table that satisfies 5-anonymity and 0.15-closeness and the anonymized table that satisfies 5-anonymity and (1000, 0.15)-closeness. Both tables do not contain tuples that are vulnerable to similarity attacks. This shows that t-closeness and (n, t)-closeness provide better privacy protection against similarity attacks. 








10.2.Efficiency


[image: ]

                                   Fig10.2:-Experiments-Efficency
          
   In this set of experiments, compare the running times of different privacy measures. Results of the efficiency experiments are shown in Figure 10.2. Again use the Occupation attribute as the sensitive attribute. Figure 10.2(a) shows the running times with fixed k =5, ℓ = 5, n = 1000, t = 0.15 and varied quasi-identifier size s, where 2 ≤ s ≤ 6
                          Figure 10.2(b) shows the running times of the four privacy measures with the same quasi-identifier but with different parameters for k and ℓ. As shown in the figures, (n, t)-closeness takes much longer time. This is because, to check if a partitioning satisfies (n, t)-closeness, the algorithm needs to check all the parent partitions that have at least n records. When k and ℓ increases, the running times decrease because fewer partitioning need to be done for a stronger privacy requirement. Finally, the running times for t-closeness and (n, t)-closeness are fast enough for them to be used in practice, usually within one minute for the adult dataset.
                        Figure 10.2(c) shows the effect of n on the running time of (n, t)-closeness. From the figure, we can infer that the algorithm runs faster when n is large because a large n value implies a stronger privacy requirement. 
                       Figure 10.2(d) shows the effect of the t value on the running time of (n, t)-closeness. Similarly, the algorithms run faster for a smaller t because a small t represents a stronger privacy requirement. Again, in all experiments, the algorithm takes less than one minute to generate the anonymized data that satisfies (n, t)-closeness.
10.3. Data Utility
                This set of experiments compares the utility of the anonymized tables that satisfy each of the four privacy measures. Occupation attribute is used as the sensitive attribute. To compare data utility of the six anonymized tables, evaluate the anonymized data both in terms of general utility measures and accuracy in aggregate query answering.


General Utility Measures
     Compare data utility based on two general utility measures: Discernibility Metric (DM) and Global Certainty Penalty (GCP) . Figure 9.3(a) shows the DM cost while Figure 9.3(b) shows the GCP cost for the four anonymized tables. [image: ]
                              Fig 10.3: Experiments:-General Utility Measures
Figure 10.3(c) and Figure 10.3(d) show the DM cost of the (n, t)-close tables with varied n values and varied t values, respectively. Figure 10.3(e) and Figure 10.3(f) show the GCP cost. From these figures, it can see that the anonymized table has a larger DM/GCP cost for a larger n value or a smaller t value. 



11. CONCLUSION

                    Due to the wide use of the Internet and the trends of enterprise integration, one-stop service, simultaneous cooperation and competition, and outsourcing in both public and private sectors, data publishing has become a daily and routine activity of individuals, companies, organizations, government agencies. Privacy-preserving data publishing is a promising approach for data publishing without compromising individual privacy or disclosing sensitive information. 
                    While k-anonymity protects against identity disclosure, it does not provide sufficient protection against attribute disclosure. The notion of l-diversity attempts to solve this problem. It is shown that l-diversity has a number of limitations and especially presented two attacks on l-diversity. Motivated by these limitations, novel privacy notion called “closeness” was proposed. It consists of: a base model called t-closeness and a more flexible privacy model called (n, t)-closeness. The rationale of the (n, t)-closeness model and show that it achieves a better balance between privacy and utility. To incorporate semantic distance, it is chosen to use the Earth Mover Distance measure. The limitations of EMD are shown, present the desiderata for designing the distance measure, and propose a new distance measure that meets all the requirements. 




12. FUTURE SCOPE

                          Multiple sensitive attributes present additional challenges. Suppose there are two sensitive attributes U and V. One can consider the two attributes separately, i.e., an equivalence class E has (n,t)-closeness if E has(n,t)-closeness with respect to both U and V . Another approach is to consider the joint distribution of the two attributes. To use this approach, one has to choose the ground distance between pairs of sensitive attribute values. A simple formula for calculating EMD may be difficult to derive, and the relationship between (n,t)-closeness and the level of privacy becomes more complicated.
                      In the future, it will be useful for the statistical database. It is an OLAP instead of OLTP system, although this term precedes that modern decision, and classical statistical databases are often closer to the relational model than the multidimensional model commonly used in OLAP systems today. In a statistical database, it is often desired to allow query access only to aggregate data, not individual records. Securing such a database is a difficult problem, since intelligent users can use a combination of aggregate queries to derive information about a single individual. It will be use in the intelligent agents to detect automatically inappropriate system use.

13. REFERENCES

1.” Privacy Preservation in Data Publishing and Sharing” by Tiancheng Li
2. “PRIVACY-PRESERVING DATA PUBLISHING” by Benjamin C. M. Fung
3. “Closeness: A New Privacy Measure for Data Publishing” by Ninghui Li, Member, IEEE, Tiancheng Li, and Suresh Venkatasubramanian
4. C. Aggarwal, “On k-Anonymity and the Curse of Dimensionality,” Proc. Int’l Conf. Very Large Data Bases (VLDB), pp. 901-909,2005.
5. G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy, D.Thomas, and A. Zhu, “Achieving Anonymity via Clustering,”Proc. ACM Symp. Principles of Database Systems (PODS), pp. 153-162, 2006.
6. D. Kifer and J. Gehrke, “Injecting Utility into Anonymized Datasets,” Proc. ACM SIGMOD, pp. 217-228, 2006.
7. N. Koudas, D. Srivastava, T. Yu, and Q. Zhang, “Aggregate Query Answering on Anonymized Tables,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 116-125, 2007
8. R.C.-W. Wong, A.W.-C. Fu, K. Wang, and J. Pei, “Minimality Attack in Privacy Preserving Data Publishing,” Proc. Int’l Conf. Very Large Data Bases (VLDB), pp. 543-554, 2007.
9. T.M. Truta and B. Vinay, “Privacy Protection: P-Sensitive k-Anonymity Property,” Proc. Int’l Workshop Privacy Data Management (ICDE Workshops), 2006.
10.” Flexible Anonymization For Privacy Preserving Data Publishing: A Systematic Search Based Approach” by Bijit Hore, Ravi Chandra Jammalamadaka, Sharad Mehrotra April 5, 2007
58

image3.emf

image4.emf

image1.emf

image2.emf

