Orthogonal Data Embedding for Binary Images in Morphological Transform Domain – A High – Capacity Approach
A PROJECT REPORT

Submitted For the Partial Fulfillment of the Requirement

For the Degree of Master of Computer Applications

By

PADMAVATHY.P

A7101PCA6847

Under the Guidance of

A.N.SWAMYNATHANA

[image: image15.jpg]
INSTITUTE OF DISTANCE EDUCATION

UNIVERSITY OF MADRAS

CHENNAI -600 005

MAY – 2010

BONAFIDE CERTIFICATE

This is certify that the report entitled Orthogonal Data Embedding for Binary Images in Morphological Transform Domain – A High – Capacity Approach being submitted to the University of Madras, Chennai By Padmavathy. P (A7101PCA6847) for the Partial Fulfillment for the award of degree of M.C.A is a bonafide record of work carried out by him under my guidance and supervision.

Name and Designation of the Guide Co-Ordinator

Date :

Submitted for the Viva-Voce Examination held on _________________________

at center IDE, University of Madras.

Examiners

1. Name :

Signature :

2. Name :

Signature :

TABLE OF CONTENTS

	S.NO
	CONTEXT
	PAGE NO.

	1.
	INTRODUCTION
	6

	
	1.1 PROJECT PROFILE
	6

	
	1.2 PROJECT OVERVIEW
	7

	2.
	SYSTEM ANALYSIS
	7

	
	2.1 EXISTING SYSTEM
	7

	
	2.2 PROPOSED SYSTEM
	7

	
	2.3 FEASIBILITY SYSTEM
	8

	3.
	SYSTEM CONFIGURATION
	9

	
	3.1 HARDWARE SPECIFICATION
	9

	
	3.2 SOFTWARE SPECIFICATION
	9

	
	3.3 ABOUT THE SOFTWARE
	9

	4.
	SYSTEM DESIGN
	11

	
	4.1 NORMALIZATION
	11

	
	4.2 INPUT DESIGN
	12

	
	4.3 DATA FLOW DIAGRAM
	23

	
	4.4 PROJECT FLOW DIAGRAM
	24

	5.
	SYSTEM DESRIPTION
	25

	6.
	TESTING AND IMPLEMENTATION
	27

	7.
	CONCLUSION AND FUTURE SCOPE
	28

	8.
	SOURCE CODE AND SCREEN SHOTS
	29

	9.
	BIBLIOGRAPHY
	51

Orthogonal Data Embedding for Binary Images in

Morphological Transform Domain-A High- Capacity Approach

1. INTRODUCTION
1.1 PROJECT PROFILE
This paper proposes a data-hiding technique for binary images in morphological transform domain for authentication purpose. To achieve blind watermark extraction, it is difficult to use the detail coefficients directly as a location map to determine the data-hiding locations. Hence, we view flipping an edge pixel in binary images as shifting the edge location one pixel horizontally and vertically. Based on this observation, we propose an interlaced morphological binary wavelet transform to track the shifted edges, which thus facilitates blind watermark extraction and incorporation of cryptographic signature. Unlike existing block-based approach, in which the block size is constrained by 3 *3 pixels or larger, we process an image in 2* 2 pixel blocks. This allows flexibility in tracking the edges and also achieves low computational complexity. The two processing cases that flipping the candidates of one does not affect the flip ability conditions of another are employed for orthogonal embedding, which renders more suitable candidates can be identified such that a larger capacity can be achieved. A novel effective Backward-Forward Minimization method is proposed, which considers both backwardly those neighboring processed embeddable candidates and forwardly those unprocessed flip able candidates that may be affected by flipping the current pixel.

Watermarking and data-hiding techniques have found wide applications in ownership identification, copy protection, fingerprinting, content authentication and annotation. The design requirements for a data-hiding or watermarking system are different catering for different applications. Recently authentication of digital documents has aroused great interest due to the wide applications in handwritten signatures, digital books, business documents, personal documents, maps, and engineering drawings. On the other hand, editing an image becomes easier with the powerful image editing tools and digital cameras. Authentication to detect tampering and forgery is thus of primary concern. To ensure the authenticity and integrity of these digital documents has increased the confidence level from the user point of view. Most data-hiding techniques for binary images are based on spatial domains the goal of authentication is to ensure that a given set of data comes from a legitimate sender and the content integrity is preserved.

Hard authentication rejects any modification made to a multimedia signal, whereas soft authentication differentiates legitimate processing from malicious tampering. This paper focuses on hard authenticator watermark-based authentication. Specifically, we investigate the problem of data hiding for binary images in morphological transform domain. Generally speaking, data hiding in real-valued transform domain does not work well for binary images due to the quantization errors introduced in the pre/post-processing. In addition, embedding data using real-valued coefficients requires more memory space. We observe that the morphological binary wavelet transform can be used to track the transitions in binary images by utilizing the detail coefficients. One rather intuitive idea in employing the morphological binary wavelet transform for data hiding is to use the detail coefficients as a location map to determine the data-hiding locations.

However, this makes it difficult to achieve blind watermark extraction due to the fact that once a pixel is flipped, the horizontal, vertical and diagonal detail coefficients will change correspondingly. This problem will be discussed in more detail in Section II. The idea of designing an interlaced transform to identify the embeddable locations is motivated by the fact that some transition information is lost during the computation of a single transform and there is a need to keep track of transitions between two and three pixels for binary images data hiding .

1.2 PROJECT OVERVIEW

The goal of the project is data hiding for binary images in morphological transform domain. We process the images based on 2 pixel blocks and combine two different processing cases that the flip ability conditions of one are not affected by flipping the candidates of another for data embedding, namely “orthogonal embedding”.

This paper proposes a data-hiding technique for binary images in morphological transform domain for authentication purpose. To achieve blind watermark extraction, it is difficult to use the detail coefficients directly as a location map to determine the data-hiding locations. Hence, we view flipping an edge pixel in binary images as shifting the edge location one pixel horizontally and vertically. Based on this observation, we propose an interlaced morphological binary wavelet transform to track the shifted edges, which thus facilitates blind watermark extraction and incorporation of cryptographic signature. Unlike existing block-based approach, in which the block size is constrained by 3 × 3 pixels or larger, we process an image in 2 x 2 pixel blocks. This allows flexibility in tracking the edges and also achieves low computational complexity. The two processing cases that flipping the candidates of one does not affect the flippability conditions of another are employed for orthogonal embedding, which renders more suitable candidates can be identified such that a larger capacity can be achieved. A novel effective Backward-Forward Minimization method is proposed, which considers both backwardly those neighboring processed embeddable candidates and forwardly those unprocessed flippable candidates that may be affected by flipping the current pixel. In this way, the total visual distortion can be minimized. Experimental results demonstrate the validity of our arguments.
2. SYSTEM ANALYSIS
System Study deals with the process of defining the functioning of existing system. The advantages and disadvantages of the existing system are elaborately discussed to prove the way for the proposed system. Then the proposed system is defined for the problem and the advantages of the proposed system are also defined.

2.1 EXISTING SYSTEM
In Existing block-based approach, in which the block size is constrained by 3* 3 pixels or larger, we process an image in 2* 2 pixel blocks. This allows flexibility in tracking the edges and also achieves low computational complexity. The two processing cases that flipping the candidates of one does not affect the flippability conditions of another are employed for orthogonal embedding, which renders more suitable candidates can be identified such that a larger capacity can be achieved.

2.2 PROPOSED SYSTEM
We Proposed present a high-capacity data-hiding scheme for binary images authentication based on the interlaced morphological binary wavelet transforms. The relationship between the coefficients obtained from different transforms is utilized to identify the suitable locations for watermark embedding such that blind watermark extraction can be achieved. Two processing cases that are not intersected with each other are employed for orthogonal embedding in such a way that not only can the capacity be significantly increased, but the visual distortion can also be minimized. Results of comparative experiments with other methods reinforce the present scheme’s superiority in being able to attain larger capacity while maintaining acceptable visual distortion and low computational cost.

The goal of authentication is to ensure that a given set of data comes from a legitimate sender and the content integrity is preserved .Hard authentication rejects any modification made to a multimedia signal, whereas soft authentication differentiates legitimate processing from malicious tampering This paper focuses on hard authenticator watermark-based authentication.

Specifically, we investigate the problem of data hiding for binary images in morphological transform domain. Generally speaking, data hiding in real-valued transform domain does not work well for binary images due to the quantization errors introduced in the pre/post-processing In addition; embedding data using real-valued coefficients requires more memory space. The idea of designing an interlaced transform to identify the embeddable locations is motivated by the fact that some transition information is lost during the computation of a single transform and there is a need to keep track of transitions between two and three pixels for binary images data hiding. Specifically, we process the images based on 2 2 pixel blocks and combine two different processing cases that the flippability conditions of one are not affected by flipping the candidates of another for data embedding, namely “orthogonal embedding”

2.3 FEASIBILITY SYSTEM

This paper proposes a data-hiding technique for binary images in morphological transform domain for authentication purpose. To achieve blind watermark extraction, it is difficult to use the detail coefficients directly as a location map to determine the data-hiding locations. Hence, we view flipping an edge pixel in binary images as shifting the edge location one pixel horizontally and vertically. Based on this observation, we propose an interlaced morphological binary wavelet transform to track the shifted edges, which thus facilitates blind watermark extraction and incorporation of cryptographic signature. Unlike existing block-based approach, in which the block size is constrained by 3 *3 pixels or larger, we process an image in 2* 2 pixel blocks. This allows flexibility in tracking the edges and also achieves low computational complexity. The two processing cases that flipping the candidates of one does not affect the flip ability conditions of another are employed for orthogonal embedding, which renders more suitable candidates can be identified such that a larger capacity can be achieved. A novel effective Backward-Forward Minimization method is proposed, which considers both backwardly those neighboring processed embeddable candidates and forwardly those unprocessed flip able candidates that may be affected by flipping the current pixel.
3. SYSTEM CONFIGURATION
System analysis is the process of gathering and interpreting facts, diagnosing problems of the existing system and using those facts for the design and development of an improved system that helps to determine how and where computerized system can benefits all users of the system.

3.1 SOFTWARE REQUIREMENTS

1. Front-End

:
VS .NET 2005

2. Coding Language : C#

3. Operating System
:
Windows XP.

3.2 HARDWARE REQUIREMENTS
1. Hard disk

:
40 GB

2. RAM

:
512mb

3. Processor

:
Pentium IV

4. Monitor :
17’’Color Monitor

3.3 ABOUT THE SOFTWARE
3.3.1 VS .NET 2005
C#.NET is component of Microsoft Visual Studio .NET. Being part of VS.net, C#.NET access common .NET library, supports all CLS features. C#.NET is fully object oriented language which one supports inheritance, overloading, interfaces, shared members and constructors. .Net Framework is one of the primary element for software development in VS.Net environment.

Microsoft Visual Studio is an Integrated Development Environment (IDE) from Microsoft. It can be used to develop console and graphical user interface applications along with Windows Forms applications, web sites, web applications, and web services in both native code together with managed code for all platforms supported by Microsoft Windows, Windows Mobile, Windows CE, .NET Framework, .NET Compact Framework and Microsoft Silver light.
.Net Framework is divided into CLS (Common language Runtime), Base class Library. Base Class library is organized into namespaces. An assembly may exist in the form of either DLL or .Exe.
An assembly is stored as an intermediate language (IL) file. Before running, the assembly goes through security check against the local system. After having cleared from security check, it gets loaded into memory and compiled into native code by JIT compiler.

A variable in .Net can be of two types.

Value type and reference type.

Value type contains data of the type whereas reference type contains pointer to an instance of an object of that type. Value type is created at the time of declaration whereas reference type must be instantiated after declaration to create object. If we assign a reference type variable to another reference type variable, only reference to the object is copied, not value and both the variable will refer to the same object.

Use of 'using' keyword will allow to reference to the member of a namespace. Classes and structures contain data and methods. Methods perform data manipulation and provide behavior to classes and structures. Method can return values.

The method which returns value is called as Function and which doesn’t return value is called as Subs. Method can have parameters that are passed by value by default. We can pass parameters by reference with the ref keyword in C#.net and byref in VB.Net.

The constructor is like any method of the class, but gets created before the object is available for use. This is the first method to get called on the instantiation of the class. The Destructor is called just before an object is destroyed. It is used for code clean-up when object is no longer in use. Developer has no control when a destructor is called, since it gets called by CLR.

The Garbage Collection is responsible for automatic memory reclamation when object is no more in use. The Garbage Collection is a low-priority thread that runs in the background of the application. The GC gets high priority when memory resource is scarce. We should remember that GC is called by CLR, so developer has no control when GC is called. So, we shouldn’t rely on the code placed inside destructors or finalizers. If we need to reclaim recourses urgently, we can use dispose () method which can be called explicitly.

Visual Studio includes a code editor supporting IntelliSense as well as code refactoring. The integrated debugger works both as a source-level debugger and a machine-level debugger. Other built-in tools include a forms designer for building GUI applications, web designer, class designer, and database schema designer. It accepts plug-ins that enhance the functionality at almost every level—including adding support for source control systems (like Subversion and Visual SourceSafe) to adding new toolsets like editors and visual designers for domain-specific languages or toolsets for other aspects of the software development lifecycle (like the Team Foundation Server client: Team Explorer).

Visual Studio supports languages by means of language services, which allow the code editor and debugger to support nearly any programming language, provided a language-specific service exists. Built-in languages include C/C++, VB.NET, and C#. Support for other languages such as F#, M, Python, and Ruby among others is available via language services installed separately. It also supports XML/XSLT, HTML/XHTML, JavaScript and CSS. Language-specific versions of Visual Studio also exist which provide more limited language services to the user. These individual packages are called Microsoft Visual Basic, Visual J#, Visual C#, and Visual C++.

Microsoft provides "Express" editions of its Visual Studio 2008 components Visual Basic, Visual C#, Visual C++, and Visual Web Developer at no cost. Visual Studio 2008 and 2005 Professional Editions, along with language-specific versions (Visual Basic, C++, C#, J#) of Visual Studio 2005 are available for free to students as downloads via Microsoft's Dream Spark program. Visual Studio 2010 is currently in beta testing and can be downloaded by the general public at no cost.

3.3.2 C# Programming

C# is a multi-paradigm programming language encompassing imperative, functional, generic, object-oriented, and component-oriented programming disciplines. It was developed by Microsoft within the .NET initiative and later approved as a standard by Ecma (ECMA-334) and ISO (ISO/IEC 23270). C# is one of the programming languages designed for the Common Language Infrastructure.

C# is intended to be a simple, modern, general-purpose, object-oriented programming language. Its development team is led by Anders Hejlsberg. The most recent version is C# 3.0, which was released in conjunction with the .NET Framework 3.5 in 2007. The next proposed version, 4.0, is in development.

4. SYSTEM DESIGN
The Design of an information system produces the details that state how a system will meet the requirements identified during analysis. The emphasis is on translating the performance, requirements into design specifications.

4.1 NORMALIZATION
The various modules described in this project are described below
4.1.1. Image as input

4.1.2. Watermark embedding

4.1.3. Authenticator Watermark

4.1.4. Swap Embedding

4.1.5. Watermarked Image

4.1.1. IMAGE AS INPUT
We give image as input process an image in 2x2 pixel blocks. This allows flexibility in tracking the edges and also achieves high computational complexity. The two processing cases that flipping the candidates of one does not affect the flippability conditions of another are employed for orthogonal embedding.

4.1.2. WATERMARK EMBEDDING
Watermarking is a technology for embedding various types of information in digital content. In general, information for protecting copyrights and proving the validity of data is embedded as a watermark. Watermarked content can prove its origin, thereby protecting the data.
4.1.3. AUTHENTICATOR WATERMARK
In this module we encrypt the data embedded image. The purpose of authenticator watermark of a block is invariant in the watermark embedding process, hence the watermark can be extracted without referring to the original image .The encryption and decryption techniques used in this module.
4.1.4. SWAP EMBEDDING
We flipp an edge pixel in binary images is equivalent to shifting the edge location horizontally one pixel and vertically one pixel. A horizontal edge exists if there is a transition between two neighboring pixels vertically and a vertical edge exists if there is a transition between two neighboring pixels horizontally. We swap an morphological images.

4.1.5. Watermarked image

The watermarked image is obtained by computing the inverse for the main processing block to reconstruct its candidate pixels. Use this module we going to see the original watermarked image.

4.2 INPUT DESIGN

We give original image as input with watermark data embedding. We view flipping an edge pixel in binary images as shifting the edge location one pixel horizontally and vertically. The output of the project is we reconstruct the pixel horizontally and vertically .we can see the original watermarked data embedding image
4.2.1. INPUT DESIGN:

4.2.2 UML Diagrams

[image: image1.emf]User

image as input

watermarking embedding

Authenticator Watermark

Swap Embedding

Watermarked image

4.2.3 CLASS DIAGRAM
[image: image2.emf]Image

picsource

txtcopyright

lstfilelist

Getfiles()

setWMProperties()

Encryption

browse encryption

file encryption

encrypt()

generate key()

transform()

Decryption

browse decryption

file decryption

decrypt()

generate key()

transform()

swap

PixTwix

path

show progess()

View

pboxbefore

pboxafter

show progess()

4.2.4 OBJECT DIAGRAM

4.2.5 COLLABORATION DIAGRAM
[image: image3.emf]Image as

input

Watermark

embedding

Authenticator

watermark

1: Getfiles()

2: SetWMproperties

3: Encrypt()

Swap

image

Watermarke

d image

4: Decrypt()

5: original image

4.2.6 SEQUENCE DIAGRAM
[image: image4.emf]Image as inputWatermark

embedding

Authenticator

watermark

Swap imageWatermarked

image

Getfiles()

SetWMproperties

Encrypt()

Decrypt()

original image

4.2.7 STATE DIAGRAM
[image: image5.emf]Image as

input

watermark data

embedding in image

Encrypt a data

embedding image

swap a watermark

image

decrypt a

watermarked image

view original

image

4.2.8 ACTIVITY DIAGRAM
[image: image6.emf]search

image

select image with type as

.bmp,.jpeg,jpg

Water mark a

selected image

send to

another user

Encrypt a

watermarked image

Decrypt a

watermarked image

Swap

image

view original

image

4.2.9 COMPONENT DIAGRAM
[image: image7.emf]Give image as

input(.bmp.,jpeg)

watermark a

selected image

swap a watermarked

image

Encrypt a

watermarked image

Decrypt a

watermarked image

view original

watermarked image

4.2.10 E-R DIAGRAM
[image: image8.emf]user

search a

image(.bmp,.jpeg)

Encrypt

Swap a watermarked

image

Decrypt

original

image

4.3.1 DATA FLOW DIAGRAM
[image: image9.emf]Image as

input

Start

watermark data

embedding in image

encrypt a data

embedded image

swap a data

embedded image

decrypt a data

embedded image

stop

4.4 PROJECT FLOW DIAGRAM

 SHAPE

5. SYSTEM ARCHITECTURE
[image: image11.png]
Image as flipping a pixel involves changing the coefficients, It can be seen that the same edges used to determine the data-hiding locations cannot be found in the watermarked image .We observe that flipping an edge pixel in binary images is equivalent to shifting the edge location horizontally one pixel and vertically one pixel [e.g., horizontal edge shifting .In the figure, “1” and “0” represent the black and white pixels, respectively. To this end, we design an IMBWT to keep track of the shifted edges to achieve blind watermark extraction. In this section, we start the discussion with signal analysis and synthesis which is similar .A brief review on the 1-D signal decomposition given in is also included. Based on this, we further extend the decomposition scheme to 2-D signal and subsequently propose an interlaced transform for the data-hiding applicant.

This paper focuses on hard authenticator watermark-based authentication. Specifically, we investigate the problem of data hiding for binary images in morphological transform domain. Generally speaking, data hiding in real-valued transform domain does not work well for binary images due to the quantization errors introduced in the pre/post- processing [3]. In addition, embedding data using real-valued coefficients requires more memory space. We observe that the morphological binary wavelet transform [16] can be used to track the transitions in binary images by utilizing the detail coefficients. One rather intuitive idea in employing the morphological binary wavelet transform for data hiding is to use the detail coefficients as a location map to determine the data-hiding locations. However, this makes it difficult to achieve blind watermark extraction due to the fact that once a pixel is flipped, the horizontal, vertical and diagonal detail coefficients will change correspondingly. This problem will be discussed in more detail in Section II. The idea of designing an interlaced transform to identify the embeddable locations is motivated by the fact that some transition information is lost during the computation of a single transform and there is a need to keep track of transitions between two and three

pixels for binary images data hiding. Specifically, we process the images based on 2 2 pixel blocks and combine two different processing cases that the flippability conditions of one are not affected by flipping the candidates of another for data embedding, namely “orthogonal embedding”. This addresses the problem of the capacity decrease due to the un-embeddability of the block boundaries, sharing rows and columns in block-based approaches [11]. As a result, significant gains in capacity can be achieved, which also improves the efficiency of utilizing the flippable pixels. Implementing the transforms by the “Exclusive OR (XOR)” operation addresses the quantization error issue in a DCT-based approach. The major advantages of the proposed scheme lie in its larger capacity (e.g., compared with), better visual quality and lower computational complexity (e.g., compared with). In addition, unlike, our present scheme does not suffer the capacity decrease and computational load increase in order.

In this case, the main 2 2 block is reconstructed timely once a candidate is processed. The pattern used for distortion evaluation is taken as the reconstructed watermarked image (some neighboring candidates possibly have been flipped) with the center pixel taken from the original image so that better visual quality of the watermarked images can be preserved. The good visual quality of the watermarked images obtained by employing SPC, DPC and DPDC, in which is 0.5753, 0.5896, and 0.5780, respectively. The results demonstrate that better visual quality of the watermarked image can be achieved using DPDC compared with that of DPC. The proposed data-hiding scheme can also be applied to halftone images with acceptable visual quality. Further improvement in visual quality can be done by preserving the local average intensity and considering the error diffusion process in halftoning. Experiments are conducted by randomly choosing 50 binary images of different resolutions, types and sizes to test effectiveness of the hard authenticator watermark using SPC, DPC and DPDC. Various tamperings such as erasing, tampering in blank area, word substitution, adding noise, filtering are performed to the watermarked image. The results show that all the tamperings can be detected. which a logo image is used as to be XORed with the replicated hash value of the image to visually show the tamperings. It can be seen from the results that the logo image can be reconstructed perfectly when no tampering occurs, whereas it looks like a random noise pattern when the watermarked image is subjected to tampering.

6. TESTING AND IMPLEMENTATION
Data-hiding techniques for binary images are based on spatial domains, for example, choosing data-hiding locations by employing pairs of contour edge patterns , edge pixels , visual distortion tables , and defining visual quality-preserving rules . However, the capacities of the existing algorithms are not large enough, especially for small images .

6.1 ADVANTAGES
The third party cannot access the data hided image .Embedding data using real-valued coefficients requires more memory space. We observe that the morphological binary wavelet transform [16] can be used to track the transitions in binary images by utilizing the detail coefficients. One rather intuitive idea in employing the morphological binary wavelet transform for data hiding is to use the detail coefficients as a location map to determine the data-hiding locations.

6.2 APPLICATION
1. Broad cast Monitoring

2. Proof of ownership

3. Transaction Tracking

4. Content authentication

5. Modification and Multiple watermark

7. CONCLUSION AND FURTHER SCOPE

This paper proposes a data-hiding technique for binary images in morphological transform domain for authentication purpose. To achieve blind watermark extraction, it is difficult to use the detail coefficients directly as a location map to determine the data-hiding locations. Hence, we view flipping an edge pixel in binary images as shifting the edge location one pixel horizontally and vertically. Based on this observation, we propose an interlaced morphological binary wavelet transform to track the shifted edges, which thus facilitates blind watermark extraction and incorporation of cryptographic signature. Unlike existing block-based approach, in which the block size is constrained by 3times3 pixels or larger, we process an image in 2times2 pixel blocks. This allows flexibility in tracking the edges and also achieves low computational complexity. The two processing cases that flipping the candidates of one does not affect the flippability conditions of another are employed for orthogonal embedding, which renders more suitable candidates can be identified such that a larger capacity can be achieved. A novel effective Backward-Forward Minimization method is proposed, which considers both backwardly those neighboring processed embeddable candidates and forwardly those unprocessed flippable candidates that may be affected by flipping the current pixel. In this way, the total visual distortion can be minimized. Experimental results demonstrate the validity of our arguments.

8. SOURCE CODE AND SCREEN SHOTS
8.1 WATERMARK EMBEDDING CODING
Watermarking is a technology for embedding various types of information in digital content. In general, information for protecting copyrights and proving the validity of data is embedded as a watermark. Watermarked content can prove its origin, thereby protecting the data.

[image: image12.png]
private void cmdMake_Click(object sender, System.EventArgs e)

{

if (chkSameOutputFolder.Checked == false && txtWorkingFolder.Text.Equals(txtOutputFolder.Text))

{

MessageBox.Show("Output folder can not be same as input folder",this.Text,MessageBoxButtons.OK,MessageBoxIcon.Error);

return;

}

try

{

this.Cursor = Cursors.WaitCursor;

statusBarPanel1.Text = "Busy";

Application.DoEvents();

WaterMark wm;

string srcPic,dstPic;

//if (chkWaterMarkImage.Checked == true)

wm = new WaterMark(txtWorkingFolder.Text,txtCopyRight.Text,pt.TextPosition,pt.Font);

//else

//
wm = new WaterMark(txtWorkingFolder.Text,txtCopyRight.Text,pt.TextPosition,pt.Font);

for(int i=0;i<lstFileList.CheckedItems.Count;i++)

{

//srcPic = txtWorkingFolder.Text + lstFileList.Items[i].ToString().Substring(1);

srcPic = txtWorkingFolder.Text + lstFileList.Items[i].ToString().Substring(lstFileList.Items[i].ToString().LastIndexOf("\\"));

if (chkSameOutputFolder.Checked == true)

dstPic = srcPic.Insert(srcPic.LastIndexOf("."),txtSuffix.Text);

else

dstPic = txtOutputFolder.Text + "\\" + srcPic.Substring(srcPic.LastIndexOf("\\") + 1);

wm.MarkImage(srcPic,dstPic);

progressBar1.Increment(1);

statusBarPanel2.Text = "Proecessing Image " + srcPic.Substring(lstFileList.Items[i].ToString().LastIndexOf("\\") + 1);

Application.DoEvents();

}

progressBar1.Value = 0;

statusBarPanel1.Text = "Ready";

statusBarPanel2.Text = "";

this.Cursor = Cursors.Default;

Application.DoEvents();

}

catch(Exception ex)

{

progressBar1.Value = 0;

statusBarPanel1.Text = "Ready";

statusBarPanel2.Text = ex.Message;

this.Cursor = Cursors.Default;

Application.DoEvents();

}

}

private void chkSameOutputFolder_CheckedChanged(object sender, System.EventArgs e)

{

if (chkSameOutputFolder.Checked == true)

{

chkSameOutputFolder.Text = "Use &output folder as same add suffix";

chkSameOutputFolder.Width = 306;

chkSameOutputFolder.SendToBack();

txtOutputFolder.Text = txtWorkingFolder.Text;

txtOutputFolder.Enabled = false;

cmdBrowse3.Enabled = false;

txtSuffix.Visible = true;

}

else

{

chkSameOutputFolder.Text = "Use following &output folder and keep same file name(s)";

chkSameOutputFolder.Width = cmdMake.Width;

chkSameOutputFolder.BringToFront();

txtOutputFolder.Text = regOutputFolder;

txtOutputFolder.Enabled = true;

cmdBrowse3.Enabled = true;

txtSuffix.Visible = false;

}

}

private void chkPreview_CheckedChanged(object sender, System.EventArgs e)

{

try

{

if (chkPreview.Checked == false)

picSource.Image = null;

else

picSource.Image = Image.FromFile(txtWorkingFolder.Text + lstFileList.SelectedItem.ToString().Substring(1));

}

catch{}

}

private void cmbImageType_SelectedIndexChanged(object sender, System.EventArgs e)

{

GetFiles();

}

private void cmdBrowse3_Click(object sender, System.EventArgs e)

{

string oldInputFolder;

try

{

if(txtOutputFolder.Text.Substring(0,1) == ".")

oldInputFolder = txtOutputFolder.Text.Replace(".",AppDomain.CurrentDomain.BaseDirectory.Substring(0,AppDomain.CurrentDomain.BaseDirectory.Length - 1));

else

oldInputFolder = txtOutputFolder.Text;

folderBrowserDialog1.SelectedPath = oldInputFolder;

//folderBrowserDialog1.RootFolder = System.Environment.SpecialFolder.Personal;

}

catch{}

try

{

if (folderBrowserDialog1.ShowDialog() == DialogResult.OK)

{

if (txtWorkingFolder.Text == folderBrowserDialog1.SelectedPath)

MessageBox.Show("Input and output folder can not be same",this.Text,MessageBoxButtons.OK,MessageBoxIcon.Exclamation);

else

txtOutputFolder.Text = folderBrowserDialog1.SelectedPath;

}

}

catch{}

}

private void SaveToRegistry()

{

RegistryKey myKey = Registry.CurrentUser.CreateSubKey(RegKey);

myKey.SetValue("InputFolder",txtWorkingFolder.Text);

myKey.SetValue("OutputFolder",txtOutputFolder.Text);

//myKey.SetValue("WaterMarkImage",txtWaterMarkImage.Text);

}

//private void GetFromRegistry()

//{

// try

// {

// RegistryKey mykey = Registry.CurrentUser.OpenSubKey(RegKey);

// regInputFolder = mykey.GetValue("InputFolder").ToString();

// regOutputFolder = mykey.GetValue("OutputFolder").ToString();

// regWaterMarkImage = mykey.GetValue("WaterMarkImage").ToString();

// }

// catch

// {

// MessageBox.Show(this.Text + " is not installed properly, or it corrupt. Please re-install and try again.",this.Text,MessageBoxButtons.OK,MessageBoxIcon.Stop);

// Application.Exit();

// }

//}

private void frmMain_Closed(object sender, System.EventArgs e)

{

SaveToRegistry();

}

private void cmdBrowse2_Click(object sender, System.EventArgs e)

{

openFileDialog1.Filter = "All Picture Files|*.jpg;*.bmp|JPEG(*.JPEG,*JPG)|*.jpg;*.jpeg|Bitmap Files(*.BMP)|*.bmp|All Files|*.*";

if (openFileDialog1.ShowDialog() == DialogResult.OK)

{

//txtWaterMarkImage.Text = openFileDialog1.FileName;

//picWaterMark.Image = Image.FromFile(txtWaterMarkImage.Text);

}

}

private void setWMProperties()

{

pt.CopyrightText = txtCopyRight.Text;

//if (chkWaterMarkImage.Checked == true)

//{

// pt.CopyrightImage = picWaterMark.Image ;

//}

propertyGrid1.SelectedObject = pt;

}

private void tabControl1_SelectedIndexChanged(object sender, System.EventArgs e)

{

if (tabControl1.SelectedIndex == 1) setWMProperties();

}

private void button1_Click(object sender, EventArgs e)

{

encryption tt = new encryption();

tt.Show();

}

private void label5_Click(object sender, EventArgs e)

{

}
}

}

8.2 AUTHENTICATOR WATERMARK CODING
[image: image13.png]
using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

namespace WaterMark

{

public partial class encryption : Form

{

public encryption()

{

InitializeComponent();

}

private void btnBrowseEncrypt_Click(object sender, EventArgs e)

{

openFileDialog1.FileName = "";

openFileDialog1.Title = "Choose a file to decrypt";

openFileDialog1.InitialDirectory = @"C:\";

// openFileDialog1.Filter = "Encrypted Files (*.encrypt) | *.encrypt";

string strFileToEncrypt = "";

string strOutputEncrypt = "";

string strExtension = "";

//Find out if the user chose a file.

if (openFileDialog1.ShowDialog() == DialogResult.OK)

{

strFileToEncrypt = openFileDialog1.FileName;

txtFileToEncrypt.Text = strFileToEncrypt;

int iPosition;

/* Get the position of the last "\" in the OpenFileDialog.FileName path.

* -1 is when the character your searching for is not there.

* IndexOf searches from left to right.*/

iPosition = strFileToEncrypt.LastIndexOf(".");

if (iPosition == -1)

{

MessageBox.Show("Invalid file. Please select proper file.");

}

//strOutputFile = the file path minus the last 8 characters (.encrypt)

strExtension = strFileToEncrypt.Substring(iPosition, (strFileToEncrypt.Length - iPosition));

//Assign strOutputFile to the position after the last "\" in the path.

string strEncryptedExt = "z_z" + strExtension.Substring(1) + ".encrypt";

strOutputEncrypt = strFileToEncrypt.Replace(strExtension, strEncryptedExt);

txtDestinationEncrypt.Text = strOutputEncrypt;

//Update buttons

btnFileEncrypt.Enabled = true;

}

}

private void btnFileEncrypt_Click(object sender, EventArgs e)

{

try

{

if (txtConPassEncrypt.Text != txtPassEncrypt.Text)

{

txtConPassEncrypt.Text = "";

MessageBox.Show("Password are not same. Please veryfy once again.");

return;

}

string strSecretKey = txtPassEncrypt.Text.Trim();

EncryptDecrypt.MyEncryptor enc = new EncryptDecrypt.MyEncryptor(strSecretKey);

enc.Encrypt(txtFileToEncrypt.Text, txtDestinationEncrypt.Text);

}

catch (Exception ex)

{

MessageBox.Show(ex.Message);

}

}

private void button1_Click(object sender, EventArgs e)

{

scramble hh = new scramble();

hh.Show();

}

private void encryption_Load(object sender, EventArgs e)

{

}

}

}
8.4 IMAGE AS INPUT CODING
We give image as input ,process an image in 2x2 pixel blocks. This allows flexibility in tracking the edges and also achieves high computational complexity. The two processing cases that flipping the candidates of one does not affect the flippability conditions of another are employed for orthogonal embedding .

[image: image14.png]
using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.IO;

using Microsoft.Win32;

namespace WaterMark

{

/// <summary>

/// Summary description for frmMain.

/// </summary>

public class frmMain : System.Windows.Forms.Form

{

private System.Windows.Forms.StatusBar statusBar1;

private System.Windows.Forms.StatusBarPanel statusBarPanel1;

private System.Windows.Forms.StatusBarPanel statusBarPanel2;

private System.Windows.Forms.GroupBox groupBox1;

private System.Windows.Forms.Label label1;

private System.Windows.Forms.Label label3;

private System.Windows.Forms.CheckedListBox lstFileList;

private System.Windows.Forms.TextBox txtWorkingFolder;

private System.Windows.Forms.ComboBox cmbImageType;

private System.Windows.Forms.PictureBox picSource;

private System.Windows.Forms.GroupBox groupBox2;

private System.Windows.Forms.Button cmdBrowse1;

private System.Windows.Forms.Button cmdMake;

private System.Windows.Forms.CheckBox chkPreview;

private System.Windows.Forms.ProgressBar progressBar1;

private System.Windows.Forms.Button cmdBrowse3;

private System.Windows.Forms.TextBox txtOutputFolder;

private System.Windows.Forms.CheckBox chkSameOutputFolder;

private System.Windows.Forms.TextBox txtSuffix;

private System.Windows.Forms.Label label2;

private System.Windows.Forms.FolderBrowserDialog folderBrowserDialog1;

private System.Windows.Forms.OpenFileDialog openFileDialog1;

private const string RegKey = @"Software\Big Ds Tech\Mark My Image";

private string regInputFolder, regOutputFolder,regWaterMarkImage;

private System.Windows.Forms.TabControl tabControl1;

private System.Windows.Forms.Label label4;

private System.Windows.Forms.TextBox txtCopyRight;

private System.Windows.Forms.TabPage tabPage1;

private System.Windows.Forms.TabPage tabPage2;

private System.Windows.Forms.PropertyGrid propertyGrid1;

private WMProperties pt;

private GroupBox groupBox3;

private Button button1;

/// <summary>

/// Required designer variable.

/// </summary>

private System.ComponentModel.Container components = null;

public frmMain()

{

//

// Required for Windows Form Designer support

//

InitializeComponent();

//

// TODO: Add any constructor code after InitializeComponent call

//

}

/// <summary>

/// Clean up any resources being used.

/// </summary>

protected override void Dispose(bool disposing)

{

if(disposing)

{

if (components != null)

{

components.Dispose();

}

}

base.Dispose(disposing);

}

#region Windows Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

this.statusBar1 = new System.Windows.Forms.StatusBar();

this.statusBarPanel1 = new System.Windows.Forms.StatusBarPanel();

this.statusBarPanel2 = new System.Windows.Forms.StatusBarPanel();

this.groupBox1 = new System.Windows.Forms.GroupBox();

this.lstFileList = new System.Windows.Forms.CheckedListBox();

this.groupBox2 = new System.Windows.Forms.GroupBox();

this.tabControl1 = new System.Windows.Forms.TabControl();

this.tabPage1 = new System.Windows.Forms.TabPage();

this.label4 = new System.Windows.Forms.Label();

this.txtCopyRight = new System.Windows.Forms.TextBox();

this.tabPage2 = new System.Windows.Forms.TabPage();

this.propertyGrid1 = new System.Windows.Forms.PropertyGrid();

this.cmbImageType = new System.Windows.Forms.ComboBox();

this.label3 = new System.Windows.Forms.Label();

this.cmdBrowse1 = new System.Windows.Forms.Button();

this.txtWorkingFolder = new System.Windows.Forms.TextBox();

this.label1 = new System.Windows.Forms.Label();

this.chkPreview = new System.Windows.Forms.CheckBox();

this.picSource = new System.Windows.Forms.PictureBox();

this.cmdMake = new System.Windows.Forms.Button();

this.progressBar1 = new System.Windows.Forms.ProgressBar();

this.cmdBrowse3 = new System.Windows.Forms.Button();

this.txtOutputFolder = new System.Windows.Forms.TextBox();

this.chkSameOutputFolder = new System.Windows.Forms.CheckBox();

this.txtSuffix = new System.Windows.Forms.TextBox();

this.label2 = new System.Windows.Forms.Label();

this.folderBrowserDialog1 = new System.Windows.Forms.FolderBrowserDialog();

this.openFileDialog1 = new System.Windows.Forms.OpenFileDialog();

this.groupBox3 = new System.Windows.Forms.GroupBox();

this.button1 = new System.Windows.Forms.Button();

((System.ComponentModel.ISupportInitialize)(this.statusBarPanel1)).BeginInit();

((System.ComponentModel.ISupportInitialize)(this.statusBarPanel2)).BeginInit();

this.groupBox1.SuspendLayout();

this.groupBox2.SuspendLayout();

this.tabControl1.SuspendLayout();

this.tabPage1.SuspendLayout();

this.tabPage2.SuspendLayout();

((System.ComponentModel.ISupportInitialize)(this.picSource)).BeginInit();

this.groupBox3.SuspendLayout();

this.SuspendLayout();

//

// statusBar1

//

this.statusBar1.Location = new System.Drawing.Point(0, 528);

this.statusBar1.Name = "statusBar1";

this.statusBar1.Panels.AddRange(new System.Windows.Forms.StatusBarPanel[] {

this.statusBarPanel1,

this.statusBarPanel2});

this.statusBar1.ShowPanels = true;

this.statusBar1.Size = new System.Drawing.Size(834, 18);

this.statusBar1.TabIndex = 0;

this.statusBar1.Text = "statusBar1";

//

// statusBarPanel1

//

this.statusBarPanel1.Name = "statusBarPanel1";

this.statusBarPanel1.Text = "Ready";

//

// statusBarPanel2

//

this.statusBarPanel2.AutoSize = System.Windows.Forms.StatusBarPanelAutoSize.Spring;

this.statusBarPanel2.Name = "statusBarPanel2";

this.statusBarPanel2.Width = 717;

//

// groupBox1

//

this.groupBox1.Controls.Add(this.lstFileList);

this.groupBox1.Controls.Add(this.groupBox2);

this.groupBox1.Controls.Add(this.cmbImageType);

this.groupBox1.Controls.Add(this.label3);

this.groupBox1.Controls.Add(this.cmdBrowse1);

this.groupBox1.Controls.Add(this.txtWorkingFolder);

this.groupBox1.Controls.Add(this.label1);

this.groupBox1.Controls.Add(this.chkPreview);

this.groupBox1.Location = new System.Drawing.Point(4, 2);

this.groupBox1.Name = "groupBox1";

this.groupBox1.Size = new System.Drawing.Size(410, 520);

this.groupBox1.TabIndex = 1;

this.groupBox1.TabStop = false;

//

// lstFileList

//

this.lstFileList.Location = new System.Drawing.Point(8, 76);

this.lstFileList.Name = "lstFileList";

this.lstFileList.Size = new System.Drawing.Size(396, 169);

this.lstFileList.TabIndex = 4;

this.lstFileList.SelectedIndexChanged += new System.EventHandler(this.lstFileList_SelectedIndexChanged);

//

// groupBox2

//

this.groupBox2.Controls.Add(this.tabControl1);

this.groupBox2.Location = new System.Drawing.Point(0, 294);

this.groupBox2.Name = "groupBox2";

this.groupBox2.Size = new System.Drawing.Size(400, 200);

this.groupBox2.TabIndex = 11;

this.groupBox2.TabStop = false;

this.groupBox2.Text = "Water Mark";

//

// tabControl1

//

this.tabControl1.Controls.Add(this.tabPage1);

this.tabControl1.Controls.Add(this.tabPage2);

this.tabControl1.Location = new System.Drawing.Point(6, 16);

this.tabControl1.Name = "tabControl1";

this.tabControl1.SelectedIndex = 0;

this.tabControl1.Size = new System.Drawing.Size(388, 178);

this.tabControl1.TabIndex = 13;

this.tabControl1.SelectedIndexChanged += new System.EventHandler(this.tabControl1_SelectedIndexChanged);

//

// tabPage1

//

this.tabPage1.Controls.Add(this.label4);

this.tabPage1.Controls.Add(this.txtCopyRight);

this.tabPage1.Location = new System.Drawing.Point(4, 22);

this.tabPage1.Name = "tabPage1";

this.tabPage1.Size = new System.Drawing.Size(380, 152);

this.tabPage1.TabIndex = 0;

this.tabPage1.Text = "General";

//

// label4

//

this.label4.Location = new System.Drawing.Point(2, 6);

this.label4.Name = "label4";

this.label4.Size = new System.Drawing.Size(84, 14);

this.label4.TabIndex = 12;

this.label4.Text = "Text";

//

// txtCopyRight

//

this.txtCopyRight.Location = new System.Drawing.Point(88, 6);

this.txtCopyRight.Multiline = true;

this.txtCopyRight.Name = "txtCopyRight";

this.txtCopyRight.Size = new System.Drawing.Size(288, 56);

this.txtCopyRight.TabIndex = 5;

this.txtCopyRight.Text = "Copyright © 2008 SPIRO SOLUTION";

//

// tabPage2

//

this.tabPage2.Controls.Add(this.propertyGrid1);

this.tabPage2.Location = new System.Drawing.Point(4, 22);

this.tabPage2.Name = "tabPage2";

this.tabPage2.Size = new System.Drawing.Size(380, 152);

this.tabPage2.TabIndex = 1;

this.tabPage2.Text = "Properties";

//

// propertyGrid1

//

this.propertyGrid1.Dock = System.Windows.Forms.DockStyle.Fill;

this.propertyGrid1.HelpVisible = false;

this.propertyGrid1.LineColor = System.Drawing.SystemColors.ScrollBar;

this.propertyGrid1.Location = new System.Drawing.Point(0, 0);

this.propertyGrid1.Name = "propertyGrid1";

this.propertyGrid1.Size = new System.Drawing.Size(380, 152);

this.propertyGrid1.TabIndex = 0;

this.propertyGrid1.ToolbarVisible = false;

//

// cmbImageType

//

this.cmbImageType.DropDownStyle = System.Windows.Forms.ComboBoxStyle.DropDownList;

this.cmbImageType.Items.AddRange(new object[] {

"All Image Files",

"JPEG Images (*.JPG, *.JPEG)",

"Windows Bitmap Images (*.bmp)"});

this.cmbImageType.Location = new System.Drawing.Point(104, 46);

this.cmbImageType.Name = "cmbImageType";

this.cmbImageType.Size = new System.Drawing.Size(176, 21);

this.cmbImageType.TabIndex = 2;

this.cmbImageType.SelectedIndexChanged += new System.EventHandler(this.cmbImageType_SelectedIndexChanged);

//

// label3

//

this.label3.Location = new System.Drawing.Point(10, 50);

this.label3.Name = "label3";

this.label3.Size = new System.Drawing.Size(82, 14);

this.label3.TabIndex = 6;

this.label3.Text = "Image Type";

//

// cmdBrowse1

//

this.cmdBrowse1.FlatStyle = System.Windows.Forms.FlatStyle.Popup;

this.cmdBrowse1.Location = new System.Drawing.Point(382, 20);

this.cmdBrowse1.Name = "cmdBrowse1";

this.cmdBrowse1.Size = new System.Drawing.Size(22, 20);

this.cmdBrowse1.TabIndex = 1;

this.cmdBrowse1.Text = "...";

this.cmdBrowse1.Click += new System.EventHandler(this.cmdBrowse1_Click);

//

// txtWorkingFolder

//

this.txtWorkingFolder.Location = new System.Drawing.Point(104, 20);

this.txtWorkingFolder.Name = "txtWorkingFolder";

this.txtWorkingFolder.Size = new System.Drawing.Size(274, 20);

this.txtWorkingFolder.TabIndex = 0;

//

// label1

//

this.label1.Location = new System.Drawing.Point(8, 24);

this.label1.Name = "label1";

this.label1.Size = new System.Drawing.Size(94, 14);

this.label1.TabIndex = 0;

this.label1.Text = "Input Folder";

//

// chkPreview

//

this.chkPreview.Checked = true;

this.chkPreview.CheckState = System.Windows.Forms.CheckState.Checked;

this.chkPreview.Location = new System.Drawing.Point(284, 48);

this.chkPreview.Name = "chkPreview";

this.chkPreview.Size = new System.Drawing.Size(120, 20);

this.chkPreview.TabIndex = 3;

this.chkPreview.Text = "&Preview Image";

this.chkPreview.CheckedChanged += new System.EventHandler(this.chkPreview_CheckedChanged);

//

// picSource

//

this.picSource.Location = new System.Drawing.Point(418, 6);

this.picSource.Name = "picSource";

this.picSource.Size = new System.Drawing.Size(370, 228);

this.picSource.SizeMode = System.Windows.Forms.PictureBoxSizeMode.StretchImage;

this.picSource.TabIndex = 2;

this.picSource.TabStop = false;

//

// cmdMake

//

this.cmdMake.FlatStyle = System.Windows.Forms.FlatStyle.Popup;

this.cmdMake.Font = new System.Drawing.Font("Microsoft Sans Serif", 8.25F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

this.cmdMake.Location = new System.Drawing.Point(418, 326);

this.cmdMake.Name = "cmdMake";

this.cmdMake.Size = new System.Drawing.Size(370, 32);

this.cmdMake.TabIndex = 12;

this.cmdMake.Text = "&Make";

this.cmdMake.Click += new System.EventHandler(this.cmdMake_Click);

//

// progressBar1

//

this.progressBar1.Location = new System.Drawing.Point(416, 238);

this.progressBar1.Name = "progressBar1";

this.progressBar1.Size = new System.Drawing.Size(372, 22);

this.progressBar1.TabIndex = 14;

//

// cmdBrowse3

//

this.cmdBrowse3.FlatStyle = System.Windows.Forms.FlatStyle.Popup;

this.cmdBrowse3.Location = new System.Drawing.Point(764, 296);

this.cmdBrowse3.Name = "cmdBrowse3";

this.cmdBrowse3.Size = new System.Drawing.Size(22, 20);

this.cmdBrowse3.TabIndex = 11;

this.cmdBrowse3.Text = "...";

this.cmdBrowse3.Click += new System.EventHandler(this.cmdBrowse3_Click);

//

// txtOutputFolder

//

this.txtOutputFolder.Location = new System.Drawing.Point(418, 296);

this.txtOutputFolder.Name = "txtOutputFolder";

this.txtOutputFolder.Size = new System.Drawing.Size(342, 20);

this.txtOutputFolder.TabIndex = 10;

//

// chkSameOutputFolder

//

this.chkSameOutputFolder.BackColor = System.Drawing.SystemColors.Control;

this.chkSameOutputFolder.Checked = true;

this.chkSameOutputFolder.CheckState = System.Windows.Forms.CheckState.Checked;

this.chkSameOutputFolder.Location = new System.Drawing.Point(420, 270);

this.chkSameOutputFolder.Name = "chkSameOutputFolder";

this.chkSameOutputFolder.Size = new System.Drawing.Size(242, 18);

this.chkSameOutputFolder.TabIndex = 9;

this.chkSameOutputFolder.Text = "Use &output folder as same add suffix";

this.chkSameOutputFolder.UseVisualStyleBackColor = false;

this.chkSameOutputFolder.CheckedChanged += new System.EventHandler(this.chkSameOutputFolder_CheckedChanged);

//

// txtSuffix

//

this.txtSuffix.Location = new System.Drawing.Point(616, 268);

this.txtSuffix.MaxLength = 15;

this.txtSuffix.Name = "txtSuffix";

this.txtSuffix.Size = new System.Drawing.Size(54, 20);

this.txtSuffix.TabIndex = 19;

this.txtSuffix.Text = "_final";

//

// label2

//

this.label2.Location = new System.Drawing.Point(672, 272);

this.label2.Name = "label2";

this.label2.Size = new System.Drawing.Size(82, 16);

this.label2.TabIndex = 20;

this.label2.Text = "after file names";

//

// groupBox3

//

this.groupBox3.Controls.Add(this.button1);

this.groupBox3.Location = new System.Drawing.Point(427, 367);

this.groupBox3.Name = "groupBox3";

this.groupBox3.Size = new System.Drawing.Size(360, 154);

this.groupBox3.TabIndex = 21;

this.groupBox3.TabStop = false;

this.groupBox3.Text = "Protect";

//

// button1

//

this.button1.Location = new System.Drawing.Point(115, 72);

this.button1.Name = "button1";

this.button1.Size = new System.Drawing.Size(94, 23);

this.button1.TabIndex = 26;

this.button1.Text = "Encryption";

this.button1.UseVisualStyleBackColor = true;

this.button1.Click += new System.EventHandler(this.button1_Click);

//

// frmMain

//

this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);

this.ClientSize = new System.Drawing.Size(834, 546);

this.Controls.Add(this.groupBox3);

this.Controls.Add(this.label2);

this.Controls.Add(this.txtSuffix);

this.Controls.Add(this.chkSameOutputFolder);

this.Controls.Add(this.txtOutputFolder);

this.Controls.Add(this.cmdBrowse3);

this.Controls.Add(this.progressBar1);

this.Controls.Add(this.picSource);

this.Controls.Add(this.groupBox1);

this.Controls.Add(this.statusBar1);

this.Controls.Add(this.cmdMake);

this.FormBorderStyle = System.Windows.Forms.FormBorderStyle.Fixed3D;

this.MaximizeBox = false;

this.Name = "frmMain";

this.StartPosition = System.Windows.Forms.FormStartPosition.CenterScreen;

this.Text = "Mark My Imagegg";

this.Closed += new System.EventHandler(this.frmMain_Closed);

this.Load += new System.EventHandler(this.frmMain_Load);

((System.ComponentModel.ISupportInitialize)(this.statusBarPanel1)).EndInit();

((System.ComponentModel.ISupportInitialize)(this.statusBarPanel2)).EndInit();

this.groupBox1.ResumeLayout(false);

this.groupBox1.PerformLayout();

this.groupBox2.ResumeLayout(false);

this.tabControl1.ResumeLayout(false);

this.tabPage1.ResumeLayout(false);

this.tabPage1.PerformLayout();

this.tabPage2.ResumeLayout(false);

((System.ComponentModel.ISupportInitialize)(this.picSource)).EndInit();

this.groupBox3.ResumeLayout(false);

this.ResumeLayout(false);

this.PerformLayout();

}

#endregion

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main()

{

Application.Run(new start ());

}

private void frmMain_Load(object sender, System.EventArgs e)

{

pt = new WMProperties();

//GetFromRegistry();

txtWorkingFolder.Text = regInputFolder;

//txtWaterMarkImage.Text = regWaterMarkImage;

//chkWaterMarkImage.Checked = false;

cmbImageType.SelectedIndex = 0;

txtOutputFolder.Text = regOutputFolder;

txtOutputFolder.Enabled = false;

cmdBrowse3.Enabled = false;

setWMProperties();

//pt.TextPosition = ContentAlignment.BottomCenter;

//pt.ImagePosition = ContentAlignment.TopRight;

//pt.Font = new Font("arial",(float)8.25);

//pt.FontSizeBestFit = true;

//lblAbout.Text = ";

pt.setDefaultValues();

GetFiles();

if(chkPreview.Checked == true && lstFileList.Items.Count > 0)

{

lstFileList.SelectedIndex = 0;

if (File.Exists(lstFileList.Items[0].ToString()))

picSource.Image = Image.FromFile(lstFileList.Items[0].ToString());

}

}

private void GetFiles()

{

string [] temp1 = null,temp2 = null,temp3 = null,fileEntries = null;

int tot_files = 0;

try

{

switch(cmbImageType.SelectedIndex)

{

case 0:

temp1 = Directory.GetFiles(txtWorkingFolder.Text,"*.jpg");

temp2 = Directory.GetFiles(txtWorkingFolder.Text,"*.jpeg");

temp3 = Directory.GetFiles(txtWorkingFolder.Text,"*.bmp");

tot_files = temp1.Length + temp2.Length + temp3.Length;

fileEntries = new string[tot_files];

Array.Copy(temp1,0,fileEntries,0,temp1.Length);

Array.Copy(temp2,0,fileEntries,temp1.Length,temp2.Length);

Array.Copy(temp3,0,fileEntries,temp1.Length + temp2.Length,temp3.Length);

break;

case 1:

temp1 = Directory.GetFiles(txtWorkingFolder.Text,"*.jpg");

temp2 = Directory.GetFiles(txtWorkingFolder.Text,"*.jpeg");

tot_files = temp1.Length + temp2.Length;

fileEntries = new string[tot_files];

Array.Copy(temp1,0,fileEntries,0,temp1.Length);

Array.Copy(temp2,0,fileEntries,fileEntries.Length,temp2.Length);

break;

case 2:

fileEntries = Directory.GetFiles(txtWorkingFolder.Text,"*.bmp");

tot_files = fileEntries.Length;

break;

}

progressBar1.Maximum = tot_files;

lstFileList.Items.Clear();

foreach(string fileName in fileEntries)

{

if (fileName != null)

lstFileList.Items.Add(fileName.Replace(AppDomain.CurrentDomain.BaseDirectory,@".\"),CheckState.Checked);

}

statusBarPanel2.Text = lstFileList.Items.Count + " File(s)" ;

//We will add the preview item..

//lstPreview.Items.Add("Preview using current Watermark settings");

}

catch{}

}

private void cmdBrowse1_Click(object sender, System.EventArgs e)

{

string oldWorkingFolder;

try

{

if(txtWorkingFolder.Text.Substring(0,1) == ".")

oldWorkingFolder = txtWorkingFolder.Text.Replace(".",AppDomain.CurrentDomain.BaseDirectory.Substring(0,AppDomain.CurrentDomain.BaseDirectory.Length - 1));

else

oldWorkingFolder = txtWorkingFolder.Text;

folderBrowserDialog1.SelectedPath = oldWorkingFolder;

//folderBrowserDialog1.RootFolder = System.Environment.SpecialFolder.Personal;

}

catch{}

try

{

if (folderBrowserDialog1.ShowDialog() == DialogResult.OK)

{

txtWorkingFolder.Text = folderBrowserDialog1.SelectedPath;

if (chkSameOutputFolder.Checked == true)

{

txtOutputFolder.Text = txtWorkingFolder.Text;

}

GetFiles();

}

}

catch{}

}

//private void chkWaterMarkImage_CheckedChanged(object sender, System.EventArgs e)

//{

// if(chkWaterMarkImage.Checked == true && txtWaterMarkImage.Text != null)

// {

// txtWaterMarkImage.Enabled = true;

// cmdBrowse2.Enabled = true;

// string fileName;

// if(txtWaterMarkImage.Text.Substring(0,1) == ".")

// fileName = AppDomain.CurrentDomain.BaseDirectory + txtWaterMarkImage.Text.Substring(2);

// else

// fileName = txtWaterMarkImage.Text;

// if(File.Exists(fileName))

// {

// picWaterMark.Image = Image.FromFile(fileName);

// }

// }

// else

// {

// txtWaterMarkImage.Enabled = false;

// cmdBrowse2.Enabled = false;

// picWaterMark.Image = null;

// pt.CopyrightImage = null;

// }

//}

private void lstFileList_SelectedIndexChanged(object sender, System.EventArgs e)

{

string filename= txtWorkingFolder.Text + lstFileList.SelectedItem.ToString().Substring(lstFileList.SelectedItem.ToString().LastIndexOf("\\"));

if(chkPreview.Checked == true && File.Exists(filename))

{

picSource.Image = Image.FromFile(filename);

}

}

9. BIBLIOGRAPHY

9.1 Book References
1. Programming ASP.NET, by Jesse Liberty, Dan Hurwitz
2. NET: a complete development cycle, by Gunther Lenz, Thomas Moeller
3. Programming Visual Basic .NET, by Jesse Liberty

	
	

9.2 Web References
1. www.microsoft.com/NET/
2.

 HYPERLINK "http://www.devarticles.com/c/a/ADO.NET/Introduction-to-.NET/"
www.devarticles.com/c/a/ADO.NET/Introduction-to-.NET/
3. Opening up .NET editorial by Michael Otery Jan, 2002 issue of Windows & .NET magazine

4. Introducing .Net, by Wrox Press. ISBN:81-7366-159-6
Encrypt a image

 swap a image

 Original image

 Watermark data embedding in image

Encrypt a data embedding image

Decrypt a data embedding image

 Swap the image

Reconstruct the original image

Image as i/p

Image

Swap and view

Encryption

Decrypt Generate Key Transform

Decryption

Show Progress

Encrypt Generate Key Transform

Admin

Watermark data embedding in image

Decrypt a image

View original image

Get Files

