MODELING AND AUTOMATED CONTAINMENT OF WORMS

A PROJECT REPORT
 Submitted by
 N.KALIRAGAVENDRAN
51106104048

 J.ARUN KUMAR 51106104012

 T.AVINASH 51106104026

 S.SRIKAR 51106104049

In partial fulfillment for the award of the degree
Of

BACHELOR OF ENGINEERING IN

COMPUTER SCIENCE ANDENGINEERING

RANIPPETTAI ENGINEERING COLLEGE

T.K.THANGAL-632513

ANNA UNIVERSITY: CHENNAI 600 025
MAY 2010

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE
Certified that this project report “MODELING AND AUTOMATED CONTAINMENT OF WORMS” is the bonafide work “N.KALIRAGAVENDRAN”who carried out the project work under my supervision.
SIGNATURE
 SIGNATURE

Mr. N. Nanda Kumar,M.E. Mr. S. Nanda Kumar,M.E.

Assistant Professor Assistant Professor

HEAD OF THE DEPARTMENT SUPERVISOR

Department of Computer Science and Engineering, Department of Computer Science Engineering,

Ranipettai Engineering College, Ranipettai Engineering College,

T.K.Thangal, T.K.Thangal,

Walajah. Walajah.

 Submitted for t he Project viva-voce examination held on ----------------- at Ranipettai Engineering College.

INTERNAL EXAMINER EXTERNAL EXAMINER
ABSTRACT
Self-propagating codes, called worms, such as Code Red, Nimda, and Slammer, have drawn significant attention due to their enormously adverse impact on the Internet.
Thus, there is great interest in the research community in modeling the spread of worms and in providing adequate defense mechanisms against them. In this paper, we present a (stochastic) branching process model for characterizing the propagation of Internet worms.
The model is developed for uniform scanning worms and then extended to preference scanning worms.
This model leads to the development of an automatic worm containment strategy that prevents the spread of a worm beyond its early stage.
Specifically, for uniform scanning worms, we are able to determine whether the worm spread will eventually stop. We then extend our results to contain uniform scanning worms.
Our automatic worm containment schemes effectively contain both uniform scanning worms and local preference scanning worms, and it is validated through simulations and real trace data to be non intrusive.
TABLE OF CONTENTS

 CHAPTER NO.
 TITLE

 PAGE NO.

 ABSTRACT iii

 LIST OF DIAGRAMS

 LIST OF ABBREVIATIONS

 1. INTRODUCTION

1.1 OBJECTIVE

1.2 OVERVIEW OF THE SYSTEM

 2. DESCRIPTION OF THE PROBLEM

 2.1 EXISTING SYSTEM

 2.2 PROPOSED SYSTEM

 3. DEVELOPMENT OF THE SYSTEM

 3.1 SYSTEM REQUIRMENTS

 3.1.1 SOFTWARE REQUIREMENTS

 3.1.2 HARDWARE REQUIREMENTS

 3.2 USE CASE DIAGRAM

 3.3 CLASS DIAGRAM

 3.4 STATE DIAGRAM

 3.5 ACTIVITY DIAGRAM
 3.6 SEQUENCE DIAGRAM

 3.7 COLLOBORATION DIAGRAM

 3.8 COMPONENT DIAGRAM

 4. SYSTEM ANALYSIS

 4.1 MODULE DESCRIPTION

 4.1.1 PACKET CREATION

 4.1.2 APPLY THE RRQ AND GET RREP
 4.1.3 ADMISSION CONTROL MECHANISM

 4.1.4 UTILIZED BANDWIDTH

 5. SOURCODE

 6. IMPLEMENTATION

 7. SAMPLE SCREEN
 8.

 CONCLUSION

 9. REFERENCES

LIST OF FIGURES

	SNO

	CHAPTER NAME
	FIGURE NAME

	PAGE NO

	1
	
	USE CASE DIAGRAM
	

	2
	
	CLASS DIAGRAM
	

	3

	
	STATE DIAGRAM
	

	4
	
	ACTIVITY DIAGRAM
	

	5
	
	SEQUENCE DIAGRAM
	

	6
	
	COLLABORATION DIAGRAM
	

	7
	
	COMPONENT DIAGRAM
	

ACKNOWLEDGEMENTS

 Firstly, I express my heart full thanks to the “ALMIGHTY” for keeping me morally fit

For the successful completion of the project.

 We wish to thank our heartfelt obligation to our “Kalvi Kavalar” Shri.B.Boss, Founder

And Chairman, Ranipettai Engineering College, for the facilities provided to us during the

Course of our study.

 We are very much indebted to Dr, K.Vijaya Raj PhD ...our beloved principle for his moral support to undertake this work.

 We express our deepest sense of gratitude and appreciation to Prof.Mr.Nanda Kumar M.E.,

Head Of Department of Computer Science and Engineering, Ranipettai Engineering college our internal guide as well for his expert and experienced guidance, support and encouragement in completing the project work. Without his guidance this project work would have been difficult to submit in the present form.

 We wish to thank all our teaching and non teaching staff members of our department, who

have directly and indirectly helped us in completing this work very successfully within the

specified time.

 Finally, we are grateful to our Parents who blessed and unburdened our work at every step.

INTRODUCTION

Objective

The Scope of system is to reduce the spread of worms in starting stage through uniform scanning of worms and extend to preference scanning worms
Over View of the System
The Internet has become critically important to the financial viability of the national and the global economy. Meanwhile, we are witnessing an upsurge in the incidents of malicious code in the form of computer viruses and worms. One class of such malicious code, known as random scanning worms, spreads itself without human intervention by using a scanning strategy to find vulnerable hosts to infect. Code Red, SQL Slammer, and Sasser are some of the more famous examples of worms that have caused considerable damage. Network worms have the potential to infect many vulnerable hosts on the Internet before human countermeasures take place. The aggressive scanning traffic generated by the infected hosts has caused network congestion, equipment failure, and blocking of physical facilities such as subway stations, 911 call centers, etc. As a representative example, consider the Code RedwormVersion 2 that exploited buffer overflow vulnerability in the Microsoft IISWebservers. It was released on19 July 2001 Andover a period of less than 14 hours infected more than 359,000 machines. The cost of the epidemic, including subsequent strains of Code Red, has been estimated by Computer Economics to be $2.6 billion.

The goal of our research is to provide a model for the propagation of random scanning worms and the corresponding development of automatic containment mechanisms that prevent the spread of worms beyond their early stages. This containment scheme is then extended to protect an enterprise network from a preference scanning worm. A host infected with random scanning worms finds and infects other vulnerable hosts by scanning a list of randomly generated IP addresses. Worms using other strategies to find vulnerable hosts to infect are not within the scope of this work. Some examples of nonrandom-scanning worms are e-mail worms, peer-to-peer worms, and worms that search the local host for addresses to scan.

Most models of Internet-scale worm propagation are based on deterministic epidemic models. They are acceptable for modeling worm propagation when the number of infected hosts is large. However, it is generally accepted that they are inadequate to model the early phase of worm propagation accurately because the number of infected hosts early on is very small. The reason is that epidemic models capture only expected or means behavior while not being able to capture the variability around this mean, which could be especially dramatic during the early phase of worm propagation. Although stochastic epidemic models can be used to model this early phase, they are generally too complex to provide useful analytical solutions.

In this paper, we propose a stochastic branching process model for the early phase ofwormpropagation.1Weconsider the generation-wise evolution of worms, with the hosts that are infected at the beginning of the propagation forming generation zero. The hosts that are directly infected by hosts in generation n are said to belong to generation n þ 1. Our model captures the worm spreading dynamics for worms of arbitrary scanning rate, including stealth worms that may turn themselves off at times. We show that it is the total number of scans that an infected host attempts, and not the more restrictive scanning rate, which determines whether worms can spread. Moreover, we can probabilistically bound the total number of infected hosts. These insights lead us to develop an automatic worm containment strategy. The main idea is to limit the total number of distinct IP addresses contacted (denote the limit as MC) per host over a period we call the containment cycle, which is of the order of weeks or months. We show that the value of MC does not need to be as carefully tuned as in the traditional rate control mechanisms. Further, we show that this scheme will have only marginal impact on the normal operation of the networks. Our scheme is fundamentally different from rate limiting schemes because we are not bounding instantaneous scanning rates. Preference scanning worms are a common class of worms but have received significantly less attention from the research community. Unlike uniform scanning worms, this type of worm prefers to scan random IP addresses in the local network to the overall Internet. We show that a direct application of the containment strategy for uniform scanning worms to the case of preference scanning worms makes the system too restrictive in terms of the number of allowable scans from a host. We therefore propose a local worm containment system based on restricting a host’s total number of scans to local unused IP addresses (denoted as N). We then use a stochastic branching process model to come up with a bound on the value of N to ensure that the worm spread is stopped.

The main contributions of the paper are summarized as follows: We provide a means to accurately model the early phase of propagation of uniform scanning worms. We also provide an equation that lets a system designer probabilistically bound the total number of infected hosts in a worm epidemic. The parameter that controls the spread is the number of allowable scans for any host. The insight from our model provides us with a mechanism for containing both fast-scanning worms and slow-scanning worms without knowing the worm signature in advance or needing to detect whether a host is infected. This scheme is non-intrusive in terms of its impact on legitimate traffic. Our model and containment scheme is validated through analysis, simulation, and real traffic statistics.

DESCRIPTION OF THE PROBLEM

Existing System:
· In previous simulation model uses a combination of the deterministic epidemic model and a general stochastic epidemic model to model the effect of large-scale worm attacks.

· In an Existing system the complexity of the general stochastic epidemic model makes it difficult to derive insightful results that could be used to contain the worm.

· In a previous study it is used to detect the presence of a worm by detecting the trend, not the rate, of the observed illegitimate scan traffic.

· The filter is used to separate worm traffic from background non worm scan traffic.

Proposed System:

· This model leads to the development of an automatic worm containment strategy that prevents the spread of a worm beyond its early stage.

· We obtain the probability that the total number of hosts that the worm infects is below a certain level.

· Our strategy can effectively contain both fast scan worms and slow scan worms without knowing the worm signature in advance or needing to explicitly detect the worm.

· Our automatic worm containment schemes effectively contain the worms and stop its spreading.

 DEVELOPMENT OF THE SYSTEM

System Requirements

Software:
FRONT END : JAVA, SWING

TOOLS USED : JFRAME BUILDER

OPERATING SYSTEM: WINDOWS XP

Hardware:
PROCESSOR : PENTIUM IV 2.6 GHz

RAM

 :
512 MB

MONITOR
 :
15” Color
HARD DISK :
20 GB

CDDRIVE
 :
52X

KEYBOARD :
STANDARD 102 KEYS

MOUSE
 :
3 BUTTONS

Use case Diagram

[image: image10.emf][image: image11.emf][image: image12.emf][image: image13.emf][image: image14.emf][image: image15.emf][image: image16.emf][image: image17.emf][image: image18.emf][image: image19.emf][image: image20.emf][image: image21.emf][image: image22.emf][image: image23.emf][image: image24.emf][image: image25.emf][image: image26.emf][image: image27.emf]
Class Diagram
 SHAPE * MERGEFORMAT

State Diagram

[image: image2]
Activity Diagram

[image: image3.emf]Off Conzone

node

Destination

ON Conzone

Node

select the off

conzone node and

transmit the data

Select the

Node

Input Data

Sequence Diagram

 SHAPE * MERGEFORMAT

Collaboration Diagram
[image: image5.emf]Source

1: RREQ

2: RREP

Network

Formation

3: Message transfer to the RREP node

Message

Transformation

Component Diagram

[image: image6.emf]Network

formation

Conzone

Discovery

Message

transformation

System Analysis
MODULE DESCRIPTION

 Modules:
· Branching Process Model

· Scanning for worms

· Detecting and categorizing worms

· Containment of worms

Module Description

User Interface Design

In this module we have designed the user interface to start the spreading of worms from one host to other hosts. This window is designed using the Swing package in Java. By starting the spreading of worms using this window, we can see the spreading of worms to other hosts.

Branching Process Model

To the problem of combating worms, we have developed a branching process model to characterize the propagation of Internet worms. Unlike deterministic epidemic models studied in the literature, this model allows us to characterize the early phase of worm propagation.
Scanning for worms

Our strategy is based on limiting the number of scans to dark-address space. The limiting value is determined by our analysis. Our automatic worm containment schemes effectively contain both uniform scanning worms and local preference scanning worms, and it is validated through simulations and real trace data to be non-intrusive.
Detecting and categorizing worms

The model is developed for uniform scanning worms and then extended to preference scanning worms. We detect these two worms and categorize it in this module.
Containment of worms

This model leads to the development of an automatic worm containment strategy that prevents the spread of a worm beyond its early stage. Specifically, for uniform scanning worms.
Data Flow Diagram

[image: image7]
Module Coding

Module 1: User Interface Design

Coding:

/**/

/* Wormmodel
 */

/* */

/**/

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/**

 * Summary description for Wormmodel

 *

 */

public class Wormmodel extends JFrame

{

// Variables declaration

private JLabel jLabel1;

private JLabel jLabel2;

private JLabel jLabel3;

private JLabel jLabel4;

private JComboBox jComboBox1;

private JTextArea jTextArea1;

private JScrollPane jScrollPane1;

private JTextArea jTextArea2;

private JScrollPane jScrollPane2;

private JButton jButton1;

private JPanel contentPane;

// End of variables declaration

public Wormmodel()

{

super();

initializeComponent();

//

// TODO: Add any constructor code after initializeComponent call

//

this.setVisible(true);

}

/**

 * This method is called from within the constructor to initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is always regenerated

 * by the Windows Form Designer. Otherwise, retrieving design might not work properly.

* Tip: If you must revise this method, please backup this GUI file for JFrameBuilder

 * to retrieve your design properly in future, before revising this method.

 */

private void initializeComponent()

{

jLabel1 = new JLabel();

jLabel1.setFont(new Font("Arial",Font.BOLD,16));

jLabel2 = new JLabel();

jLabel2.setFont(new Font("Arial",Font.BOLD,12));

jLabel3 = new JLabel();

jLabel3.setFont(new Font("Arial",Font.BOLD,12));

jLabel4 = new JLabel();

jLabel4.setFont(new Font("Arial",Font.BOLD,12));

jComboBox1 = new JComboBox();

jTextArea1 = new JTextArea();

jTextArea1.setFont(new Font("Arial",Font.BOLD,12));

jScrollPane1 = new JScrollPane();

jTextArea2 = new JTextArea();

jScrollPane2 = new JScrollPane();

jButton1 = new JButton();

jButton1.setFont(new Font("Arial",Font.BOLD,12));

contentPane = (JPanel)this.getContentPane();

//

// jLabel1

//

jLabel1.setForeground(new Color(0, 0, 102));

jLabel1.setText(" Worm Modelling");

//

// jLabel2

//

jLabel2.setForeground(new Color(0, 0, 102));

jLabel2.setText("Host in the Network");

//

// jLabel3

//

jLabel3.setForeground(new Color(0, 0, 102));

jLabel3.setText(" Worm ");

//

// jLabel4

//

jLabel4.setForeground(new Color(0, 0, 102));

jLabel4.setText("Status Information");

//

// jComboBox1

//

jComboBox1.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jComboBox1_actionPerformed(e);

}

});

//

// jTextArea1

//

//

// jScrollPane1

//

jScrollPane1.setViewportView(jTextArea1);

//

// jTextArea2

//

jTextArea2.setText("\n");

//

// jScrollPane2

//

jScrollPane2.setViewportView(jTextArea2);

//

// jButton1

//

jButton1.setText("Start Spreading");

jButton1.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jButton1_actionPerformed(e);

}

});

//

// contentPane

//

contentPane.setLayout(null);

contentPane.setBackground(new Color(204, 204, 255));

contentPane.setForeground(new Color(51, 51, 51));

addComponent(contentPane, jLabel1, 281,20,203,44);

addComponent(contentPane, jLabel2, 85,91,192,37);

addComponent(contentPane, jLabel3, 376,93,172,37);

addComponent(contentPane, jLabel4, 293,282,191,37);

addComponent(contentPane, jComboBox1, 378,141,229,29);

addComponent(contentPane, jScrollPane1, 85,142,161,113);

addComponent(contentPane, jScrollPane2, 37,328,626,210);

addComponent(contentPane, jButton1, 377,217,133,43);

//

// Wormmodel

//

this.setTitle("Wormmodel");

this.setLocation(new Point(0, 0));

this.setSize(new Dimension(703, 585));

this.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);

}

/** Add Component Without a Layout Manager (Absolute Positioning) */

private void addComponent(Container container,Component c,int x,int y,int width,int height)

{

c.setBounds(x,y,width,height);

container.add(c);

}

//

// TODO: Add any appropriate code in the following Event Handling Methods

//

private void jComboBox1_actionPerformed(ActionEvent e)

{

System.out.println("\njComboBox1_actionPerformed(ActionEvent e) called.");

Object o = jComboBox1.getSelectedItem();

System.out.println(">>" + ((o==null)? "null" : o.toString()) + " is selected.");

// TODO: Add any handling code here for the particular object being selected

}

private void jButton1_actionPerformed(ActionEvent e)

{

System.out.println("\njButton1_actionPerformed(ActionEvent e) called.");

// TODO: Add any handling code here

}

//

// TODO: Add any method code to meet your needs in the following area

//

//============================= Testing ================================//

//= =//

//= The following main method is just for testing this class you built.=//

//= After testing,you may simply delete it. =//

//==//

public static void main(String[] args)

{

/*JFrame.setDefaultLookAndFeelDecorated(true);

JDialog.setDefaultLookAndFeelDecorated(true);

try

{

UIManager.setLookAndFeel("com.sun.java.swing.plaf.windows.WindowsLookAndFeel");

}

catch (Exception ex)

{

System.out.println("Failed loading L&F: ");

System.out.println(ex);

}*/

new Wormmodel();

}

//= End of Testing
}

Output:

Module 1

Host Window
[image: image8.png]
This is User Interface Design Where we are going to start spreading and stopping of worms
This design contains start and stop methods to start and stopping worm spreads Containment class is used for detecting and delting worm from containment
Containment Window
[image: image9.png]
This is Containment Window where we are going to select which worm we are going to scan to delete

Future Enhancements

For further work, we would like to propose a statistical model for the spread of topology-aware worms and subsequently design mechanisms for automatic containment of such worms. We would also like to characterize the deviation of our proposed branching process model from the “ideal” stochastic epidemic model, assuming that the values of its rich set of parameters were available. Finally, we would like to port our worm containment schemes to edge routers and local routers and to evaluate the performance using real data from enterprise networks.

We extended the worm containment scheme to local preference scanning worms. In this scheme, we restrict the total number of scans per host to the dark-address space. We derive the precise bound N on the total number of scans to the dark-address space, which ensures that the worm will be contained. This containment scheme, combined with firewalls at the network boundary, allows for incremental deployment of the worm containment system without participation of outside networks.

Conclusion

In this paper, we have studied the problem of combating Internet worms. To that end, we have developed a branching process model to characterize the propagation of Internet worms. Unlike deterministic epidemic models studied in the literature, this model allows us to characterize the early phase of worm propagation. Using the branching process model, we are able to provide a precise bound M on the total number of scans that ensure that the worm will eventually die out. Further, from our model, we also obtain the probability that the total number of hosts that the worm infects is below a certain level, as a function of the scan limit. The insights gained from analyzing this model also allow us to develop an effective and automatic worm containment strategy that does not let the worm propagate beyond the early stages of infection. Our strategy can effectively contain both fast scan worms and slow scan worms without knowing the worm signature in advance or needing to explicitly detect the worm. We show via simulations and real trace data that the containment strategy is both effective and non-intrusive.

References

[1]CAIDA,“CAIDAAnalysis of Code-Red,” http://www.caida.org/analysis/security/code-red/, 2007.

[2] “The Cost of Code Red: $1.2 Billion,” USA Today News, http://

www.usatoday.com/tech/news/2001-08-01-code-red-costs.htm,

2001.

[3] Cisco Documentation, “Configuring Port Security,” http://

www.cisco.com/univercd/cc/td/doc/product/lan/cat6000/

12_1e/swconfig/port_sec.htm, 2007.

[4] H. Andersson and T. Britton, “Stochastic Epidemic Models and Their Statistical Analysis,” Lecture Notes in Statistics, vol. 151, 2000.

[5] J. Bartiomiejczyk and M. Phipps, Preventing Layer 2 Security Threats,

http://searchnetworking.techtarget.com/tip/0,289483,sid7_

gci1009100,00.html, 2007.

Host4

Sourcer

Host1

Sourcer

 Source

Sourcer

Host2

Sourcer

Host3

Sourcer

Spreading of worms

Spreading stops

Containment of worms

Start,stop

Host3

Worm scanner

Action Performed

Start ,stop

Host4

Initialize Component()

Start,stop

Start,stop

Host1

Worm scanner

initialize component()

Start,stop

Host2

Worm scanner

 ()

Action Performed()

Tells scan n for worm affected host

Stoping of

worms

Start spreading

Scanner

Worm

Hostn

Host1

Scanning and deleting of worms

Containment of worms

Spread of worms Stop

Creation

Start spreading of worms

nHost

 Worm

 Host

 Host

 Host

 Scanning

 Worms

 Detection

 Containment

 Of Worms

Attack

[image: image28.emf][image: image29.emf][image: image30.emf][image: image31.emf][image: image32.emf][image: image33.emf]