A
Paper Presentation On

 “MOBILE AGENT INTRUSION DETECTION SYSTEM”

By
Miss. Madhuri Unde 			 Miss. Neha Tiwari

[image: COEK]
Department of Computer Engineering
S.R.E.S.COLLEGE OF ENGINEERING, KOPARGAON
UNIVERSITY OF PUNE
2010-11

2

ABSTRACT
An intrusion detection system framework using mobile agents is a layered framework mechanism designed to support heterogeneous network environments to identify intruders. In this technique we are using anomaly detection in which unknown attacks are detected. This technology is still at its early stage. The objective of this paper is that the system can detect anomalous user activity. This framework was mainly designed to provide security for the network using mobile agent mechanisms to add mobility features to monitor the user processes from different computational systems.

1. INTRODUCTION
Intrusion detection system
Intrusion detection is defined as "the problem of identifying individuals who are using a computer system without authorization (i.e., `crackers') and those who have legitimate access to the system but are abusing their privileges (i.e., the `insider threat')''. Intrusion detection techniques are traditionally categorized into two methodologies:
1. Anomaly detection
2. Misuse detection
Anomaly detection is based on the normal behavior of a subject (e.g., a user or a system); any action that significantly deviates from the normal behavior is considered intrusive. Misuse detection catches intrusions in terms of the characteristics of known attacks or system vulnerabilities; any action that conforms to the pattern of a known attack or vulnerability is considered intrusive. The goal of IDS is to analyze events on the network and identify causes of attacks. Commercial solutions are generally centralized and suffer from significant limitations when used in high-speed networks. The identification of distributed intrusions requires cooperation of different sensors so it is advisable to consider mobile devices as a challenge to intrusion detection. Our motivation is to distribute intrusion detection using mobile and intelligent agents.
2. SYSTEM DESCRIPTION

 An intrusion can generally be described as the act of entering without permission. Thus intrusion detection is the process of identifying such unauthorized action.

Background in IDS
Attacks against a system are informally defined as a deliberate attempt to violate the security policy. Intrusion Detection has been achieved by following two Different strategies of analysis:
• Anomaly detection:
Relies on models of "normal" behaviors of a computer System. Behavior profiles may be focused on users, applications or networks. Anomaly detection compares the defined profiles against the actual usage patterns to detect "abnormal" activity patterns. These Patterns will be considered as intrusions.
• Policy detection: Relies on a set of attack descriptions called attack signatures. In Fact, policy detection is limited by attack definitions. Anomaly detection permits Detection of previously unknown attacks; this advantage causes a large number of false positive occurring when an IDS sends an alarm for an event that is not an intrusion.
IDS are usually classified as network-based (NIDS) or host-based (HIDS) IDS. The most important difference between these two IDS categories is the fact that NIDS rely on information obtained by monitoring the network, while the HIDS perform their analysis on information collected at a single host. Since HIDS works above the network layer, it is unable to detect some kinds of Attacks Otherwise, NIDS infer their decision from low-level network Packets travelling among hosts and are generally able to detect such Attacks.

 IDS requirements
There are two types of IDS requirements.
1. Functional Requirement
2. Performance Requirements
 Functional requirements
• IDS must continuously monitor and report intrusion,
• IDS should have a very low false alarm rate,
• IDS should provide enough information to repair the system in the case of detection of intrusion. In fact, many IDS solutions focus only on alerting administrators without suggesting any corrective actions.
• IDS must detect and react to distributed and coordinated attacks. This Detection feature is one of the most difficult because it needs a huge distributed Amount of information in addition to the hard task of synchronization between different hosts.
• The IDS should be adaptive to network topology and configuration changes.
 Performance requirements
• Intrusion should be detected in real-time as it should be reported immediately In order to minimize network damage,
• The IDS must be scalable in order to handle additional computational and Communication loads.

 IDS limitations
The most common IDS shortcomings include the following:
• High number of false positives,
• Lack of efficiency: usually when an IDS is faced with a very large number of events in the network, it slows down a system or drops network packets,
• Vulnerability to attacks: many IDS have hierarchical structures. This fact gives attackers the opportunity to harm the IDS by cutting off a control Branch or even by tacking out the root command.

 ID System Components
The functionality of IDS can be logically distributed into three components: sensors, Analyzers, and a user interface.
• Sensors
Sensors are responsible for collecting data. The input for a sensor may be any part of a
System that could contain facts of an intrusion. Example types of input to a sensor are Network packets, log files, and system call traces. Sensors collect and forward this Information to the analyzer.
• Analyzers
Analyzers receive input from one or more sensors or from other analyzers. The analyzer is Responsible for determining if an intrusion has occurred. The output of this component is An indication that an intrusion has occurred. The output may include evidence supporting The conclusion that an intrusion occurred. The analyzer may provide guidance about what Actions to take as a result of the intrusion.
• User interface
The user interface to IDS enables a user to view output from the system or control the Behavior of the system. In some systems, the user interface may connect to a “manager,” “Director,” or “console” component.

3. MOBILE AGENT TECHNOLOGY
Mobile Agents 	
As a special type of software agents, mobile agents can be defined as autonomous executing programs that can halt themselves, migrate to another host, in a heterogeneous environment, and continue execution without being affected by the status of the originating node. On the hosts they move to, mobile agents interact with stationary service agents, collect information and execute to accomplish their tasks.
 What is an agent?
An agent is a physical or a logical entity characterized by the following Attributes:
Autonomy: agents are independently running entities, they operate (In ideal cases) without human control,
Mobility: agents are able to suspend processing on one platform and to move to another one where they resume execution,
Rationality: agents represent the capacity to analyze and solve a Problem in a rational manner,
Reactivity: agents perceive their environment and adapt their behavior In a dynamic way to match, as soon as possible, new environment Parameters,
Inferential capability: agents are able to share a set of knowledge in order to achieve a specific goal,
Pro-activeness: agents can decide to adapt their behavior to their Environment,
Social ability: agents are able to meet and interact with other Agents. The interaction and collaboration between agents is achieved by an agent communication language and it may depend on ontology.

Useful characteristics of mobile Agents
• Reducing Network Load
 Existing IDS are faced with the problem of performing a huge amount of data over transfer. Abstracted forms of this Data are usually sent from all locations in the network to the central site in Order to be processed. Sending a huge amount of data causes an increase Of a network loads. Mobile agents offer the opportunity to overcome this Problem by eliminating the need of so much data transfer. The processing Program (agent) can be dispatched to the host containing crucial data. This will reduce network traffic since an agent is smaller than the processed Data,
• Overcoming Network Latency
 Mobile agents are able to dispatch from a Host to carry out operations directly to the remote point of interest, thus Agent scans provide an appropriate response faster than hierarchical IDS
That has to communicate with a central coordinator based elsewhere on the network.
• Asynchronous Execution and Autonomy
 Agents can be stopped and started without disturbing the rest of the IDS. Notice that the mobile
agents are able to continue to operate autonomously even if the host platform where it was created is not available or is disconnected from the Network. Mobile agent frameworks provide IDS with the possibility of Continuing to work even when a central controller is down,
• Dynamic Adaptation
 Mobile agents can be retracted, cloned, dispatched, Killed or put to sleep as network’s configuration, topology and traffic characteristics Change over time. As the number of nodes in the network Increases, agents can be cloned and dispatched to these new computing Elements.
• Robust Behavior
 Mobile agents have the ability to react dynamically to Security conditions making it easier to build robust distributed systems.
• Scalability
 Distributed mobile agents IDS are one of several options that allow computational load and diagnostic responsibilities to be distributed throughout the network. This improves scalability and maintains Fault-resistance behavior.

Model architecture
It has mobile agent which moves from host to host to collect the data. In contrast to the above model, this model does not use the stationary or static agent. In fact our roaming agent moves to predefined host to collect Data. The supervisor also act as evaluator that takes the Decision whether suspicious activity is detected at a particular Host and alerts with the help of action agent.
 Figure 3.1 shows the architecture of our model of IDS.
[image:]
Fig 3.1: Model Architecture

Supervisor Agent: This assigns the tasks to the other agents & dispatches the roaming agent. This decides which roaming Agent is to be dispatched. All the roaming agents coordinate With the supervisor. This agent as an evaluator determines the Occurrence of intrusion with the help of inference rules.
Roaming Agent: The roaming agent sits in the host or moves Host to host and collects the suspicious activities and Coordinates with the supervisor. The roaming agent is composed of three parts: code, itinerary and results. It moves following a predetermined itinerary established by supervisor. Upon reaching a host the Aglet platform begins executing the Code and carries the result.
Action Agent: The main purpose Of this agent is to notify the administrator when intrusion
Occurred. It receives an alert generated from supervisor.

How it works:
The monitoring and detection starts with user interaction to the supervisor. The supervisor agent then sends a roaming Agent, which then starts collecting data on the machine, which is to be monitored. The roaming agent also tries to detect Deviation from the normal. If any deviation is noticed, Information is send to the supervisor agent. The supervisor Agent then detects the type of anomaly based on interference Rule. Once the suspicious activity is found, a report is send to
The action agent, which raises an alert.

Disadvantages
Security
The security concerns related to mobile code are one of the main obstacles to the widespread use of this technology. The MA computing paradigm presents a number of security threats that are not addressed by conventional security techniques. Standard security techniques must be modified or new techniques invented to address these threats.
 Performance
One of the most challenging problems facing IDSs is improving the speed with which they can identify malicious activity. Not only must IDSs detect attacks quickly, but them must also process system events in real time. This task is becoming ever more difficult as network bandwidth increases. MA runtime environments slow down MAIDS especially if they are When performance criteria are taken into consideration, it is more likely that IDSs will be built using a combination of mobile agents, static agents, and other technologies.
 Code Size
IDSs are complex pieces of software. Agents that perform IDS services may thus be required to contain a large amount of code. If these agents are supposed to do operating system specific tasks on multiple operating systems then this code base may get extremely large. The size of MA code may limit the functionality of MAIDS because it will take a long time to transfer an agent between hosts. In addition, such a transfer will require greater computing and network resources.
 Lack of Priori Knowledge
Large enterprise networks are comprised of several different hardware platforms, running several different operating systems, each having different configurations and running different applications. It is not trivial for the mobile agents to have a priori knowledge about how a system is configured, how data is arranged, and still remain lightweight. Static and less transient agents may be more familiar with how data is locally arranged and accessed, and able to act as intermediaries between mobile agents and other platforms. Localized data may be more efficiently manipulated through standard APIs.
 Limited Exposure
The client-server computing paradigm is well understood and quite mature as a technology, but the area of distributed control of mobile agent systems is still the subject of many research efforts. An agent’s envisioned autonomous behavior, involving collaboration with other agents at various network locations, creates a dynamic environment that requires new design methodologies and modeling tools to properly formulate and construct agent-based systems. The lack of mature agent design methodologies and modeling tools makes this task difficult, but the problem is likely to be overcome as commercial demand for these product increases and is eventually satisfied.
 Coding and Deployment Difficulties
MAs that are developed in-house or purchased from trusted vendors are likely to undergo the same software engineering methods as their non-mobile counterparts in order to assure the quality of code. This standard development process historically produces code with many faults. MAs' inherent capabilities, such as moving and cloning, add more complexity to the design and development process.

4. IMA-IDS SYSTEM

IMA-IDS System
IMA-IDS is a distributed intrusion detection system using mobile and intelligent agents. It is too tedious to detect a malicious action through the network, especially when considering multiple distributed events and even simultaneous one. Most of the current IDS assume that the environment is static, whereas in reality the environment is dynamic and unpredictable. So to detect, without mistakes, an intrusion and to make the appropriate decision at an optimal time cooperation of different sensors and analyzers is required. Thus, to apply agent mobility to
Avoid shortcomings of current IDS. In the security domain, especially when we are faced to the contemporary computer distributed environment, a mobile agent’s framework enhances the performance of IDS and even offers it new capabilities. I will argue this point of view by explaining our system called IMA-IDS (Intelligent Mobile Agents for Intrusion Detection System). IMA-IDS main purpose is to achieve in automatically and real time the intrusion detection by mobile, intelligent and cooperative entities which are the agents.

 Architecture Overview
Main important properties of IMA-IDS components:
• Information collection and filtering: Agents have to guarantee that collected information is of a good quality. The most important question here is how to evaluate information quality?
That information can be classified by:
– Information relevance: does the agent collect the important and useful information for the requested work? Is there any guarantee of information correctness? Formal agent behavior proof can be used here to ensure these properties,
– Information / event indication: remember that IDS are of two kinds: On line and post analysis IDS. In each case, agents must be able to report, as soon as necessary, any significant event for intrusion detection. Here is need to define a kind of database rules that will allow agents to decide whether or not to report an event and to whish agent (typically analyzer agent) should this information be pointed up.
• Information trust level: one of the major drawbacks of actual IDS (signature or behavioral IDS) is positive and negative errors or missed attack signalization. Ensuring that analysis agents have the appropriate information with all correlated events for analysis will help to reduce such errors. By assigning a trust level to each event depending on agent source, any Analyzer agent can, in addition, decide whether or not to take in account such information.
• Agent communication protocol: in addition to the classic agent communication models (authentication, private or public channel), a specific protocol schema for crucial information communication will be introduced. [image:]
Fig 4. 1: IMA-IDS Architecture

• Collector agent: This kind of agent will be cloned and distributed throughout the network. This agent patrols the network and collects all the events occurring in the host to which it is related. Notice that the goal is to have specialized collector agent. The idea is that the collector agent will be interested in a set of event categories. So many collector agents can run on the same host, depending on applied analysis. It is also possible to merge collector agent abilities in to a single agent.
• Correlator agent: This is a particular agent that will hurry the specific information, called critical, and send it to the appropriate analyzer agent without passing through the manager agent. The default communication protocol (presented later) is centralized. It supposes that a collector sends a kind of report to the manager agent. The manager will decide whether to dispatch data to the analyzer or not. This communication model is inefficient for online detection since some crucial events must be taken in to account by the analyzer as soon as they occur. That is why each correlator agent will use a set of rules that clearly specifies the crucial events, contexts and analyzer agents concerned by an urgent reporting event mechanism.
• Analyzer agent: Analyzer agents are the engines of our solution. Several kinds of analysis such as classical signature detection, anomaly detection and a new security protocol analysis based on abstract interpretation will be integrated. I will tell you working a behavior Analyzer that will use a kind of statistical model to define what can be concerned as a "normal" system behavior is also being developed.
• Manager agent: This agent gathers collected information and distributes it to analyzer agents. This communication process does not allow online analysis. For this reason correlator agents can decide to communicate directly with analyzer agents. The administrator can distribute our IMA-IDS over any number of hosts in the network. Each host can receive any number of collector agents that monitor all events occurring in the host. All the collector agents report their results to the manager agent which transmits them to the analyzer agents. The intelligence in our approach is attempted by communicating the critical events detected by the collector agents to the correlated agents. Notice that a critical event is any event liable to be part of a scenario of attack. The correlator agents take charge of hurrying the critical events received from the collector agents and transmitting them to the concerned analyzer agents. The analyzer agents receive the events from the manager agent and those from the correlator agent, perform a higher-level
analysis and correlation. (Anomaly and Policy detection). The analyzer agents report their results to the manager, and they generate alarms if they detect any anomaly. Agents in our system are cooperative because they respond to requests for event or critical events from other agents. The administrator, according to its needs and via the external interface of the manager agent can stop the execution of these agents, send them to other locations and reactivate them. An agent in IMA-IDS can make a decision to dispatch it. In others words, it can stop its execution, move to another location and restart its execution. Also, it can clone itself especially in the case of increased network loads.

 Communication Mechanism
The transmission of messages between agents is a central part of the functionality of our IMA-IDS. In order to communicate, agents in our system are able to know all information about the other agents created and running in the network (their locations, their number, and their identifier) by sending a request to the manager agent. To offer these capacities, and to be able to update the agent list, the manager uses the following two agents:
• Registry Agent: being present on all hosts running agents, it maintains information about the agents running in the host.
• IdsHost Agent: it keeps track of all created and running agents.

Agent communication can be divided into two categories:
• Peer-to-peer communication (Monocast): The message sender must know the identifier of the receiver to be able to send a message.
• Indirect communication (Multicast) : a kind of a meeting between agents coming from different hosts. The basic idea is that agents subscribe to one or more multicast message list and implement handlers for these messages. Multicasting message provides a powerful way for agent interaction and collaboration.

5. IMA IDS FRAMEWORK

Mobile agent paradigm
Research in security is most active due to its role in mobile agent system. The issues and requirements of security in mobile agent system have been satisfied by the three basic security principles that a mobile agent system must realize:
· Participants cannot be assumed to trust each other by default.
· Any agent-critical decisions should be made on trusted hosts.
· Unchanging components of the state should be sealed cryptographically.
To implement the mobile agent system under the above security principles, categorized the requirements into four aspects:
· Agent privacy and integrity
· Agent and server authentication
· Authorization and access control
· Metering, charging and payment mechanisms

Proposed framework for IDS
Figure 5.1 shows the layered approach for proposed framework.
[image:]Fig 5.1: Proposed Framework

The proposed framework (layered model) for the IDS are numbered, starting from the Collection layer (layer 1), and each layer represents a group of specific tasks performed by agents specialized in the functions of that layer. By means of the message exchange mechanism, an agent in a layer activates one or more agents in an upper layer. Based on information collected by Collection Layer, Format layer go into action, by formatting the collected information for the purpose of easy analysis, the Decision-Making layer analyzes and identifies possible intrusions. If these layers suspect an action then they activate Notification Layer, which notifies the network manager and finally the Management Layer manages the profiles according to the incident, and records the complete incidents for future reference.
Collection Layer
This layer allows agents to collect the information related to the users and the processes that the users are using. The following sets of characteristics about user behavior were collected. The set if processes (i.e. number of processes started by user), user login host (i.e. the set of hosts from which user logs on, user session time (the session duration for the user), user activity time (the time of user session starting). At any given point of time hosts are being used by any one of the users. The mobile agent at this layer gathers user and process related information and passes the collected information to the upper layer for further processing. Collection of this information from the host is controlled by agent server and server will activate the agents either on a timely basis or based on an event. The agent in this layer is activated on a timely basis to records user
Activity and program operation related information from different hosts in the network.
 Format Layer
After collecting the information from the layer 1, this layer formats the information and hands it over to the upper layer. This layer is lacking in the earlier framework is introduced in this framework to add pace. Agent server maintains lot of agents and these agents at layer 1 collects information from users. These agents collect raw data from the hosts, which is not in a proper format. This information need to be formatted for easy analysis and decision-making. This layer segregates this information for quicker process. After formatting the data, this layer sends information to the next layer.
 Decision – Making Layer
This is the heart of the framework. The agent in this layer collects information from layer 2. Agent server holds the complete information about user profiles and the process profiles of users in a repository associated to it. When the actions are relatively simple, these agents can identify an anomaly or improper use simply by comparing the data obtained with normal profile. To define the normal behavior, we are setting threshold value for normal user and program
Behavior, based on the more numbers of observations about the behavior, If there is any violation then this layer informs that to the upper layer.
Notifying Layer
The agents of this layer are responsible for notifying the network manager and for activating the agents of layer 5, based on messages received from layer 3. Thus, whenever the Decision-Making Agents identify a level of danger above the acceptable limit or the need to update some new identified pattern, the Notification Agents will be activated. One might think, in principle, that the agents of this layer perform very elementary functions, which would justify (thus eliminating layer 4). However, a decision taken in layer 3 may require several forms of notification, occasioning the construction of a very complex agent, whether its functions are aggregated to this layer or to an upper layer. This would go against the proposed model of small agents performing specific functions in the attempt to minimize the degradation of the environment and reinforce the advantages of an intrusion detection system based on small
modules that cooperate with each other.
Management Layer
This layer yet another new addition to the earlier work, activate its agents when there is an intrusion. The purpose of this layer is to perform a response when an intrusion occurs. Sometimes it is possible that an intrusion may be detected while it is in progress. As the layer 4 informs the notification to the management layer which activates its agents and tries to stop the intrusion by cutting the privileges to the respect user and blocking the process that caused
Intrusion. Figure 5.2 shows the communication process between the mobile agents.
[image:]
Fig 5.2: Communication between Mobile Agents

The collection agents are invoked by an event or on a timely basis to collect the information from the host on which user is working. This agent collects all the information about the processes that are being used by the user along with process related information. As it collects the information it submits that information to the upper layer agent, format agent, to segregate the information to reduce analysis time. As it segregates the information and submits that information to the upper layer agent, Decision – making agent, which is associated with the predefined user profiles. This agent compares the collected profile of user at that point of time with the existing profile. If there is any violation of any single parameter then the user is treated as an intruder. If there is no violation then there won’t be any response from this agent. When this agent founds an intrusion it informs that to the upper layer agent, notifying agent, who intern informs to the system admin regarding the intrusion. If the intrusion has been modeled already and defined its action after occurring then management agent performs that particular actions.

 Simulation and result
The proposed framework is being simulated in a simple network environment with one server and minimum of two systems. The software for each type of agent was written in SUN Java JDK Version 1.2 on a Microsoft Windows environment. The simulation of the proposed framework involves the following
· Building User profile.
· Building process profile for the user.
· Managing user and process profiles.
· Comparing user behavior with the existing profile based on an event or on timely basis.
· Finding intrusion.
· Notifying the intrusion.
· Action to be taken when intrusion occurs.
 User Profiles
Building of user profile deals with the essential details like user identification, user authentication and level of the user. This simulation manages the user profiles in three levels. These levels help to take action when an intrusion occurs. This simulation segregates users into three levels, they are: LEVEL 0, LEVEL 1 and LEVEL 2. The user profile of a particular user is shown in figure 5.3
[image:]

Fig 5.3: A Simple User-Profile
LEVEL 0 users are usually high priority users in the networking environment like administrators, managers and some other high level authorities. They have common access to all the processes. LEVEL 1 user is the middle level users with middle priority in the organization. Usually most of the users fall under these categories. For this category access to a process depends on their work. Process, which is not related to their work, is not allowed to access. LEVEL 2 users are the least priority users who have very little access to the processes. For example, a temporary guest to the networking environment treated under this category. All the users must fall under any one of these categories.
Process Profiles
All the users in this simulation are associated with information about software applications that have been used during a login session i.e. a process profile, which describes what processes, should be used by the users and some other parameters associated with those processes. This simulation uses some specific processes to test the framework and assigns these processes to the users according to their levels. Each user must contain a process profile with the necessary information about the processes he is using in repository. It is not mandatory that users with same level must have similar process profile. The current simulation uses application–based data source, which is known as process profile in this scenario. The static model is designed to implement the normal behavior of the user and its corresponding process profiles. Complete Contents of a process profile for a user is given in the following Table 5.1, which contains information regarding authorized process, the maximum time the user can use the process, the maximum number of times that a process can be used on a particular login session and maximum memory allotted for each process.
Table 5.1: Contents of a Process Profile in a Repository[image:]

 Finding intrusion
The repository consists of the following information. The user details and the process details for the particular user, i.e. whether that user is authorized to access the particular software applications (process) or not and the usage of the system resource by each process. The collection agents keep track of user activity by recording all related events such as process start, process exit, etc; and on the program activity level, consumption of system resources by user processes are monitored. Intrusions in this simulation are being found by comparing the details of the original existing profile of a user with the data gathered by the agents of that user on a host. If there is any violation, it is treated as an intrusion and activates notifying agents. Here intrusion refers anomaly intrusion detection. In this scenario the right of protecting network starts from the process, by managing these process profiles of users protecting the host, implementing similar things in all the hosts and this way providing security to the total network. The model of anomaly detection system’s profile comparison is shown in fig 5.4
[image:]

Fig 5.4: Profile Comparison Procedure

When the user logs on into the particular system, the user id and system details are communicated to the manager in the server side. And color of the process details are indicated into green on screen in simulation analysis, which represents authorized access. If the user accesses the unauthorized software applications (process) which is not the repository, the simulation changed the color green to red, which shows intrusion has occurred. Similarly, the usage of the system resources by the user process exceed the limit, the simulation changed the color green to red. The manager can take the decisions whether the particular user can access the software applications or not by modifying the profiles. The snapshot in this section shows the above scenario. The overall simulation system structure can be depicted in figure 5.6.

[image:]

Fig 5.6: Overall Simulation Structure

There is analysis for different time periods such as 30min, 45min, 60min, 80min, 100min and 120min respectively. In specific period, we created number of intrusions and with help of simulation. At all the time periods the simulation showed above 95% ability to detect the intrusion. Analysis has been shown in table 5.2.

Table 5. 2: Time period versus Detection rate
[image:]

The following are some of the snapshots of the simulation, which gave most
efficient and effective results.

1. Detection of intrusion when time exceeds for particular process
[image:]

2. Detection of intrusion for unauthorized for particular [image:]

6. CONCLUSION

This represents a network intrusion system framework using mobile agent, which is able to detect user anomalies in two levels:
1.user activity
2. program operation.
On the user level, the system can detect unauthorized use of programs correctly and on the program level, the excessive use of system resources can be detected .This simulation has been implemented in a simple network, took very less time to detect the intrusion when it occurred. This work can be extended in the large network scenario with hundreds of users the performance of the framework. The simplicity and ease of adaptation allows this framework one of the best frameworks in the field of IDS.

7. REFERENCES
[1]. N.Jaisankar and R.Saravanan K. Durai Swamy,”INTELLIGENT INTRUSION DETECTION SYSTEM FRAMEWORK USING MOBILE AGENTS”,
International Journal of Network Security & Its Applications (IJNSA), Vol 1, No 2, July 2009

[2]. Judy Weng,Glen Qin, “Network Intrusion Prevention Systems”, JTB_Journal of Technology and Business. October 2007,

[3]. Wayne Jansen, Peter Mell, Tom Karygiannis, Don Marks, “Applying Mobile Agents to Intrusion Detection and Response”,NIST Interim Report (IR) - 6416
October 1999
 [4]. http://svn.assembla.com/svn/odinIDS/Egio/artigos/IDS/detececao-AF2.pdf

image2.emf

image3.emf

image4.emf

image5.emf

image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf

image12.emf

image1.png

