

[image: image12.jpg]
 A Minor Project
 ON
File Search Engine
 BACHELOR OF ENGINEERING

IN

COMPUTER SCIENCE BRANCH

RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA

BHOPAL

SUBMITTED BY

RAMVEER SINGH 0201CS071064
RISHI PRATAP SINGH 0201CS071068
DHARMENDRA kori 0201CS071025
ANIRUDH THAKUR 0201CS061006
CSE VI sem.
Under the guidance of

Mr. SOURABH SINGH sir
(LECTURER)

 COMPUTER SCIENCE & ENGINEERING

JABALPUR ENGINEERING COLLEGE

 JABALPUR (M.P.)

 YEAR 2010
 ABSTRACT
Our project Desktop Search Engine for standalone computers is software which enables the user to have instant information about any file in that computer. The software lets us to know the locations of not only that particular file but also the files with similar names so that the file can be searched even if its exact name is not known. The plan also enables one to find out their extensions. One need to just mention the name or any substring of the file & the software would tell the path along with their extensions. Our plan also includes the suggestion facility in which it keeps on suggesting the possible files as the user enters any character.

In short this plan is a handy, user-friendly software with the help of which even a person who just knows to operate a computer can find the location of any file .

.

CONTENTS
· Objective
· Introduction

· Requirement Analysis
· Software Requirement
· Hardware Requirement
· System Design concept’s

· Prototyping Model
· Flow Diagram

· Implementation

· Source code & Unit testing
· Outputs/Screenshots
· Future Outlook
· References
OBJECTIVE

 In systems with large file storage, to remember the path of any file is a challenging job now a days, in other words often it is not possible for the user to remember exactly where he has stored a particular file. This project provides a user friendly window in which the user enters the name of the file and gets the exact path of the file as output .

 INTRODUCTION
 OUR MOTTO :- Our project Desktop Search Engine for standalone computers is software which enables the user to have instant information about any file in that computer. The software lets us to know the locations of not only that particular file but also the files with similar names so that the file can be searched even if its exact name is not known. The plan also enables one to find out their extensions. One need to just mention the name or any substring of the file & the software would tell the path alongwith their extensions. Our plan also includes the suggestion facility in which it keeps on suggesting the possible files as the user enters any character.

In short this plan is a handy, user-friendly software with the help of which even a person who just knows to operate a computer can find the location of any file .

 SCOPE:

1 Our software is basically a standalone system application software. So, the market of this software is obviously huge covering all the computer users. Any computer user using this software can have instant access to any information about the files stored in hard-disk.
2 User does not need an internet connection to access this software, the only requirement to use this software is desktop with very low configuration.

3 The user does not need to know the extension of the file or not even exact filename.

4 We plan to extend the application and scope of the software to LANs so that the users of the systems connected to LANs can know which file is stored in which system.
Motivation:

Motivation behind this project is to use reach of computers to everyone. India has one of the world’s largest personal computer communities and it is increasing day by day. Most of this computer enabled population lives in big cities where the life is too hectic and everybody wants quick results with accuracy. The hard-disk capacity

of computers is also increasing rapidly. With this large storage it is now impractical to keep the file among such a large number of files without any search facility for them.

 Our purpose is to provide whole information of system in the hands of user. A user having desktop with a very low configuration or having desktop with high configuration and
complex features is able to use our system. He or she only needs to fill the search query (which is the name of the file to be searched)
 and he will get an accurate path of that file.

Key Features:
1 Independent of the configuration of the computer (support every computer with IBM architecture).

2 Compatible with WINDOWS as well as LINUX(platform independent).

3 User doesn't need to know the exact name of the file.

4 No need to describe the extension of the file.

Justification:

Why we used java?

1. Platform independent.

2. Easy to design GUI.

3. Highly optimized classes compare to user define functions.

Why we used Recursive algorithm?

As the depth of the destination of a file is unknown at the runtime.

Requirement Analysis
 HARDWARE REQUIREMENTS:

1 Pentium family and higher version.

2 128 MB RAM (or above).

3 1 GB Hard disk

4 Mouse/Keyboard

SOFTWARE REQUIREMENTS:

 1. OS- Windows 2000,XP,Linux

2. JDK /netbean
 SYSTEM DESIGN CONCEPT’S
In our project we have used prototyping model which is described as :-
THE PROTOTYPING MODEL

Often, a customer defines a set of general objectives for software but does not identify detailed input, processing, or output requirements.
 In other cases, the developer may be unsure of the efficiency of an algorithm, the adaptability of an operating system, or the form that human/machine interaction should take. In these, and many other situations, a prototyping paradigm may offer the best approach.

 The prototyping paradigm begins with requirements gathering. Developer and customer meet and define the overall objectives for the software, identify whatever requirements are known, and outline areas where further definition is mandatory. A "quick design" then occurs. The quick design focuses on a representation of those aspects of the software that will be visible to the customer/user (e.g., input approaches and output formats). The quick design leads to the construction of a prototype. The prototype is evaluated by the customer/user and used to refine requirements for the software to be developed. Iteration occurs as the prototype is tuned to satisfy the needs of the customer, while at the same time enabling the developer

to better understand what needs to be done. Ideally, the prototype serves as a mechanism for identifying software requirements.

 If a working prototype is built, the developer attempts to use existing program fragments or applies tools (e.g., report
generators, window managers) that enable working programs to be generated quickly.

[image: image1.png]
 In most projects, the first system built is barely usable. It may be too slow, too big, awkward in use or all three. There is no alternative but to start again, smarting but smarter, and build a redesigned version in which these problems are solved .When a new system concept or new technology is used, one has to build a system to throw away, for even the best planning

is not so omniscient as to get it right the first time. The management question, therefore, is not whether to build a pilot system and throw it away. You will do that. The only question is whether to plan in advance to build a throwaway, or to promise to deliver the throwaway to customers. The prototype can serve as "the first system." The one that Brooks recommends we throw away. But this may be an idealized view. It is true that both customers and Developers like the prototyping paradigm. Users get a feel for the actual system and developers get to build something immediately.
Yet, prototyping can also be problematic for the following reasons:

 1. The customer sees what appears to be a working version of the software,

Unaware that the prototype is held together “with chewing gum and baling Wire,” unaware that in the rush to get it working no one has
 considered overall Software quality or long-term maintainability.
 When informed that the Product must be rebuilt so that high levels of quality can be maintained, the Customer cries foul and demands that "a few fixes" be applied to make the Prototype a working product. Too often, software development management Relents.

2. The developer often makes implementation compromises in order to get a Prototype working quickly. An inappropriate operating system or programming Language may be used simply because it is available and known; an Inefficient algorithm may be implemented simply to demonstrate capability.

After a time, the developer may become familiar with these choices and forget all the reasons why they were inappropriate. The less-than-ideal choice has now become an integral part of the system.

Although problems can occur, prototyping can be an effective paradigm for software engineering. The key is to define the rules of the game at the beginning; that is, the customer and developer must both agree that the prototype is built to serve as a mechanism for defining requirements. It is then discarded (at least in part) and the actual software is engineered with an eye toward quality and maintainability.
 FLOW DIAGRAM

Data Flow Diagram’s:-

 Latitude, longitude

x_co[]; y_co[]

node_name[];

layer[]

IMPLEMENTATION
· File
with any name and of any extension can be searched.

· Independent of the depth of destination (because recursive algorithm is used).

· Independent of the storage capacity of the hard-disk.

· The software is equipped with the specific search facility for music and videos which often are the most frequently searched files.
· The final version of the project is powered with EFFICIENT MODE, in which the program will search the exact file name (and not the similar filenames) as per the will of the user. Sometimes the user may be damn sure about the exact name of the file and any additional result may irretate him. In this case the user will set the software in "EFFICIENT MODE" and the software will give him the files with the exact name as described by the user.

SOURCE CODE
CODING:-

Working Mechanism:

1. start

2.Enter query in text field .

3.Press enter or click on search button.

4.File class object is made with the specified query.

5.Recursive function listFilesAndFolders() is called.

6.File class method listFiles() is called.

7.listFiles() displays the files contained in the current folder.

8.File class Method getAbsolutePath() is called which displays the absolute path of file.

9.In the mean time indexOf() searches for the substring of specified pattern.

10.Result is displayed in the textArea.

11.Recursive function is called again if the next entry is directory.

12. no file found is displayed if file is not found.

The coding of desktop search engine is shown below:

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.io.File;

public class FileSearch extends Frame {

static SELayout se;

public static void main(String args[]) {

se=new SELayout("Desktop Search Engine");

}

public void listFilesAndFolders(String folder,String filename) {

 File file = new File(folder);

 try{

 if (!file.exists()) {

 se.ta1.append("no file found");

 }

}

catch(Exception e){}

 File[] fileArray = file.listFiles();

 for (int i = 0; i<fileArray.length; i++) {

 if (fileArray[i].isDirectory()) {

 try

 {

 String filename1=fileArray[i].getName().toLowerCase();

 int j=filename1.indexOf(filename);

 if(j!=(-1))

 {

String s=fileArray[i].getAbsolutePath()+"\n";

se.ta1.append(s);

}

 listFilesAndFolders(fileArray[i].getAbsolutePath(),filename);

 }

 catch(Exception e){}

}

 else {

 try

 {

String filename1=fileArray[i].getName().toLowerCase();

int j=filename1.indexOf(filename);

 if(j!=(-1))

{

 String s=fileArray[i].getAbsolutePath()+"\n";

se.ta1.append(s);

}

}

catch(Exception e){}

}

 }

}

public void listFilesAndFolders3(String folder,String filename) {

 File file = new File(folder);

 try{

 if (!file.exists()) {

 se.ta1.append("no file found");

 }

 }

catch(Exception e){}

 File[] fileArray = file.listFiles();

 for (int i = 0; i<fileArray.length; i++) {

 if (fileArray[i].isDirectory()) {

 try

 {

 String filename1=fileArray[i].getName().toLowerCase();

 int j=filename1.indexOf(filename);

 if(j!=(-1))

 {

String s=fileArray[i].getAbsolutePath()+"\n";

se.ta1.append(s);

}

 listFilesAndFolders(fileArray[i].getAbsolutePath(),filename);

 }

 catch(Exception e){}

}
 else {

 try

 {

String filename1=fileArray[i].getName().toLowerCase();

int j=filename1.indexOf(filename);

 if(j!=(-1))

{

String s=fileArray[i].getAbsolutePath()+"\n";

 se.ta1.append(s);

 }

}

catch(Exception e){}

}

 }

}

 public void listFilesAndFolders1(String folder) {

 File file = new File(folder);

 try{

 if (!file.exists()) {

 se.ta1.append("no file found");

 }

}

catch(Exception e){}

 File[] fileArray = file.listFiles();

 for (int i = 0; i<fileArray.length; i++) {

 if (fileArray[i].isDirectory()) {

 try

 {

 String filename1=fileArray[i].getName().toLowerCase();

 int j=filename1.indexOf(".mp3");

 if(j!=(-1))

 {

String s=fileArray[i].getAbsolutePath()+"\n";

se.ta1.append(s);

}

 listFilesAndFolders1(fileArray[i].getAbsolutePath());

 }
 catch(Exception e){}

 }

 else

 {

 try

 {

String filename1=fileArray[i].getName().toLowerCase();

int j=filename1.indexOf(".mp3");

 if(j!=(-1))

{

String s=fileArray[i].getAbsolutePath()+"\n";

se.ta1.append(s);

}

}

catch(Exception e){}

}

 }

}

public void listFilesAndFolders2(String folder) {

 File file = new File(folder);

 try{

 if (!file.exists()) {

 se.ta1.append("no file found");

 //System.exit(1);

 }

}

catch(Exception e){}

 File[] fileArray = file.listFiles();

 for (int i = 0; i<fileArray.length; i++) {

 if (fileArray[i].isDirectory()) {

 try

 {

 String filename1=fileArray[i].getName().toLowerCase();

 int j=filename1.indexOf(".avi");

 if(j!=(-1))

 {

String s=fileArray[i].getAbsolutePath()+"\n";

se.ta1.append(s);

}

 listFilesAndFolders2(fileArray[i].getAbsolutePath());

 }

 catch(Exception e){}

}

 else

 {

 try

 {

String filename1=fileArray[i].getName().toLowerCase();

int j=filename1.indexOf(".avi");

 if(j!=(-1))

 {

String s=fileArray[i].getAbsolutePath()+"\n";

se.ta1.append(s);

}

}

catch(Exception e){}

 }

 }

}

}

class SELayout extends JFrame implements ActionListener,KeyListener{

Button btn,btn1,btn2,btn3;

JMenuBar mb ;

JMenu m1,m2,m3,m4,m5;

JMenuItem m;

JLabel lb1,lb2,lb3,lb4;

Label lb;

 TextField tf;

TextArea ta1;

JPanel tp,mp;

SELayout(String caption){

super(caption);

btn =new Button("search");

btn1 =new Button(" Music ");

btn2 =new Button(" Videos ");

//btn3 =new Button(" Stop Searching ");

mb = new JMenuBar();

m = new JMenuItem("Search Now!");

m1 = new JMenu(" Efficient Search ");

m2 = new JMenu("Edit");

m3 = new JMenu("View");

m4 = new JMenu("Tools");

m5 = new JMenu("Help");

m1.add(m);

mb.add(m1);

 mb.add(m5);

setJMenuBar(mb);

tp=new JPanel();

mp=new JPanel();

tp.setLayout(new FlowLayout());

btn.setFont(new Font("Verdana",Font.ITALIC,15));

btn1.setFont(new Font("Verdana",Font.ITALIC,15));

btn2.setFont(new Font("Verdana",Font.ITALIC,15));

tp.setFont(new Font("Verdana",Font.BOLD,15));

lb=new Label("Find",Label.LEFT);

ta1=new TextArea(" Result",5,5);

ta1.setBackground(new Color(240,230,210));

ta1.setForeground(new Color(200,50,50));

ta1.setFont(new Font("Verdana",Font.BOLD,16));

 btn1.setBackground(new Color(12,150,160));

btn2.setBackground(new Color(150,100,200));

btn.setBackground(new Color(150,150,100));

tf=new TextField(20);

tp.add(lb);

 tp.add(tf);

tp.add(btn);

tp.add(btn1);

tp.add(btn2);

tp.setBackground(Color.gray);

mp.setLayout(new GridLayout(1,1));

mp.add(ta1);

setSize(600,500);

setVisible(true);

setLayout(new BorderLayout());

 add(tp,"North");

add(mp,"Center");

btn.addActionListener(this);

btn1.addActionListener(this);

btn2.addActionListener(this);

tf.addKeyListener(this);

m.addActionListener(this);

}

public void keyPressed(KeyEvent ke)

{

 if(ke.getKeyChar()==KeyEvent.VK_ENTER)

{

String s=tf.getText();

 ta1.setText(" "+"Result"+"\n");

 char d[]={'c','d','e','f','g','h','i','j','k','i',};

 FileSearch fileSearch = new FileSearch();

 for(int i=0;i<=9;i++)

 {

 String dir=d[i]+":";

 File file = new File(dir);

if(file.isDirectory())

{

fileSearch.listFilesAndFolders(dir,s);

}

}

if(ta1.getText().equals(" "+"Result"+"\n"))

{

ta1.append("no file found"+"\n");

}

ta1.append("Search is complete"+"\n");

}

}

public void keyTyped(KeyEvent ke){}

public void keyReleased(KeyEvent ke){}

 public void actionPerformed(ActionEvent ae) {

 if(ae.getSource()==btn)

 {

 String s=tf.getText();

 ta1.setText(" "+"Result"+"\n");

 char d[]={'c','d','e','f','g','h','i','j','k','i',};

 FileSearch fileSearch = new FileSearch();

 for(int i=0;i<=9;i++)

 {

 String dir=d[i]+":";

 File file = new File(dir);

if(file.isDirectory())

{

fileSearch.listFilesAndFolders(dir,s);

}

}

if(ta1.getText().equals(" "+"Result"+"\n"))

{

ta1.append("no file found"+"\n");

}

ta1.append("Search is complete"+"\n");

}

 else if(ae.getSource()==btn1)

{

ta1.setText(" "+"Result"+"\n");

char d[]={'c','d','e','f','g','h','i','j','k','i',};

FileSearch fileSearch = new FileSearch();

for(int i=0;i<=9;i++)

{

 String dir=d[i]+":";

 File file = new File(dir);

 if(file.isDirectory())

 {

fileSearch.listFilesAndFolders1(dir);

 }

}

ta1.append("Search is complete"+"\n");

}

 else if(ae.getSource()==btn2)

{

 ta1.setText(" "+"Result"+"\n");

char d[]={'c','d','e','f','g','h','i','j','k','i',};

FileSearch fileSearch = new FileSearch();

for(int i=0;i<=9;i++)

{

 String dir=d[i]+":";

 File file = new File(dir);

 if(file.isDirectory())

 {

fileSearch.listFilesAndFolders2(dir);

 }

}

ta1.append("Search is complete"+"\n");

}

else if(ae.getSource()==m)

{

 String s=" "+tf.getText()+" ";

ta1.setText(" "+"Result"+"\n");

char d[]={'c','d','e','f','g','h','i','j','k','i',};

FileSearch fileSearch = new FileSearch();

for(int i=0;i<=9;i++)

{

 String dir=d[i]+":";

 File file = new File(dir);

if(file.isDirectory())

{

fileSearch.listFilesAndFolders3(dir,s);

}

}

if(ta1.getText().equals(" "+"Result"+"\n"))

{

ta1.append("no file found"+"\n");

}

ta1.append("Search is complete"+"\n");

}

}

}

TESTING
The testing issues deals with that phase of the project building in which we tested our project on various criteria’s so that it can be more reliable, more accurate, more efficient and user friendly.

These issues are discussed in brief as follows :-

1 RELIABILITY ISSUE: This software is not based on any predefined assumptions or fake information. The recursive algorithm searches the accurate path of the file. So a user can rely on the information provided by our software.

2 ACCURACY OF RESULT: This software provides the user 100% accurate results. Because the operation is performed using reliable algorithms & standard procedure.

3 HUMAN COMPUTER INTERFACE DESIGN: User interface design or user interface engineering is the design of computers,
 appliances, machines, mobile communication devices, software
applications, and websites with the focus on the user's experience and interaction. Unlike traditional design where the goal is to make the object or application physically attractive, the goal of user interface design is to make the user's interaction as good as possible—what is often called user-centered design. Where good graphic/industrial design is bold and eye catching,
good user interface design is to facilitate finishing the task at hand, not to draw attention to it.
We along with aim at building a User Interface based on GUI present in Windows.

Constraints:
1 GUI will only in English.

2 This system will only be responsible for searching the accurate path of the file.

Outputs/Screenshots

· Main window
[image: image2.jpg]
· search file
[image: image3.png]
· search music(audio & video) files
[image: image4.png]
· search video files
[image: image5.png]
Future outlook
1 This software can be expanded to the systems connected to LAN so that any file in any of the system can be searched.

2 This software can be applicable on the mobiles.

3 In the present state the application is responsible only for searching and not opening the application, in future our plan is to provide the facility to open the file through our application.

4 In the present state the application searches the file linearly.In future we have a plan to use a more efficient search algorithm so that the time complexity can be reduced sharply.

References

 1 Faculty

 2 www.java.sun.com
 3 Wrox Professional Java JDK 6

 4 Complete reference in JAVA.
[image: image6.png][image: image7.png][image: image8.png][image: image9.png][image: image10.png][image: image11.png]

node

Description

source

path

distance

info

Position of node

_1334651766

