1. INTRODUCTION
1.1) Purpose
The purpose of HIET Integrated Library is to provide a medium for the college libraries to computerize their entire functioning and would contribute as a first step in digitalizing their libraries!

As till now in India, college libraries (medium and small scale) had their entire records on paper which again required maintenance and the problem of finding relevant information proved to be a herculean task. Even if the required information was found it was usually at cost of much valuable time.

HIET Integrated Library would not only simplify this process but also speedup the entire functioning of the library. It will also contribute towards increasing the efficiency of the library as a whole, right from the data entry to maintaining the historical records.

One major purpose is to provide user or the library members the opportunity to not only search through the books but to reserve books that are issued by other users and also request newer books.

1.2) Scope
HIET Integrated Library (HIL) aims at providing a complete solution for all the library requirements of Medium and small scale libraries. Presently we have few public libraries in the country with even few of them computerized but the number is sure to grow as the focus shifts more on education. It would be a great help to these libraries if there is a software available that would help them with their day to day tasks.

HIL would not only help the librarian in the mundane tasks of the library but will be providing the scope to add newer user groups like data entry assistants etc. and also newer user groups depending on their subscriptions.

The feature of recording and retrieving user and book history details is going to throw some very interesting results regarding the books most popular among the users and also their favourite genre according to age group etc.
1.3) Problem in Existing System
The existing system that is being used in majority of public librariesis completely manual in nature. Information about all the books and members/users is maintained separately in data entry registers. The entries made in each and every register are having a serial number corresponding to the register name and year. Also there are separate registers for purchase and sale of booksand for different user plans. This often leads to redundant information too.
Though some libraries do have computerised systems that provide basic features such as adding books, user etc and also that of issuing the books, but what they lack is the user involvement and interactivity.
Limitations of existing system:

· Majority of libraries are dependent on paper-work which turns out to be very inefficient,

and data backup is very difficult and tedious

· Users or members in such systems either become dependent on the librarian when they enquire about the books existing in the library or find themselves helpless when they try to search the library for their book of interest unknown of even its availability!!

· Present day systems involve the users very little in the entire process, and also do not consider the user wants for newer books etc. This non-involvement of end users, also mean that either they have to manually ask the librarian whether a particular book is already issued by some other user or they have to browse through the library.
· They are also unable to gather the information about user interests and books that are more popular than others.

1.4) Statement of Problem
The current problem can be solved by automating the manual process followed in managing libraries with the help of our software. This would not only make the job of storing the data very easy and fast for the librarian but it would also make the process of retrieving data (regarding books, users etc.) in the future very convienient. It would also give users the facility to search the entire books of the library. He can also reserve books that he want to get issued (not currently available in the library).
2. SYSTEM REQUIREMENT ANALYSIS
2.1. Information Gathering
The informations have been gathered by conducting the surveys. Questionnaires and interviews with the librarians and users, are used to collect this information. Actual observation of work activities involved collection of forms and documents involved in the functioning of a library. Then we have studied the requirements to identify the features that our system should have and input and output methods.
Determination of system requirements -
· Why such a system is required?

Such a system is required to solve the problems of library management through a software solution, in an efficient manner, as well as to save the time. Also to result a systematic data storage system for the library.

· If you have any previous version of this system then what are the problems in that?
The previous versions of this system didn’t have the flexibility to create newer user groups. Also they didn’t involved the user dynamically.

· What are your requirements?
The major requirement is to maintain the information easily while saving time and effort. All the basic functions of the library will be done through the software. It should have user freindly interface and support fast retrieval of searched data. The proposed system must be faster so that the administrator does not has to wait long to retrieve any information. The system Reliability must be ensured so that there is no threat of data loss. It should be Scalable so that in near future the system can be expanded and customized to the growing needs of the library.
· How to proceed with the problem solving?
By analysing the requirements gathered.
2.2. Technology Specifications
Hardware Requirements

· CPU equivalent or above Intel Celeron 800 MHz

· RAM 256 MB or higher.
· Hard Disk – Minimum 4GB
Software Requirements

· JAVA (jdk 5.0 onwards).
· Any Windows OS (XP or later)

· Microsoft Access as the data base.
· Microsoft Word for Documentation.

Implementation Language

· JAVA Swing
2.3. System Feasibility

2.3.1. Technical Feasibility

The technical feasibility of the system counts for the technical acceptance of the system. It refers to the ability of the process to take advantage of the current state of the technology in
pursuing further improvement. The technical capability of the personnel as well as the capability of the available technology should be considered.

In technical feasibility the following issues are taken into consideration:

·
Whether the required technology is available or not?

The work for the project can be done wih the current equipment and existing software
technology that the organisation possessess. .Net is used as a main technology which is
easy to use.
·
Whether the required resources are available?

The system does not have any rigid hard-ware and software requirements and there is availability of the people who can perform the software engineering activities required for the development of the system.

Hence, the system is technically feasible.

2.3.2. Behavioral Feasibility

Behavioral feasibility is the measure that how effective the user uses the system. The behavioral efficiency is one of the major factors of feasibility analysis. The new or the proposed system should be easy to operate, convenient in maintenance and effective in its working. Thus behavioral feasibility is very important factor to be considered for effective working of system. Behavioral feasibility is dependent on human resources available for the project and involves projecting whether the system will operate and be used when installed. The system is behaviorally feasible if it fulfills the following:

1. The proposed system is easy to operate.

2. Existing members are not affected in anyway.

3. Retrieval of information is easy, accurate and fast.

2.3.2. Temporal Feasibility

Temporal feasibility means whether the project is completed in the given time or not.

One of the most difficult aspects of project management is the formulation of estimates of the time required to develop a system. Estimates and time scheduling is an approximation of the hours, days, or months of efforts needed to produce the desired system. It depends on factors like programmer’s ability, program complexity etc.
2.4) Team structure
Our team structure is Democratic decentralized (DD) structure. This software engineering team has no permanent leader. Rather, "task coordinators are appointed for short durations and then replaced by others who may coordinate different tasks." Decisions on problems and approach are made by group consensus. Communication among team members is horizontal.

It has got an egoless approach in which each and every member is involved throughout the development of the software and also in the decision making process. The structure results in many communication paths between people.
[image: image1.jpg]
Fig 1: Communication Paths in an Egoless Team Structure
2.5 Process Model Used

A software process model is a development strategy that incorporates the development process, methods and tools used to design software. It is chosen based on the nature of the software and the methods and tools used in development. The Software model used in the Project is Linear Sequential Model. It is also called the "Classic Life Cycle" or "the "Waterfall Model” that suggests a systematic and sequential approach to software development that begins at the system level and progresses through analysis, design, coding, testing and support. The waterfall model derives its name due to the cascading effect from one phase. In this model each phase has a well defined starting and ending point, with identifiable deliveries to the next phase.
[image: image54.jpg][image: image55.jpg]

Fig. 2 - The Linear Sequential Model
3. ANALYSIS
3.1 Methodology Used

The project plan is to carry the design and implementation of the project in a completely step-by-step manner. The entire project is divided in the following phases.

Phase 1 – Study and Analysis Phase

In this phase requirements were analyzed and a detailed study regarding the functionalities of the libraries was performed. In this phase we interacted with the librarians and users so as to collect information regarding the project. A study of the drawbacks of the existing system is required and proposing the system as a solution to them. Also a deep study of the concept of databases and other material is required to design and develop the system.

Phase 2 - Design Phase

In this phase the database design of the system are made. After the analysis of the system the scenario of the library is to be defined. The database design is being carried in the following steps-

· Identification of entities and their relationships from the scenario.

· Designing the conceptual model.

· Designing the logical model of the system and normalizing the relations.

· Proposing the physical design of the system.

· Working on the interface design.

· Defining hardware and software requirements.
Phase 3 - Coding Phase
In this phase the design of the system is to be implemented through actual code. Code allows the developers to make the computer behave in a required manner and thus satisfying the needs of the end user.
Phase 4 – Testing and Implementation
This phase will involve testing it with various test cases and data sets and implementation of the system. Testing is the stage where all possibilities of software failure are discovered and bugs are removed. After successful testing of the software implementation is done. Implementation implies the deployment of the software to the client location.

3.2) ER Model

Fig 3
3.3) DFD- Data Flow Diagram

Fig 4: Level 0 DFD

Fig 5: Level 1 DFD
3.4
[image: image56.jpg]
Fig 7: Process Specification for Login
[image: image2.jpg]
Fig 8: Process Specification for User Control Panel

3.5 CFD- Control Flow Diagram
Fig 9: Level 0 CFD

Fpig 10: Level 1 CFD

Fig 11: Level 2 CFD

4. DESIGN
4.1 Architectural Design

4.1.1) System Architecture Diagram
 [image: image3.jpg]
Fig 12: Two-Tier Architecture
 4.1.2) Architecture Context Diagram

[image: image4.jpg]
Fig 13: Architectural Context Diagram
4.1.3) Description Of Architectural Design
Two-tier architecture is where a client talks directly to a server, with no intervening server. It is simple to build. In our project this architecture is implemented because the client that is the user sends a request to the server that the server fulfill by simply referring to the database and retrieving the information asked for.

The most important limitation of the two-tier architecture is that it is not scalable, because each client requires its own database session that is 2-tier applications become complex and hard to support as the number of users increases in size.
4.2 Database Design
4.2.1) Data Dictionary
Table name: user

	Column Name
	Data Type
	Length

	user_id
	Int
	

	user_username
	varchar
	

	user_password
	varchar
	

	user_fname
	varchar
	50

	user_lname
	varchar
	50

	user_sex
	varchar
	1

	user_dob
	datetime
	

	user_address
	varchar
	200

	user_contactno
	varchar
	15

	user_email
	varchar
	30

	user_doj
	datetime
	

	user_group_id
	Int
	50

	user_acc_expire
	datetime
	

Table – 1

Table name: book_info
	Column Name
	Data Type
	Length

	bi_id
	Int
	50

	bi_title
	varchar
	50

	bi_author
	varchar
	50

	bi_publisher
	varchar
	50

	bi_edition
	varchar
	50

	bi_price
	Int
	

	bi_genre
	varchar
	100

	bi_summary
	varchar
	MAX

	bi_year
	Number
	int

	bi_pages
	Int
	50

	bi_billno
	Int
	50

Table – 2

Table name: book
	Column Name
	Data Type
	Length

	book_accession_id
	Int
	50

	book_bi_id
	Int
	50

	book_user_id
	Int
	50

	book_doi
	datetime
	

Table – 3

Table name: group
	Column Name
	Data Type
	Length

	group_id
	Int
	Long Integer

	group_name
	varchar
	50

	group_book_limit
	Int
	50

	group_bookdays_limit
	Int
	50

	group_add_user
	varchar
	1

	group_edit_ user
	varchar
	1

	group_del_ user
	varchar
	1

	group_add_book
	varchar
	1

	group_edit_book
	varchar
	1

	group_del_book
	varchar
	1

	group_add_mag
	varchar
	1

	group_edit_mag
	varchar
	1

	group_del_mag
	varchar
	1

	group_add_news
	varchar
	1

	group_edit_news
	varchar
	1

	group_del_news
	varchar
	1

	group_tip
	varchar
	1

	group_add
	varchar
	1

	group_can_change
	varchar
	1

	group_changeable
	varchar
	1

	group_view_history
	varchar
	1

	group_issue_book
	varchar
	1

Table – 4

Table name: history
	Column Name
	Data Type
	Length

	hstr_id
	Int
	50

	hstr_user_id
	Int
	50

	hstr_book_accession_id
	Int
	50

	hstr_magz_id
	Int
	50

	Hstr_news_id
	Int
	50

	hstr_doi
	datetime
	

	hstr_desc
	varchar
	50

Table 5

 Table name: magazine

	Column Name
	Data Type
	Length

	magz_id
	Int
	50

	magz_tilte
	varchar
	50

	magz_cover_topic
	varchar
	50

	magz_publisher
	varchar
	50

	magz_date
	datetime
	

	magz_price
	Int
	

	magz_summary
	Text
	

	magz_genre
	varchar
	 100

	magz_billno
	Int
	

	magz_pages
	Int
	

	magz_vol
	Int
	

	magz_issue
	Int
	

	magz_user_doi
	Int
	

	magz_doi
	datetime
	

Table 6

Table name: newspaper
	Column Name
	Data Type
	Length

	paper_id
	Int
	

	paper_name
	varchar
	50

	paper_date
	datetime
	

	paper_publisher
	varchar
	50

	paper_price
	Int
	

	paper_summary
	varchar
	50

	paper_category
	varchar
	50

	paper_billno
	Int
	

	paper_user_id
	Int
	

	paper_doi
	datetime
	

Table 7

Table name: reserve

	Column Name
	Data Type
	Length

	resv_id
	Int
	50

	resv_bi_id
	Int
	50

	resv_user_id
	Int
	50

	res_doi
	datetime
	

Table – 8
4.2.2 Normalization

First Normal Form (1NF)

First normal form (1NF) sets the very basic rules for an organized database:
· Eliminate duplicative columns from the same table.

· Create separate tables for each group of related data and identify each row with a unique column or set of columns (the primary key).

Second Normal Form (2NF)

Second normal form (2NF) further addresses the concept of removing duplicative data:

· Meet all the requirements of the first normal form.

· Remove subsets of data that apply to multiple rows of a table and place them in separate tables.

· Create relationships between these new tables and their predecessors through the use of foreign keys.

Third Normal Form (3NF)
Third normal form (3NF) goes one large step further:
· Meet all the requirements of the second normal form.
· Remove columns that are not dependent upon the primary key.
Fourth Normal Form (4NF)
Finally, fourth normal form (4NF) has one additional requirement:
· Meet all the requirements of the third normal form.
· A relation is in 4NF if it has no multi-valued dependencies.

4.3 Component Design
 4.3.1 Flow Chart
[image: image5.jpg]
Fig 14(a)
[image: image6.jpg]
Fig 14(b)
[image: image7.jpg]
Fig 16(c)
[image: image8.jpg]
Fig 14(d)
4.4 Interface Design

 4.4.1 Screenshots
Login Screen
[image: image9.png]
 Home Screen

[image: image10.png]
 Borrowers Profile
[image: image11.png]
Add Borrowers Info.
[image: image12.png]
Edit Borrowers Info.

[image: image13.png]
Search Borrowers Info.

[image: image14.png]
Edit User
Adding New User Group

5.) IMPLEMENTATION
5.1) Language/ technology used for the implementation
JAVA Technology is being used in this project

The database used is MS-Access 2007.

5.2) Features of language/ technology used for the project
5.2.1) Java Technology
Java technology is both a programming language and a platform.
(a) The Java Programming Language

	The Java programming language is a high-level language that can be characterized by all of the following buzzwords:

 Simple
	 Architecture neutral

	 Object oriented
	 Portable

	 Distributed
	 High performance

	 Multithreaded
	 Robust

	 Dynamic
	 Secure

Each of the preceding buzzwords is explained in The Java Language Environment , a white paper written by James Gosling and Henry McGilton.

In the Java programming language, all source code is first written in plain text files ending with the .java extension. Those source files are then compiled into .class files by the javac compiler. A .class file does not contain code that is native to your processor; it instead contains bytecodes — the machine language of the Java Virtual Machine1 (Java VM). The java launcher tool then runs your application with an instance of the Java Virtual Machine.

[image: image15.png]
An overview of the software development process.

Because the Java VM is available on many different operating systems, the same .class files are capable of running on Microsoft Windows, the SolarisTM Operating System (Solaris OS), Linux, or Mac OS. Some virtual machines, such as the Java HotSpot virtual machine, perform additional steps at runtime to give your application a performance boost. This include various tasks such as finding performance bottlenecks and recompiling (to native code) frequently used sections of code.

[image: image16.png]
Through the Java VM, the same application is capable of running on multiple platforms.

(b) The Java Platform

A platform is the hardware or software environment in which a program runs. We've already mentioned some of the most popular platforms like Microsoft Windows, Linux, Solaris OS, and Mac OS. Most platforms can be described as a combination of the operating system and underlying hardware. The Java platform differs from most other platforms in that it's a software-only platform that runs on top of other hardware-based platforms.

The Java platform has two components:

· The Java Virtual Machine
· The Java Application Programming Interface (API)

You've already been introduced to the Java Virtual Machine; it's the base for the Java platform and is ported onto various hardware-based platforms.

The API is a large collection of ready-made software components that provide many useful capabilities. It is grouped into libraries of related classes and interfaces; these libraries are known as packages. The next section, What Can Java Technology Do? highlights some of the functionality provided by the API.

[image: image17.png]
The API and Java Virtual Machine insulate the program from the underlying hardware.

As a platform-independent environment, the Java platform can be a bit slower than native code. However, advances in compiler and virtual machine technologies are bringing performance close to that of native code without threatening portability.

5.2.1.2) What is Swing?
To create a Java program with a graphical user interface (GUI), you'll want to learn about Swing.

The Swing toolkit includes a rich set of components for building GUIs and adding interactivity to Java applications. Swing includes all the components you would expect from a modern toolkit: table controls, list controls, tree controls, buttons, and labels.

Swing is far from a simple component toolkit, however. It includes rich undo support, a highly customizable text package, integrated internationalization and accessibility support. To truly leverage the cross-platform capabilities of the Java platform, Swing supports numerous look and feels, including the ability to create your own look and feel. The ability to create a custom look and feel is made easier with Synth, a look and feel specifically designed to be customized. Swing wouldn't be a component toolkit without the basic user interface primitives such as drag and drop, event handling, customizable painting, and window management.

Swing is part of the Java Foundation Classes (JFC). The JFC also include other features important to a GUI program, such as the ability to add rich graphics functionality and the ability to create a program that can work in different languages and by users with different input devices.

The following list shows some of the features that Swing and the Java Foundation Classes provide.

Swing GUI Components

The Swing toolkit includes a rich array of components: from basic components, such as buttons and check boxes, to rich and complex components, such as tables and text. Even deceptively simple components, such as text fields, offer sophisticated functionality, such as formatted text input or password field behavior. There are file browsers and dialogs to suit most needs, and if not, customization is possible. If none of Swing's provided components are exactly what you need, you can leverage the basic Swing component functionality to create your own.

Java 2D API
To make your application stand out; convey information visually; or add figures, images, or animation to your GUI, you'll want to use the Java 2DTM API. Because Swing is built on the 2D package, it's trivial to make use of 2D within Swing components. Adding images, drop shadows, compositing — it's easy with Java 2D.

Pluggable Look-and-Feel Support

Any program that uses Swing components has a choice of look and feel. The JFC classes shipped by Sun and Apple provide a look and feel that matches that of the platform. The Synth package allows you to create your own look and feel. The GTK+ look and feel makes hundreds of existing look and feels available to Swing programs.

A program can specify the look and feel of the platform it is running on, or it can specify to always use the Java look and feel, and without recompiling, it will just work. Or, you can ignore the issue and let the UI manager sort it out.

Data Transfer

Data transfer, via cut, copy, paste, and drag and drop, is essential to almost any application. Support for data transfer is built into Swing and works between Swing components within an application, between Java applications, and between Java and native applications.

Internationalization

This feature allows developers to build applications that can interact with users worldwide in their own languages and cultural conventions. Applications can be created that accept input in languages that use thousands of different characters, such as Japanese, Chinese, or Korean.

Swing's layout managers make it easy to honor a particular orientation required by the UI. For example, the UI will appear right to left in a locale where the text flows right to left. This support is automatic: You need only code the UI once and then it will work for left to right and right to left, as well as honor the appropriate size of components that change as you localize the text.

Accessibility API

People with disabilities use special software — assistive technologies — that mediates the user experience for them. Such software needs to obtain a wealth of information about the running application in order to represent it in alternate media: for a screen reader to read the screen with synthetic speech or render it via a Braille display, for a screen magnifier to track the caret and keyboard focus, for on-screen keyboards to present dynamic keyboards of the menu choices and toolbar items and dialog controls, and for voice control systems to know what the user can control with his or her voice. The accessibility API enables these assistive technologies to get the information they need, and to programmatically manipulate the elements that make up the graphical user interface.
Undo Framework API

Swing's undo framework allows developers to provide support for undo and redo. Undo support is built in to Swing's text component. For other components, Swing supports an unlimited number of actions to undo and redo, and is easily adapted to an application. For example, you could easily enable undo to add and remove elements from a table.

Flexible Deployment Support

If you want your program to run within a browser window, you can create it as an applet and run it using Java Plug-in, which supports a variety of browsers, such as Internet Explorer, Firefox, and Safari. If you want to create a program that can be launched from a browser, you can do this with Java Web Start. Of course, your application can also run outside of browser as a standard desktop application.

 Swing Features

PasswordStore shows some of the rich functionality of a particular Swing application. This lesson discusses the general features available to applications using the Java SE platform and, in particular, the Swing toolkit.

(c) A Visual Guide to Swing Components (Java Look and Feel)
Swing is primarily known for its rich set of GUI components. This section provides a visual menu of Swing's components, grouped by type, using the Java look and feel.

(d) A Visual Guide to Swing Components (Windows Look and Feel)
This page shows the same components, using the Windows look and feel.

(e) Pluggable Look and Feel
The pluggable look and feel architecture allows a program to have control over its appearance. This section describes what options are available to the programmer.

(f) Data Transfer
Most programs will want to use drag and drop or cut, copy and paste. This section talks a bit about data transfer and what is implemented for you.

(g) Internationalization and Localization
Internationalizing an application makes it easy to tailor it to the customs and languages of end users around the world. This section describes the difference between internationalization and localization.

(h) Accessibility
Making your program accessible means that it can be used, without modification, by anyone with permanent or temporary disabilities who may require special devices. And, in many countries, making programs accessible is the law.

(i) Integrating with the Desktop
An application that is well integrated with the desktop will, where appropriate, allow the user to launch the default mail application or internet browser, pre-populating text fields as needed. It will also allow the user to launch another application to open, edit or print a file associated with that application.

(j) System Tray Icon Support
Some platforms, such as Microsoft Windows, feature a system tray on the desktop. As of version 6 of the Java SE, your application can now add a tray icon to the system tray.

A Visual Guide to Swing Components (Java Look and Feel)

This page shows Swing components in the Java look and feel. The following page shows the same components in the Windows look and feel.

	Basic Controls
Simple components that are used primarily to get input from the user;
they may also show simple state.

	

[image: image18.png]

JButton
[image: image19.png]

JCheckBox
[image: image20.png]

JComboBox
[image: image21.png]

JList
[image: image22.png]

JMenu
[image: image23.png]

JRadioButton
[image: image24.png]

JSlider
[image: image25.png]

JSpinner
[image: image26.png]

JTextField
[image: image27.png]

JPasswordField

	Interactive Displays of Highly Formatted Information
These components display highly formatted information that
(if you choose) can be modified by the user.

	

[image: image28.png]

JColorChooser
[image: image29.png]

JEditorPane and JTextPane
[image: image30.png]

JFileChooser
[image: image31.png]

JTable
[image: image32.png]

JTextArea
[image: image33.png]

JTree

	Uneditable Information Displays
These components exist solely to give the user information.

	[image: image34.png]

JLabel
[image: image35.png]

JProgressBar
[image: image36.png]

JSeparator
[image: image37.png]

JToolTip

	Top-Level Containers
At least one of these components must be present in any Swing application.

	[image: image38.png]

JApplet
[image: image39.png]

JDialog
[image: image40.png]

JFrame

	General-Purpose Containers
These general-purpose containers are used in most Swing applications.

	[image: image41.png]

JPanel
[image: image42.png]

JScrollPane
[image: image43.png]

JSplitPane
[image: image44.png]

JTabbedPane
[image: image45.png]

JToolBar

	Special-Purpose Containers
These special-purpose containers play specific roles in the UI.

	[image: image46.png]

JInternalFrame
[image: image47.png]

JLayeredPane
[image: image48.png]

Root pane

5.2.2) MS- Access
6. TESTING
Our project has been tested using Black box and White box testing on all interfaces and loops.

6.1) White Box Testing
White – box testing, sometimes called glass-box testing, is a test case design philosophy that uses the control structure described as part of component-level design to derive test cases.

Using White box testing methods it can be ensured that:

· All independent paths within a module have been exercised atleast once

· Exercise all logical decisions.
· Execute all loops at their boundaries and within their operational bounds.
· Exercise internal data structures to ensure their validity.
[image: image49.jpg]
Fig 15(a): Control Flow Structure

[image: image50.jpg]
Fig 15(b)
[image: image51.jpg]
Fig 15(c)
[image: image52.jpg]
Fig 15(d)
6.2) Cyclomatic complexity

We have calculated cyclomatic complexity for our project. Cyclomatic complexity is a software metric that provides a quantitative measure of the logical complexity of a program. The value computed for Cyclomatic complexity defines the number of independent paths in the basis set of a program and provides us with an upper bound for the number of tests that must be conducted to ensure that all statements have executed at least once. Cyclomatic complexity has a foundation in graph theory and it can be computed as the number of regions corresponds to the cyclomatic complexity.
Cyclomatic complexity can be computed in the following ways:

· By counting the number of regions.

· Cyclomatic Complexity V(G) ,is given by : V(G) = E – N + 2 ,

 Where E = number of edges, N = number of nodes.

Calculating Cyclomatic Complexity by using the following methods, we get:

· The flow graph has 7 regions.

· V (G) = 23 edges – 18 nodes + 2 = 7.

Since our flow graph has 6 regions so our total cyclomatic complexity is 7.
[image: image53.jpg]
Fig 16(a)- Flow Graph

.

Fig 16(c)

 Fig 16(b)

 Fig 16(d)
6.3) Black Box Testing
Black Box Testing is testing without knowledge of the internal workings of the item being tested. For example, when black box testing is applied to software engineering, the tester would only know the "legal" inputs and what the expected outputs should be, but not how the program actually arrives at those outputs. It is because of this that black box testing can be considered testing with respect to the specifications, no other knowledge of the program is necessary.

7. FUTURE SCOPE AND LIMITATIONS.
HIET Integrated Library is in itself a complete system, though it has a few limitations but it has a lot of future scope and features that could be added to make it more widely acceptable.
One limitation is that our software is limited to small and medium scaled libraries. Also apart from Books, Magazine and Newspaper no new category can be added in the system (or in turn be issued) like CDs etc.
One of the major future scope is making our system online. Connecting libraries to a common data centre will provide globalization to the libraries, and then the user will be able to search books all over the city and nearby areas.
Reviews, rating, comparing of books and libraries can also be incorporated. This would help the user to browse through popular books and make his selection based on the books rating.
Also data obtained from this can be used to discover topics, genre and books that the readers are interested in reading!
Usage of advanced [BOT]s for retrieval of information about new titles available throughout the world.
8.) CONCLUSION
HIET Integrated Library has been created keeping in mind the needs of Small and Medium scale libraries. It’s efficient software that includes all the basic functionalities like making data entries for new books, Search and Update Books Records, registering a new user, editing and deleting records that are required for smooth functioning of a library. Additionally the user login and book history are also stored and can be accessed by the administrator.

It also facilitates the librarian to create new user groups and edit their access levels and functions (like that of the assistants). Apart from this the general users are also given the rights to not only keep track of the books that they have issued and fines due but they too can search for the books/magazines that interest them.
9. REFERENCE

1.
R.Elmasri and S.B.Navathe. (2005) ‘Fundamentals of Database system’

2. Deitel & Deitel ‘JAVA How to Program’

3.
R.S. Aggarwal , ‘Software Engineering’.

Analysis

Design

Coding

Testing

 Borrowers

Borrowers_ID

Borrowers name

Address

Current year

Course

Fine

 Action Box

One to one

One to many

 Category

Cat. _ID

Category

Description

 Books Record

Book_No

ISBN

Title

Author

Cat._ID

Year Published

Price

Qty.

Borrowed

Remaining

issues

Charges

 Borrowed Record

Book_No.

Borrowers_ID

Date of Borrowed

Due date

Date of Returded

No. of days after borrowed

Fine

provides

Yr_info

brwrs_info

Issues

Applied

 Course

Course

Year

Section

Adviser

Bk_info

Bk_catg

 Year

year

 Fines

Fine

 College

College name

Address

Contacts

 User

Userid

Password

Entity-Relationship Diagram

(HIet Integrated Library)

Entity-Relationship Diagram

(HIet Integrated Library)

 51

